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Abstract
Based on the quantum master equation approach, the nonlinear electric conductivity of graphene
is investigated under static electric fields for various chemical potential shifts. The simulation
results show that, as the field strength increases, the effective conductivity is firstly suppressed,
reflecting the depletion of effective carriers due to the large displacement in the Brillouin zone
caused by the strong field. Then, as the field strength exceeds 1 MV m−1, the effective conductivity
increases, overcoming the carrier depletion via the Landau–Zener tunneling process. Based on the
nonlinear behavior of the conductivity, the charge transport induced by few-cycle THz pulses is
studied to elucidate the ultrafast control of electric current in matter.

1. Introduction

Recent developments of laser technologies have enabled the study of light-induced nonequilibrium electron
dynamics in matter [1–7]. Among various intriguing materials, graphene has been attracting a large
amount of interest owing to its unique electronic structure, the so-called Dirac cone. Various light-induced
phenomena in graphene have been studied, such as the light-induced topological phase [8], high-order
harmonic generation [9–13], and light-induced anomalous Hall effects [8, 14, 15]. Furthermore, nonlinear
light-induced current injection in graphene has been investigated toward the achievement of ultrafast
optoelectronic devices [16–18].

To control electric current and charge transport by light, a deep understanding of the field-induced
nonequilibrium electron dynamics in matter is indispensable. The nonlinear conductivity of graphene in
the THz regime has been investigated, and its field-induced transparency has been experimentally reported
[19–24], reflecting the reduction in the conductivity caused by a strong field. Based on the semi-classical
kinematic theory, the conductivity reduction has been explained through the change in the carrier
scattering rate [25, 26]. By contrast, an enhancement of the conductivity has been suggested in a strong field
regime via the Landau–Zener tunneling, which is based on the quantum nature of electrons in solids [27].
Therefore, the microscopic physics behind the nonlinear conductivity of graphene still needs to be clarified
via a full quantum mechanical description in order to provide a comprehensive understanding of its
nonlinear opto-electronic properties.

In this work, the nonlinear electronic current in graphene is theoretically studied under strong static
fields using the quantum master equation approach. As a result of the fully-quantum mechanical
simulations, it is shown that the conductivity reduction in graphene can be understood in terms of the
depletion of the effective carriers without considering the phenomenological change of the scattering rates.
Furthermore, the depletion of carriers is found to be overcome by the Landau–Zener tunneling in the
strong field regime, resulting in an enhancement of the effective conductivity as well as the induced current.
On account of the highly nonlinear behavior of the conductivity, a method to induce charge transport via
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few-cycle THz laser pulses is proposed, providing a possible foundation for realizing ultrafast
optoelectronics with graphene.

2. Method

Our calculation method has been described in detail elsewhere [13, 15, 28], so we briefly describe the
theoretical modeling here. To describe the light-indued electron dynamics in graphene, the following
quantum master equation was employed [15, 28],

d

dt
ρk(t) =

1

i�
[ρk(t), Hk(t)] + D̂ [ρk(t)] , (1)

where ρk(t) is the one-body reduced density matrix at each k-point, D̂ [ρk(t)] is the relaxation operator, and
Hk(t) is the Hamiltonian. The simple two-band approximation was employed for the electronic structure of
graphene as

Hk(t) = vFσx [kx + Ax(t)] + vFσy

[
ky + Ay(t)

]
, (2)

where σj are the Pauli matrices, kj are the jth components of the Bloch wave vector k, and Aj(t) is the j
component of the vector potential A(t), which is related to the external electric field, according to
E(t) = −Ȧ(t) in the dipole approximation. The Fermi velocity vF was set to 1.12 × 106 m s−1 in accordance
with a previous ab initio calculation [29]. The relaxation operator D̂ [ρk(t)] was constructed using the
relaxation time approximation [30]. D̂ [ρk(t)] depends on the longitudinal relaxation time T1, transverse
relaxation time T2, electron temperature Te, and chemical potential μ. T1, T2, and Te were set to 100 fs,
20 fs, and 300 K, respectively, whereas μ was treated as a tunable parameter. Our treatment of the relaxation
operator has been described in detail elsewhere [13, 15, 28]. As will be shown later (see figures 2(c)–(f)), we
consider the electron dynamics only in a narrow region around the Dirac point. Therefore, the linear band
approximation of equation (2) is expected to be valid.

The electron dynamics in graphene was computed under a static electric field described as
A(t) = −E0ext, where E0 is the strength of the applied field, and ex is the unit vector along the x-direction.
After sufficient time has elapsed, the system reaches a nonequilibrium steady state due to the balance
between the field-induced excitation and intrinsic relaxation. The electric current in the nonequilibrium
steady state can be evaluated as

J(E0) = lim
t→∞

(−1)

(2π)2

∫
dk Tr

[
ρk(t)

∂Hk(t)

∂A(t)

]
. (3)

Due to the circular symmetry of the Hamiltonian in equation (2), the induced current has only the
x-component, i.e., J(E0) = J(E0)ex. With this notation, the effective conductivity is here denoted as
σ(E0) = J(E0)/E0. It should be noted that, in the weak field limit, the effective conductivity σ(E0)
approaches the linear conductivity i.e., σ0 = limE0 →0,σ(E0).

3. Results

Assuming that the THz fields vary slowly in time and the induced electron dynamics is well approximated
by the quasi-static description, the THz and dc conductivity of graphene were investigated based on the
effective conductivity σ(E0). This approximation becomes accurate when the THz field frequency ωTHz is
sufficiently smaller than the intrinsic relaxation rates such as 1/T1 and 1/T2. Figure 1 shows the computed
conductivity σ(E0) as a function of the field strength E0 for different values of the chemical potential μ. In
the relatively weak field regime, the conductivity decreases upon increasing the applied field strength for all
the investigated chemical potentials. Since the energy loss of the external field is provided by Joule heating,
namely, J(E0)E0 = σ(E0)E2

0, the conductivity reduction is directly related to the field-induced transparency
of graphene observed in the experiments [19–24]. Using a semi-classical model, this conductivity reduction
has been previously explained in terms of an enhancement of the carrier scattering rate [25, 26]. However,
the microscopic mechanism of this conductivity reduction has not been yet clarified on the basis of a
quantum description. Remarkably, the proposed fully-quantum model can describe the reduction of the
electric conductivity without considering the change of the relaxation times, T1 and T2. Hence, these results
indicate the existence of yet another microscopic mechanism behind the field-induced transparency of
graphene, which is different from the change in the scattering rate observed in the classical description.

The inset of figure 1 illustrates the nonlinear conductivity σ(E0) at the charge neutrality point (μ = 0).
While the conductivity decreases as the field strength increases up to around E0 = 1 MV m−1, the
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Figure 1. Nonlinear conductivity of graphene as a function of the field strength E0 for different values of the chemical potential
μ. The results for μ = 0 are shown in the inset. All the results are normalized by the linear conductivity σ0 with μ = 0.

conductivity starts to increase almost linearly. In a previous work, an increase in the conductivity via the
Landau–Zener tunnel mechanism was suggested [27]. However, this enhancement mechanism has not been
investigated in combination with relaxation effects. Therefore, the interplay between the tunneling
mechanism and relaxation needs to be considered in order to develop a comprehensive understanding of
the nonlinear carrier transport in graphene.

To obtain further insight into these phenomena, the contribution from the intraband current was
evaluated. For this purpose, the instantaneous eigenstates were defined as
Hk(t)|ub,k+A(t)〉 = εb,k+A(t)|ub,k+A(t)〉, where b denotes the band index, i.e., valence (b = v) or conduction
(b = c) bands. The intraband current is then defined as

J intra(E0) =
∑
b=v,c

lim
t→∞

(−1)

(2π)2

∫
dk

∂εb,k+A(t)

∂k
nb,k+A(t), (4)

where the band population nb,k+A(t) is defined as nb,k+A(t) = 〈ub,k+A(t)|ρk(t)|ub,k+A(t)〉.
Figure 2(a) shows the conductivities computed using the full current J(E0) and intraband current

J intra(E0). The contribution from the intraband current dominates the total conductivity in the whole range
of field strengths investigated. Therefore, the band velocity ∂εb,k/∂k and band population nb,k play a central
role in the nonlinear conductance of graphene.

Due to the circular symmetry of the model, the band velocity exhibits a circular symmetry. Therefore,
the intraband current in equation (4) originates from the non-symmetric population distribution in the
nonequilibrium steady state. To elucidate the population distribution under field, the total conduction
population, Ntot =

∫
dknc,k, and corresponding asymmetric population, Nasym =

∫
dk |nc,k − nc,−k| /2 were

evaluated. Figure 2(b) shows the total and asymmetric populations as a function of the field strength E0 for
μ = 0. In the zero field limit, the total population Ntot reaches a finite value due to thermally excited
carriers, whereas the asymmetric population Nasym vanishes. In the weak field regime (below
E0 = 1 MV m−1), the asymmetric population shows a faster increase than the total population Ntot upon
increasing the field strength. However, Nasym is always smaller than Ntot by definition, resulting in a
slowdown of the increase in Nasym. As a result, the field-normalized asymmetric population Nasym/E0 (see
the inset of figure 2(b)) is characterized by a similar reduction to that of the conductivity shown in
figure 2(a). Hence, the conductivity reduction can be understood in terms of the suppression of the
field-induced asymmetric population. The suppression of the asymmetric distribution can be further
understood based on the depletion of the thermal carriers: in the weak field regime, the field-induced
asymmetric distribution is formed as a consequence of the displacement of the thermal carriers caused by
the applied field. However, once the field strength becomes relatively large, a large proportion of the thermal
carriers are already displaced, and a larger asymmetric population cannot be formed. As a result, the
effective conductivity is suppressed due to the suppression of the asymmetric distribution. The same
mechanism for the doped carriers should explain the conductivity reduction for the finite chemical
potential shifts.

In contrast to the weak and moderate field regimes, the total conduction population Ntot increases
significantly upon increasing the field strength in the strong field regime (E0 > 1 MV m−1), as shown in
figure 2(b). This can be understood based on the carrier generation through the Landau–Zener tunneling.
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Figure 2. (a) Effective conductivities evaluated with the full current (red solid line) and intraband current (blue dashed line).
(b) Conduction population Ntot (red solid line) and asymmetric population Nasym (blue dashed line) as a function of the field
strength E0. The asymmetric population normalized by the field, Nasym/E0, is shown in the inset. (c) Population distribution in
the conduction band, nc(�k), in the absence of the field. (d)–(f) Induced asymmetric population nasym(k) around the Dirac point
for different values of the field strength E0; (d) 10−3 MV m−1, (e) 1 MV m−1, and (f) 5 MV m−1. All quantities in the figure are
computed for μ = 0.

Consequently, the depletion of the conduction population is eliminated, and the asymmetric population
Nasym increases significantly, resulting in the increase of the effective conductivity in the strong field regime.
Therefore, the non-monotonic behavior of the effective conductivity of graphene can be understood
through the competition between the depletion of the effective carriers and the generation of additional
carriers via the Landau–Zener tunneling.
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Figure 3. Schematic picture of microscopic mechanism of the nonlinear conductivity of graphene: the electron distribution in
the Dirac cone (a) in the absence of the field, (b) under a weak field, and (c) under a strong field.

To develop further microscopic insight into the nonlinear conductivity of graphene under strong fields,
the conduction population distribution nc,k in the k-space was evaluated. Figure 2(c) shows the conduction
band population nc,k at Te = 300 K in the absence of a static electric field. Here, the Dirac point is set at the
origin of the coordinates. As can be seen from figure 2(c), the thermally excited conduction carriers exhibit
a circular distribution as a consequence of the circular symmetry of the Hamiltonian. Once a static electric
field is applied, the field breaks the circular symmetry of the population distribution, resulting in the
intraband current.

To study the field-induced symmetry breaking, the asymmetric population distribution
Δnasym

k = |nc,k − nc,−k| /2 was evaluated under a static field. Figures 2(d)–(f) show the field-normalized
asymmetric distribution Δnasym

k /E0 for different field strengths. As can be seen from figure 2(d), the
induced distribution Δnasym

b,k is close to the circular symmetry distribution in the weak field regime
(E0 = 10−3 MV m−1), reflecting the circular symmetry distribution of the thermal carriers. By contrast,
once the field strength increases, the induced asymmetric distribution is elongated along the field direction,
as shown in figures 2(d) and (e). The elongation can be understood through the intraband motion of the
carriers: since the field is aligned along the x-axis, the carriers move along this axis, and a significant
asymmetric distribution is thus formed. Once the field strength becomes even larger, the carriers can move
across larger distances in the k-space before being scattered. As a result, a significant elongation along the
field direction can be formed.

We schematically summarize the microscopic picture behind the nonlinear conductivity of graphene in
figure 3. For simplicity, we consider the electron-doped system here. Figure 3(a) shows the electron
distribution in the Dirac cone in the absence of the field. Once a weak field is applied, the electron
distribution is displaced in the Brillouin zone, as shown in figure 3(b), resulting in the intraband current. If
the applied field strength becomes stronger, a large proportion of the carriers are displaced, as shown in
figure 3(c), causing the depletion of carriers and suppression of the conductivity. When the field strength
becomes even stronger, the Landau–Zener process is activated, and additional carriers are supplied from the
valence bands via the excitation, as described in figure 3(c). As a result, the carrier depletion is overcome,
and the nonlinear conductivity starts increasing.

Having clarified the microscopic physics behind the nonlinear conductivity of graphene, a method is
here proposed to control the charge transport in graphene via few-cycle THz pulses. For a THz pulse, the
following form of the electric field was considered in the domain −Td/2 < t < Td/2,

E(t) =
E0

ωTHz

d

dt

[
− sin (ωTHzt + φCEP) cos8

(
π

t

Td

)]
, (5)

whereas the field was set to zero outside this domain. Here, ωTHz is the mean frequency of the THz pulse,
and φCEP is the carrier-envelope phase (CEP). The pulse duration Td is set to 5.38π/ωTHz so that the full
width at half maximum of the pulse becomes half of the cycle, i.e., π/ωTHz. Figure 4(a) shows the time
profile of the applied electric fields with different CEP values (φCEP = 0,π/2). As can be seen from the
figure, the few-cycle pulses can give rise to inversion symmetry breaking, depending on the value of φCEP.

Based on the inversion symmetry breaking of few-cycle light pulses, light-induced charge transport can
be realized [16, 31, 32]. To evaluate the transported charge, the THz fields were assumed to vary sufficiently
slowly, so that the induced current could be determined via the instantaneous field strength as
J(t) = J (E(t)). The transported charge is then defined by means of the time integration of the current
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Figure 4. (a) Time profiles of the applied THz field with different CEPs. (b) Charge transported by the THz pulses as a function
of the peak field strength for different values of the chemical potentials μ. The case for μ = 0 is shown in the inset. (c) CEP
dependence of the transported charge.

Qc = Leff

∫∞
−∞dt J (E(t)), where Leff is the cross-length that corresponds to the cross-section for bulk systems

[31, 32]. It should be noted that the transported charge is proportional to the inverse frequency, 1/ωTHz,
because of the instantaneous field dependence of the current, J(t) = J (E(t)). Although the amount of the
transported charge Qc depends on the effective cross-length Leff and frequency ωTHz, one can introduce a
normalized quantity as QcωTHz/Leff , which is invariant to Leff and ωTHz.

Figure 4(b) shows the normalized transported-charge QcωTHz/Leff as a function of the peak field
strength E0 of the THz pulses for φCEP = 0 and different chemical potential values. By increasing the peak
field strength, the charge is first transported in the direction opposite to the peak field direction for all the
investigated chemical potentials. A larger amount of charge is transported for a larger chemical potential
shift μ. These features of the light-induced charge transport can be understood in terms of the suppression
of the nonlinear conductivity σ(E0) shown in figure 1. This figure shows that the nonlinear conductivity
first decreases upon increasing the field strength. Thus, the induced current around the pulse peak timing is
suppressed. As a result, the charge transport toward the field peak direction is also suppressed, and the total
charge is effectively transported toward the opposite direction. Furthermore, since a larger reduction in the
conductivity is observed for the largest chemical potential shift investigated, the resulting charge transport
becomes also larger for higher μ values.

The inset of figure 4(b) displays the transported charge for μ = 0. Here, the charge is first transported in
the direction opposite to the peak field direction. The transport direction then switches once the peak field
strength exceeds 1.25 MV m−1. The change in direction of the transported charge originates from the
change in the trend of the nonlinear conductivity: in the relatively weak field regime, the effective
conductivity for μ = 0 decreases upon increasing the field strength due to the depletion of the thermal
carriers, resulting in the observed negative charge transport driven by the few-cycle THz pulses. By contrast,
in the strong field regime, the conductivity increases with the increase of E0 due to the carrier generation
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though the Landau–Zener tunneling, thus resulting in the positive charge transport. Hence, the direction of
the charge transport can be controlled by tuning the field strength. It should be noted that a similar sign
change in charge transport was observed in the infrared field regime and was interpreted in terms of the
interference of photo-injected carriers [16–18]. By contrast, the results of the present work are based on the
quasi-static picture, and thus the microscopic mechanism behind the present results is different from the
one proposed in previous works.

The CEP dependence of the transported charge was investigated further. Figure 4(c) shows the
transported charge as a function of φCEP. Here, μ is set to zero, and the results for the different peak field
strength are shown. As can be seen from the figure, the magnitude and sign of the transported charge can
be controlled by manipulating the CEP in both the depletion (E0 = 0.7 MV m−1) and tunneling
(E0 = 5 MV m−1) regimes. The results indicate that ultrafast control of the electric current by means of
CEP tuning can be realized also in the THz regime, similar to what has been demonstrated for the infrared
regime [16, 31].

4. Conclusion

In conclusion, the nonlinear conductivity of graphene was investigated using a fully-quantum mechanical
model, and it was shown that the effective conductivity exhibits a non-monotonic behavior as a function of
the field strength. In the relatively weak field regime, the conductivity decreases upon increasing the field
strength, reflecting the depletion of the effective carriers. By contrast, in the strong field regime, the
conductivity increases as the field strength due to the carrier generation though the Landau–Zener process.
Based on these findings, the possibility of controlling the electric current with few-cycle THz pulses was
explored. It was demonstrated that the magnitude and sign of the transported charge can be controlled by
manipulating the peak field strength E0, the CEP φCEP, and the chemical potential shift μ. These findings
may open paths toward achieving ultrafast control of charge transport by light through nonequilibrium and
nonlinear electron dynamics in matter.
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