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A Quantum Repeater Node Demonstrating Unconditionally Secure Key Distribution
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Long-distance quantum communication requires quantum repeaters to overcome photon loss in optical fibers.
Here we demonstrate a repeater node with two memory atoms in an optical cavity. Both atoms are individually
and repeatedly entangled with photons that are distributed until each communication partner has independently
received one of them. An atomic Bell-state measurement followed by classical communication serves to estab-
lish a key. We demonstrate scaling advantage of the key rate, increase the effective attenuation length by a factor
of two, and beat the error-rate threshold of 11% for unconditionally secure communication, the corner stones

for repeater-based quantum networks.

Optical repeaters based on light amplification have been a
game changer for the development of modern telecommuni-
cation links, enabling fiber-based networks at the global scale.
The same is to be expected for their quantum-physical coun-
terparts, namely quantum repeaters. In both cases, the issue
is to overcome the propagation loss in long-distance transmis-
sion lines. As quantum signals, the qubits, cannot be amplified
or copied [1], the classical repeater strategy fails for quan-
tum links. The challenge was resolved by Briegel et al. [2]
who proposed a quantum repeater protocol that can distribute
entanglement, the basic resource for quantum networks, be-
tween quantum memories [3, 4].

The main idea behind a repeater [2, 5] is to replace the prob-
abilistic transmission through the quantum channel by a her-
alded preparation of the quantum link followed by determin-
istic classical communication. Towards this goal, the link is
divided into distinct segments connected by repeater nodes.
These nodes serve to independently prepare each segment in
an entangled state that can be used for communication. The
subsequent concatenation of all segments by entanglement
swapping then improves the rate-versus-distance scaling for
the channel transmission in a fundamental way. Of course,
this repeater advantage is in vain if the efficiency is small and
the errors are large. Hence, high-fidelity operations are es-
sential for quantum repeaters. Moreover, as the preparation
of the segments is achieved probabilistically with a heralded
repeat-until-success strategy, synchronization of all segments
requires repeater nodes with long-lived qubit memories.

The necessary elements for a scalable quantum repeater
such as light-matter entanglement [6], qubit memories [7],
Bell-state measurements (BSMs) [8], entanglement swapping
[9] and distillation [10] have been investigated individually for
different platforms and a plethora of protocols [11-13]. How-
ever, up to date, there has been no experimental demonstration
of the combination of these ingredients into a single repeater
protocol, mostly due to technical limitations concerning effi-
ciency and fidelity, incompatibility of different qubit carriers,
or irreconcilability of the individual steps of the protocol.

Reaching the goal of a repeater-increased communication
distance remains a grand challenge that needs to be addressed
step by step. Quantum key distribution (QKD) provides an
ideal and application-friendly setting for this approach [14],
with the practical advantage that end nodes are implemented

as classical parties, Alice and Bob, instead of quantum memo-
ries. In QKD, two parties establish a secret key that is uncon-
ditionally secure against attacks by adversary eavesdroppers
provided the quantum bit error rate (QBER), i.e. the infidelity
of the quantum link, remains below the threshold of 11 %
[15]. A useful corollary is that distillation can be performed
classically on the obtained key. Towards surpassing the rate-
versus-distance scaling of direct transmission, specific proto-
cols were proposed [16—18], and various platforms were ana-
lyzed [19], but experimental work is still elusive: One demon-
stration showed an improved scaling but is fundamentally lim-
ited to a single node [20], another employs a memory but the
required QBER was not achieved and the scalability to multi-
ple nodes remains uncertain [21].

Here we combine state-of-the-art quantum-optical tech-
niques to experimentally approach the protocol proposed by
Luong et al. [17]. This protocol examines a modular building
block that can be concatenated to construct a quantum repeater
which, considering only channel losses, is scalable to larger
distances [19, 22, 23]. We realize the core element, dubbed
a quantum repeater node, with two segments that connect to
Alice and Bob. It achieves the necessary QBER to distribute
unconditionally secure keys with a probability that scales with
distance more favorable, i.e. proportional to the square root of
the direct transmission probability. The implementation relies
heavily on the toolbox provided by cavity quantum electrody-
namics (QED) [24]. Most importantly, the optical cavity acts
as a light-matter quantum interface for the efficient generation
of atom-photon entanglement [25], and two individually and
repeatedly addressable intracavity atoms serve as two distinct
high-fidelity qubit memories [26]. The BSM again relies on
cavity QED and the common cavity mode in which the atoms
are localized. A further advantage for future experiments is
the demonstrated possibility to perform quantum-logic gates
[27], e.g., for entanglement purification.

As depicted in Fig. 1, the experimental sequence is di-
vided into four parts [17]: First, atom A is initialized and
subsequently transferred into an atom-photon polarization-
entangled pair. The photon travels via an optical fiber from
the repeater node to one of the communication partners, Alice,
where it is detected in a polarization-resolving measurement
setup. Following the BB84 protocol [28], Alice randomly
chooses between two non-orthogonal detection bases, thereby
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Figure 1. Quantum-repeater scheme for distributing a string of se-
cret bits. Two atoms in a cavity serve as a repeater node. Atom A
repeatedly creates atom-photon entanglement and sends the photon
to Alice until she announces (antenna) the detection of a photon in a
BB84 measurement (1), thus creating a correlation between atom A
and Alice (indicated by a color-correlated spin pair of same angle).
The same for atom B and Bob (2) while the qubit stored in atom A is
protected by dynamical decoupling. A local Bell-state measurement
(BSM) on the two atoms swaps the two correlations to Alice and Bob
(3), who share a secret key after classical post-processing (4).

establishing a correlation between the state of atom A and the
measurement result of Alice. In Fig. 1 this is highlighted via
color-correlated spins of the same angle. If Alice did not de-
tect a photon, e.g., due to fiber transmission losses, this failure
is communicated back to the repeater node in order to restart
the sequence with initialization and entanglement generation.

Conversely, a photon detected by Alice heralds a success-
ful transmission and signals the repeater node to continue with
step two. This consists of the same sequence, but now applied
to atom B and the other communication partner, Bob. While
atom B repeatedly tries to connect to Bob, the previously es-
tablished correlation between Alice and atom A needs to be
preserved. The maximum number of entanglement attempts
on atom B, n, is therefore limited by the coherence time of
the memory atom A and potential cross talk between the two
atoms. This number can be increased by extending the qubit
coherence time, e.g., by applying dynamical decoupling on
atom A while trying to connect atom B with Bob. If within n
trials no photon was detected, the whole sequence is aborted

and restarts with the initialization of atom A.

After successful detection of two photons, one by Alice and
one by Bob, the repeater node carries one qubit in each mem-
ory, one correlated with Alice and the other with Bob. In this
case the third step of the sequence proceeds with the BSM of
the two atoms. This swaps the correlation from atom A-Alice
and atom B-Bob to Alice-Bob, leaving no trace of the corre-
lation in the repeater node. Finally, in the forth and last step
the result of the BSM is publicly announced to Alice and Bob
which then share one more bit of raw, i.e. not yet secured, key.
A secret key can be obtained after classical error correction
and privacy amplification [29].

We emphasize that the described protocol can straightfor-
wardly be extended to distribute entanglement between Alice
and Bob by replacing the BB84 photon-absorbing end nodes
with heralded qubit memories [30, 31]. Most importantly for
quantum networks, the protocol is scalable to a chain of re-
peater nodes connecting Alice and Bob, e.g., by simply inter-
fering photons from neighboring nodes on a beamsplitter [23].
This would further amplify the scaling advantage.

The experiment starts by loading two “Rb atoms close to
the center of the optical cavity where they are trapped in a
two-dimensional optical lattice [32]. Both atoms couple about
equally to the cavity mode, while classical light fields can be
applied globally or individually via an optical addressing sys-
tem (Fig. 2a). In our proof-of-principle experimental demon-
stration, a single detection setup plays the role of both Alice
and Bob. A fast electro-optical modulator (EOM) is used to
switch the polarization analysis basis between two of the Pauli
eigenbases, i.e. X and Z. The same detection setup is later on
used for the measurement of Bell-states in the Z-basis.

The sequence begins by initializing the atom in the
ground state |F' = 2, mp = 0), from which it generates an
atom-photon spin-polarization-entangled state via a vacuum-
stimulated Raman adiabatic passage (VSTIRAP) [25] to
|FF =1, mp = £1) (Fig. 2b). In order to avoid unintended
cross talk between the two atoms, we employ a large single-
photon detuning of —200 MHz with respect to the excited
atomic state |52P3/2, F'=1,mp= :t1>. Moreover, apply-
ing the control laser pulse selectively to only the wanted atom
avoids cross-illumination between the atoms [26]. Due to con-
straints in the atom cooling and trapping [32], entanglement
generation is repeated a maximum of n times.

In the second step of the protocol (Fig. 1), atom B has to
be repeatedly re-initialized without affecting the qubit already
stored in atom A. This is achieved by atom-selective pumping
from |F = 1) to |F = 2) via the optical addressing system.
At the same time, Zeeman pumping to |mp = 0) is applied
globally, i.e. without being atom-selective, as the employed
transition |F' = 2) ‘52P1/27F’ = 2> is 6.8 GHz detuned
from the qubit-carrying states in |F' = 1). The initialization
is optimized to be fast, to have as little cross talk as possible,
but still maintain a high efficiency. We achieved a single-trial
success probability for zero communication distance, L = 0,
of paB,L=o = (22.13+0.03) %. This approximately matches
the combination of the individually obtained values for the
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Figure 2. Implementation of and toolbox for a quantum-repeater pro-
tocol. (a) Sketch of the experimental setup. Two S"Rb atoms in a
high-finesse cavity serve as matter qubits and can either be addressed
individually or globally. A single detection setup is used for Alice,
Bob and the photonic BSM with an electro-optical modulator (EOM)
for fast polarization/detection basis selection. (b) Level diagrams and
relevant optical fields for the steps described in Fig. 1.

atom initialization (66 %), photon generation (69 %), fiber-
coupling including optical elements (85 %) and detection effi-
ciency (68 %) [32]. The whole atom initialization takes 8 us,
followed by 2 us for photon emission and an additional wait-
ing time of up to 10 us for receiving the heralding signal from
Alice or Bob. Thus, the atom-photon entanglement attempts
are repeated every 20 us.

Qubit coherence time is a very important aspect for any
memory-based quantum-repeater architectures [33]. Here, we
use a dynamical decoupling scheme (Fig. 2b) to improve the
coherence time from below 1 ms [26] to above 20 ms. This
extension is both necessary and sufficient for the protocol im-
plemented here. Details are described in [32].

After successfully creating correlations in both segments,
i.e. Alice with atom A and Bob with atom B, a BSM swaps
the correlation to Alice and Bob. We perform a linear-optics
BSM [8] on photons carrying the qubit information of atoms
A and B while the common cavity mode erases the which-way

(which-atom) information from the photons. More specifi-
cally, in order to drive a VSTIRAP for qubit-readout start-
ing from |F' = 2), we first map both atomic qubits simulta-
neously from |F' = 1,mp = +1)to |FF =2, mp = F1) viaa
two-photon Raman transition (Fig. 2b). Afterwards, the vSTI-
RAP with global control beam generates two photons which
are ideally indistinguishable as they originate from atoms in
the same cavity mode and are driven by the same control
beam. The detection of one photon in state |17) and the
other photon in state ||z) heralds the symmetric Bell-state
U+ = (|tzdz) + [4z12))/v2 [32] and thus selects those
cases where Alice and Bob must have obtained (anti-) corre-
lated results if both had measured in the (Z-) X-basis. This
BSM, which involves the generation and detection of two pho-
tons, has an efficiency of pgsy = (5.07 & 0.03) %, including
the 50 % detection limitation of linear optics.

Experimental results are depicted in Fig. 3. First, we an-
alyze the yield of the key generation process, i.e. how many
raw bits are generated per channel use, and also compare it
to the achievable rate when using direct transmission with a
setup using the same efficiencies for photon generation and
detection. In contrast to Ref. [21], we do not attribute the sys-
tem inefficiencies to an effective distance. Instead, we con-
sider as equivalent distance only the losses we add on top of
our experimental imperfections. This results in a curve start-
ing at L = 0. Figure 3a shows the achieved yield for dif-
ferent cut-offs in the number of trials N < n. Following
the usual convention [17], we evaluate the number of trials
as N = max(N, Np), i.e. the maximum number of tri-
als needed by atom A/Alice and atom B/Bob. For small n,
i.e. without fully utilizing the repeat-until-success strategy,
the rate decays very similarly to direct transmission, but with
an offset that is given by the unavoidable inefficiency. For
n = 40 > 1/pap L, i.e. effectively without cut-off in the
examined range of L, the experimental data follow the theo-
retical expectation with a raw key rate that follows a scaling
exp(—L/(2L.yt)) instead of exp(—L/ L,y ) for direct trans-
mission. Here, L, is the attenuation length of the optical
fiber. The scaling advantage is further highlighted in Fig. 3b.
By increasing the maximum number of trials the data demon-
strate a smooth transition from the direct-transmission regime
to the memory-assisted regime. Here, the absolute raw key
rate is 0.57 bits/s [32].

In order to establish an unconditionally secure key between
Alice and Bob, the experiment aims at a QBER below 11 %
[14, 15]. We analyze this by comparing the obtained (anti-)
correlation of Alice and Bob with the theoretically expected
one. The error rates e are given in Fig. 3c for the two chosen
BBB84 detection bases X and Z which, following the earlier
introduced atom-photon entanglement protocol (Fig. 2b), cor-
respond to atomic superposition and energy eigenstates, re-
spectively. For all distances, we beat the 11 % threshold by
at least three standard deviations. In order to achieve this,
we observe that in our BSM the error rate increases with
the time separation between the two photon-detection events.
Thus only trials with a sufficiently small detection-time dif-
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Figure 3. Creating an unconditionally secure key with repeater ad-
vantage. (a) Yield of the repeater protocol for different distances and
three exemplary cut-offs in the number of trials, n. Dashed lines
show fits to the data. Theory curves for the repeater case and the di-
rect transmission case serve as comparison. (b) Slope of the fits given
in (a), quantifying the yield-versus-distance scaling as a function of
the maximum number of trials, n. With increasing n, the exponent
changes from —1/ Lag¢ (direct transmission) to —0.5/ Lay; (repeater
advantage). (c) For both detection bases the quantum bit error rate
(QBER) beats the threshold of 11 % for unconditional security. (d,
e) Same as (a, b) for secret key rate. All error bars represent one
standard deviation of the statistical uncertainty (details in [32]).

ference are used for secret-key generation [32]. This reduces
the secret-key rate by about a factor of four. From single-atom
single-photon characterization experiments, we estimate that
about 8 % of the total QBER is due to infidelities in the atom-
photon entanglement generation mechanism governed by our
atom-cavity parameters and off-resonant scattering in the em-
ployed Raman sequences. Thus, the polarization alignment
error and the reduction in visibility of the BSM are negligible
in comparison (< 1 %) using the selection on small detection-
time differences explained above.

More fundamentally, the secret key rate is given by the
product of yield and secret-key fraction, rg, which is lower

bounded by [15]

r = %(1 ~ hlex) — hiez)), 0

where h is the binary Shannon entropy. The factor 1/2 ac-
counts for the use of two modes (in our case polarizations)
per transmitted qubit. Note that this formula assumes perfect
classical error correction and infinite length keys. Supporting
the threshold introduced above, rg dropsto O atex = ez =
11%. The resulting secret key rate is given in Fig. 3d, again
for different cut-offs in the number of trials. While the overall
rate is reduced by about two orders of magnitude due to the
finite secret-key fraction and the factor four for the fraction
of usable BSMs explained above, the scaling advantage still
unfolds for increasing n.

This is further quantified in Fig. 3e where, similarly to the
yield, the rate-versus-distance exponent is plotted for differ-
ent cut-offs n. For small n, our protocol performs worse than
direct transmission for which we assume no imperfections.
This is due to the finite QBER which increases with distance
and thus reduces the secret-key fraction for larger distances.
However, with increasing n the advantage given by the repeat-
until-success strategy unfolds. Although the exponent does
not reach the ideal limit as nicely as for the yield, our experi-
ment beats the fundamental limitation regarding scalability of
direct transmission. Further analysis of the results of Figure 3
can be found in [32].

In summary, we have realized a quantum repeater node
for unconditionally secure quantum key distribution and have
observed a twofold improvement of the rate-versus-distance
scaling. As an outlook, we address the question how much
improvement is needed to beat direct transmission in absolute
rate. Using the model described in Ref. [17] we estimate that
this is possible by doubling the memory time to 40 ms, the
BSM efficiency to 10%, and increasing the protocol fidelity by
2% [32]. For these parameters a repeater advantage unfolds
for a communication length larger than L ~ 7L,. At this
distance the secret key rate then amounts to 5 x 10~° bits per
channel use. The required improvements of the system perfor-
mance seem feasible, especially for the memory time where
values exceeding 100 ms have been achieved [34]. However,
the average number of repeated trials has to be increased to
about 150, a presently intolerably high value for which the
atom would quickly be heated out of the trap. Hence, fu-
ture experiments require better atom trapping and cooling,
e.g., with optical tweezers [35]. Once these improvements
are implemented, we can investigate the scaling to a chain of
repeater nodes [22, 23]. Another perspective is to increase
the number of atoms to more than two to boost the transmis-
sion rate [36] or possibly link them to more than two com-
munication partners, e.g., for achieving a quantum confer-
ence key agreement [37]. In combination with quantum-logic
gates [27] for entanglement purification and heralded quantum
memories [31] as end nodes, the door towards full quantum
repeaters seems open.
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METHODS

The heart of the experiment are individual 8"Rb atoms trapped in and strongly coupled to a high-finesse optical cavity
with parameters (g, k,v)/2r = (4.9,2.7,3.0) MHz at wavelength A = 780nm. Here, x and ~ are the cavity-field and
atomic-dipole decay rates, respectively, and g is the single-atom single-photon coupling constant at the center of the cav-
ity and for both atomic transitions relevant in our protocol, i.e. ‘5231/2, F=1mp= :|:1> > |52P3/2, F'=1mp= 0>
and |52S1/2,F =1,mp = 0> > ’52P3/2, F=1,mp= j:1>. The cavity mirrors have different transmission coefficients
(100 ppm and 4 ppm) so that photons predominantly leave the cavity via the higher-transmission mirror.

Atoms are transferred from a magneto-optical trap (MOT) into a two-dimensional (2D) standing-wave optical dipole trap,
consisting of a red-detuned, A = 1064 nm trap perpendicular to the cavity axis (xz-axis) and a blue-detuned, A = 772 nm trap
along the cavity axis (y-axis). We take images of the atomic fluorescence via a high NA objective and an EMCCD camera.
Starting from a random number of atoms at random positions, we use those images to select atomic patterns which are suitable
for the experiment, namely two atoms at a suitable distance. If no such pattern exists, the loading process is restarted. Otherwise,
all superfluous atoms are heated out of the trap by atom-selective application of a near-resonant beam. Thus, we end up with
two atoms which have a suitable distance. The center of mass of these atoms can be moved along the x—axis by shifting the
standing wave pattern. We place the atoms so that atom A is always at a fixed position, while the suitable distance is defined such
that this results in both atoms being about symmetric to the cavity center. This guarantees maximum coherence times for atom
A and about the same coupling strength of both atoms to the cavity. The average trapping time of two atoms inside the cavity
mostly depends on the amount of heating introduced by the repeated optical pumping for atom initialization. This depends on
the number of necessary retrials to get a herald signal which is a function of the equivalent distance. The obtained trapping
times for usable atomic patters, i.e. including image post-selection (which will be discussed below), for the three different loss
scenarios depicted in the main text are (8,5,4) s.

Optical fields are either applied onto both atoms via a global beam (wr =~ 40 pm) or atom-selectively via an optical addressing
system (wg = 1.7 um) [1]. We thus chose a minimum inter-atomic distance of 8 ym to minimize cross-illumination of the
addressing beam while still being close to the cavity center (wg = 29.6 ym) in order to keep a high atom-cavity coupling.

Detection setup for Alice, Bob and the Bell-state measurement

In our proof-of-principle experiment, we use a single detection setup for Alice, Bob and the Bell-state measurement (BSM).
In order to test the quantum repeater sequence in this configuration, fast polarization rotations are necessary so that the detection
for Alice, Bob and the BSM can be performed in different polarization bases, i.e. the X — or Z—basis. To this end, we use a DC-
coupled, high-bandwidth electro-optical-modulator (EOM, Qubig PC3R-NIR) in front of the analyzing polarizing beamsplitter
(PBS). The EOM allows to rotate the polarization in less than 1 ys and has a polarization extinction value of larger than 1 : 10000,
which guarantees the integrity of the polarization qubits.

A caveat of this configuration is that introducing transmission losses to Alice/Bob also affects the efficiency of the BSM. To
avoid this, we use a software random number generator which for every individual photon generation attempt gates on or off
the detectors of Alice and Bob conditioned on the outcome of a biased coin toss. The success probability of this coin toss can
be adjusted to give the desired distance equivalent of the optical link. At the same time, the photon detection probability in the
BSM is not affected. In this way, we effectively mimic the losses within the link to Alice and Bob while not affecting the BSM,
which realistically models the underlying repeater protocol with the BSM performed in the immediate vicinity of the repeater
node.

The actual losses of the detection setup, starting from the cavity output, can be summarized into an efficiency for the first
fiber-coupling (0.85), optical elements of the detection setup (0.75) and the detectors themselves (0.9). For zero communication
distance, L = 0, this results in a total efficiency of 0.58.



Detailed repeater sequence

Each attempt to generate atom-photon (AP) entanglement starts with atom initialization to the ground state |F' = 2, mp = 0).
The pumping to this specific Zeeman state is achieved with a m—polarized beam which is close to resonance to the transition
|52S1 2 =2, mF> > |52P1 /2, F =2, mp>. As this transition is dipole-forbidden for mr = 0, population accumulates in
the target initial state. At the same time, population in |5251 2, B = 1> has to be repumped to ‘5251 2, F = 2> which is ac-
complished with another m—polarized beam close to resonance to the transition |5251/2, F=1, mF> ~ ’52P3/2, F =2, mF>
This combination of beams is applied for 4 us (Fig. 1a). In the atom-photon entanglement scheme, every state in the F' = 2
manifold can generate photons. In order to remove potentially remaining population from all unwanted states, the same Zeeman
pumper is applied again for 4 us without the additional repumper. This depopulates all states in the F' = 2 manifold except of
the one with my = 0, leading to a high-fidelity state preparation. After initialization, the photon-generating vacuum-stimulated
Raman adiabatic passage (VSTIRAP) pulse is applied. The pulse power is tuned such that the emitted photon has a temporal
full width at half maximum (FWHM) of about 300 ns. In order to simulate the transmission time of this photon as well as the
classical communication time between Alice/Bob and the repeater node, the sequence pauses for 10 ys which equals a maximum
distance between repeater node and Alice/Bob of 0.9 L, for the wavelength A = 780 nm using L.+ (780 nm) = 1.1 km.

The whole sequence now incorporates the above elements (Fig. 1b). First, up to 40 atom-photon entanglement attempts are
repeated on atom A. If no herald signal arrived from Alice within those 40 trials, the sequence jumps to atom cooling and optical
beam power stabilizations. If Alice heralds a photon detection, the protocol jumps to the next part of the sequence. Here, atom-
photon entanglement attempts for atom B are combined with dynamical decoupling (DD) pulses for atom A. As the DD pulses
are not atom-selective, they have to be interleaved with the attempts on atom B. We use a combination of three atom-photon
entanglement attempts before one dynamical decoupling pulse is applied. This combination is repeated up to 14 times, giving
a total of 42 attempts on atom B. Again, if none of the attempts succeeded, the sequence jumps to atom cooling and power
stabilizations. However, as soon as one of the photons arrived, the sequence jumps to the BSM, which consists of a remapping
pulse to transfer the population to |F' = 2) again and subsequent photon generation. This completes the attempt to generate one
bit of a shared key. Afterwards, the sequence regularly proceeds to atom cooling and power stabilizations. The whole protocol
is repeated at a rate of 160 Hz.

(a), Atom-photon (AP) entanglement:

Zeeman pumper+ Zeeman eii(r):t)i?)n Communication
F=2 repumper (4us) cleanup (4us) g (2us) waiting time (10pus)

(b), Sequence:
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Figure 1. Detailed experimental sequence. (a) Description of the experimental steps to create atom-photon entanglement (AP) which is used
for establishment of correlation between atom A/B and Alice/Bob, respectively. (b) The combined quantum repeater sequence, including the
entanglement sub-sequence from part (a). Square brackets denote the repetition of this sub-sequence until the transmission was successful. The
exponent gives the maximum number of repetitions. If this number is reached (no success), the repeater protocol is aborted and the sequence
proceeds to utility tasks until the next run is started. If the transmission was successful (success), the protocol proceeds to the next stage.



COHERENCE TIME AND DYNAMICAL DECOUPLING

In the protocol, atom B repeatedly tries to connect to Bob, while the previously established correlation between Alice and
atom A needs to be preserved. Due to the requirement of keeping the quantum bit error rate (QBER) below 11%, the coherence
time of atom A needs to be much longer than the time it takes to establish a correlation between atom B and Bob. Depending
on photon generation and detection efficiencies as well as photon propagation losses, the coherence time needs to be orders of
magnitude longer than the classical communication time between the repeater node and Bob.

Thus, for extending the coherence time of the qubit memory utilized in the repeater protocol, we employ dynamical decoupling
(DD). Due to the special setting of BB84, only four different states need to be decoupled from environmental noise. Thus, for
reasons of simplicity, we employ a CP/CPMG sequence [2, 3], in which rotations are only performed along a given axis which
is either perpendicular or parallel to the qubit state. As (|1z),[4z)) = (|F =1,mg =1),|F = 1,mg = —1)) are energy
eigenstates of 87Rb, we perform the DD rotations along the X —axis (Fig. 2a). To apply these pulses, we use a double two-photon
Raman transition whose single-photon detuning is set to a point at which off-resonant scattering is minimized (A ~ 790 nm).
As such a far-detuned Raman configuration interferes destructively for Amp = 2 transitions, the two-photon detuning is set
to a single Zeeman splitting (6, /27 = 50kHz) of the F' = 1 ground-state. Thus, transitions between |F' = 1, mp = +1) are
driven via the intermediate state |F' = 1, mp = 0) (see also Fig. 2b of the main text). In order to not drive transitions which
are detuned by two Zeeman splittings from the intended transition, i.e. Amr = —1, the driving rate has to be smaller than the
Zeeman splitting. As is depicted in Fig. 2b, the Rabi frequency is 27 x 17.6 kHz.

Experimental results are shown in Fig. 2c. Without dynamical decoupling, the coherence time is limited to about 1 ms, mostly
given by magnetic field fluctuations and varying AC Stark shifts given by the optical dipole trap. Dynamical decoupling can
effectively compensate these fluctuations which leads to an estimated coherence time of more than 20 ms. Note that in contrast
to the case without decoupling, also the energy eigenstates (Z —basis) decohere with increasing number of DD pulses. This can
be explained by residual off-resonant light scattering from the Raman laser. The limitation to 300 pulses is exerted by our field
programmable gate array (FPGA) control hardware of the experiment.

Previous achievements on the same setup used decoherence-free substates [4] to achieve a coherence time exceeding 100 ms.
However, this came at the cost of cooling to the motional ground-state, less flexibility in the readout time of the qubits and a
reduced starting fidelity at ¢ = 0. As preparation time and total fidelity are very important parameters for the quantum repeater
protocol, we chose dynamical decoupling instead. Note that the obtained coherence time is not the primary limitation of the
achievable rate and distance, as we currently only use up to 40 repetitions.

In summary, we found that we could minimize the increase in QBER from 10% without dynamical decoupling to below 1%
with dynamical decoupling during the up to 40 repetitions implemented in our experiment. Thus, dynamical decoupling is one
of the enabling technologies for achieving unconditional security in our experiment.
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Figure 2. Dynamical decoupling for extending coherence time. (a) Bloch sphere of the atomic qubit and the rotation due to the dynamical
decoupling pulses around the X —axis. Thus, qubits along the Z —axis experience a bit-flip while qubits along the X —axis are not modified.
(b) Rabi flopping for states prepared along the Z—axis. Due to the three-level nature of the driving process (see Fig. 2b of the main text),
the data and fit do not follow a simple sinusoidal curve. (c) Experimental results for the achievable coherence time with (green) and without
(orange) the decoupling sequence employed for the experiments presented in the main text, namely a 7-pulse around the X —axis every 99 us.
Here, number of repetitions refers to the number of atom-photon entanglement attempts in the main text. We apply a DD pulse every three
attempts (see Methods section).
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Figure 3. BSM: evolution of QBER. (a) Sketch of the detection of two photons from two atoms, with the cavity erasing the which-way infor-
mation. The detection of two orthogonal polarized photons after a polarizing beamsplitter heralds the projection onto (|1zlz)+ [{z12))/ V2.
This leads to (anti-) correlation for Alice and Bob if they measured in the (Z—) X —basis. (b) Quantum bit error rate (QBER) for detection
clicks within a maximum time difference 67. Results for Alice and Bob measuring in the X -basis (squares) and in the Z-basis (circles) are
shown as well as the relative efficiency of the BSM (line).

BELL-STATE MEASUREMENT

After Alice and Bob have measured their photons in a randomly chosen basis, the two atoms are in the product state (o |12)+
B1llz)) @ (a2|Tz) + B2 [Lz))/2 where the indicies enumerate the two atoms. The photonic readout process maps these states
onto photons (Fig. 3a). Due to the bosonic nature of the ideally indistinguishable photons, only |®*), |®~),|¥T) can enter
the same spatial mode of the cavity. The detection of two different polarizations finally heralds the projection of the shared
Alice-Bob state onto |¥T). However, if the two photons are not perfectly indistinguishable, or if a phase evolution of the atoms
in-between the two photon emissions occurs due to some process, the detection of | ~) states becomes possible. The potential
correlation outcomes for Alice and Bob for these two Bell states are given in Table 1.

Table 1. Potential correlation outcomes for Alice and Bob if the BSM heralded one of the two Bell states ]\I/i>

TxTx [ Txdx [IxTx |Ixix||Tz1z|Tzlz|lz1z|lzlz
|\I/+> 0.5 0 0 0.5 0 05 | 05 0
) 0 Jos5[o05] 0 0 |05]05] 0

If Alice and Bob both measured in the Z—basis, the distinction between |¥'*) does not matter as they both lead to anti-
correlation for Alice and Bob. However, if they measured in the X —basis, |¥ ") leads to correlation while |¥ ) leads to anti-
correlation for Alice and Bob. The consequence of this can be seen in Fig. 3b. For small maximum time differences between
the two BSM clicks, the photons are nicely indistinguishable and no phase-evolution has occurred. Thus, the quantum bit error
rate is small for both detection bases. However, with increasing 67, the detection of |¥'~) becomes possible which increases the
QBER for the detection in the X —basis while it stays about constant for the detection in the Z—basis. As Alice and Bob have
full information about these aspects in their classical post-processing phase of the quantum key distribution protocol, they can
choose a trade-off between minimum QBER and decreasing relative efficiency which maximizes the secret key rate, which is
also what we do in the results presented in the main part of this work.

DATA PROCESSING

Here we outline a number of steps that we took to process the acquired data.

Loss of atoms During an experimental run, we acquire an image of the atoms every 500 ms to check for their positions. This
time is necessary to acquire enough fluorescence light from the atoms in order to have a sufficiently good signal-to-noise ratio
on the camera. Due to the limited trapping times of the atoms, the last image is likely to have a certain duration in which one
of the atoms has disappeared but is still visible on the image. During this time, the transmission to Alice or Bob will never be
successful as there is no atom which could emit a photon. This becomes apparent when looking at the histogram of the number of
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Figure 4. Number of trials necessary to establish correlation. (a, b, c) Distribution of the necessary number of trials until Bob heralds the
detection of a photon for the three different communication distances indicated in the figure.

necessary atom-photon entanglement attempts until a heralding signal is received (Fig. 4): The figure shows a contribution at the
maximum number of trials (40) although the regular exponential has decayed long before this. As this effect is only a by-product
of the limited trapping time, we only use events with N < 40 which modifies the rate per channel use by an observed factor
of 0.83. This factor is more or less distance-independent and thus does not modify the conclusions drawn on the rate-distance
exponent.

Equivalent distance  As is described in the methods section above, the transmission distance for different data points in Fig. 3
of the main text is simulated by introducing artificial losses. These are reliable and do not change over time. However, additional
losses in the setup might occur due to the mechanical drift of fiber couplings in the optical pathway to Alice or Bob. These
drifts slightly change the losses which are relevant for the equivalent distance. We thus calculate equivalent distance by using the
known relation pag = 1/(N) where pap is the single-trial success probability and (V) is the average number of trials necessary
to have a successful transmission to Alice or Bob. Then, the equivalent distance is given by L/ L.t = —2In(pag) = 2In({(N)).
As (N) can be reliably extracted form the accumulated data, we use this quantity to calculate the equivalent distance. However,
this number includes the losses of the experimental setup which are not accountable to distance. As we know that the first data
point corresponds to zero additional losses, we subtract a constant positive offset along the distance axis such that the equivalent
distance of the first data point is zero on the plot. In our view, this represents the most conservative and realistic scenario, where
only losses introduced beyond the experimental imperfections are considered as equivalent distance.

BSM efficiency The data for different distances (Fig. 3 of the main text) is taken over the course of multiple weeks. During
this time, the efficiency of the BSM drifted by about 10 % due to mechanical drifts of multiple fiber couplers in the optical
pathway. It turns out that this resulted in a higher efficiency for the data points of larger distance, thus seemingly magnifying the
effect of the repeater advantage. Without the compensation described below, the points given in Fig. 3b and 3e of the main text
even surpass the repeater bound of —0.5. For the compensation, we evaluate the BSM efficiency for each distance individually
(pBsm,L)- As the key rate scales linearly with a given BSM efficiency, we then multiply the obtained rates given in the main text
with (pgsm)/pBSm,L, Where (ppsnm) = (5.07 £ 0.03) % is the average of all pgsy .. With this renormalization we arrive at a
scenario in which the BSM efficiency is constant over time.

Additional key rate contributions In the main text of this work, the yield and secret key rate are given as the number
of obtained bits per channel use, assuming that the atoms are ready for the repeater protocol. Here we will give additional
experimental parameters which relate to the data rate. The first contribution is already given in the above paragraph describing
the loss of atoms, namely the selection on N < 40 which modifies the rate per channel use by an observed factor of 0.83.
Another contribution is due to the atom positioning within the cavity. Although we do perform atom pre-selection based on the
fluorescence images, we also perform post-selection on the images to ensure having the right distance and absolute positions of
the atoms. On average, 42 % of the images survive this selection which directly enters the duty cycle for key generation. Last,
new atoms have to be reloaded or the current atoms have to be repositioned whenever they do not match the given criteria. This
results in a duty cycle of (25,20, 15) % for the three different distances given in the main text. In total, the product of the three
factors results in an average duty cycle of cq. ~ 0.83 x 0.42 x 0.2 =~ 0.07. The real-time yield, i.e. the rate of not yet secured
bits per time, then evaluates to:

bits attempts bits

PBSM X Fseq X Cdec ~ 0.05 x 160 x 0.07 = 0.57—. (1)
attempt s S

Error analysis for the data presented in Fig. 3 of the main text The yield (Y) given in Fig. 3a represents a Bernoulli trial
with k ~ 106 trials per data point, with the exact number depending on n. The error bars are then given by /Y (1 — Y /k. The



same holds for the estimation of the quantum bit error rates depicted in Fig. 3c. Exemplary described for ez, the QBER is given
by ez = keorr/ (Kcorr + Kacorr)> Where keorr (Kacorr) is the number of bits showing (anti-)correlation for Alice and Bob given
they both measured in the Z—Dbasis. The total number of bits is then kiota1 = Kcorr + Kacorr- Thus, in this Bernoulli trial the error
bars are given by \/ ez(1 — ez)/kiotal- The total number of bits per data point is typically on the order of ktota1 = 1000. The
secret key rate depicted in Fig. 3d is the product of the secret key fraction (Eq. 1 in main text) and the yield, taking into account
the reduction of the yield due to the limited usability of the BSM as described in the main text and the supplementary text on
the BSM. The error of the secret key fraction as a function of ex and e is calculated according to error propagation assuming
independent variables. Note that the correlation between errors in the QBER and the resulting secret key fraction is about 10,
ie. drg/de x,z =~ 10. Although all obtained QBERs beat the threshold of 11 % by more than three standard deviations, the error
bar of the secret key fraction is still quite large. For the error bars of the secret key rate, we use error propagation assuming
independent variables. The larger error bar of the secret key fraction dominates the error of the secret key rate and leads to the
errors depicted in Fig. 3d. Figures 3b and 3e show the slope of linear fits to the data presented in Figs. 3a and 3d, respectively.
In order to model the slope and its error faithfully, we use Monte Carlo simulations assuming the data points (error bars) of Figs.
3b and 3e represent the mean (one standard deviation) of a normally distributed random variable. We use linear fits to 1000
samples drawn from these distributions to obtain distributions for the slopes. From these distributions we infer the mean and
standard deviation which we finally depict in Figs. 3b and 3e.

OUTLOOK

In the main manuscript, we give an outlook on which improvements are necessary to beat direct transmission in an absolute-
rate scenario. This outlook is based on calculations using the formulas given in Ref. [5]. As input parameters we use the currently
achieved parameters as presented in this manuscript and summarized in the following. For easier reference, we also include the
labeling of Ref. [5]:

* Threp = 10 ps (preparation time)

* Mot = Ne X Nd X Nprep = PAB,L=0 = 22.13 % (zero-distance total efficiency)
e T5 = 20 ms (dephasing time)

* emA,mB = 0 (misalignment error)

e pg = 20Hz x 0.5 us = 107> (dark-count probability per detector)
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Figure 5. Outlook on secret key rate achievable with future improvements to the setup. The blue-shaded region shows the range of investigated
equivalent distance, limited by the necessary average number of retrials n (right vertical axis, dash-dotted line). Except of the purple one, the
individual curves show the achievable secret key rate if only the highlighted parameter is changed compared to the current setup. The purple
curve shows the result of the combination of the individual improvements. All curves are calculated by using the formulas given in Ref. [5]
and the numbers summarized in this section.



* pesm = 5.07 % (BSM efficiency)
e f =1 (perfect error correction)
e F' = 0.925 (zero-distance fidelity).

Figure 5 shows the expected secret key rate versus equivalent distance for the current scenario, for scenarios in which indi-
vidual parameters are improved as well as a combination of those improvements. The direct-transmission rate drops for large
distances when the dark-count probability becomes comparable to the photon click rate, so that the QBER increases also when
using direct transmission. As stated in the main text, the repeater beats direct transmission if the coherence time and the BSM
efficiency can be doubled, while the fidelity of the overall protocol has to be improved by 2%. In that case, the repeater can
maintain its advantageous scaling for a sufficiently long distance. Note that the repeater is less prone to dark counts, as the
individual communication distances between the repeater node and Alice/Bob are only half the distance compared to direct
transmission. Thus, the crossing point for beating direct transmission increases to larger distances when reducing the dark count
probability, resulting in even higher demands on the repeater hardware in order to beat direct transmission.

* To whom correspondence should be addressed. Email: stefan.langenfeld @mpq.mpg.de
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