arXiv:2106.11622v1 [physics.flu-dyn] 22 Jun 2021

The statistical geometry of material loops in turbulence
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Material elements — which are lines, surfaces, or volumes behaving as passive, non-diffusive mark-
ers of dye — provide an inherently geometric window into the intricate dynamics of chaotic flows.
Their stretching and folding dynamics has immediate implications for mixing in the oceans or the
atmosphere, as well as the emergence of self-sustained dynamos in astrophysical settings. Here, we
uncover robust statistical properties of an ensemble of material loops in a turbulent environment.
Our approach combines high-resolution direct numerical simulations of Navier-Stokes turbulence,
stochastic models, and dynamical systems techniques to reveal predictable, universal features of
these complex objects. We show that the loop curvature statistics become stationary through a
dynamical formation process of high-curvature slings, leading to distributions with power-law tails
whose exponents are determined by the large-deviations statistics of finite-time Lyapunov exponents
of the background flow. This prediction applies to advected material lines in a broad range of chaotic
flows. To complement this dynamical picture, we confirm our theory in the analytically tractable
Kraichnan model with an exact Fokker-Planck approach.

I. Introduction [I5]. Since any curve in space is uniquely described by
its curvature and torsion [I6], there have been numer-

Chaotic flows tend to fold, writhe, and wrinkle material ous works attempting to characterize the curvature of
elements into a state of seemingly infinite complexity over material lines but also of material surfaces [17H30] and
time (see Fig. [[and supplementary movie). A fundamen-
tal question is whether this tumultuous process has any
predictable features which persist over long periods of
time. Answering this question provides insights into the
process of mixing which occurs in a whole range of sys-
tems, from the diffusion of dye into water, the dispersion
of plankton colonies on the ocean surface, to the blast
propagation in supernovae thermonuclear explosions [I].
Material lines and interfaces, in particular, provide ide-
alized descriptions of nutrient, temperature and salinity
fronts in the oceans [2], potential vorticity fronts in the
atmosphere [3] and are also closely related to the dy-
namics of vorticity filaments in fully developed turbu-
lence [4, [5], the conformation of polymer chains [6, [7], as
well as the motion of magnetic field lines at high Péclet
numbers [8]. The latter is related to the dynamo prob-
lem, in which chaotic stretching, folding, and twisting
processes are essential for sustaining the growth of a mag-
netic field. The progress we make in understanding how
material elements react to turbulent flows stands to sig-
nificantly advance our understanding of these fundamen-
tal problems.

The geometry Of material Objects advected and de_ FIG. 1. Visualization of an 1n1t1ally circular material IOOp,
formed by a turbulent flow can be very complex. While advected by a turbulent flow field for 277,, where 7, is the
volumes are preserved by incompressible flows, the length Kolmogorov time. The twisting and folding acti(:m of the tur-
of lines and the area of surfaces typically grow exponen- bulent flow creates a complex loop geometry while the length

. . . . of the loop increases exponentially on average (cf. Fig. [3)).
tially [0HI2], with their geometry appearing fractal [L3- The loop shown is a comparably extreme case; loops in less

turbulent regions develop an extended and complex structure
after a longer time. Inset: material sling causing a peak of
michael. wilczek@ds.mpg.de curvature. (See also supplementary movie)

*


https://youtu.be/1FK2nfswz1c
mailto:michael.wilczek@ds.mpg.de
https://youtu.be/1FK2nfswz1c

Lagrangian trajectories [3TH33]. Although material lines
seem to become unfathomably complicated over time, the
above works suggest that curvature distributions do in
fact settle down to a well defined stationary state which
features robust power-law tails (see Fig. [2]), sparking hope
that certain features can be predicted by theory.

Here we present a line of arguments based on the dy-
namical mechanism of sling (i.e. curvature peak) for-
mation and its relation to finite-time Lyapunov expo-
nents that leads to a quantitatively accurate prediction
of the power law of the curvature distribution observed
in Fig. [2| panels (b) and (c). We show that the high-
curvature regime of the material line can be understood
as an ensemble of persistent parabolic slings, which are
formed by random stretching of the line. In this way, we
illustrate how understanding dynamical mechanisms can
be used to make deductions about statistical geometry.
For example, our predicted curvature PDF power-law ex-
ponent —2.54 4 0.11 (3% relative error to the measured
exponent) implies that, in the long time limit, the av-
erage curvature along advected loops is finite but the
second moments diverge. The only input of our theory is
the distribution of Lyapunov exponents of the underlying
flow field and, as such, our results apply to a wide range
of chaotic dynamics. Our predictions are confirmed by
direct numerical simulations of fully developed homoge-
neous, isotropic Navier-Stokes turbulence as well as by
exact results in the solvable Kraichnan model.

II. Results

To investigate the evolution of material loops L(¢,t)
in fully developed turbulence [34], we consider initially
circular loops and parameterize them by the initial angle
¢ € [0,27). Each point of the loop follows the velocity
field u(x,t) according to the tracer equation

Oy L(,t) = u(L(e,1),t). (1)

The evolution of such a loop is shown in Fig. [I} which
illustrates that the loop rapidly grows in length and di-
ameter, while attaining a complex geometry due to the
stretching and folding by the underlying turbulent flow.

As a key metric to characterize the geometry of the
loop, we here focus on the curvature
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Material lines grow non-uniformly in length over time.
Hence for an evolving ensemble of loops, the distribution
of curvature can be defined in different ways, depending
on the probability measure we associate with the points
along the loop. A simple way of defining the probability
density function (PDF) of curvature f(k;t), that does
not depend on the initial parameterization, is to take

curvature samples uniformly along the arc length of the
loops. Specifically,
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where ¢ is the Dirac delta function, L(t) is the length of
the loop at time ¢t and (s, t) is the curvature of the loop
as a function of arc length s at time ¢. The average ()
is taken to be uniform over loops and we have used K
to distinguish the loop (realization) dependent curvature
from its sample space variable k.

We use fully resolved turbulence simulations to inves-
tigate this measure of the statistical geometry of material
lines (see Appendix . Here, we focus on a data set at
the Taylor-scale Reynolds number Ry =~ 216, in which
we track 1000 randomly placed loops with an initial di-
ameter of 101 (n is the Kolmogorov length scale). We
test the robustness of our results with additional simula-
tions at various Reynolds numbers in the Supplementary
Material [35].

The resulting curvature PDF at different times is
shown in Fig. 2b. Remarkably, persistent power-law tails
form within a few Kolmogorov time scales 7,,, which fi-
nally range over several decades of curvature after the
loops have been deformed for 297, (~ 1.5 integral times).
Within this observation window, the shape of the distri-
bution appears to become stationary, whereas the sup-
port, i.e. the range from minimum to maximum cur-
vature, grows indefinitely in extent. Hence the largest
curvatures correspond to structures significantly smaller
than the Kolmogorov length scale 7. Given the markedly
complex shape of the deformed material loop, the univer-
sal shape of the distribution calls for a theoretical expla-
nation, which we develop in the following.

A. Ensemble of material slings

The high-curvature regime of the curvature distribu-
tion is heavy-tailed and characterized by rare events.
Over time, the material line will form isolated sites of ex-
tremely high curvature [26H30], as can be seen in Fig. .
Such curvature peaks mark sharp folds in the material
line geometry. In the following, we reveal how such slings
form stochastically and how this is related to the power-
law exponent of the curvature distribution.

This picture in view, we estimate the high-curvature
tail of the PDF in the statistically steady state by
replacing the ensemble average over entire loops in
by an ensemble of slings,

o0 o0
flk) ~ / dep f(lip)/ ds ¢ (Ii — KPP (s; /ip)) . (4)
0 —o00
Here, k), is the peak curvature of a sling and f(k,) its
distribution. The second integral is the contribution of
curvature around each curvature peak. As we will elab-
orate in more detail below, high-curvature slings develop
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FIG. 2. Curvature peaks are localized extreme events along the loop. (a) Curvature along a material loop at ¢t = 29.147, as a
function of arc length s. The function is highly spiked, indicating that high curvature only occurs in isolated narrow regions.
These isolated peaks contribute to the high-curvature tails of the curvature PDF. (b) Curvature PDF of material loops at
times ¢t = 4.167, (light green) up to t = 29.147, (violet). (c) PDF of curvature peaks of material loops at the same times. The
high-curvature regime is fitted by power laws in the regions indicated by the dashed lines using binomial error estimates.

a universal, locally parabolic shape. The curvature func-
tion around a peak with maximum &, therefore can be
estimated as [2§]

Kp

(1+ (F~2(rps]))2)**

(5)

Iipb(S; Kp) =

where F'~1(x) denotes the inverse of the antiderivative of
V1 + z2 on the positive real line, originating from param-
eterizing the parabola by arc length. Remarkably, the
curvature profile is characterized by the peak curvature
as the only parameter. To further evaluate , we sub-
stitute the inner integration variable by &' = xPP(s; k)
with the Jacobian

1
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This equation expresses the curvature PDF as a compo-
sition of the curvature peak PDF with the contribution
from the locally parabolic slings.

B. Statistical evolution of curvature peaks

In what follows, we determine the curvature peak dis-
tribution f(kp), which can be achieved by capturing the
essence of the curvature peak dynamics. Since peaks are
generally generated at medium curvature and then grow
stochastically, we may define the generation time tqg of
a large peak as the time where it has first surpassed an
(arbitrary) threshold kg and its age as 7 = t — tp. At
time ¢, the ensemble of peaks larger than kg can thus be
attributed a distribution of ages f(7;t). By the law of
total probability, the peak distribution above kg can be
estimated as

t
flmit) ~ [ dr flspir) (i), (8)
where f(kp|7) is the probability of a peak with curva-
ture ko at time ¢y to have curvature x, at time ¢y + 7.
This decomposes the curvature peak distribution into a
distribution of peaks with a given age and the distribu-
tion of ages. In , we are interested in the stationary
regime f(kp) := limy_,o0 f(kp;t), which we expect to be
well captured by the estimate and to be independent
of the arbitrary threshold kg.

The peak age distribution can be estimated from the
number of curvature peaks. Figure[3|shows that the mean
number of curvature maxima above different thresholds
grow at the same exponential rate 8 ~ 0.216/7,, which
coincides with the growth rate of the mean length of the
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FIG. 3. The mean number of curvature peaks above differ-
ent thresholds over time, vertically shifted for comparison,
shows that they are generated at an exponential rate. The
curves appear to be asymptotically proportional to the mean
arc length of loops (red). The dashed line indicates an expo-
nential fit to the last third of the total peak number curve,
yielding the rate § = (0.21619 £ 0.00014)/7,. The standard
error of this rate is so small that we neglect it in the following.
Inset: Curvature peak distribution at ¢ = 29.147, indicating
the different thresholds.

loops. Intuitively, this can be explained by the fact that
the generation of slings is a random process along the
loop. Since the loop length grows on average exponen-
tially over time, so does the number of slings. Neglecting
the disappearance of peaks, the probability of a high-
curvature sling being generated before some time ', with
0 <t <'t, can therefore be estimated by the fraction of
peaks that existed at ¢/, ' =), This cumulative distri-
bution function of peak birth times implies the probabil-
ity density function of peak age

f(r;t) = Be™"7, 0<7<t. (9)
This shows that, since curvature peaks are generated at
an exponential rate, their age distribution also decays
exponentially, implying that the bulk of the peaks are
young even after a long evolution of the loop.

In the following, we investigate the dynamics and
statistics of peak curvature in an effort to estimate the
remaining conditional probability f(k,|7) and form our
theory.

C. Amplification of slings by turbulent stretching

We observe that those rare peaks that have existed for
a long time can exhibit extremely high curvature. This
is caused by fluid element stretching, a process quantita-
tively captured by the deformation tensor

aXZ(CE, t)

-Fij(wat) = O )
J

(10)
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FIG. 4. Formation of parabolic sling. Top: Illustration of the
deformation tensor F'. v; denote the principal axes of stretch-
ing before deformation and w; the corresponding axes after
deformation. A fluid element (blue) will be predominantly
stretched along the direction of most stretching v; and com-
pressed in the direction of most compression vs over time. If
a material element is initially orthogonal to the direction of
most stretching, a sling will form. Such a sling is then com-
pressed onto the wi-u2 plane and tends to align with the w,
direction along which it is amplified. Bottom: Illustration
of how stretching creates a locally parabolic curve. An ini-
tially non-parabolic curve is stretched vertically as indicated
by the red arrows. Viewed on the appropriate horizontal scale,
the line becomes increasingly parabolic. For comparison, the
dashed line indicates a parabola with the same peak curva-
ture.

where X (x,t) is the Lagrangian map. Its singular value
decomposition associates two coordinate systems v; and
u,; with the deformation (see Appendix, as illustrated
in Fig. @] The associated exponential stretching rates
are given by the finite-time Lyapunov exponents (FTLE)
pi(1).

As discussed in Ref. [28], generically a line element
will align with the w;-direction and become stretched
exponentially with e?1()* (which is on average asymptot-
ically proportional to e’*). The surrounding curve will
be forced into the u;-uo plane by compression in the ws-
direction. The dominant stretching in the w;-direction
locally decreases curvature. However, an exception to
this generic setting occurs at a finite number of points
along the loop when the initial material line lies per-
pendicular to v; (see Fig. E[) In this case, the element
cannot align with v, and will align with w, instead. The
surrounding curve, however, still experiences the stretch-
ing in the wi-direction. This essentially magnifies the
local structure of the curve, which will generically result
in a parabolic shape, as illustrated in Fig. Therefore
parabolas become increasingly good local approximations
of the slings.

To reveal the role of the finite-time Lyapunov expo-
nents, let us consider a parabola y = kgz?/2 which
is already initially lying in the wj-vs plane. Over



time, it is subject to stretching 3y = e”*®ty and 2’ =
er>(Mtg which preserves the parabolic shape, i.e. 3 =
elpr (=202t 0272 /2 n this process, the peak curva-
ture increases as long as p1(t) > 2p2(t) [28], i.e. the first
FTLE must be more than twice as large as the second
one. We illustrate this at the example of a parabola in
a linearized flow in Appendix [C] showing that its peak
curvature grows as

Kip(t) z Roelp1()=2p2(0]t (1)

for some effective initial peak curvature kg. This equa-
tion can already be found in Ref. [28], where it is de-
rived for a generic material line. Let us call the growth
rate of peaks pp(t) = pi1(t) — 2p2(t). In turbulence,
this growth rate is typically asymptotically positive. In
our simulation used for obtaining the FTLEs (see Ap-
pendix , we can estimate the infinite-time Lyapunov
exponents, \; = lim;_, o pi(t), by taking the mean of the
FTLEs at the final time of the simulation, which yields
A~ 0.12/7,, Ay = 0.03/7,, A3 ~ —0.15/7,, and thus
Ap = limy oo pp(t) = 0.06/7, > 0 in good agreement
with previous literature [36] [37].

D. Connecting the power-law exponent to fluid
stretching

To relate the dynamical formation of slings to the
power-law tails of the curvature PDF, we estimate the
distribution of k,(t) by making statements about the dis-
tribution of FTLEs. By ergodicity, FTLEs behave like
sums of independent and identically distributed random
variables at large times [37, [38]. The same is true for the
growth rate of peaks p,(t). Using its Cramér function
S(pp), we make a large-deviations estimate of the PDF,

Flppst) = N(t)e 5, (12)
where N (t) is a normalization. Transforming by Eq. (11)),

the peak curvature PDF of a single peak can thus be
written as

fllr) ~ X075 (s(3)7) (13)

’
RpT

where 7 denotes the age of the peak. Note that we here
identified the peak age 7 with the time ¢ and the cur-
vature threshold kg with the effective initial peak cur-
vature Kg. For the asymptotics that we are interested
in, the distinction does not matter. Inserting this result
into Eq. 7 combined with Eq. @D and letting t — oo,
gives the asymptotic distribution of curvature peaks in
the high-curvature regime

frp) ~ /000 dr e_BT]\;(ﬂe_TS(log<x)/T>. (14)
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FIG. 5. Determination of the steepest-descent minimum. The
Cramér function is estimated from FTLE histograms by ‘
We call these finite-time estimates S(pp;t). We show the re-
sulting functions (8+S(pp;t))/pp to be minimized for ¢ rang-
ing from 6.907, (yellow) up to 39.687, (violet). Best fits are
indicated by dashed lines with shaded areas showing their er-
ror. Inset: Minima of these functions over time. A fit of the
decay (black dashed line) yields the estimate o = 0.54+0.11 of
their limiting value (horizontal blue dashed line). For compar-
ison, the red lines show the value of o estimated by subtract-
ing 2 from the observed curvature PDF power-law exponent.
For more details, see Appendix [B]

We now use the method of steepest descent [39] in or-
der to extract the large-x, asymptotics of the peak curva-
ture distribution from our estimate . The result (see
Appendix @[) is that the distribution scales as a power

law, f(kp) ~ Ky '™, with exponent
o= min | 18+ 5(p,))] (15)

where the Cramér functions have been estimated via (
using FTLE histograms from an additional simulation
(see Appendix . While we are interested in the limit
t — oo, the amount of samples needed to resolve large-
deviations statistics increases exponentially with time,
limiting our observation window of the minimum to a
maximum time of about 30 to 407,. In this regime, the
minima still lie above the value of « inferred from the
loops simulation (red line). However, an analysis of the
time evolution of minima (Figure [5] inset) reveals that
they are well described by a slow, algebraic decay. Ex-
trapolating the desired minimum towards ¢ — co, we get
the estimate o = 0.54 £ 0.11, slightly below but within
error bars of the curvature peak power-law in Figure [2k.
For more details on the extrapolation, see Appendix

This minimum is estimated for our data in Figur
15

Given the power-law scaling of the peak distribution,
f(kp) ~ K, 17 we can perform the integral @ to ob-



tain the prediction for the curvature PDF
f(g) ~ k™27, (16)

Hence the difference between the curvature power-law ex-
ponent and the curvature peak power-law exponent is 1.
This difference originates from the curvature contribu-
tions of parabolic sling profiles around the peak curva-
ture, Eq. . Comparing Figures and |2c shows that
this result is consistent with the fully resolved loops sim-
ulations. Likewise, our prediction based on Lyapunov
exponents estimated by extrapolating the minimum in
Fig.[5|captures the observed power-law exponents of both
the curvature and curvature peak PDFs very well. In
the Supplementary Material [35], we explore our result
at various Reynolds numbers, with comparable or even
better agreement depending on how far the minima can
be resolved in time. Therefore, as a central result, we can
quantitatively relate the statistical geometry as charac-
terized by the curvature PDF to the formation of slings
and the statistics of FTLEs that determine their dynam-
ical evolution.

Interestingly, an alternative formulation of our result
can be obtained by using the Legendre transform of the
Cramér function, which is known as the generalized Lya-
punov exponent [37]. It can be shown (see Appendix
that « is given implicitly by

<eapp(t)t> N <ep1(t)t> (17)

in the large-deviations approximation, where ~ indicates
the same exponential scaling for large ¢. This can be
understood as the statement that the power-law expo-
nent is chosen so that curvature peak generation (rep-
resented by the line growth rate p;(t)) and peak ampli-
fication (represented by the peak curvature growth rate
pp(t) = p1(t) — 2p2(t)) are balanced. For example, in
a flow with the same peak amplification (same statis-
tics of p,(t)) but stronger line growth (larger (ef*(V?))
and thus stronger peak generation, a larger fraction of
small-curvature peaks will accumulate until the station-
ary state is reached. This means that the curvature PDF
in the stationary state has to decay faster, correspond-
ing to a larger «, as encoded in . We explore this
result numerically in the Supplementary Material [35],
showing that this complementary way of computing «
comes equally close to the value observed in the loops
simulations.

E. Exact results in the Kraichnan model

To demonstrate the robustness of our results beyond
Navier-Stokes turbulence, we consider the exactly solv-
able Kraichnan model [40]. The Kraichnan model of tur-
bulence replaces the advecting velocity with a spatially
correlated Gaussian random field, white in time, which
mimics turbulent behavior.

In this setting, all of our argumentation about sling
formation and its statistical implications can be made

exact. First, the Cramér function takes the parabolic
form [38]
(pp — /\p)2
=) 1
Slop) = g (18)

with A, = 3Q), D), = 14Q) and ( a constant related to the
energy spectrum quantifying fluctuations of the velocity
gradient (see Appendix |F]). In this case, the integral
can be performed exactly, yielding a power law x, ™ ~¢

with
oo |25, 28
= —— — 4+ —. 1
et D, + D2 + D, (19)

The growth rate of the mean length of line elements in
the Kraichnan model is § = 4Q [38]. This evaluates to
a = 4/7, a curvature peak PDF power law —11/7 and
a curvature PDF power law —18/7, which is (coinciden-
tally) very close to the power laws we find in Navier-
Stokes turbulence.

Importantly, this result based on our picture of cur-
vature growth due to sling formation is consistent with
an independent, complementary approach facilitated by
the rapidly fluctuating velocity field. Using It6 calculus,
one can obtain an exact Fokker-Planck equation for the
curvature distribution (see Appendix and study its
steady state. The equation takes the form

onf =0, (—18me QK0T+ 2 - 9P8~f) :

(20)
and features the stationary solution

)725/14’ (21)

f(r) = %K/ <9P + 7TQk?

where P is a constant quantifying fluctuations of second-
order derivatives of velocity (see Appendix and Z is
the normalization constant. This exact solution tran-
sitions between a x' power law in the small-curvature
regime and a x~'%/7 power law in the large-curvature
regime. Hence our framework based on the dynamical
evolution of curvature peak statistics and Itd calculus
yield exactly the same large-curvature exponent. The
shape of the PDF is also in qualitative agreement with
our numerical observations in Navier-Stokes turbulence,
see Fig. 2b. A numerical analysis of the Kraichnan case
can be found in the Supplementary Material [35]. Analo-
gous computations [41] have been done for the curvature
PDF of magnetic field lines in the context of the turbulent
dynamo problem without compensating for arc length.
We remark in passing that it would be interesting to
study curvature statistics in the compressible Kraichnan
model. There, the compressibility can be parameterized
by an index g and Lyapunov exponents explicitly com-
puted (see §2.4 of [42]). The chaotic phase characterized



by positive leading Lyapunov exponent A\; > 0 occurs
when p < d/4. In this regime, one can vary A\, = A1 —2X\y
and analytically study its effect on curvature statistics.
As such, the compressibility can be used to precisely con-
trol the curvature statistics.

III. Conclusions

We investigated the curvature statistics of material
loops in fully developed turbulence to characterize their
statistical geometry. We find that the curvature PDF
rapidly converges to a stationary distribution and estab-
lish a theory of curvature peaks forming along the loop
to explain the power law in its high-curvature regime.
By associating curvature peak dynamics with finite-time
Lyapunov exponents, we are able to theoretically link the
power-law exponent to FTLE large-deviations statistics.
We find our results to be in very good agreement with
simulations of fully developed Navier-Stokes turbulence
and to be precisely consistent with exact analytical cal-
culations in the Kraichnan model.

An important issue concerns how the results presented
here depend on the Reynolds number. In the Supplemen-
tary Material [35], we provide numerical evidence that
moderate variations of the Reynolds number presented
here lead qualitatively to the same picture with only very
slight quantitative changes in the power-law exponents.
In light of this, it seems plausible to us that the shape
of the curvature distribution we observe is universal and
will persist in the limit of large Reynolds number.

As such, our methods and theoretical predictions can
be applied to a large class of chaotic flows and can thereby
provide a new statistical-geometry perspective on the in-
tricacies of their evolution. Since a host of processes are
closely related to the formation of material line slings, our
results may help to shed light on such problems from bio-
physics, geophysics and astrophysics. For example, our
results can be applied to the study of interfacial prob-
lems for the dispersion of algae blooms or oil spills in the
ocean, where the description of the boundary’s geometry
is of crucial importance for prediction. Our work may
also shed light on the influence of chaotic flows on poly-
mer conformation, an issue relevant to the problem of
drag reduction [6l [7], as well as on the role of flux can-
cellations in turbulent magnetic dynamos [43] [44], which
occur due to the folding and bundling of magnetic field
lines.

Appendix A: Navier-Stokes simulations for loop
tracking

For the direct numerical simulations (DNS), we use
our code TwrTLE [45]. It implements a pseudo-spectral
solver for the Navier-Stokes equations in the vorticity
formulation with a third-order Runge-Kutta method for
time stepping and a high-order Fourier smoothing [46] to

reduce aliasing errors. The flow is forced on the large
scales by maintaining a fixed energy injection rate in a
discrete band of small Fourier modes k € [1.0,2.0] (DNS
units). The simulations presented here were computed
on 10243 grid points with a small-scale resolution kj;n ~
3.0, where kj; is the maximum resolved wave number.
Using the same initial background flow, we conducted
two separate simulations with different sets of Lagrangian
tracers.

The first simulation contains 102 initially circular loops
of diameter ~10n with random position and orientation.
Each sample point of the loops is treated as a Lagrangian
tracer particle. Over time, the strongly heterogeneous
line stretching necessitates an adaptive refinement of the
lines [47,[48]. Using 5th-order B-spline interpolation [49],
we determine the arc length between adjacent sample
points in time intervals of 0.167,. Whenever their dis-
tance surpasses 0.1n, we insert new sample points along
the smooth spline curves, which ensures that derivatives
of the curves up to 4th order and hence their curvature
are well-defined. In order to better resolve high-curvature
regions, we additionally require that the distance between
sample points does not surpass 1/(6x). This significantly
improves the resolution of the large-curvature tail of the
curvature PDF. Due to the refinement, the initial total
number of sample points across all loops — about 3 - 10°
— increases to about 1.5 - 102 sample points at 297,. The
adaptive insertion of particles prohibits the direct use of
multi-step methods for particle time stepping. For this
simulation, we therefore resort to lst-order Euler time
stepping of particle trajectories. They are coupled with
spline interpolation with continuous derivatives up to and
including 3rd order of the field computed over a kernel
of 123 grid points (as detailed in Ref. [50]).

Appendix B: Computation of finite-time Lyapunov
exponents and the Cramér function

The second simulation contains 10® uniformly dis-
tributed Lagrangian tracers. Along with their trajecto-
ries, we integrate the deformation tensor . Time step-
ping is performed using the Heun method coupled with
spline interpolation of the field with continuous deriva-
tives up to and including 2nd order computed over a ker-
nel of 83 grid points. In order to ensure numerical stabil-
ity, we perform a QR-decomposition of the deformation
tensor [51] after each time step and store principal axes
and logarithmically scaled stretching factors separately.
While in theory, the FTLEs are defined by the singular
value decomposition, we here use the logarithmic stretch-
ing factors obtained from the QR~decomposition as prox-
ies. In certain regimes, their large-deviations statistics
may differ [37]. In the Supplementary Material [35], we
show that our theoretical argument can also be made for
the proxies. We then determine finite-time Cramér func-



tions S(pp;t) from the FTLE histograms f(p,;t) as [37]

S(ppit) = —log(f(pp; 1))/1, (B1)

which converge to the actual Cramér function over time.
Given that the Cramér function is known to take its min-
imum at S(A,) = 0, where A\, = lim;_,o, pp(t), we may
accelerate convergence by vertically shifting the finite-
time Cramér functions such that their minimum is zero,
as done similarly in Ref. [37]. The resulting functions are
used as input for Figure

We determine least-square fits of the finite-time
Cramér functions using a Batchelor interpolation be-
tween two power laws (corresponding to stretched ex-
ponentials for the FTLE PDF),

aa:2

SAp(t) +a/my5t) = b1 a2

(B2)

where A,(t) is the position of the minimum of S(pp;t)
and a, b and c are fitting parameters. In order to obtain
fits with reasonable accuracy, we restrict the fitting range
to the interval of interest [A,(t),1/7,]. If the finite-time
Cramér functions take infinite values in this range, then
we further restrict the fitting range to their finite values.
In order to obtain the error bars in Fig. [5} we vary the fit-
ting parameters within their standard error interval and
take the minimum and maximum of the resulting func-
tions. Taking the minimum of the best fits and of their
error envelope, we obtain the time series of minima in
the inset of Figure If a fit takes its minimum at the
last value of the fitting range, then this value is omitted.

In order to extrapolate the minimum towards t — oo,
we determine the best fit of the minima time series m(t)
weighted by the errors using an algebraic decay,

m(t) = A+ (]f)c, (B3)

where A, B, and C are fitting parameters. In order to ro-
bustly capture the asymptotic decay using this simple fit
function, we leave out an initial transient regime of data
points for the fit. We choose ¢ > tnin =~ 6.97,, where the
weighted mean squared error of the fit reaches a plateau,
i.e. the point at which the fit improvement from removing
more data points diminishes (for more details, see Supple-
mentary Material [35]). The parameters are estimated as
A =0.54%0.11, B = (0.19+£0.15)7,, and C = 0.36+0.18.
Note that the fitting procedure is very delicate and dif-
ferent choices may lead to different results. The present
analysis is our best effort to systematically compute the
limiting value of the minima.

Appendix C: Peak curvature dynamics of a
parabola

Here, we determine the evolution of the peak curvature
of a sling modeled by a parabola,

(¢ — ¢o)? k

L(¢,t) = L(o,t) + (¢ — ¢o)l(t) + £p(0) 3

(),
(C1)

where ¢¢ is the initial peak position, ,(0) is its initial
peak curvature and I and k are two initially orthonormal
vectors. In a sufficiently small range of ¢ around ¢y,
the velocity field can be linearized. Then the parabolic
shape is preserved and the dynamics of I and k in the
Lagrangian frame is determined by the velocity gradient,

% =1-Vu(L(¢o,t),t) and
% =k - Vu(L(¢o,1),1). (C2)

By , the curvature of the sling is given by
|k(t) x 1(t)|
|L(t) + (& — do)rp(0)K(1)]
(k@ o]~ o) -202) "
[1(t) + (6 — do)rn(0)k(t)]”

k(9 1) = £p(0) 3 (C3)

. (C4)

= p(0)

Over time, I(t) and k(t) cease to be orthogonal and the
curvature peak position is shifted. Minimizing the de-
nominator yields the new peak position

|

¢p(t):¢ - 2 :
k@) Ky (0)

The new peak curvature is therefore given by

[k(t)[’

p(t) = K(6p(1),8) = ——
k()] |
(C6)

Since I and k behave like passive vectors, their dynamics
can be described by the deformation tensor

aXl (L(¢Oa O)v t)
Ox ’

J

Fi;(t) = (C7)

where X (x, t) is the Lagrangian map. The singular value
decomposition of F,

F(t) =UAB)VT (1), (C8)

defines the orthonormal bases (u;(t)); = U;;(t) and
(vj(t)); = Vi;(t) and the finite-time Lyapunov exponents



pi(t) by Ay = ePi®t where A is diagonal. Expanding 1(0)
and k(0) in the v;-coordinate system yields

(0) = Zai(t)'vi(t) and
0) = Z bi(t)vg(t). (C9)

Observing that F(¢)I(0) = I(t) and F(t)k(0) = k(¢), and
applying the deformation tensor to the previous equa-
tions we get

Z a;i(t)e’ Oty (t)  and
Z bi(
Inserting these expansions into Eq. (C6)) yields

(5, ey

Zi;ﬁj ajbi(ajb azb ) (2pi+2p;

t)er Oty (t). (C10)

(t) = rp(0). (C11)

As long as the infinite-time Lyapunov exponents (the
t — oo-limits of the FTLES) are distinct from each other,
we will have /1 (Mt > er2(Dt 5 er3(Dt for large t. Assum-
ing furthermore that the random coefficients in are
non-zero, we can drop those terms with slower exponen-
tial growth:

t%O |b1(t)|3
) @ ()~ b (D)2

HP(O)S[pl (H)—2p2(D)]t
(C12)

While the FTLEs are known to converge slowly, V' (¢) and
thus a;(t) and b;(t) converge exponentially fast [52] B53].
We therefore have (cf. [28])

kp(t) 'R Foeler (=220t (C13)
for some effective initial peak curvature
bi(t)]?
Fo = li 5. (0] (C14)

2()b1(t) — a1 (t)ba(t))? tip(0),

which may differ from the actual initial peak curvature
kp(0) depending on the relative orientation of the initial
parabola and the converged basis vectors lim;_, o v;(%).

t—o0 (a,

Appendix D: Extracting power law by the method
of steepest descent

In order to extract the asymptotic regime of the inte-
gral , we substitute the integration variable

(D1)

which yields
/ dpy

We now explore the regime where log(x,/xo) becomes
large. Given that the normalization function N(7) is
algebraic, the scaling of the integral with x,, is dominated
by the exponential, and in particular by the part that has
the slowest decay. To first order, we therefore have [39]
Chapter 9, Theorem 2.1]

N (log( sz//-zo)/pp) 10g( )M

Pp

(D2)

lsg) ~ —exp ( o (22 ) i (5 + s<pp>>/pp>

0
(D3)

with

o = min B+ S(pp))/pp- (D4)

Appendix E: Relating our results to generalized
Lyapunov exponents

Let us define a generalized Lyapunov exponent of cur-
vature peaks by

Ly(q) = Jim +log (explapy (1) (F1)

It differs from the usual definition of generalized Lya-
punov exponents only by the fact that we have replaced
the standard FTLE by our curvature peak FTLE p,(t) =
p1(t) — 2p2(t). Tt is related to the Cramér function by a
Legendre transform [37],

Ly(q) = sup [qpp — S(pp)] - (E2)

Pp

This strongly resembles our steepest-descent formula es-
tablished in the main text (cf. Eq. (15)),

o =min [ (8 + ()| (E3)

Pp

where, recall, § is identified with line growth quantified
by the first FTLE (see Fig. [3|and subsequent discussion)

6= lim log (exp(p (1)) (E4)

We claim L,(a) = 8. If so, then equating (E1|) evaluated
at a with 8 given by (E4)), we find

Jim ~log (exp(apy (1)) = Jim  log (exp(pr (1))
(E5)

which we write in short form as .



To verify that L,(«) = /3, we insert « into to find
Ly(ar) = sup [Ofpp - S(pp)} . (E6)

Pp

Assuming that S(p,) is differentiable and strictly convex,
the supremum in occurs at a unique value pj. More-
over, somewhat remarkably, we will show that this value
coincides with that at which the minimum of occurs.
Once established, this gives the claimed result upon sub-
stitution of a = %(ﬂ—k S(py)) into Ly(a) = aps = S(pj)-

To see that the extrema in and occur at the
same point pj,, we note that under our assumptions (E6)
is minimized at the p = p* for which

d
0= ap [ap—S(p)] ‘p:p*

Uniqueness follows from our assumption that S’(p) is an
invertible function of p. On the other hand, the minimum

in (E3]) occurs for p = p** satisfying

0= 1 [36+50))]|

—a-S(). (B

= (SN - 56)
-~ (=5 (E8)

where we have inserted the expression for « in terms of
the minimizing argument p** given by . It is clear
from comparing and that the extrema are re-
alized at the same value p* = p** =: py. This concludes
the proof.

Appendix F: Fokker-Planck equation of curvature
in the Kraichnan model

In the Kraichnan model, the velocity field w(x,t) is
Gaussian with correlation tensor

<U,’(CC, t)Uj(.’B,, t/)> = (5(t — t/)Rij ($ — .’13/), (Fl)

where R;;(r) denotes the spatial part of the correlation
tensor.

Equivalent to , the curvature PDF weighted by arc
length can be defined by

o (0eLlo(k — &(9,1)))
f(rt) = :
(195 L1)
where we distinguish between the realization & and the
sample space variable k. Angular brackets (-) denote an
average along ¢ and over realizations of the velocity field.

In order to derive the Fokker-Planck equation of cur-
vature, we take the time derivative of Eq. , which
yields

(F2)

(6(r — R)34|0s L) 9, (|95 L)
(10sLl)

(105L1)
1

- maﬁ (6(r — )|0s L|0s) .

O f (r;t) = — f(x) (F3)

10

The averages can be evaluated using the Gaussian inte-
gration by parts formula [54H56] and the evolution equa-
tions [19]

9,04L = ((0,L) - V)u, (F4)
ot =t -Vyu—tt-(t-V)u), (F5)
o =bb- (- -Vu)—t(n-(t-V)u)
+ %13(13 (£ V)u), (F6)
Qi = e (ﬁ (- V)u — 26 - ( V)u)
+7a-(t V) u. (F7)

Here, t, 7 and b denote the tangent, normal and binormal
vector of the Frenet-Serret frame, respectively. As shown
in the Supplementary Material [35], the evolution equa-
tions derive from the definitions of the various quantities
combined with the tracer equation . All quantities are
evaluated along the same Lagrangian trajectory.

In order to simplify the resulting expressions, we need
to further restrict the spatial correlation structure of
the model. Isotropy and incompressibility determine the
form of the even derivatives of the spatial correlation ten-
sor R;j(r) at 0 (odd number of derivatives vanish) to
be [57]

—0kO1R;;(0) = Q(40;50r1 — 0ir0j1 — 0i1djk) (F8)
and [58]

O0k010m 05, R;(0) = P(60;;0510mn + 60;;0kmrn  (F9)
+ 60;0kn01m — (all others)),

with @ and P scalar constants that depend on the exact
form of R;;(r). The last pair of brackets contains all
twelve other permutations of Kronecker deltas. All terms
arising from the Gaussian integration by parts formula
can be evaluated using this result and the orthonormality
of the Frenet-Serret frame. The resulting Fokker-Planck
equation is . In the Supplementary Material [35], we
list results for all terms and exemplify computing one of
them.
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SUPPLEMENTARY NOTE 1. CURVATURE STATISTICS AND DETERMINATION OF POWER-LAW
EXPONENT AT VARIOUS REYNOLDS NUMBERS

We carried out our analysis for two additional direct numerical simulations (DNS) of the Navier-Stokes equation,
one smaller on 5122 grid points at Ry ~ 147 and one larger on 20483 grid points at R) = 334. The simulation details
are summarized in Table [SI] The curvature statistics of 1000 material loops were determined in each simulation as
described in Appendix[A] The curvature distributions of the supplementary simulations are shown in Fig. Remark-
ably, the large-curvature power-law exponents, determined by best fits, are almost the same across the simulations,
indicating that there may be no significant Reynolds-number dependence in this range. The same can be observed
for the curvature peak PDFs in Figure Consistent with our theory, their high-curvature exponent differs from the
curvature PDF exponent by 1, mostly within error bars.

The curvature peak number above different thresholds as a function of time is shown in Figure [S3| for the two
supplementary simulations. Notably, our observation that the curvature peak number grows proportionally to the
mean length of the loops carries over to these Reynolds numbers. The corresponding growth rate S in units of the

Loops simulations FTLE simulations
N kmaxny| Rx (W®)Y? L L/y T/my| Ry @W?Y? L L/ypT/m, n
Main DNS Parameters 512 2.0 |147 0.96 0.93 94 15.2(142 096 0.91 93 154 2.5-107
1024 3.0 [216 1.09 1.06 148 19.8 (215 1.09 1.06 148 19.8 1-10°
2048 3.0 334 1.07 1.04 289 31.2(335 1.07 1.04 289 31.1 1-10°

Supplementary Table S1. Our simulations are run on three-dimensional periodic domains of side length 27 discretized on a
real space grid with N3 points. Using the root-mean-squared velocity component <u2)1/2 and the energy spectrum E(k), we
define the integral length L = ﬁ [ 9EE(k). The integral time scale is computed as T’ = L(u?)~'/2. The Kolmogorov length
and time scales, n and 7, respectively, are computed from the mean kinetic energy dissipation € and the kinematic viscosity v.
Based on the largest wavenumber kmax resolved by our code, we compute the resolution criterion kmaxn. Although loop and
FTLE simulations are initialized with identical fields and parameters, the flows eventually diverge due to numerical rounding
errors and chaos. The loops simulations contain 1000 material loops, initially sampled by a total of 3 - 10° tracer particles,
whose number increases exponentially during the simulation. For the FTLE simulations, n tracer trajectories are integrated

along with the flow field.
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Supplementary Figure S1. Curvature PDF in the small (a) and the large (b) supplementary simulation strongly resemble
the distribution in the main simulation. Their power-law exponents, determined by best fits, are almost identical across all
simulations.



Kolmogorov time appears to increase as a function of Reynolds number.

Finally, we also determine FTLE statistics by integrating the deformation tensor along trajectories of randomly
distributed particles. This is done for 25 million tracer particles in an additional 5123 simulation and for one billion
tracer particles in an additional 20483 simulation that use the same initial background flow as the loops simulations. In
Figure [S4] we determine the steepest-descent minima needed for our theoretical prediction. Notice that the minimum
is taken at values of p, that increase with Reynolds number, further into the tail of the FTLE distribution. Hence in
the large simulation, despite the enormous number of tracer particles tracked, the minimum can only be resolved up
to t &~ 257,. As in the main simulation, we determine the asymptotic value of the minimum by fitting the algebraic
decay function to those data points with ¢ > t;, (Figure insets). The time ¢y, is chosen based on the
weighted mean squared error, as explained in Figure in order to filter out a transient regime of the decay. The
resulting exponents are, increasingly as a function of Reynolds number, « = A = 0.61 £0.08, « = A = 0.54 + 0.11
and a = A = 0.55 £ 0.07, all of them consistent with the measured curvature PDF power-law exponents.
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Supplementary Figure S2. Curvature peak statistics in the small (a) and the large (b) supplementary simulation look the same
as in the main simulation. Like for the curvature PDF, the large-curvature power-law exponents, determined by best fits, are
almost identical across all simulations.
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Supplementary Figure S3. Mean curvature peak number as a function of time in the small (a) and the large (b) supplementary
simulation. The number of peaks above different thresholds grows exponentially, proportional to the mean length of the loops.
Lines are vertically shifted to compare their growth rate. Best fits to the last third of the total peak number curve yield
B = (0.19580 & 0.00028) /7, (a) and S = (0.26207 £ 0.00014)/7,, (b). As in the main simulation, the standard error from the fit
is so small that we neglect it in the following. Insets: Curvature peak distribution at the latest simulation time indicating the
different thresholds.
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Supplementary Figure S4. Determination of the steepest-descent minimum for estimates of the Cramér function for the
supplementary simulations. (a) Small simulation with Cramér functions ranging from 7.267, (yellow) up to 39.947, (violet).
Their fits are restricted to the range [Ap(t),0.8/7,], where A, (¢) is the position of the minimum of S(pp;t). Inset: Extrapolation
of the minimum yields o« = 0.61 &+ 0.08 (dashed blue line). (b) Large simulation with Cramér functions at times ranging
from 8.147, (yellow) up to 35.267, (violet). Their fits are restricted to the range [A,(t),1.25/7,]. Inset: Extrapolation of the
minimum yields @ = 0.55+0.07 (dashed blue line). For comparison, in each plot the red line indicates the value of « estimated
from the curvature PDF.
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Supplementary Figure S5. Different fit choices for extrapolating the steepest-descent minimum. We use the simple decay
function to capture the evolution of the minima for different finite-time Cramér functions. In order to obtain a satisfactory
fit, it is helpful to leave out a transient regime of data points ¢ < tmin until only the asymptotic behavior is captured by the
fit. Here we show the resulting values of a = A (top) and the decay exponent C (middle) for different choices of tmin in all of
the simulations (left to right). The time scale B is not shown. We justify the choice of tmin by computing the weighted mean
squared error (MSE, bottom) given by Zﬁil(&-/ai)z/(N — 3), where N is the number of data points included, §; are the fit
errors and o; the standard deviations (error bars) of the data points. The quantity Zi\r: 1(8:/0:)? is minimized by the fit, which
we divide by the number of degrees of freedom N — 3 for comparison. We choose tmin as the start of the first plateau of the
weighted MSE (red lines).



SUPPLEMENTARY NOTE 2. NUMERICAL ANALYSIS OF GENERALIZED LYAPUNOV
EXPONENTS

As a complementary approach to computing Cramér functions, we may also use generalized Lyapunov exponents
(GLE) in order to determine the exponent o based on the implicit Eq. (E5)), in short: L,(a) = 8 = L1(1), where

o1
Li(g) = Jlim - log (exp(ap1(t)t)) (S1)
is the first standard GLE as opposed to
o1
Ly(q) = Jim ~log (exp(apy(1)1)) (S2)

the curvature peak GLE. For their numerical computation, we adopt the method from Ref. [37]. We first compute
the cumulant-generating function of p;(t)t, given by log(exp(gp1(t)t)), as a function of ¢ and ¢. In order to estimate
L1(q), we perform an affine fit of the cumulant-generating function in the range t € [tmax/2, tmax), as exemplified in
Fig. for tmax = 407,. The slope of each fit including its standard error becomes our estimate of L;(g). The same
procedure is applied to L,(q).

For the main simulation, the results are shown in Fig. . We can first read off the value of 5 by evaluating Lq(q)
at ¢ = 1. Indeed, the different estimates for L (1) appear to converge towards the value of 5 previously estimated by
other means. In order to estimate «, we need to read off the intersection of the S-line with L,(q). For this curvature
peak GLE, we observe stronger fluctuations as a function of t,x. For small t,,,x, we expect the estimates of the
cumulant-generating function to be accurate. However, if .« is too small, we have not yet reached convergence of
the t — oo limit in the GLE. For larger t;,.x, we improve on the convergence of the GLE, but we also rely more
heavily on extreme values of p,(t) (especially for large ¢), which are limited by our sample size. Hence we expect the
best estimate to be found at intermediate t,,,x. For the main simulation, we indeed find those intermediate curves to
come closest to the value of « estimated from the curvature PDF. For the supplementary simulations (Fig. , the
same argumentation holds and the estimates fluctuate as a function of ¢,,x to a certain extent. If we simply read off
« from the intersection of lines, the GLE method slightly overestimates « for all simulations, possibly due to both
sampling and ¢-convergence limitations.
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Supplementary Figure S6. Generalized Lyapunov exponents in the main simulation. (a) Plotting the cumulant-generating
function of pi(t)t for fixed argument ¢ as a function of time (solid lines), the GLE can be estimated as the asymptotic slope
of the curve by an affine fit of the interval ¢ € [207,,407,] (dashed lines). (b) Generalized Lyapunov exponents can be used
to estimate 8 and «. The first standard GLE L;(g) (solid lines) is shown for tmax ranging from 12.087, (yellow) to 39.687,
(violet). The curvature peak GLE L,(q) is shown for the same times (dashed lines). For comparison, we also show the line
g = 1 (solid, black), the value of 8 estimated from curvature peak number (dotted, grey) and the value of « estimated from
the curvature PDF (solid, red).
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Supplementary Figure S7. Generalized Lyapunov exponents for the small (a) and the large (b) supplementary simulation. As in
the main simulation, the first standard GLE L;(1) converges towards the previously estimated value of 3, but the convergence
is slower in the large simulation. Similarly, the value of « is slightly overestimated in both simulations. (a) tmax ranging from
12.107, (yellow) to 39.947, (violet). (b) tmax ranging from 16.277, (yellow) to 35.267, (violet). Note that the value of § as a
function of the Kolmogorov time scale 7, differs from the one in Fig. [S3| because 7, is slightly different in the FTLE simulation.

SUPPLEMENTARY NOTE 3. GEOMETRIC EVOLUTION EQUATIONS

Here, we derive the evolution equations (F4)—(F7)). Implicitly, all quantities considered in these equations are
evaluated along a material line element L = L(¢,t), whose evolution is given by the tracer equation . Therefore

0y L(,1) = ((9pL) - V)u(L(, 1), t). (S3)
which is equation . The evolution equation for the tangent vector of the Frenet-Serret frame [16],
. Oy L
t(d)a t) = ’62L|’ (84)
can then be directly computed
R O0pL 1 0y L . P
(g, t) = 22 = (0L - V)u — L‘g&ﬁL (0L -Vu=(t-V)u—(t-(t-V)u)t (S5)
0sL]  |0sL| |05 L|
The normal vector of the Frenet-Serret frame is defined as
. Ot
n(p,t) = o]’ (S6)

where s denotes an arc-length parameterization of the line, i.e. |0sL| = 1. Since the transform from s to ¢ is time-
dependent, evaluating J; at constant ¢ and at constant s are different operations. Here we always want to take 0y
at constant ¢ (i.e. at the same tracer particle). Then, 0 and 0d; do not commute. Having this in mind, we compute
(summation over repeated indices implied)

|0astz (010st:)|0st| — (Ost;)0¢|Ost| _ D 0sti ﬁ_8t|8st| _ 010st; A 1A 04,

|0,¢|2 EX R R R PR
1

= i (6i5 — ) 040t

Oy = Oy

S+

(S7)




de

In order to swap the ¢- and s-derivatives, we notice that ds = I
S

O0g = m&w Therefore

N 1 R ~ N . .
Gtastj = <8t |8¢L|> 8¢tj + 858ttj = —tjtk(ajuk)(é)sti) + 5‘38ttj. (88)

We then insert the evolution equation (S5 for the tangent vector t,

8t885j = —fkfl(akul)(asfj) + 0, ((5jk — fjfk)flaluk)
Ot:)t

= 7fkil(akul)(asfj) - <( j) L+ tAj (&fk)) flﬁkuk + (6jk — fjfk) ((8551)811141@ + flasﬁluk)
1 ..

where in the last step we used (S6) and dsug = t,,Opus. Since |8Sf| =R and §;; = t}fj + 0Ny + Eil;j, we have

R PN PPN N R A . PO R 1..
Oy, = (titj + bibj) [—tktmj(akul) — (thk + tjnk)tlalu;@ + (njnk + bjbk)(nlaluk + Etltmalamuk>}
I PN 1.~ 4.
= —t; Nt 0wy, + bbpny Ojur, + Ebibktltmalamuk. (810)

Finally, in order to derive the curvature evolution equation, we use a simple definition as a function of the tangent
vector with arc-length parameterization,

R(9,t) =105t (S11)

which is equivalent to definition . Using the previous results, we obtain

. . P R R R A 1 ..
Ok = 8t|6st| = ﬁjaté)st]— = ﬁjlzé {—tktlﬂj (8kul) — (ﬁjtk + tjﬁk)tlaluk + (ﬁJka + b]bk) (ﬁlﬁluk + ﬂtltmﬁlamuk)}
= I%(—kafl + flkﬁl)akul + ﬁkflfmalamuk. (812)

This equation can also be found in Ref. [19].

SUPPLEMENTARY NOTE 4. FOKKER-PLANCK EQUATION IN THE KRAICHNAN MODEL

In Appendix [F] we laid out the terms that need to be calculated in order to arrive at the Fokker-Planck equation
in the Kraichnan model. In order to proceed, we combine equation (F3]) with the evolution equations derived in the
previous section and get

N <5(I<6 — R)0t|3¢L|> Oy <|3¢L‘> 1 5 5
Ocf (k3t) = (9L — f(k) (05L]) - <|8¢L|>8N (0(k — k)0 L|OyF) , (S13)
= <|8¢1L|> <<3¢L|5(’f - ’%)fifjajui> — f(k) <\3¢L\fifj3jui> (S14)

_a, (—2/1<|8¢L|6(/£ . f@)@fjaju,»> n H<|8¢L|5(/¢ . g)mﬁjajui> + <|8¢L|6(f<; . a)mfjfkajakui>)> .

We want to evaluate these averages using the Gaussian integration by parts formula [54H56] combined with the
correlation tensor (F1)). This works analogously for all of them. So let us focus on one of the averages. By introducing
delta functions, we can consider the velocity field at the Eulerian coordinate & and take the derivative out of the
average,

(|04 L|6(Kk — RB)RifjO5u;) = /d% / d3y §(x —y) % {|0,L|6(y — L(,t))8(k — R)Rshju;(,t)) . (S15)



Then Gaussian integration by parts yields

(|06 L|8(k — &)Pin;05u;) = /dSm/dSy Sz —y) a?cj/df”z Rix(x — z) <

_ /dSSB/de (8jRik($ _ z)) <(S [|6¢L|(5(£L‘ — L(¢,1))é(k — ’%)ﬁ‘lﬁj] > . (S16)

oug(z,t)

5 [105L15(y — L($,£))5(k — R)ii; ] >
dug(z,t)

The product rule for the functional derivative yields five different terms, which can all be treated in the same way.
Let us again focus on a single one of them, namely

M = /dSm/dSz (0;Rik(x — 2)) <|6¢L|5(m _ L(¢7t))ﬁiﬁjw>

dug(z,t)
. . OR
= /d3Z <(ajRik(L(¢v t) — 2)) |0s Lnii;0" (k — “)W> : (517)
In order to determine the response function %, we formally integrate the curvature evolution equation (S12)),

t

R, 1) = 7(,0) + / At (f’%ﬁmﬁnﬁnum T e N ﬁmfnfoan(’)oum)
0

(S18)

(L(¢5t"),t")

By causality, the initial condition will not depend on ug(z,t) for ¢ > 0. The integrand will not depend on uk(z,t)
for all ¢’ < t either, and the only contribution to the functional derivative can come from the time ¢’ = ¢. Since &, n
and t are integrated quantities of the delta-correlated field u, we expect them to be continuous in time, just like a
Wiener process is continuous while its differential is not. Hence their response functions will only be finite, thus not
contribute to the integral. Using that

Sum (L(, 1), t')

Sun(zt) S(L(p,t) — 2)5(t — ') o, (S19)

the response function becomes

Sh(ot) 1/ o o
&Z(f;’ t)) =3 (nnknnc’?né(Lw, t) — z) — 2Rt Ond(L(d,t) — 2) + Nptnto0n0o0 (L, t) — z)),

where the factor 2 comes from the fact that only half of the delta function §(t—') is contained in the integration range

[0,t]. Using integration by parts and the sifting property of the delta function, our term M can thus be simplified to

M= %aﬁ ((ajanRik(O)) 2 <|3¢L|ﬁmj5(ﬁ; — R)(Agiin — 2£k£n)> — (0;0n0,Rix(0)) <|8¢L|ﬁiﬁj6(n - F;)ﬁkfnfo>> ,

Although the spatial correlation function R;;(x) can be freely chosen, we can restrict its functional form by assuming
isotropy and incompressibility of the Kraichnan field. By isotropy the correlation function must be even, hence odd
derivatives vanish at zero, e.g. 0;0,0,R;,(0) = 0. For the second derivatives, we know that they must have the general
form of an isotropic rank-4 tensor [5§],

= =000 Rik(0) = AdirGjn + Bbij0kn + Coinbij- (S20)

By definition, this tensor must be symmetric under exchange of j and n as well as exchange of i and k, which implies
B = C. Finally, incompressibility implies 5ijQ}’; = 0 so that

A= —4B, (S21)
leading to the general form [57]

= Q(40ik 85 — 0ijOkm — Oindjn). (S22)



Using this expression, our term M can be evaluated,

M= %Qaﬂ <(45ik5jn — 840 — il )k <|a¢L|nsz (k — &) (Rt — 2£ki,1)>)
= _ZQam (’if(‘%; t)) <|8¢L|> ) (823)

by orthonormality of the Frenet-Serret frame.

In the following, we list all the terms that need to be computed along with the results of their evaluation. By
Gaussian integration by parts and the product rule for functional derivatives, the averages of equation (S14)) split into

(9 LI5(x — R)Est;0yus) = / &2 <(6jRik(L(¢, t) - 2)) 8(k — R)EiE; 51?(@:) > (S24)
/ 32 <(8jRik(L(¢,t)—z)) |6¢L|£i£jm> (S25)

+/d3z < (9;Rir(L —2)) |0,L|6(rk — )}Miiﬂ> (S26)

+/d3z < (0 Rit(L(6,1) — 2)) |05 L|8( — )(M;f(tzt)> (S27)

+ / d3x / Pz (0jRik(z — 2)) <|8¢L|6( )z?zfjé[é(?u;(i(g’tm > (S28)

(196 Lisd;0;u:) = / 4z <(6jRik(L(¢>, 1) - 2)) i, 5i'}i‘ﬂ)> (529)

+/d3z <(8le-k(L(¢>,t) —z)) a¢Lij(mj(’Z’ﬂ> (S30)

+/d3z <(8jRik(L(q§,t) - 2)) ad)Lfi(M}f(Z,t)> (S31)

/d3 /d3 (0, Rl — 2) <8¢Lff 0 [5(;;(?(3’ 2l > (32)

(10 LIS(x — R)ivii;yus) = / &z <(8jRik(L(q§, £) - 2)) 8 — R)ﬁiﬁjm> ($33)
/d3 < (0, Rin(L(6, 1) — 2)) |a¢L|ﬁij> (S34)

2 (O (D(6.0) - 2) 0,L130 - Ry 2 00 ) (535)

+/d5z < (9;Rir(L —2)) |0,L|6(k — n)nm‘jgt)> (S36)

+/d3w/d3z (9;Rir(x — 2)) <|a¢L|5(n— r{)ﬁmjé [z — L(#, tm> (S37)



and
195 LIS (5 — Rt 10, Ohus) — / 4z <(8j8kRil(L(qb, £) — 2)) (x - g)mfjfk(m> (S38)

+ /d3z <(aj6kR“(L(¢, t)—z)) |a¢L|ﬁi£jka> (S39)

+ / d*z <(ajakR“(L(¢, t) — 2)) |05 L|0(rk — &)t 5uf(:, t)> (S40)

+ /d3z <(6j8kRil(L(¢,t) — 2)) |05 L|6(r — )ity 5uf(2,t)> (S41)

+ / d*z <(8j8kRil(L(¢,t) — 2)) [0, L|0(r — &)4t; 5uf(t,: t)> (S42)

(S43)
Evaluating each of these terms as explained previously yields

5
= Qf(r;t) (|9 L) = 5Q0x(rf(k;t)) (105 LI)
=4Qf (k) (|95 L]) = —Qf (k) (|95 LI)
(S28) = 0 (S29) = Q (|9, Ll)
=4Q(|0,L1) (S31) = —Q (|9, Ll)

1

(S32) =0 (533) = —5Qf () (|05 L)

5
(539) = 200, (s f (1)) |05 L) = 3Qf (k51) (|95 L)

5

(536) = —5Q/ (w51) (195 L) (837 =0
(1S38) =0 (S39) = —9P0,. f(k;t) (|04 L])
BI0) = 2 Pf(s:1) (10,L1) (B0 = 0
(S42) =0 (S43) = 0,

where P is defined in (F9)). Inserting these results into Eq. (S14) yields the Fokker-Planck equation .

SUPPLEMENTARY NOTE 5. NUMERICAL RESULTS IN THE KRAICHNAN MODEL

Here, we present a numerical analysis of curvature statistics in the Kraichnan model. To this end, we interpret the
tracer equation as a Langevin equation. Since It6 and Stratonovich interpretations coincide for this equation, we
may use the Euler-Maruyama scheme [61] to integrate particle trajectories. In every time step, the Gaussian flow
field is computed on 10243 grid points with a model energy spectrum spectrum as described by Pope [62, p. 232],

E(k) o< k=53 fr.(kL) f,,(kn), (S44)
with L = 9467 an integral length scale and the functions
11/3
x
R S — S45
fr(z) <(z2+cL)1/2> (545)

and

fn(x) =exp (—ﬂ (x4 + cf?) Vi — Cn) , (S46)
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which determine the large- and small-scale behavior. Eq. integrates to the total energy E = 1.05 (code units).
The temporal resolution is At = 7.15- 1077 (code units) and the spatial resolution can be quantified by kym ~ 2.0,
where kjs is the maximum resolved wave number. Furthermore, we choose 8 = 5.2, ¢, = 6.03 and ¢, = 0.40.
For particle time-stepping, the field is interpolated using spline interpolation with continuous derivatives up to and
including 3rd order computed over a kernel of 123 grid points. The loops are adaptively refined as described for the
Navier-Stokes simulations in Appendix [A]

Figure [S8| shows a visualization of an initially circular loop deformed by the Kraichnan field for 1.2Q~!. Visually,
it shares many features of material loops in Navier-Stokes turbulence but appears slightly more compact (compare
Fig. . The geometric similarities also manifest in the curvature statistics (Figure ), which display the same type
of unimodal distribution with power-law tails. Over time, the PDF converges to the stationary solution of the
Fokker-Planck equation, featuring the power-law tails x' and x~18/7.

The Kraichnan model also forms curvature peaks, whose distribution (Figure ) resembles the one in Navier-
Stokes turbulence. Our theory predicts the high-curvature tail to scale as a power law with exponent —11/7, which
is confirmed by the simulation. In order to form our theory, we made the empirical observation that the curvature
peak number grows proportional to the mean line length. This is also what we observe in the Kraichnan model
(Figure , where the mean line length can be computed analytically to be proportional to e*?* [38].

L (a) (b)
1072 4
10—1 .
18/7
1076 .
= t=0.17Q7? IS 1073 A t=0.17Q! ~ iy T
5 107104 —— t=10.34Q7! E — t=0.34Q!
g — t=1051Q7! = 105{ — t=051Q7"
107% 4 —— t=0.69Q! — t=0.69Q°1
— t=10.86Q! L= 0.86Q°!
107184 —— +=1.03Q! 10 —_— t=1.03Q7!
— t=12Q7! —_— t=12Q7"
10722 T T T r r r 107° T T T T T T T
1073 107! 10t 103 105 107 1072 107! 100 10* 10? 103 104 10°
KN KpN

Supplementary Figure S9. Curvature statistics in the Kraichnan model. (a) Curvature PDF of material loops at different times.
The PDF converges to the stationary solution of the Fokker-Planck equation, indicated by the dashed line. (b) PDF of
curvature maxima of material loops at the same times. The high-curvature tail scales as a power law, in agreement with our

theoretical prediction kp ST
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102
10°9 & o
E) & 10
= :: 10
v 10~
S 102 1072 102
& — k,>0.0/7
ks — kK >0.88/n
g — Kk, >11.8/7
E . Kkp > 157.33/n
= 1074 —-=—= x exp(4Qt)
—— Mean length
T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 1.2

tQ

Supplementary Figure S10. Mean number of curvature peaks in the Kraichnan model above different thresholds over time,
vertically shifted for comparison. Consistent with our observation in Navier-Stokes turbulence, the curves become asymptotically
proportional to the mean arc length of loops, which grows with e*®* as predicted by theory. Inset: Curvature peak distribution
at t = 1.2Q ! indicating the different thresholds.

SUPPLEMENTARY NOTE 6. LYAPUNOV EXPONENTS BY QR-DECOMPOSITION

In Appendix [C| we have defined finite-time Lyapunov exponents as the growth rate of singular values of the
deformation tensor (Eq. (C8])). In practice, however, we instead compute the QR-~decomposition of the deformation
tensor for numerical stability,

F(t) = Q) R(1), (S47)

where Q(t) is orthogonal and R(t) is upper triangular. Note that the matrix @Q(¢) is unrelated to the constant @
introduced previously, which quantifies velocity gradient fluctuations in the Kraichnan model. The growth rate of the
diagonal elements of R(t) can then be interpreted as an alternative definition of FTLEs [37],

pi(t) = % log Rii(t). (548)

Note that this definition of FTLEs depends on the choice of the coordinate system. Complementing Appendix [C] we
here show that peak curvature dynamics of a parabola are exactly captured by this alternative definition of FTLEs.

We start from a parabolic material line as defined in Eq. . Given that the flow is statistically isotropic, FTLE
statistics should not depend on the choice of the coordinate system. We can therefore assume that the line is aligned
with the coordinate axes, i.e. k(0) = e; and 1(0) = ez. In this case we have

k()" = |Q()R(t)k(0)]* (549)
= Qij (1) Rj1 (1) Qir (1) Ry (1) (S50)
= R2,(1), (S51)

where we have used the fact that @ is orthogonal and R is upper triangular. Furthermore, we get

k()] (10" = (k1) - 1(t)* = B} Qi Ri2QurFiz — (Quj Rjn QurRie)? (552)
= R%(QiR1z2 + Qi2R22)(Qi1 Ri2 + QizRa2) (S53)
— (Qi1R11(Qi1 Ri2 + Q2 Ra2))?
= R}, R%, + R}, R3, — R} R, (S54)
= RY, (1) R3,(t). (S55)

Hence, the peak curvature given by Eq. (C6) can be written as

_ Ru(®)
~ R3,(1)

Kp(t) kp(0). (S56)
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Inserting the alternative definition of FTLEs (S48)) yields
kp(t) = e[pi(t)ﬂp'z(t)]t,ip(o), (S57)
an exact analog to the approximate equation (C13]). This means that the FTLEs defined by the QR-decomposition

precisely capture the curvature growth of parabolic line elements. In that sense, the QR-definition of FTLEs is very
suitable for our purposes.
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