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Abstract

Understanding and predicting plasma turbulence in the scrape-off layer of a magnetic confinement fusion device is a key open
problem in modern plasma physics. The transitional region between the core and scrape-off layer poses a difficult problem for
turbulence simulations. The poloidal magnetic field vanishes at the X-point of a fusion device, which introduces a coordinate
singularity in the commonly used field-aligned coordinates. In the present work, we present a full- f gyrokinetic code based on a
locally field-aligned coordinate system that is flux-coordinate independent and free of singularities. The coordinate system, as well
as the equations and numerical methods are described. In addition, careful numerical and physical verifications in closed magnetic
flux surfaces are included.
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1. Introduction

Understanding and predicting plasma turbulence in the edge
and scrape-off layer (SOL) of magnetic confinement fusion de-
vices plays an important role for the achievement of a sustain-
able fusion energy source. The plasma boundary is in contact
with its material surroundings which limits the lifetime of the
wall and impacts the level of impurity accumulation in the core.
Moreover, many parameters of the plasma core are influenced
by edge and scrape-off layer phenomena [1, 2].

Plasma turbulence in the core of a fusion device is commonly
modeled within gyrokinetic theory [3] and there exist multiple
codes featuring different numerical techniques in the commu-
nity [4, 5, 6, 7, 8, 9, 10, 11, 12, 13].

Extending these simulations to the plasma edge and scrape-
off layer poses significant challenges. First of all, fluctuations of
the plasma in the scrape-off layer are known to be much larger
than in the core. As such, nonlinear effects originating from
the coupling between fluctuations become important - which
makes a so called full- f treatment of the gyrokinetic equations
necessary. Moreover, the poloidal magnetic field vanishes at
the X-point of a magnetic confinement fusion device, introduc-
ing a coordinate singularity in the commonly used field-aligned
coordinates.

In recent years, there have been many investigations into
scrape-off layer and edge turbulence with fluid codes [14, 15,
16, 17, 18]. However, it remains an open question whether
the assumptions behind the fluid approximation are valid in the
plasma edge. As a step forward, it is important to enable the
use of gyrokinetic models for scrape-off layer turbulence.
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Several projects aim at simulating gyrokinetic turbulence in
the edge and scrape-off layer, namely XGC [19], COGENT [20],
GKEYLL [21], GENE [22], GYSELA [23] and PICLS [24]. They
differ by the numerical scheme used, the model implemented,
and their ability to treat geometries complexities. XGC and
PICLS use the so called particle-in-cell (PIC) method. In
these codes marker particles are integrated along the charac-
teristics of the gyrokinetic Vlasov equation. While these al-
gorithms allow for a straightforward generalization to X-point
geometries, they contain statistical noise which may require a
large number of marker particles to resolve the full- f distribu-
tion function in edge and scrape-off layer plasmas. The other
projects mentioned employ a continuum method and solve for
the gyrokinetic Vlasov equation directly. GKEYLL features an
energy-conservative discontinuous Galerkin discretization and
has been used successfully to simulate open field line regions
in linear and helical devices [25]. GENE uses a combination of
a shock-stable finite volume and a finite difference scheme, and
GYSELA a semi-Lagrangian method.

To allow for continuum turbulence simulations in X-point
geometries, locally field-aligned methods based on the flux-
coordinate independent approach (FCI) [26, 15] have been de-
veloped and implemented in fluid codes [15, 27, 18, 28]. Along
with fully non-aligned methods [29], FCI methods have been
established as an effective and efficient numerical method for
studying edge and SOL turbulence in the fluid community. The
use of FCI has enabled, for example, a recent simulation of tur-
bulence in the edge and SOL of ASDEX Upgrade scale with
realistic magnetic geometry [30]. Within the gyrokinetic com-
munity, locally field-aligned methods have recently been imple-
mented in the gyrokinetic finite-volume code COGENT [31] for
simulations in X-point geometry.

In this work, we present a new full- f gyrokinetic continuum
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code, GENE-X, implementing a locally field-aligned coordinate
system following the FCI approach. The implementation is
based on the fluid code GRILLIX [15, 32] and employs a finite
difference discretization scheme on unstructured, locally Carte-
sian grids. These grids allow for a high flexibility regarding the
geometry while ensuring good numerical properties and a high
computational efficiency. The approach is free of coordinate
singularities and capable of handling simulations ranging from
the magnetic axis, across the separatrix and into the scrape-off

layer. Furthermore, the existence of magnetic flux surfaces is
not required and it is possible, in principle, to extend the cal-
culation to stochastic regions and 3D geometries [28]. In this
paper, we will focus on simulations performed on closed mag-
netic flux surfaces, to allow for careful verification of the code.

The present work is structured as follows. We start by deriv-
ing the gyrokinetic model used in our simulations in Section 2.
In Section 3 we introduce the locally field-aligned coordinate
system, derive metric coefficients and express the differential
operators in the gyrokinetic Vlasov equation in the new coordi-
nates. We discuss the discretization scheme used in Section 4.
Finally, in Section 5 we verify the numerical scheme and the
implementation.

2. Gyrokinetic Model

We start from the particle Lagrangian in centimeter-gram-
second (CGS) units given by [33, 34]

Lp(Z, Ż) =

(qσ
c

A + p‖b
)
· Ṙ +

mσc
qσ

µθ̇ − H . (1)

mσ represents the mass and qσ the charge of species σ. The
particle coordinates are denoted by Z = (R, p‖, µ, θ), where R
represents the gyrocenter position [3], p‖ the canonical parallel
momentum, µ the gyration magnetic moment, and θ the gy-
rophase angle.

The background magnetic field B = ∇ × A is represented by
the vector potential A. b denotes the magnetic field unit vector.
From the particle Lagrangian the total gyrokinetic Lagrangian
can be derived [35]. It yields

L =
∑
σ

∫
f (Z0, t0)Lp(Z(Z0, t0; t), Ż(Z0, t0; t), t) dW0 dV0

+

∫
E2 − B2

⊥

8π
dV, (2)

where dW = (2π/mσ)B∗
‖

dv‖ dµ denotes the volume element in
velocity space, dV the volume element in real space and B⊥ =

∇⊥A‖ the fluctuation of the magnetic field. The guiding center
magnetic field B∗ and its parallel component B∗

‖
are defined as

B∗ = B +
mσc
qσ

v‖∇ × b, (3)

B∗‖ = B +
mσc
qσ

v‖b · (∇ × b) . (4)

We simplify the gyrokinetic model by neglecting electro-
magnetic fluctuations, setting the magnetic potential A‖ = 0.

This implies that the parallel velocity v‖ = ∂H
∂p‖

is given by
v‖ = p‖/mσ [33] and the magnetic field perturbation B⊥ van-
ishes. Furthermore, we employ a long wavelength limit such
that gyroaverages reduce to the identity. With these simplifica-
tions the particle Hamiltonian reads

H =
p2
‖

2mσ
+ µB + qσφ −

mσc2

2B2 |∇⊥φ|
2 . (5)

In this work we employ the quasi-neutrality approximation
and neglect the E2 term in Eq. (2) [35]. We linearize the quasi-
neutrality equation by requiring that the field part of the Hamil-
tonian H2 = −

mσc2

2B2 |∇⊥φ|
2 contributes to the field equation only

[33, 35]. This implies that we replace the term H2 fσ with
H2 f0σ, where f0σ denotes a static initial distribution function.

The electrostatic gyrokinetic Lagrangian in the long wave-
length limit, describing the implemented system, is given by

L =
∑
σ

∫ [ (qσ
c

A + p‖b
)
· Ṙ +

mσc
qσ

µθ̇ −
p2
‖

2mσ

− µB − qσφ
]

fσ dW dV

+
∑
σ

∫
mσc2

2B2 |∇⊥φ|
2 f0σ dW . (6)

2.1. The gyrokinetic Vlasov-Poisson system
The gyrokinetic Vlasov equation is derived from the Liou-

ville theorem stating that the distribution function is constant
along particle trajectories

d fσ
dt

=
∂ fσ
∂t

+ Ṙ · ∇ fσ + v̇‖
∂ fσ
∂v‖

= 0 . (7)

The trajectories of the gyrocenters are derived by solving the
Euler-Lagrange equations [34]

Ṙ = v‖
B∗

B∗
‖

+
c

qσB∗
‖

b × (µ∇B + qσ∇φ) , (8)

v̇‖ = −
B∗

mσB∗
‖

· (µ∇B + qσ∇φ) . (9)

The quasi-neutrality equation is derived by requiring that the
variation of the action functional, generated by the Lagrangian,
with respect to electrostatic potential vanishes. Explicit calcu-
lation yields [34]

−∇⊥ ·

∑
σ

mσc2n0σ

B2 ∇⊥φ

 =
∑
σ

qσ

∫
fσ dW, (10)

where n0σ is the initial density given by the Maxwellian distri-
bution function f0σ. Eqs. (7) - (10) describe the system solved
in the code. Due to the derivation from a Lagrangian the sys-
tem fulfills an energy conservation law. The conserved energy
is [34]

E =
∑
σ

∫ (
1
2

mσv2
‖ + µB +

1
2

qσφ
)

fσ dV dW . (11)

After having described the gyrokinetic model and the energy
theorem we continue with deriving the coordinate system for
our simulations in the next section.
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3. Locally field-aligned coordinates

Due to the fast dynamics along the magnetic field lines, par-
allel gradients are much smaller than perpendicular gradients,
which makes structures in the plasma field-aligned. Multi-
ple gyrokinetic codes present in the community, e.g. GENE

[6, 13], GYRO [8], GYSELA [9], ORB5 [11], GKW [12], exploit this
anisotropy by implementing a field-aligned coordinate system
to reduce the resolution needed for a simulation. These coor-
dinates are usually composed of a flux-surface label and two
coordinates characterizing the position on the flux surface, one
of which is the position along a given magnetic field line. The
field-aligned coordinate system requires the existence of flux-
surfaces and becomes ill defined at the separatrix.

For plasma edge and scrape-off layer simulations it is impor-
tant to incorporate the separatrix and the X-point in the sim-
ulations. Therefore, changes to the field-aligned coordinate
system are necessary. We solve this problem implementing a
locally field-aligned coordinate system (x, y, z) following the
flux-coordinate independent (FCI) approach [36, 26, 15, 32].
This coordinate system exploits the anisotropy by aligning the
y coordinate to the magnetic field line while x and z coordi-
nates are independent of magnetic flux surfaces. Due to the
flux-coordinate independent nature of the x and z coordinate,
numerical diffusion, arising from the fast electron streaming
along the magnetic field line, can interfere with the turbulent
orthogonal dynamics. For a thorough discussion of this phe-
nomenon we refer to studies in previous work with fluid and
gyrofluid models [26, 37, 27, 15, 32]. In the following section,
we give a precise definition of the coordinate system and derive
expressions for the differential operators used in the gyrokinetic
Vlasov-Poisson system.

3.1. Coordinate transformation

Consider a cylindrical coordinate system (R, ϕ,Z) and a col-
lection of poloidal planes located at ϕk. We define the locally
field-aligned coordinate system in a region [ϕk − ∆ϕ, ϕk + ∆ϕ]
around the poloidal plane. We choose the poloidal range ∆ϕ
of the coordinate system large enough such that the coordinate
systems for different poloidal planes overlap. The collection of
all coordinate systems covers the fusion device. In the follow-
ing, we assume without loss of generality that ϕk = 0 because
we can always rotate the embedding cylindrical coordinate sys-
tem. In order to derive the coordinate transformation we choose
a Cartesian reference frame (xc, yc, zc) on the poloidal plane
where xc points in the direction of the cylindrical R coordinate,
zc in the direction of the cylindrical Z coordinate, and yc out of
the poloidal plane.

Let γ : u 7→ γ(u) be the curve of a magnetic field line starting
at γ(0) = R0 = (xc, 0, zc) defined by the differential equation

dγ
du

= b(γ) . (12)

We define the locally field-aligned coordinate system, by pro-
viding the coordinate transformation τ from locally field-

ϕ

R

Z

ey

ex

ez
yc

xc

zc

Figure 1: Figure displaying the cylindrical (R, ϕ,Z) coordinate system, the
Cartesian (xc, yc, zc) coordinate system, and the unit vectors (ex, ey, ez) of the
the locally field-aligned (x, y, z) coordinate system. The unit vectors of the lo-
cally field aligned coordinate system are not orthogonal and change for every
point in the poloidal plane.

aligned to Cartesian coordinates

τ :


x

y

z

 7→

xc

yc

zc

 =


x +

∫ y
0 bxc (γ(u)) du∫ y

0 byc (γ(u)) du

z +
∫ y

0 bzc (γ(u)) du

 . (13)

The new coordinate system can be interpreted in a simple way.
The y coordinate corresponds to the length of the magnetic field
line starting at the point (xc, yc = 0, zc). The x and z coordinates
correspond to the xc and zc coordinates of the point the field line
is originating from. On the poloidal plane, i.e. yc = ϕ = y = 0,
the locally field-aligned coordinates coincide with the Cartesian
coordinates. We continue by deriving the metric tensor in the
new coordinate system. We start with the Jacobian matrix of
the coordinate transformation evaluated on the poloidal plane
at y = 0:

J(x, 0, z) =

((
∂τ

∂x

)
(x, 0, z),

(
∂τ

∂y

)
(x, 0, z),

(
∂τ

∂z

)
(x, 0, z)

)
,

=

1 bxc 0
0 byc 0
0 bzc 1

 . (14)

For clarity we omit the dependency of bxc , bzc and byc on x and
z. The columns of the Jacobi matrix can be interpreted as a
basis of the tangent space of the coordinate system and point in
the direction of the coordinate lines

ex =

100
 , ey =

bxc

byc

bzc

 , ez =

001
 . (15)

The basis vectors are not orthogonal and the vector ey is equal
to the unit vector of the magnetic field. The coordinate system
is depicted in Figure 1.

The components of the metric tensor are given by

gi j = JT J =

 1 bxc 0
bxc 1 bzc

0 bzc 1

 , (16)
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and the determinant of the metric tensor reads

√
g :=

√
det

(
gi j

)
= byc . (17)

The basis of the dual space is given by

ex =

(
1,− bxc

byc
, 0

)
,

ey =

(
0, 1

byc
, 0

)
,

ez =

(
0,− bzc

byc
, 1

)
,

(18)

and the basis expansion of the magnetic field unit vector b reads

b = ey = g2 je j = bxc e
x + ey + bzc e

z . (19)

3.2. Differential operations in the governing equation
There are three types of differential operators in the gyroki-

netic Vlasov equation which we express in the locally field-
aligned coordinate system

b · ∇ f , (∇ × b) · ∇ f and (b × ∇h) · ∇ f ,

where h, f are arbitrary scalar functions. The first operation
corresponds to the parallel derivative and is given by

b · ∇ f = ey · ei ∂ f
∂xi =

∂ f
∂y

. (20)

For the second and third operator we have to express the curl
and cross products in the new coordinate system. The curl of
the magnetic field unit vector b is given by

∇ × b =
1
√

g

3∑
k=1

εi jk

(
∂b j

∂xi −
∂bi

∂x j

)
ek,

=
1

byc

[
∂bzc

∂y
ex −

∂bxc

∂y
ez +

(
∂bxc

∂z
−
∂bzc

∂x

)
ey

]
, (21)

and the gradient of the function f in a curvilinear coordinate
system can be expressed as

∇ f =
∂ f
∂ui ei . (22)

We obtain the second operation by combining Eqs. (21)
and (22) and taking into account that ei · e j = δ

j
i

(∇ × b) · ∇ f =
1

byc

[
∂bzc

∂y
∂ f
∂x
−
∂bxc

∂y
∂ f
∂z

+

(
∂bxc

∂z
−
∂bzc

∂x

)
∂ f
∂y

]
.

(23)
The third operation is a triple vector product of the magnetic
unit vector and two gradients of scalar functions. The gradients
of the functions h and f are given by

∇h =
∂h
∂ui ei, ∇ f =

∂ f
∂u j e j . (24)

The vector product in the curvilinear coordinate system takes
the form

A × B =
1
√

g

3∑
k=1

εi jk

(
AiB j − A jBi

)
ek . (25)

By combining Eqs. (19), (24) and (25) we obtain the vector
product of the magnetic field unit vector with the gradient of h:

b × ∇h =
1

byc

[ (
∂h
∂z
− bzc

∂h
∂y

)
ex +

(
bxc

∂h
∂y
−
∂h
∂x

)
ez

+

(
bzc

∂h
∂x
− bxc

∂h
∂z

)
ey

]
. (26)

Taking the dot product of the last expression with the gradient
of the function f yields the third operation

(b × ∇h) · ∇ f =
1

byc

[ (
∂h
∂z
− bzc

∂h
∂y

)
∂ f
∂x

+

(
bxc

∂h
∂y
−
∂h
∂x

)
∂ f
∂z

+

(
bzc

∂h
∂x
− bxc

∂h
∂z

)
∂ f
∂y

]
.

(27)

We finish this section by rewriting Eq. (27) in terms of Poisson
brackets

{h, f }x,y =
∂h
∂x

∂ f
∂y
−
∂h
∂y
∂ f
∂x
. (28)

This rewriting will be useful in the discretization where we em-
ploy the Arakawa scheme for discretizing Poisson brackets [38]

(b × ∇h) · ∇ f =
bxc

byc

(
∂h
∂y
∂ f
∂z
−
∂h
∂z
∂ f
∂y

)
+

bzc

byc

(
∂h
∂x

∂ f
∂y
−
∂h
∂y
∂ f
∂x

)
+

1
byc

(
∂h
∂z
∂ f
∂y
−
∂h
∂x

∂ f
∂z

)
,

=
bxc

byc

{h, f }y,z +
bzc

byc

{h, f }x,y +
1

byc

{h, f }z,x . (29)

In summary, Eqs. (20), (23) and (29) provide an explicit form of
the operations in the gyrokinetic Vlasov equation in the locally
field aligned coordinate system.

In the following, we assume that ∇⊥ ≈ ∂
∂x ex + ∂

∂z ez in the
quasi-neutrality equation. This approximation can be made
in the field part of the Lagrangian such that the gyrokinetic
Vlasov-Poisson system remains consistent. We use this as-
sumption for the following computational purposes. As the ba-
sis vectors ex and ez are not orthogonal to the magnetic field, the
quasi-neutrality equation contains derivatives in all three coor-
dinate variables x, y and z. This makes it necessary to solve the
quasi-neutrality equation for all poloidal planes at once. By re-
moving the y dependence from ∇⊥ the quasi-neutrality equation
can be solved on every poloidal independently.

In the next section we describe the numerical techniques used
to solve the gyrokinetic Vlasov-Poisson system in the locally
field-aligned coordinate system.

4. Numerical scheme and implementation

4.1. Normalization

We use the normalization conventions employed in GENE

[13]. Reference quantities are denoted with a “ref” subscript
and renormalized quantities with a hat, i.e. for the mass mσ =
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Elementary charge e
Reference mass mref
Reference temperature Tref
Reference length Lref
Reference magnetic field Bref
Reference density nref

Reference velocity cref =
√

Tref/mref
Reference gyrofrequency Ωref = eBref/(mrefc)
Reference gyroradius ρref = cref/Ωref

Table 1: Elementary reference values for mass, temperature, length, magnetic
field strength and density and derived reference values for velocity, gyrofre-
quency and gyroradius.

m̂σmref. The reference values defining the scales of the simula-
tion are given in Table 1.

With those definitions we normalize the gyrocenter coordi-
nates as

R = R̂Lref, Z = ẐLref, ϕ = ϕ̂,

v‖ = v̂‖vTσ (R0), µ = µ̂
T0σ(R0)

Bref
, t = t̂

Lref

cref
,

(30)

where T0σ(R0) = TrefT̂0σ(R0) denotes the initial temperature
at a given radial position R0 and vTσ (R0) =

√
2T0σ(R0)/mσ =

crefv̂Tσ (R0) the corresponding thermal velocity. Finally, the dis-
tribution function and electrostatic potential are normalized ac-
cording to

fσ =
n0σ(R0)
v3

Tσ
(R0)

f̂σ, (31)

φ =
Tref

e
φ̂ . (32)

4.2. Discretization
4.2.1. Discretization of the Vlasov equation

We discretize the Vlasov equation with a finite difference dis-
cretization scheme. In the coordinate v‖ we use a Cartesian grid,
and in the coordinates x and z in the poloidal plane an unstruc-
tured grid, that is required to be Cartesian in the neighborhood
of any point. We label each grid point in the poloidal plane by
a one dimensional index i and store the x and z coordinates in
one dimensional arrays x[i] and z[i]. This makes the imple-
mentation flexible because one can remove points from and add
points to the grid and thus model the shape of the fusion device.
An example of the grid demonstrating the capability to model
realistic geometries is shown in Fig. 2. Requiring that the grid
is Cartesian in the neighborhood of every point allows us to use
efficient numerical schemes for Cartesian grids.

We discretize the advection terms in x, z and v‖ with excep-
tion of the nonlinear E × B terms as

a
(
∂ fσ
∂x

)
(xi) =

a
12∆x

[
f (xi−2) − 8 f (xi−1)

+ 8 f (xi+1) − f (xi+2)
]

+ O
(
(∆x)4

)
.

(33)

1.0 1.5 2.0
R

1.5

1.0

0.5

0.0

0.5

1.0

Z

Figure 2: Figure displaying the grid in the poloidal plane in an X-point geom-
etry. The grid is unstructured and models the boundary and the divertor region
of the fusion device. In the neighborhood of every point the grid is Cartesian.
For a clear presentation only every 10th grid point is displayed.

For the E×B terms, represented by the Poisson bracket, we use
the scheme introduced by Arakawa [38].

In the y direction, along the field line, our grid is non-
uniform. The grid points are defined by the intersection points
of a field line with neighboring poloidal planes. The intersec-
tion points, as well as the length of the magnetic field line
∆y, are calculated once upon initialization of the code up to
machine precision with the 8th order embedded Runge-Kutta
method dop853 [39, p. 2, II. 10]. In general, the intersection
points do not coincide with a grid point. We use bicubic inter-
polation to approximate the value of the distribution function on
the intersection points. The intersection of the magnetic field
line with neighboring poloidal planes is visualized in Fig. 3.
Advection terms in the parallel y direction are expressed with a
second order symmetric finite difference scheme as

a
(
∂ fσ
∂y

)
(xi, 0, z j) =

a
∆y

[
f (xi, y1, z j) − f (xi, y−1, z j)

]
+ O

(
(∆y)2

)
+ O

(
(∆x)3

∆y

)
+ O

(
(∆z)3

∆y

)
,

(34)

where ∆y = y−1 + y1. The calculation of the parallel derivatives
is the most performance demanding part of the code. The bicu-
bic interpolation comprises the 16 grid points surrounding the
intersection point. This gives rise to a 32 point stencil to calcu-
late the parallel derivative with the second order centered finite
difference scheme mentioned above.
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R

Z

ϕ

Figure 3: Figure displaying a magnetic field line originating at the poloidal
plane at ϕ = 0 and hitting different poloidal planes at ϕ ∈ {−π/4, π/4}. The
points where the field line hits are denoted by red dots. The value of the dis-
tribution function is obtained via bicubic interpolation around the intersection
point. The area included in the interpolation on every poloidal plane are shaded
in blue.

4.2.2. Discretization of the quasi-neutrality equation
The quasi-neutrality equation can be written in a general

form as

−∇⊥ · (c∇⊥φ) = b
∑
σ

qσ

∫
fσ dv‖ dµ, (35)

with coefficients c and b. We discretize the left hand side of the
equation with second order symmetric finite differences

− ∇⊥ · (c∇⊥φ) =

−

[ (
c(xi+1, z j) + c(xi, z j)

2∆x

) (
φ(xi+1, z j) − φ(xi, z j)

∆x

)
−

(
c(xi, z j) + c(xi−1, z j)

2∆x

) (
φ(xi, z j) − φ(xi−1, z j)

∆x

) ]
−

[ (
c(xi, z j+1) + c(xi, z j)

2∆z

) (
φ(xi, z j+1) − φ(xi, z j)

∆z

)
−

(
c(xi, z j) + c(xi, z j−1)

2∆z

) (
φ(xi, z j) − φ(xi, z j−1)

∆z

) ]
+ O

(
(∆x)2

)
+ O

(
(∆z)2

)
. (36)

The integral over the distribution function in the right hand side
of the quasi-neutrality equation is discretized using the trape-
zoidal rule∫

f dv‖ dµ = ∆v‖∆µ
Nl∑

l=1

Nm∑
m=1

wlm f (v‖l, µm)+O
(
(∆v‖)2

)
+O

(
(∆µ)2

)
,

(37)
where

wlm =

1/2 l ∈ {1,Nl} or m ∈ {1,Nm},

1 otherwise .
(38)

Due to the quadrature, the parallel discretization, the elliptic op-
erator and the Arakawa scheme, the spatial discretization is of
order two. We solve the remaining initial value problem with an

explicit Runge-Kutta method of order four [39, pp. 132–140].
This has proven to be a solid integrator in combination with
the Arakawa scheme and central finite differences in the gy-
rokinetic code GENE [13]. Furthermore, we have implemented
the option to add numerical diffusion in the dimensions x, y, z
and v‖. For the simulations presented in this work no additional
numerical diffusion was added.

4.3. Boundary conditions

For the simulations presented in the next chapter we choose
Dirichlet boundary conditions. We set the distribution function
to zero on the velocity space boundary. In real-space we choose
periodic boundary conditions in ϕ and set the distribution func-
tion equal to the initial profile and the electrostatic potential
equal to zero on the R,Z boundary. The same boundary con-
dition is used for the advective inflow and outflow through the
boundary. Furthermore, we have the option to apply diffusion
in a small buffer zone around the R,Z boundary to shield the
effect of the boundary conditions in the poloidal plane. For the
simulation results presented in the next chapter no buffer zone
was added.

5. Verification

5.1. Method of manufactured solutions

The gyrokinetic Vlasov-Poisson system is a complicated
integro-differential system of equations and exact solutions are
only known for special cases. Therefore, it is not possible to
comprehensively check the convergence of the numerical solu-
tion by comparing it against exact solutions. Nevertheless it is
possible to add extra terms to the Vlasov-Poisson system such
that it obtains any solution. This is known as the method of
manufactured solutions (MMS) [40]. In order to explain it in
more detail we rewrite the gyrokinetic Vlasov-Poisson system
in a different form. Consider the integro-differential operators
L(φ), N( f ) such that

L(φ)[ f ] = 0,
N( f )[φ] = 0,

represents the gyrokinetic Vlasov-Poisson system. L represents
the Vlasov operator which depends on the electrostatic potential
and N represents the operator that forms the quasi-neutrality
equation. In the method of manufactured solutions we solve a
modified system of equations

L(φ)[ f ] = S f ,

N( f )[φ] = S φ, (39)

with sources S φ and S f included in the right hand side of the
equations such that given functions fMMS and φMMS are a solu-
tion to the system. The functions fMMS and φMMS can be chosen
arbitrarily. The sources S φ and S f are calculated by plugging
the solutions into the Vlasov and quasi-neutrality equation. As
the solutions are known this is a straightforward process and can
be done with a computer algebra system. We use Mathematica
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[41]. The functions fMMS and φMMS are called the manufactured
solutions.

Numerical solutions of the modified Vlasov-Poisson system
Eq. (39) can be compared to the exact solution functions fMMS
and φMMS. This makes it possible to calculate relative errors of
the numerical solution and to study the order of convergence of
the numerical scheme.

As manufactured solutions we choose the functions

fMMS(r̂, ϕ, θ, v̂‖, µ̂, t̂) = cos2(ω̂t̂) cos2(ntorϕ) sin2(npolθ)

× sin2(πnrad(r̂ − r̂min)/(r̂max − r̂min))e−
(
v̂2
‖
+µ̂B

)
,

φMMS(r̂, ϕ, θ, t̂) = 2 cos2(ω̂t̂) cos(ntorϕ) sin(2npolθ)
× sin(2πnrad(r̂ − r̂min)/(r̂max − r̂min)),

(40)

representing a mode. We run the verification in three different
magnetic geometries testing different aspects of the implemen-
tation. For the first test, we choose slab geometry where the
equilibrium magnetic field is given by

B0 = B0eϕ . (41)

In slab geometry multiple terms in the Vlasov equations like the
curvature or ∇B0 drift vanish. Furthermore, the magnetic field
is uniform and points in the ϕ direction. Therefore, the mag-
netic field is automatically aligned to the coordinate system and
the locally field-aligned coordinate system coincides with the
intrinsic coordinate system of the manifold. This renders the
field line tracing trivial and thus enables us to test the imple-
mentation without complications arising from the locally field
aligned coordinate system. The second, circular equilibrium is
defined via

B0 = B0

(
eϕ +

r̂
q0

eθ
)
. (42)

In the circular geometry the magnetic field lines are twisted
and the field line tracing as well as the interpolation is tested.
Third, we test a toroidal magnetic equilibrium that incorporates
all terms in the Vlasov equation

B0 =
B0

R̂0 + r̂ cos(θ)

(
eϕ +

r̂
q(r̂)

eθ
)
, (43)

with q profile
q(r̂) = q0 + αr̂2, (44)

and major radius R0. We run the MMS analysis with the pa-
rameters given in Table 2 with four different resolutions pre-
sented in Table 3. The radial box size is limited by r̂min = 0
and r̂max = 1 in slab geometry and r̂min = 0.5 and r̂max = 0.8
in both circular and toroidal geometry. In velocity space (v̂‖, µ̂)
we choose a domain size of [−3, 3] × [0, 9] and in the toroidal
angle ϕ of [0, 2π).

We calculate one period of the manufactured solution up
to t̂ = 1. The initial ion density and the corresponding fi-
nal error are shown in Fig. 4 and show no sign of numerical
artifacts. Further, we analyze the results by calculating the
relative L2 and L∞ error of the numerical solution given by
|| f − fMMS||p/|| fMMS||p where p ∈ {2,∞}. The results are shown
in Fig. 5.

We observe that the numerical scheme converges to second
order for all three geometries.

Figure 4: Figure showing the initial electron density n̂e(t̂ = 0) (top) and the
error ∆n̂e = n̂e(t̂ = 1) − n̂e,MMS(t̂ = 1) of the final electron density (bottom) in
the R,Z plane at ϕ̂ = π for the MMS run in toroidal geometry using 80 poloidal
planes.

7



10 20 40 80
Number of poloidal planes
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Figure 5: Figure displaying the relative L2 (dashed) and L∞ (dotted) error of
the numerical solution in the MMS test as a function of the resolution. The
resolution is represented by the number of poloidal planes. The complete res-
olutions are specified in Table 3. The test is performed for a slab, circular, and
toroidal geometry (different markers, colors). For reference a line representing
second order convergence is drawn in black. The numerical scheme converges
to second order for all geometries.

5.2. Screw pinch simulations
In the following, we present a physical benchmark where we

measure growth rates of an ion temperature gradient mode in
a screw pinch geomety. We use a setup similar to the work
in [42, 43]. We model the screw pinch with the circular ge-
ometry described in the last section with a constant q profile
q(r) = q0. We simulate two different cases. In the first case
we choose q0 → ∞ corresponding to a slab like geometry1

and in the second case we choose a finite q. This allows us
to compare the performance of ordinary field-aligned coordi-
nates in the slab case to the locally field-aligned coordinate
system with interpolation for the finite q case. We choose the
reference length parameters Lref = 7.74 · 10−1 m, Bref = 1 T,
mref = 1 u and Tref = 1 keV such that the ion gyroradius
ρref = 3.23 · 10−3 m and Lref/ρref = 239. The simulation box
ranges from r̂min = 4.17 · 10−3 to r̂max = 6.05 · 10−2 spanning
over 14.5ρref. In velocity space (v̂‖, µ̂) we choose a domain size
of [−4, 4]× [0, 16] and in the toroidal angle ϕ of [0, 2π). We use
a realistic mass ratio with me = 1/3600 mi.

We initialize the simulation with local Maxwellians

F̂0σ(r̂, θ, ϕ, v̂‖, µ̂) =
n̂0σ(r̂)(

πT̂0σ(r̂)
)3/2 e−

v̂2
‖

+µ̂B̂0
T̂0σ (r̂) , (45)

and given temperature T̂0σ and density profiles n̂0σ.
Maxwellians are an exact equilibrium of the gyrokinetic

1Numerically we implement q0 → ∞ by setting q0 = 108.

ω̂ npol ntor nrad q0 α mi me

2π 1 1 1 0.86 2.12 1 1

Table 2: Table displaying the parameters used for the method of manufactured
solutions.

Nϕ ∆x̂ = ∆ẑ Nv‖ Nµ ∆t̂
10 0.025 10 5 0.01
20 0.0125 20 10 0.005
40 0.00625 40 20 0.0025
80 0.003125 80 40 0.00125

Table 3: Table displaying the different resolutions used for the method of man-
ufactured solutions.

Vlasov equation in the given geometry and thus provide a
stable initial condition. In order to study growth rates we
initialize a mode as a perturbation of the Maxwellian

f̂σ(t̂ = 0, r̂, θ, ϕ, v̂‖, µ̂) = F̂0σ(r̂, θ, ϕ, v̂‖, µ̂)

×

1 + ε exp

− (
r̂ − r̂mid

δr̂mode

)2 cos (mθ + nϕ)

 . (46)

We choose the profiles T̂0i, T̂0e, n̂0i and n̂0e, appearing in the
Maxwellian distribution function according to

P(r̂) = CP exp
(
−κP δ r̂P tanh

(
r̂ − r̂mid

δr̂P

))
. (47)

The parameters for the profile and the initial condition are given
in Table 4. The initial density profile is chosen to be constant
by setting κn = 0. The profiles are depicted in Figure 6.

In order to compare the growth rates to analytical predic-
tions we use an approximate dispersion relation derived in [43,
Appendix]. The dispersion relation has been derived with the
assumption of adiabatic electron response and large aspect ra-
tio, i.e. r/(qR0) → 0. Both approximations are valid for the
parameters chosen and hence we expect the numerical results
to be close to the prediction by the dispersion relation. In or-
der to present the dispersion relation we need to define a single
Fourier mode of φ̂:

φ̂ = φ̂m,n,ω̂ exp
(
i(mθ + nϕ − ω̂t̂)

)
. (48)

ε 1.00 · 10−4

r̂mid 3.05 · 10−2

δr̂mode = 5.90 · 10−3

Cni = Cne 1.65 · 101

CTi = CTe 1.00
δr̂Ti = δr̂Te 6.05 · 10−3

δr̂ni = δr̂ne 1.21 · 10−2

κTi = κTe 6.62 · 101

κni = κne 0

Table 4: Table defining the parameters for the screw pinch profile for ions and
electrons specified in Equation (47).
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Figure 6: Figure showing the normalized initial temperature and density profile.
The profile is the same for ions and electrons.

The dispersion relation reads [43, Appendix]

−

(
ρref

Lref

)2 [
∂2

∂r̂2 +

(
1
r̂

+
1
n̂0

∂n̂0

∂r̂

)
∂

∂r̂
−

m2

r̂2

]
φ̂m,n,ω̂(r̂) ={

−
1

T̂0i
(1 + zZ(z)) −

1
T̂0e

+
m

k̂∗r̂B̂0L

ρref

Lref[
Z(z)

(
1
n̂0

∂n̂0

∂r̂
−

1
2T̂0i

∂T̂0i

∂r̂

)
+ z(1 + zZ(z))

1
T̂0i

∂T̂0i

∂r̂

]}
× φ̂m,n,ω̂(r̂), (49)

with z = ω̂/k̂∗, k̂∗ = k̂‖
√

2T̂0i and the parallel wave number
k̂‖ = (m/q + n)bϕ. Furthermore, we used the plasma dispersion
function

Z(u) =
1
√
π

∫ ∞

−∞

exp(−x2)
x − u

dx = i
√
π exp(−u2)(1 + erf(iu)),

erf(x) =
2
√
π

∫ x

0
exp(−t2) dt . (50)

We describe how the dispersion relation is solved in Ap-
pendix A. The dispersion relation, and thus the eigenvalues
ω̂, are a function of the poloidal mode number m and the paral-
lel wave number k̂‖. Hence, the eigenvalues ω̂ do not depend on
q explicitly. For a given poloidal mode number m we can select
two toroidal mode numbers nslab and nscrew, for the q = ∞ and
q , ∞ case respectively, such that the parallel wave numbers
and, as a consequence, the growth rates are equal. For the slab
case, the poloidal magnetic field vanishes and the parallel wave
number reads k̂‖slab = nslab. For the q , ∞ case we choose the
toroidal mode number nscrew such that k‖screw = k‖slab, i.e.

nscrew = k‖slab −
bθm

r
,

= nslab −
m
q
.

(51)

Having two setups with the same growth rates allows us to com-
pare the performance of field aligned coordinates in the q = ∞

case, to the locally field aligned coordinates in the q , ∞ case.

q m n k̂‖
∞ 5 1 1
∞ 10 1 1
∞ 15 1 1
∞ 20 1 1

q m n k̂‖
5/3 5 −2 1

10/3 10 −2 1
15/3 15 −2 1
20/3 20 −2 1

Table 5: Table displaying the different initial mode configurations for the sim-
ulation. On the left, the mode numbers for the q = ∞ case and on the right, the
mode numbers for the q , ∞ case are shown. The poloidal and toroidal mode
numbers are constructed such that the parallel mode number k‖ is equal to one
in all cases.

The q factors and mode numbers chosen for the simulation
are shown in Table 5. They are selected such that a broad range
of modes and q factors are tested.

5.2.1. Growth rates
We measure the growth rate from the L2 norm of the elec-

trostatic potential. The L2 norm is calculated numerically with
the trapezoidal quadrature rule similar to the charge density in
the quasi-neutrality equation. We determine the growth rate by
performing a linear fit of log ‖φ̂‖ between the times t̂ = 1 and
t̂ = 3.5. This is shown exemplarily in Fig. 7.

We use a resolution of ∆x̂ = ∆ẑ = 6.46 · 10−4 correspond-
ing to 0.2 ρref, nϕ = 16, nv‖ = 256, nµ = 16 and a timestep of
∆t = 1.4 · 10−3 tref = 3.5ns. The timestep is constant throughout
the simulation and limited by the parallel electron streaming.
We study the convergence of the simulation at the example of
the q = 15/3 case. Upon doubling the resolution in each di-
mension, ∆x̂→ 0.5∆x̂, ∆ẑ→ 0.5∆ẑ, nϕ → 2nϕ, nv‖ → 2nv‖ and
nµ → 2nµ, the growth rate of the q = 15/3 mode changes less
than 1%. Therefore, we assume a 1% error on the growth rates
obtained from our simulations.

The growth rates obtained from the simulation as well as the
solution of the approximate dispersion relation are shown in
Fig. 8. The simulations for q = ∞ and q , ∞ agree well with
each other within the 1% error margin, as predicted by the dis-
persion relation. Furthermore, the numerical results are close
to the solution of the dispersion relation. They agree within
the 1% numerical error margin for the poloidal mode numbers
m = 15 and m = 20. For the poloidal mode numbers m = 5
and m = 10 the measured growth rates are slightly higher than
growth rates obtained from the dispersion relation. As dis-
cussed above, the dispersion relation approximates the growth
rates and thus exact agreement is not expected.

5.3. Energy and particle conservation

In order to study the behaviour of the nonlinear phase of the
simulation we investigate the conservation of particle number
and energy during the onset of turbulence. We choose the same
screw pinch setup as presented in the last section and run the
q = 15/3 case. We use a resolution of ∆x̂ = ∆ẑ = 3.23 · 10−4,
corresponding to 0.1 ρref, nϕ = 32, nv‖ = 64 and nµ = 16. We
run the simulation until t̂ = 10, when the turbulence starts to hit
the wall. The chosen Dirichlet boundary conditions allow an
energy flux through the domain boundaries, which becomes ef-
fective when eddies hit the wall. As an example the ion density
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Figure 7: Figure displaying the L2 norm of the electrostatic potential as a func-
tion of time. The growth rate is obtained by performing a linear fit of log ‖φ̂‖2
between the times t̂ = 1 and t̂ = 3.5. The fit is drawn in a blue dashed line.
Shown are the results from the simulation with q = 15/3 and m = 15.
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Figure 8: Figure displaying the growth rates obtained from the approximate
dispersion relation and the simulations with different q factors and mode num-
bers specified in Table 5. Vertical lines through the markers represent the error
of the simulation. The measured growth rates are close to the prediction from
the dispersion relation.

Figure 9: Figure displaying the ion density in the poloidal plane located at
ϕ = π in the linear phase at t̂ = 3.5 and the nonlinear phase at t̂ = 6.5 of a
screw pinch simulation with q = 15/3. The simulation is initialized with the
temperature and density profile shown in Fig. 6 and perturbed with an unstable
m = 15, n = −2 mode.

is depicted in the linear and nonlinear phase in Fig. 9. The en-
ergy of the ions and electrons is shown in Fig. 10. The number
of particles is conserved up to a precision of 10−7. The energy
is conserved up to a precision of 10−4. In the linear phase the
conservation is improved. As soon as the nonlinear phase starts,
energy gets transferred between electrons and ions.

6. Summary and outlook

We developed a full- f , continuum gyrokinetic turbulence
code based on a locally field-aligned coordinate system that is
free of coordinate singularities and allows simulations ranging
from the core to the scrape-off layer of a magnetic confinement
fusion device.

We started this work by presenting the gyrokinetic model,
implemented in the code. The model incorporates both dy-
namic ions and electrons and is energy conservative on the
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Figure 10: Figure displaying the normalized energy E(t)/E(0) for electrons and
ions of a simulation in screw pinch geometry with q = 15/3. The simulation
is initialized with the temperature profile shown in Figure 6 and perturbed with
an unstable m = 15, n = −2 mode. The simulation developes turbulence at
approximately t̂ = 4.

continuous level. We introduced the locally field-aligned co-
ordinate system following the flux-coordinate independent ap-
proach and expressed the differential operators appearing in the
gyrokinetic Vlasov-Poisson equation in the new coordinate sys-
tem. The operators were discretized with a finite difference
scheme and the remaining inital value problem was solved with
a fourth order Runge-Kutta method. Furthermore, we presented
careful tests of the code on closed magnetic flux surfaces. First
we used the method of manufactured solutions to verify that the
numerical scheme converges with second order accuracy. The
tests were performed for a slab, circular, and toroidal geom-
etry to be comprehensive. Second we measured growth rates
of an ion temperature gradient mode in screw pinch geome-
try and compared them to analytical predictions. Finally, we
investigated the conservation of particles and energy during a
turbulence simulation.

We conclude that the presented locally field-aligned coordi-
nate system, together with the chosen numerical scheme work
well in a gyrokinetic code.

As a next step we will implement boundary conditions to
treat open magnetic field lines enabling us perform simulations
in the diverted geometry of a complete fusion device. Further,
we plan to improve the model by implementing a collision op-
erator and use the geometric multigrid solver provided by the
GRILLIX code to solve a nonlinear quasi-neutrality equation.
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Appendix A. Numerical solution of the dispersion relation

The dispersion relation in Eq. (49) poses a nonlinear, differ-
ential eigenvalue problem that has to be solved for the radial
electrostatic potential φ̂m,n,ω̂ and the complex eigenvalue ω̂ si-
multaneously. As we are not aware of methods to solve the
equation analytically we employ a numerical method. First we
discretize the differential operators to obtain an ordinary non-
linear eigenvalue problem. Similar to Section 4.2 we choose
fourth order centered finite differences to discretize the r deriva-
tive. At the boundary, we implement Dirichlet boundary con-
ditions and set φ̂m,n,ω̂(r̂min) = φ̂m,n,ω̂(r̂max) = 0. We choose 128
points for the discretization.

The remaining nonlinear eigenvalue problem can be solved
by calculating the roots of the characteristic polynomial. We
use a determinant free method based on the Newton iteration
described in [44, pp. 28–29]. As an initial guess for the Newton
iteration we choose ω̂init = −2+4i. The calculation is done with
Mathematica [41].
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Sci. Comput. 74 (2018) 1601–1650. doi:10.1007/s10915-017-0509-5.
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