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Abstract: In order to estimate the reactivity of a large number of potentially complex heterogeneous catalysts while searching for novel 
and more efficient materials, physical as well as data-centric models have been developed for a faster evaluation of adsorption energies 
compared to first-principles calculations. However, global models designed to describe as many materials as possible might overlook the 
very few compounds that have the appropriate adsorption properties to be suitable for a given catalytic process. Here, the subgroup-
discovery (SGD) local artificial-intelligence approach is used to identify the key descriptive parameters and constrains on their values, the 
so-called SG rules, which particularly describe transition-metal surfaces with outstanding adsorption properties for the oxygen reduction 
and evolution reactions. We start from a data set of 95 oxygen adsorption energy values evaluated by density-functional-theory 
calculations for several monometallic surfaces along with 16 atomic, bulk and surface properties as candidate descriptive parameters. 
From this data set, SGD identifies constraints on the most relevant parameters describing materials and adsorption sites that (i) result 
in O adsorption energies within the Sabatier-optimal range required for the oxygen reduction reaction and (ii) present the largest 
deviations from the linear scaling relations between O and OH adsorption energies, which limit the performance in the oxygen evolution 
reaction. The SG rules not only reflect the local underlying physicochemical phenomena that result in the desired adsorption properties 
but also guide the challenging design of alloy catalysts. 
Keywords: artificial intelligence, subgroup discovery, symbolic inference, supervised descriptive rule induction, transition-metal surfaces 
Introduction 
Among the multiple processes that govern heterogeneous 
catalysts,[1-3] the bond-breaking and -forming reactions 
occurring on the catalyst surface, and, in particular, the 
associated (free-) energy barriers, play an important role in 
determining the reactivity of a given material. The energy barriers 
of surface reactions have been related to the adsorption energy 
of reactants, reaction intermediates or products via linear 
Brønsted-Evans-Polanyi relationships.[4,5] Adsorption energies 
can be evaluated using ab initio methods, for instance via density-
functional-theory (DFT) calculations. However, the explicit 
evaluation of adsorption energies by accurate first-principles 
methods for a large number of materials, desirable in the context 
of catalyst screening approaches, becomes impractical when 
complex catalysts such as transition-metal alloys are considered. 
This is because these materials display a large number of 
possible surface sites which could play a role in catalysis.  
In order to efficiently explore a large number of possibly complex 
materials in the quest for novel catalysts, the scaling relation 
approach,[6] among other physical[7] or data-centric[8] models, 
have been used for the estimation of adsorption energies at 
lower computational effort compared to DFT. The scaling 
relations exploit the approximately linear relationships between 
adsorption energies of different surface species to reduce the 
number of explicit DFT calculations needed to investigate a 
certain catalytic process. Such linear models are designed to 
estimate adsorption energies for as many different materials and 
surface sites as possible. However, only very few of the 
investigated systems present the appropriate adsorption 
properties to be useful for a given catalytic process. Firstly, the 

adsorption energies of key reaction intermediates typically need 
to lie in a Sabatier-optimal range for the performance to be 
maximized.[9-11] Secondly, the adsorption energies of different 
species might need to be tuned independently for an optimal 
reactivity to be achieved.[12] This implies that deviations from 
the linear relationships between adsorption energies, which 
describe the trend for most of the materials, might be actually 
desirable.[13]  In both these situations, the interesting materials 
and surface sites thus present statistically exceptional adsorption 
properties. This questions the suitability of using global models 
to screen for new catalysts.  
Here, we apply the subgroup-discovery (SGD) artificial-
intelligence local approach[14-19] to identify key descriptive 
parameters - and constraints on their values-, which are 
particularly associated to outstanding adsorption properties of 
transition-metal surfaces. In particular, we introduce a strategy 
to address target properties whose desired values lie in a specific 
range and use this approach to describe adsorption sites 
presenting Sabatier-optimal oxygen adsorption energies for the 
oxygen reduction reaction (ORR).[20] Additionally, we show how 
SGD can be used to describe data points that deviate the most 
from a given model such as the linear scaling relations between 
O and OH adsorption energies on different surface sites. Such 
scaling relations impose a limit for the optimization of oxygen 
evolution reaction (OER) performance.[21] Thus, materials and 
adsorption sites deviating from the linear scaling are the 
interesting ones. The ORR and the OER are two crucial processes 
for energy conversion and storage. 
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Figure 1. A: Illustration of the SGD approach for identifying key descriptive parameters and rules determining SGs with outstanding 
distribution of the target. The rules are constraints on the values of key descriptive parameters. The distribution of target values in the 
SG might be outstanding because it is, for instance, narrower than the distribution of the target values over the whole data set. B: 
Transition metals and surfaces considered in this work. We consider the face-center-cubic (fcc) structure for all metals except Fe, for 
which the body-center-cubic structure (bcc) and the (210) surface is considered. For Co, the (0001) surface of the hexagonal-closed-
packed structure is also included. The adsorption sites for the fcc (211) surface are also shown in detail on the right. This surface 
termination contains both terrace- and step-edge-like sites, labelled “t” and “s” in the figure, respectively. 
 
Subgroup discovery approach 
We start our analysis by introducing the SGD approach[14-18] to 
uncover complex patterns associated to outstanding local 
behavior by using data sets. This methodology has been recently 
applied to catalysis[22] as well as materials-science[18,23] 
problems.  
The SGD method is based on an input data set, which we refer to 
as the population 𝑃 of data points, each of them associated to a 
different material or, in the case of this work, to a different 
surface site. For each of the data points, the value of a target of 
interest, 𝑌, and the values of 𝑁 potentially-relevant candidate 
descriptive parameters, denoted 𝜑%, 𝜑', … , 𝜑) , are known. The 
candidate descriptive parameters are structural or 
physicochemical parameters that possibly correlate with the 
target. Starting from such data set, SGD identifies subsets of data, 
hereafter subgroups (SGs), that present an outstanding 
distribution of the target values with respect to the whole data 
set (Fig. 1A). The so-called quality function 𝑄 𝑃, 𝑆𝐺  measures how 
outstanding a SG is compared to the whole data set. This function 
typically has the form 
 

𝑄 𝑃, 𝑆𝐺 = .(01)
.(3)

∗ 	𝑢(𝑃, 𝑆𝐺),     (1) 

 
where the first term, the coverage, contains the ratio between the 
number of data points 𝑠 in the subgroup and the total number of 
data points in the whole data set. The coverage controls the 
subgroup size and prevents that very small SGs with little 
statistical significance are selected. The second term 𝑢(𝑃, 𝑆𝐺), the 
utility function, measures the dissimilarity between the SG and the 
population. It can be chosen[18] depending on the scientific 
question of interest (vide infra). 

The SGD algorithm consists in two steps. Firstly, combination of 
statements (hereafter selectors, 𝜎(𝜑)) about the data are 
generated. The selectors are Boolean functions defined through 
conjunctions of propositions and have the form 
 

𝜎(𝜑) ≡ 𝜋%(𝜑)⋀	𝜋'(𝜑)⋀	…⋀	𝜋<(𝜑),      (2) 
 

where “⋀” denotes the “and” operator and each proposition 𝜋= is, 
for instance, an inequality constraint on one of the descriptive 
parameters 

 
𝜋=(𝜑) ≡ 𝜑= ≥ 𝑣@  or 𝜋= 𝜑 ≡ 𝜑@ < 𝑣@ ,     (3) 

 
for some constant 𝑣@  to be determined during the analysis. The 
selectors describe convex regions in the descriptive parameter 
space defining the SGs. To keep the number of 𝑣@  values 
computationally tractable, a finite set of cut-offs is determined 
using k-means clustering, where k is a parameter to be assessed. 
Secondly, a Monte Carlo search algorithm is used to find SGs, 
defined by the selectors generated in the first step, that maximize 
the quality function. The most relevant SGs are those for which 
the quality function reaches the highest values. The selectors 
defining those SGs, and, more specifically, the propositions in the 
selectors, contain the key descriptive parameters associated to 
the underlying processes that exclusively govern the local 
behavior within the subsets (or SGs) of data points. The 
propositions entering the selectors can be thus seen as rules 
determining the outstanding SG behavior. Therefore, the SG is at 
the same time the subset of selected data and the selector, i.e., 
the rules that are used to obtain this selection. In fact, the SG 
rules are more relevant than the particular subset of selected 
(training) data. Further SGD details are available in Electronic 
Supporting Information, ESI. 
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Data set of adsorption energies and candidate descriptive 
parameters 
We analyze a dataset containing 95 oxygen (atomic O) adsorption 
energies, which were calculated with DFT using the van der 
Waals-corrected BEEF-vdW exchange-correlation functional in 
previous contributions.[8,24] Eleven transition metals and 
several adsorption sites of different surfaces for which 
(meta)stable oxygen adsorption is observed were included in our 
analysis (Fig. 1B). The oxygen adsorption energy is defined as 
 

𝐸CDEF = 𝐸EGHI,JKLCM + 0.5	𝐸FR(S) − 𝐸EGHI,CDE ,      (4) 
 
where 𝐸FR(S),  𝐸EGHI,JKLCM and 𝐸EGHI,CDE are the total energies of the O2 
gas-phase molecule, clean surface, and surface containing the O 
adsorbate, respectively. Positive oxygen adsorption energy 
values correspond, therefore, to favorable adsorption with 
respect to the gas-phase molecule.  
 
Table 1. Candidate descriptive parameters used for the SGD of 
outstanding transition-metal catalysts.  

type  description Ref. 
atomic PE Pauling electronegativity [25] 
 IP ionization potential [26] 
 EA electron affinity [26] 
bulk bulkMMD nearest-neighbor distance [8]a 
 𝑟  d-orbital radius  [27] 
 𝑉CD'  coupling matrix element between 

the adsorbate states and the 
metal d states squared 

[28] 

surface 𝑊 work function [8] a 
surface siteMe number of atoms in the ensemble [8] a 
site CN coordination number [8] a 
 siteMMD nearest-neighbor distance [8] a 
 𝜖^  d-band center [8] a 
 𝑊^  d-band width [8] a 
 𝑓  d-band filling [8] a 
 𝑓.< sp-band filling [8] a 
 DOS^  density of d-states at Fermi level [8] a 
 DOS.< density of sp-states at Fermi level [8] a 

aas determined by DFT-BEEF-vdW. 

 
An important aspect in SGD is the choice of candidate descriptive 
parameters. Following reference [8], we use, as candidate 
descriptive parameters, the atomic, bulk, and clean surface 
properties shown in Table 1. The atomic parameters are 
properties that only depend on the element. The bulk, surface 
and site parameters are related to the geometry and the 
electronic structure of either bulk metals, or the surfaces and 
their adsorption sites. The surface- and surface-site-related 
descriptive parameters were evaluated on (relaxed) clean 
surfaces, i.e., without the presence of the adsorbed species, in 
reference [8]. The surface-site parameters were calculated as 
averages over the metal atoms that compose the site ensemble. 
In total, 16 parameters uniquely describing each material and 
surface site are used. We note that the candidate descriptive 
parameter set includes properties proposed to describe overall 
trends in adsorption energies such as as the d-band center (𝜖^)[7] 
or coordination numbers (CN)[29] as well as many other, 
potentially relevant, parameters. 
 
Subgroups of surface sites with optimal range of oxygen 
adsorption energies for the ORR 
To illustrate how SGD identifies the relevant descriptive 
parameters and the rules describing surface sites that bind a 
certain reaction intermediate with a specific range of binding 
strength, we start our analysis by identifying SGs of surface sites 
providing oxygen adsorption energy close to 𝐸CDE,emnF = 1.8	eV. 
Based on DFT-derived potential energy surfaces describing the 
main proposed mechanisms of the ORR, adsorbed oxygen was 
identified as a key intermediate in this reaction and the oxygen 
adsorption energy value of 1.8 eV was related to the highest 
activity over a series of transition-metal low-index (111) 
surfaces.[11] To take into account that a range of oxygen 
adsorption energies around 1.8 eV might result in catalysts that 
maximize the performance, we define, for our SGD analysis, a 
target that assumes small values in a given window around 
𝐸CDE,emnF  and rapidly increases outside such interval. Among 
several possible choices of functions that would reproduce this 
behavior, we use a quadratic expression and consider [1.3,2.3 eV] 
window of optimal adsorption energy values. Our SGD target is 
thus defined by 

 

 
Figure 2. SGD of transition-metal catalysts presenting surface sites with an optimal range of oxygen adsorption energies. A: Visualization 
of the target quantity (∆F), defined in Eq. 5, for the training data. ∆F, which is unitless, is smaller than 1 in an interval of ±0.5	eV centered 
around the proposed optimal value of 𝐸CDE,emnF = 1.8	eV. B: Distribution of ∆F in the whole data set and in the identified SG. C: SG selector, 
indicated by the dashed lines and by the arrows, on a identified key descriptive parameter: bulk nearest-neighbor distance (bulkMMD). The 
data points corresponding to the SG are marked with black crosses in A and C.    
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where 𝐸CDEF  is the oxygen adsorption energy for an arbitrary 
surface site. The distribution of ∆F over the data set is shown in 
Fig. 2A and 2B. We are interested in SGs of data points for which 
∆F assumes low values. As utility function, we use 
 

𝑢 𝑃, 𝑆𝐺 = .�^(01)
.�^(3)

,     (6) 

 
where 𝑠𝑡𝑑(SG) and 𝑠𝑡𝑑(P) are the standard deviation of the 
distributions of the target in the SG and in the whole data set, 
respectively. By using the ratio of standard deviations in the 
utility function, we favor the selection of SGs that present narrow 
distribution of values for the target. 
Among the SGs that maximize the quality-function values, we 
identify a SG containing 23 data points, i.e., ca. 24% of the data 
set, which is relatively narrow and presents low target values (Fig. 
2B, in black). Indeed, this SG contains the surface sites for which 
the oxygen adsorption energies are the closest to the proposed 
optimal value (Fig. 2A, in which the adsorption sites belonging to 
the SG are shown as black crosses). All considered adsorption 
sites of Pd, Ag and Pt surfaces are part of this SG. Pd and Pt are 
indeed known to be the best ORR catalysts among all metals 
included.[20] This SG is defined by the selector 
 

𝜎F = 2.786 < bulkMMD ≤ 2.987	Å,     (7) 
 
as shown in Fig. 2C. Therefore, the interatomic nearest-
neighbours distance of the bulk materials is a key parameter 
determining if an adsorption site is associated to the optimal 
range of oxygen adsorption values for the ORR. In particular, 
bulkMMD needs to assume an intermediate range of values, given 
by (7), in order for a material to present surface sites with the 
desired oxygen binding strenght.  
The SG rule given by (7) is the simplest SG rule identified, which 
only depends on one descriptive parameter. Several different SG 
rules (Table S1) result, however, in the exact same subselection 
of (training) data points and thus in the same quality-function 
values compared to the SG defined by (7). For instance, the 
selector  
 

siteMMD > 2.759	Å ∧ PE ≤ 2.125,     (8) 
 
which depends on two descriptive parameters, also selects the 
adsorption sites of Pd, Ag and Pt. The presence of similar SGs 
defined by slightly different rules is due to the fact that different 
descriptive parameters encode similar physicochemical 
information. Indeed, some of the candidate descriptive 
parameters are correlated with each other. In particular, the 
Pearson correlation between bulkMMD and siteMMD is equal to 0.99 
and between bulkMMD and PE is 0.72 (Fig. S3). We note that 
correlations involving more than two descriptive parameters, 
which are not captured by the Pearson correlation scores, might 
be also present within the training data set. This is not a limitation 
for SGD, since it can identify different equivalent descriptive rules 
(with respect to a given input training data).   
By using the function defined in Eq. 5, we allow for SGD to focus 
on a range of desired target values based on the distance to the 
desired range. Another strategy to achieve this goal is to define a 
categorical target which labels the data points falling in the 
desired range of values. In this case, the data points inside or 
outside the desired range are treated equivalently irrespective of 

their distance to the optimal value or to the borders delimiting 
the range. To illustrate this approach, we have applied SGD using 
a categorical target indicating whether a surface site is at the 
optimal [1.3,2.3 eV] oxygen adsorption energy range (see details 
in ESI). Thus, the SGD is used to identify rules that classify the 
adsorption sites and materials as belonging to the Sabatier-
optimal range. By using this approach, SGD identified similar 
rules compared to those derived using the numerical target ∆F. 
Additionally, the same subselection of data points as for the SG 
discussed in Fig. 2 is obtained. This is also the case when the 
optimal ranges of [1.4,2.2 eV] or [1.2,2.4 eV] are used, instead of 
[1.3,2.3 eV], for the labelling of data points. These results indicate 
that the SG rules are stable with respect to the choice of target 
function and optimal range of values around the proposed 
optimum (within the ranges ±0.4-0.6 eV). 
We then exploited the rules defining the SGs of outstanding ∆F 
values (all the rules shown in Table S1 for the ∆F target), which 
were obtained using only monometallic surfaces, to select 
surface sites of transition-metal alloys that bind oxygen with the 
appropriate range of adsorption energies. Thus, we apply the 
constraint that the alloy surface sites of interest should 
simultaneously satisfy several of the SG rules identified using the 
monometallic systems. The evaluation of adsorption energies on 
surfaces of metal alloys is a particularly resource-consuming task 
for DFT, as the number of possible metal combinations and 
surface sites grows significantly with respect to the monometallic 
systems. We focus on bimetallic alloys with 1:1 atomic ratio, since 
the candidate descriptive parameters for 25 of such alloy 
compositions, i.e., the properties listed in Table 1, are available in 
reference [8]. In total, 360 different surface sites of (211) surfaces 
are considered. The alloy atomic descriptive parameters are 
taken as the average between the atomic properties of the two 
metals in their composition. The surface- and site-related 
parameters are explicitly evaluated by DFT using an alloy 
atomistic models in reference [8].  
 

 
Figure 3. SG rules for monometallic surface sites with optimal 
range of oxygen adsorption energies exploited for the design 
bimetallic alloys with 1:1 atomic ratio. Representation of the alloy 
surface sites on the coordinates of two of the identified relevant 
descriptive parameters. The explicitly calculated data points are 
colored according to their ∆F value. The data points 
simultaneously selected by the SG rules of Table. S1 (for the 
target ∆F) are marked with black crosses. The data points 
selected by the regression tree are shown as red dots. 
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Figure 4. SGD of transition-metal catalysts and adsorption sites of fcc (211) surfaces that deviate from the linear scaling relations. A: 
Scaling relations between oxygen (O) and hydroxyl (OH) species for different adsorption sites of the fcc (211) monometallic surfaces. B:  
Distribution of the target (∆EJCK�MS

F,F� ) within the population and in the identified SG. C and D: SG selectors (indicated by the dashed lines and 
arrows) on the selected key descriptive parameters coordinates: number of atoms in the ensemble (siteMe) and electron affinity (EA), 
respectively. The data points corresponding to the SG are marked with black crosses in A, C and D. 
 
Figure 3 shows the alloy surface sites (grey circles) on the 
coordinates of the two descriptive parameters identified by the 
SG rule shown in (8): siteMMD and PE. In this figure, the black 
crosses indicate the alloy surface sites selected by the SG rules. 
Surface sites of the following alloy compositions are selected: 
AgIr, AgPd, AgPt, and RhAg. The ∆F values for the surface sites of 
4 alloys (37 data points), which were explicitly evaluated by DFT 
in reference [8], are also shown as colored circles in Fig. 3. The 
fcc-t site of the AgPd alloy, for which the calculated ∆F is the 
lowest – and equal to zero-, is an outstanding alloy surface site 
which was correctly selected by the SG rule. These results show 
how SGD can be used to quickly select, out of many candidate 
materials, the promising alloys that should be investigated in 
more detail. 
 
Subgroups of surface sites deviating from the linear scaling 
relations between O and OH adsorption energies for the OER 
The linear trends often observed between adsorption energies of 
different surface species impose, in some reactions, a limit to the 
maximum performance that can be achieved. This is because the 
linear scaling relations imply that the absorption of two related 
species cannot be tuned independently, limiting the possibilities 
for catalyst optimization. For instance, in the OER, the adsorption 
energies of the three key intermediates, O, OH, and OOH, are 
correlated[21] and the O adsorption energy needs be decreased 
with respect to OOH adsorption energy in order to decrease the 

limiting potential and thus maximize the performance.[12] To 
overcome this limitation imposed by the linear scaling relations, 
an immense effort has been put into strategies to identify 
exceptional materials and adsorption sites that “break”, or 
deviate from, the scaling relations.[13] This situation calls for 
local approaches, since most of the materials are typically well-
described by the linear approximate model. To illustrate how the 
SGD can be used to find outstanding surface sites that deviate 
from linear scaling relationships, we next search for SGs 
describing fcc (211) surface sites of monometallic surfaces 
providing high deviations from the scaling relations between 
atomic oxygen (O) and hydroxyl (OH). For this purpose, we first 
establish linear models for each adsorption site on which both O 
and OH present a (meta)stable adsorption: fcc-t, hcp-t, fcc-s and 
bridge2-s (show in colors in Fig. 4A). These models have the form 
 

𝐸CDE,EJCK�MSF� = 𝛼𝐸CDE,���F + 𝛽,     (9) 
 

where 𝛼 and 𝛽 are fitted coefficients, different for each surface 
site. In total, 36 data points are used. The linear fits (Fig. 4A) 
evidence that most of the data points are well described by the 
scaling relation. Indeed, the deviations from the linear trend are 
typically lower than 0.2 eV (Fig. 4B). The bridge2-s surface site is 
in particular well captured by the linear model. We define the 
quantity 
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∆EJCK�MS
F,F� = |𝐸CDE,���F� − 𝐸CDE,EJCK�MSF� |,     (10) 

 
the absolute difference between the OH adsorption energy 
estimation by the scaling relation (𝐸CDE,EJCK�MSF� ) and the actual DFT-
calculated value (𝐸CDE,���F� ) as target for the SGD approach. In this 
way, the interesting data points, i.e., the surface sites that are 
worst described by the linear trend, correspond to high values of 
∆EJCK�MS
F,F� . Most of the observations in the population correspond to 

low ∆EJCK�MS
F,F�  values (Fig. 4B). We are thus interested in SGs with an 

overall distribution of the target value as different as possible 
from the distribution of this quantity in the population. This 
requirement can be introduced in the SGD by means of the 
following utility function:  
 

𝑢 𝑃, 𝑆𝐺 = 𝐷J��(𝑃, 𝑆𝐺).     (11) 
 
In (11), 𝐷J��(𝑃, 𝑆𝐺) is the cumulative-distribution-function 
formulation[30] of the Jensen-Shanon divergence between the 
distribution of the target values in the SG and the distribution of 
the target values in global population.[30] 𝐷J�� measures the 
dissimilarity between two distributions. It assumes small values 
for similar distributions and increases as the distributions have 
different standard deviations or mean values (see further details 
in ESI). The candidate descriptive parameters shown in Table 1 
are also used here, and only the monometallic systems are 
initially considered. 
The SGD approach identifies a SG containing 6 data points, i.e., 
ca. 17 % of the population, which is narrow and has relatively high 
target values with respet to the population (Fig. 4B, in black). 
Indeed, this SG contains the surface sites deviating the most from 
the linear scaling relations (Fig. 4A, in which the data points 
belonging to this SG are shown as black crosses). The sites fcc-s, 
fcc-t, and hcp-t of the Ag surface, the sites fcc-s, and hcp-t of the 
Ir surface and the site fcc-s of the Pt surface are in this SG. This 
SG is defined by the selector 
 

𝜎F,F� = siteMe > 2.5 ∧ 1.236	eV ≤ EA ≤ 2.125	eV,     (12) 
 
as shown in Fig. 4 C and D.  Therefore, the number of atoms in 
the surface site ensemble (siteMe) and the electron affinity of the 
metal (EA) are relevant parameters related to high ∆EJCK�MS

F,F� . The 
constrain on siteMe excludes the bridge2-s sites from the SG and 
shows that surface sites composed by more than two atoms, on 
which the adsorbate can be more highly-coordinated, are more 
prone to deviate from the linear trend. The conditions on	EA, in 
turn, shows that this outstanding behavior is limited to only some 
of the metals, and this is encoded in this element-dependent 
(atomic) parameter.  
We also exploited the rules defining the SGs of surface sites 
deviating from the linear scaling relations (see list in Table S1) to 
address transition-metal alloys (Fig. 5). The comparison of 
explicitly calculated ∆EJCK�MS

F,F�  on alloys with alloys selected by the 
SG rules show that the constraints derived based on the 
monometallic systems correctly indicate which alloys surface 
sites deviate the most from the scaling relations (purple points). 
In particular, the alloy surface site with highest ∆EJCK�MS

F,F� = 0.27	eV, 
fcc-s AgAu, is part of the identified SG. Thus, the SG rules 
describing surface sites that deviate from the linear scaling 
relations are generalizable beyond the data set used for their 
derivation.  
 

 
Figure 5. SG rules for fcc (211) transition-metal catalysts and 
adsorption sites deviating from the linear scaling relations 
exploited for the design bimetallic alloys with 1:1 atomic ratio. 
Representation of the alloys on the coordinates of the identified 
relevant descriptive parameters. The explicitly calculated data 
points are colored according to their ∆F value. The data points 
simultaneously selected by the SG rules of Table. S1 (for the 
target ∆EJCK�MS

F,F� ) are marked with black crosses. The data points 
selected by the regression tree are shown as red dots. 
 
Overall, our results demonstrate the potential of SGD to detect 
complex local patterns associated to outstanding behavior. 
Furthermore, generalizable SG rules were derived based on 
extremely small data sets compared to those typically needed for 
widely-used artificial-intelligence methods. This makes the SGD 
approach useful for several catalysis and materials-science 
applications in which only small (consistent) data sets are 
available. This contribution also demonstrates how the sharing 
of well-annotated FAIR (Findable, Accessible, Interoperable, and 
Re-purposable) data, increasingly available via common data 
infrastructures,[31] can enable scientific insights beyond the 
original purpose for which the data was created and used.  
Even though the SGD approach enables the screening of new 
materials, as demonstrated above, it does not provide 
predictions of oxygen adsorption energies for each single 
adsorption site. In particular, the SGD rule does not tell the most 
stable surface sites for a given surface containing several 
possible adsorption sites on which oxygen might bind with 
different strength. However, knowing the relative stability of 
adsorption configurations might be important for the description 
of a catalytic process. This is addressed in reference [8] via the 
symbolic-regression sure-independence-screening-and-
sparsifying-operator (SISSO) approach. Indeed, the models 
derived by SISSO are able to quantitatively describe the 
adsorption energies for each different material and surface site, 
thus identifying the most stable adsorption configurations. The 
SISSO approach allows capturing the potentially nonlinear 
relationships among the most relevant input parameters that 
best model the adsorption energies. Contrary to SISSO, however, 
SGD provides a local description focused only on specific desired 
behaviors. Furthermore, SGD identifies simple constraints on the 
most relevant input parameters, which are helpful for 
rationalizing the possible underlying phenomena. The SGD 
analysis presented here thus advances the physical 
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understanding of the local behavior with respect to the previous 
SISSO work.  
Finally, we note that the dynamic restructuring of the catalyst 
material that might occur under reaction conditions, thus 
influencing the surface structure on which the reactions take 
place,[1,2] is not being taken into account in our analysis. This 
requires alternative modelling strategies.[32,33,3]  
 
Comparison of subgroup discovery with decision tree 
regression  
We also trained regression (reg.) trees[34] using the same data 
sets of targets and descriptive parameters as for SGD (see details 
in ESI). Similar to SGD, reg. trees also provide rules describing 
subsets of data identified during the training. These subsets of 
data are called “leaves”, and reg. trees provide predictions of 
target values according to the leaf to which a given data point 
belong, e.g., one prediction per leaf. For the ∆F target, the reg. 
tree approach identified, on the leaf with the minimum predicted 
value of 0.115 eV, 7 adsorption sites. The rules for this leaf are: 
 
𝜎F,nHLL = 𝜖^ ≤ −1.387	eV ∧ siteMMD ≥ 2.651	Å ∧ IP ≤ 9.04	eV ∧ 𝑓.< ≥

1.109 ∧ DOS^ ≤ 1.71	eVy%	.     (13) 
 

For the ∆EJCK�MS
F,F�  target, the reg. tree approach identifies, in the leaf 

with maximum predicted value of 0.418 eV, 6 adsorption sites. 
The rules describing this leaf are: 
 

𝜎F,F�,nHLL = 𝜖^ ≤ −1.805	eV ∧ PE ≤ 2.41 ∧ EA ≥ 1.27	eV ∧ CN ≥
7.667.     (14) 

 
Interestingly, the same subset of data as the one selected by the 
SG rules discussed in Fig. 4 is selected by (14).  
The reg. tree rules obtained using monometallic surfaces were 
then applied to select bimetallic alloys. The alloy surface sites 
selected by the reg. tree rules (13) and (14) are shown as red dots 
in Fig. 3 and 5, respectively. The reg. tree rule describing low ∆F 
values (Fig. 3) selects several of the alloys systems for which the 
calculated ∆F is relatively low. However, it does not select the fcc-
t site of the AgPd alloy, for which the calculated ∆F is equal to 
zero. The reg. tree rule describing high ∆EJCK�MS

F,F�  values (Fig. 5) 
overall selects the surface sites that deviate the most from the 
scaling relations. However,  some of the bridge surface sites of 
alloys surfaces are also selected, which is in contrast with the 
relatively low explicitly calculated values of ∆EJCK�MS

F,F�  for such sites. 
In particular, the bridge2-s site of AgAu alloy, selected by the reg. 
tree rule, has a calculated ∆EJCK�MS

F,F� = 0.021	eV (vs. the prediction 
∆EJCK�MS
F,F� = 0.418	eV). We ascribe the worse performance of the reg. 

tree approach with respect to SGD for the present data set and 
targets to the global character of the loss function used to select 
the rules in reg. trees. Indeed, the loss function minimized during 
the training is, for reg. tree, the prediction error over the entire 
data set. The few statistically exceptional cases therefore do not 
significantly impact the choice of rules. In SGD, in contrast, the 
rule is dictated solely by the exceptional data points. 
 
Conclusions 
In this paper, we applied the SGD approach to identify the most 
relevant atomic, bulk and surface properties - as well as rules 
associated to those parameters - describing outstanding SGs of 
transition-metal surface sites. In particular, we demonstrated this 
approach using a data set of DFT-calculated adsorption 
energies[8,24] by searching for surface sites (i) that present 
optimal range of oxygen binding strength for the ORR or (ii) that 

deviate the most from linear scaling relations between O and OH 
adsorption energies that impose a limit to the OER performance. 
The SGs rules not only hint at the relevant underlying 
physicochemical processes that govern the local statistically 
exceptional behavior, but are also suitable for guiding the design 
of challenging bimetallic alloys.  

Electronic supplementary information 
Additional SGD and regression tree details are available as ESI. 
The SGD analysis described in this publication can be found in a 
Jupyter notebook at the NOMAD Artificial-Intelligence Toolkit 
(https://nomad-lab.eu/AItutorials/), where it can be repeated and 
modified directly in a web browser.  
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