Friedrich-Schiller-Universität Jena Fakultät für Biowissenschaften Max-Planck-Institut für Chemische Ökologie Abteilung Biochemie

Arbeitsgruppe Biosynthese und Funktion flüchtiger Stoffe in Gehölzpflanzen und Gräsern

Untersuchungen zur Biosynthese von Benzoxazinoiden in ein- und zweikeimblättrigen Pflanzen

Bachelorarbeit

zur Erlangung des Grades eines

Bachelor of Science (B. Sc.)

vorgelegt von

Lena Klein

aus Merzig

Jena, 15.12.2020

Gutachter:

Dr. Tobias Köllner

Prof. Dr. Helmut Pospiech

Inhalt

Inh	alt		III
I	Tab	eller	nverzeichnisV
П	Abb	oildu	ngsverzeichnisVIII
Ш	Abł	κürzι	ungsverzeichnisX
1	Ein	leitu	ng1
1	.1	Pfla	nzenabwehr allgemein1
1	.2	Che	mische Pflanzenabwehr 1
1	.3	Phy	tohormone 1
1	.4	Ben	zoxazinoide 2
	1.4.	1	Allgemein 2
	1.4.	2	Vorkommen 3
	1.4.	3	Biosynthese 3
1	.5	Fraç	gestellung6
	1.5.	1	Verbreitung von Benzoxazinoiden in Dikotyledonen
	1.5. ben	.2 ntharr	Rekonstruktion der Benzoxazinoid-Biosynthese in <i>Nicotiana</i> <i>niana</i> 7
2	Mat	terial	und Methoden
2	2.1	Pfla	nzenmaterial8
	2.1. Ger	1 ania	Verschiedene Lamiaceen, Acanthaceen, Ranunculaceen, ceen, Fabaceen und Polygonaceen
	2.1.	2	Tabak (Nicotiana benthamiana) 10
2	2.2	Beh	andlung von <i>L. album</i> und <i>C. regalis</i> mit Jasmonsäure
2	2.3	Hete	erologe Expression von <i>Bx</i> -Genen in <i>N. benthamiana</i>
	2.3.1 Transformation von Agrobacterium tumefaciens mit Bx-Genen 11		
	2.3.2 Agroinfiltration von <i>N. benthamiana</i> 11		
2	2.4	Che	mische Analyse 12
	2.4.	1	Methanolextraktion 12
	2.4.2 Gezielte HPLC-MS/MS-Analyse 13		
	2.4.	3	Computergestützte Analytik der HPLC-MS-Daten 15
	2.4.	4	Hexanextraktion
	2.4.	5	GC-MS Analyse
2	2.5	Che	mikalien
3	Erg	ebni	sse
3 A	6.1 Acant	Nac hace	hweis von Benzoxazinoiden in verschiedenen Arten von Lamiaceen, en, Ranunculaceen, Geraniaceen, Fabaceen und Polygonaceen 17

3.2 Der Effekt des Phytohormons Jasmonsäure auf die Synthese von Benzoxazinoiden in <i>C. regalis</i> und in <i>L. album</i> 19
3.3 Heterologe Expression von Benzoxazinoiden in <i>N. benthamiana</i> 22
4 Diskussion
4.1 Evolution der Benzoxazinoide26
4.2 Einfluss des Phytohormons Jasmonsäure auf die Benzoxazinoid- Biosynthese in <i>L. album</i> und <i>C. regalis</i> 27
4.3 Rekonstruktion des Benzoxazinoid-Biosynthesewegs in N. benthamiana 28
4.4 Die Rolle des Cytochrom P450-Enzyms BX529
5 Zusammenfassung
6 Literatur
7 Anhang
7.1 Einwaagen
7.1.1 Methanolextraktionen
7.1.2 Hexanextraktionen
7.2 Peak-Höhen
7.2.1 Originalwerte
7.2.2 Mittelwerte44
7.2.3 Standardfehler der Mittelwerte47
7.2.4 Mittelwerte nach Blank-Abzug51
7.3 Quantifizierung Peak-Flächen54
7.3.1 Originalwerte54
7.3.2 Mittelwerte63
7.3.3 Standardfehler der Mittelwerte67
7.3.4 Mittelwerte nach Blank-Abzug70
7.3.5 Diagramme der Peak-Flächen der HPLC-MS Messungen75
7.4 Chromatogramme79
7.4.1 Screening79
7.4.2 Transformation Nicotiana benthamiana87
Danksagung94
Selbstständigkeitserklärung95

I Tabellenverzeichnis

Tabelle 1: Benzoxazinoide untersuchter Pflanzen in der Literatur.	6
Tabelle 2: Liste aller beprobten Pflanzen aus dem Botanischen Garten Jena	8
Tabelle 3: Liste aller beprobten Pflanzen aus dem Max-Planck-Institut für Chemische Ökologie Jena.	9
Tabelle 4: Liste beprobter Lamium-Spezies.	9
Tabelle 5: Massenspektrometrie-Einstellungen (HPLC-MS)	13
Tabelle 6: Elutionsgradient der HPLC-MS-Analyse zur Identifikation von Benzoxazinoiden	14
Tabelle 7: Multiple-Reaction-Monitoring-Parameter der HPLC-MS-Analyse zur Identifikation von Benzoxazinoiden.	14
Tabelle 8: Elutionsgradient der HPLC-MS zur Identifikation von (Ox-) Indolen	14
Tabelle 9: Multiple-Reaction-Monitoring-Parameter der HPLC-MS zur Identifikation von (Ox-) Indolen	15
Tabelle 10: Gaschromatographie-Einstellungen	15
Tabelle 11: Massenspektrometrie-Einstellungen (GC-MS)	16
Tabelle 12: Chemikalien und Hersteller	16
Tabelle 13: Vorkommen von Benzoxazinoiden in ausgewählten dikotylen Pflanzenarten	17
Tabelle 14: Vorkommen von Benzoxazinoiden in verschiedenen Lamium- Arten.	19
Tabelle 15: Vorkommen von Benzoxazinoiden in mit Jasmonsäure-Lösung behandelten Consolida regalis- und Lamium album-Pflanzen	20
Tabelle 16: Vorkommen von Benzoxazinoiden und (Ox-) Indolen in mit Bx-Genen transformierten Nicotiana benthamiana-Pflanzen.	22
Tabelle 17: Einwaagen des Pflanzenpulvers der Proben aus dem BotanischenGarten Jena zur Methanolextraktion	34
Tabelle 18: Einwaagen des Pflanzenpulvers der Proben aus dem Max-Planck- Institut für Chemische Ökologie Jena zur Methanolextraktion	34
Tabelle 19: Einwaage der vom Betreuer zur Verfügung gestellten Aphelandrasquarrosa-Positivkontrolle zur Methanolextraktion.	35
Tabelle 20: Einwaagen der Proben der Proben des Jasmonsäure-Induktionsversuches zur Methanolextraktion	35
Tabelle 21: Einwaagen der Lamium-Proben zur Methanolextraktion	35
Tabelle 22: Einwaagen der transformierten Nicotiana benthamiana-Pflanzen zur Methanolextraktion.	35
Tabelle 23: Einwaagen der transformierten Nicotiana benthamiana-Pflanzen zur Hexanextraktion.	36
Tabelle 24: Originalwerte der Peak-Höhen der Messung der Benzoxazinoide in Proben des Botanischen Garten Jena und des MPI für Chemische Ökologie Jena, der Lamium-Proben, sowie der Proben des Jasmonsäure-Induktionsversuches	36
	50

Tabelle 25: O	riginalwerte der Peak-Höhen der Messung der Benzoxazinoide in den mit Bx-Genen transformierten Nicotiana benthamiana- Pflanzen
Tabelle 26: O	riginalwerte der Peak-Höhen der Messung der Indole in den mit Bx-Genen transformierten Nicotiana benthamiana-Pflanzen43
Tabelle 27: P	eak-Höhen-Mittelwerte der Messung der Benzoxazinoide in Proben des Botanischen Garten Jena und des MPI für Chemische Ökologie Jena, der Lamium-Proben, sowie des Jasmonsäure-Induktionsversuches44
Tabelle 28: P	eak-Höhen-Mittelwerte der Messung der Benzoxazinoide in den mit Bx-Genen transformierten Nicotiana benthamiana-Pflanzen46
Tabelle 29: P	eak-Höhen-Mittelwerte der Messung der Indole in den mit Bx- Genen transformierten Nicotiana benthamiana-Pflanzen47
Tabelle 30: S	tandardfehler der Peak-Höhen-Mittelwerte der Messung der Benzoxazinoide in Proben des Botanischen Garten Jena und des MPI für Chemische Ökologie Jena, der Lamium-Proben, sowie des Jasmonsäure-Induktionsversuches
Tabelle 31: S	tandardfehler der Peak-Höhen-Mittelwerte der Messung der Benzoxazinoide in den mit Bx-Genen transformierten Nicotiana benthamiana-Pflanzen50
Tabelle 32: S	tandardfehler der Peak-Höhen-Mittelwerte der Messung der Indole in den mit Bx-Genen transformierten Nicotiana benthamiana-Pflanzen50
Tabelle 33: P	eak-Höhen-Mittelwerte der Messung der Benzoxazinoide in Proben des Botanischen Garten Jena und des MPI für Chemische Ökologie Jena, der Lamium-Proben, sowie des Jasmonsäure-Induktionsversuches nach Abzug des Mittelwertes der Blank-Proben (100% Methanol)51
Tabelle 34: P	eak-Höhen-Mittelwerte der Messung der Benzoxazinoide in den mit Bx-Genen transformierten Nicotiana benthamiana-Pflanzen nach Abzug der Blank-Proben (100% Methanol)53
Tabelle 35: P	eak-Höhen-Mittelwerte der Messung der Indole in den mit Bx- Genen transformierten Nicotiana benthamiana-Pflanzen nach Abzug der Blank-Proben (100% Methanol)54
Tabelle 36: O	riginalwerte der Peak-Flächen der Messung der Benzoxazinoide in Proben des Botanischen Garten Jena und des MPI für Chemische Ökologie Jena, der Lamium-Proben, sowie des Jasmonsäure-Induktionsversuches
Tabelle 37: O	riginalwerte der Peak-Flächen der Messung der Benzoxazinoide in den mit Bx-Genen transformierten N. benthamiana-Pflanzen61
Tabelle 38: O	riginalwerte der Peak-Flächen der Messung der Indole in den mit Bx-Genen transformierten Nicotiana benthamiana-Pflanzen62
Tabelle 39: P	eak-Flächen-Mittelwerte der Messung der Benzoxazinoide in Proben des Botanischen Garten Jena und des MPI für Chemische Ökologie Jena, der Lamium-Proben, sowie des Jasmonsäure-Induktionsversuches
Tabelle 40: P	eak-Flächen-Mittlewerte der Messung der Benzoxazinoide in den mit Bx-Genen transformierten Nicotiana benthamiana-Pflanzen66

Tabelle 41: Pe	eak-Flächen-Mittlewerte der Messung der Indole in den mit Bx- Genen transformierten Nicotiana benthamiana-Pflanzen.	66
Tabelle 42: S	Standardfehler der Peak-Flächen-Mittelwerte der Messung der Benzoxazinoide in Proben des Botanischen Garten Jena und des MPI für Chemische Ökologie Jena, der Lamium-Proben, sowie des Jasmonsäure-Induktionsversuches.	67
Tabelle 43: S	Standardfehler der Peak-Flächen-Mittlewerte der Messung der Benzoxazinoide in den mit Bx-Genen transformierten Nicotiana benthamiana-Pflanzen.	69
Tabelle 44: S	Standardfehler der Peak-Flächen-Mittlewerte der Messung der Indole in den mit Bx-Genen transformierten Nicotiana benthamiana-Pflanzen.	70
Tabelle 45: F	Peak-Flächen-Mittlewerte der Peak-Flächen der Messung der Benzoxazinoide in den Proben des Botanischen Garten Jena und des MPI für Chemische Ökologie Jena, der Lamium-Proben, sowie des Jasmonsäure-Induktionsversuches nach Abzug des Mittelwertes der Blank-Proben (100% Methanol)	71
Tabelle 46: Pe	eak-Flächen-Mittlewerte der Messung der Benzoxazinoide in den mit Bx-Genen transformierten Nicotiana benthamiana-Pflanzen nach Abzug des Mittelwertes der Blank-Proben (100% Methanol).	73
Tabelle 47: Pe	eak-Flächen-Mittlewerte der Messung der Indole in den mit Bx- Genen transformierten Nicotiana benthamiana-Pflanzen nach Abzug des Mittelwertes der Blank-Proben (100% Methanol)	74

II Abbildungsverzeichnis

Abbildung 1: Benzoxazinoid-Biosynthese (modifiziert nach (Frey, Schullehner et al. 2009)5
Abbildung 2: Lactam-Biosynthese (modifiziert nach (Frey, Schullehner et al. 2009)
Abbildung 3: Beispiel-Chromatogramme (Screening)21
Abbildung 4: Beispiel-Chromatogramme (Transformation von Nicotiana benthamiana)24
Abbildung 5: Peak-Flächen der Benzoxazinoide der Proben des Botanischen Garten Jenas, sowie des MPI für Chemische Ökologie Jenas75
Abbildung 6: Peak-Flächen der Benzoxazinoide mit Jasmonsäure-Lösung (JA), bzw. Ethanol-Lösung (Ctr.) behandelter Consolida regalis- Proben
Abbildung 7: Peak-Flächen der Benzoxazinoide mit Jasmonsäure-Lösung (JA), bzw. Ethanol-Lösung (Ctr.) behandelter Lamium album-Proben76
Abbildung 8: Peak-Flächen der Benzoxazinoide der Lamium-Proben
Abbildung 9: Peak-Flächen der Benzoxazinoide der mit Bx1-2 und der mit Bx1- 5+8 transformierten Nicotiana benthamiana
Abbildung 10: Peak-Flächen der (Ox-) Indole der mit Bx1-2 und der mit Bx1- 5+8 transformierten Nicotiana benthamiana
Abbildung 11: Peak-Flächen der (Ox-) Indole der mit Bx1, Bx1-2 und der mit Bx1-5+8 transformierten Nicotiana benthamiana78
Abbildung 12: Peak-Flächen der Benzoxazinoide der mit Bx1-8, Bx1-6+8, Bx1- 4+6-8, Bx1-5 und der mit Bx1-4 transformierten Nicotiana benthamiana
Abbildung 13: Peak-Flächen der Benzoxazinoide der mit Bx1-5+8, Bx1-2 und der mit Bx1 transformierten Nicotiana benthamiana
Abbildung 14: Peak-Flächen der (Ox-) Indole der mit Bx1-5+8, Bx1-2 und der mit Bx1 transformierten Nicotiana benthamiana
Abbildung 15: Chromatogramm eines Methanolextrakts von Aphelandra squarrosa (junges Blatt, Positivkontrolle)80
Abbildung 16: Chromatogramm eines Methanolextrakts von Ballota hispanica80
Abbildung 17: Chromatogramm eines Methanolextrakts von Ballota nigra
Abbildung 18: Chromatogramm eines Methanolextrakts von Lamium galeobdolon81
Abbildung 19: Chromatogramm eines Methanolextrakts von Acanthus hungaricus
Abbildung 20: Chromatogramm eines Methanolextrakts von Aphelandra aurantiaca
Abbildung 21: Chromatogramm eines Methanolextrakts von Crossandra pungens
Abbildung 22: Chromatogramm eines Methanolextrakts von Crossandra flava83

Abbildung 23: Chromatogramm eines Methanolextrakts von Delphinium elatum
Abbildung 24: Chromatogramm eines Methanolextrakts von Aphelandra squarrosa (junges Blatt, Positivkontrolle)
Abbildung 25: Chromatogramm eines Methanolextrakts einer mit Ethanol- Lösung behandelter Consolida regalis-Pflanze (Kontrolle)
Abbildung 26: Chromatogramm eines Methanolextrakts einer mit Jasmonsäure- Lösung behandelter Consolida regalis-Pflanze
Abbildung 27: Chromatogramm eines Methanolextrakts von Aphelandra squarrosa (junges Blatt, Positivkontrolle)
Abbildung 28: Chromatogramm eines Methanolextrakts von Lamium montanum
Abbildung 29: Chromatogramm eines Methanolextrakts von Lamium galeobdolon
Abbildung 30: Chromatogramm eines Methanolextrakts von Aphelandra squarrosa (junges Blatt, Positivkontrolle)
Abbildung 31: Chromatogramm eines Methanolextrakts einer mit Bx1-5+8 transformierten Nicotiana benthamiana-Pflanze
Abbildung 32: Chromatogramm einer Oxindol-Positivkontrolle (durch den Betreuer zur Verfügung gestellt)
Abbildung 33: Chromatogramm einer Indol-Positivkontrolle (durch den Betreuer zur Verfügung gestellt)
Abbildung 34: Chromatogramm eines Methanolextrakts einer mit Bx1-2 transformierten Nicotiana benthamiana-Pflanze
Abbildung 35: Chromatogramm eines Methanolextrakts von Aphelandra squarrosa (junges Blatt, Positivkontrolle)
Abbildung 36: Chromatogramm eines Methanolextrakts einer mit Bx1-8 transformierten Nicotiana benthamiana-Pflanze
Abbildung 37: Chromatogramm eines Methanolextrakts einer mit Bx1-6+8 transformierten Nicotiana benthamiana-Pflanze
Abbildung 38: Chromatogramm eines Methanolextrakts einer mit Bx1-4+6-8 transformierten Nicotiana benthamiana-Pflanze
Abbildung 39: Chromatogramm eines Methanolextrakts einer mit Bx1-5 transformierten Nicotiana benthamiana-Pflanze
Abbildung 40: Chromatogramm eines Methanolextrakts einer mit Bx1-4 transformierten Nicotiana benthamiana-Pflanze
Abbildung 41: Chromatogramm eines Methanolextrakts einer mit eGFP transformierten Nicotiana benthamiana-Pflanze (Negativkontrolle)

III Abkürzungsverzeichnis

%	Prozent
°C	Grad Celsius
ABA	Abscisinsäure
CE	Kollisionsenergie
Cps	Counts per seconds
CXP	Kollisions- und Zellausgangspotential
Da	Dalton
DHBOA-Glc	2,7-Dihydroxy-(2H)-1,4-Benzoxazin-3(4H)-on-Glycosat
DIBOA	2,4-Dihydroxy-2H-1,4-Benzoxazin- 3(4H)-on
DIBOA-Glc	2,4-Dihydroxy-2H-1,4-Benzoxazin- 3(4H)-on-Glycosat
DIMBOA	2,4-Dihydroxy-7-Methoxy-2H-1,4-Benzoxazin-3(4H)-on
DIMBOA-Glc	2,4-Dihydroxy-7-Methoxy-2H-1,4-Benzoxazin-3(4H)-on-Glycosat
DP	Declustering-Potential
eGFP	enhanced Grün fluoreszierendes Protein
EP	Eingangspotential
eV	Elektronenvolt
GC-MS	Gaschromatographie-Massenspektrometrie
h	Stunde
HBOA	2-Hydroxy-1,4-Benzoxazin-3-on
HBOA-Glc	2-Hydroxy-1,4-Benzoxazin-3-on-Glycosat
HMBOA-Glc	2-Hydroxy-7-Methoxy-(2H)-1,4-Benzoxazin-3(4H)-on-Glycosat
HPLC-MS	Hochleistungsflüssigkeitschromatographie-Massenspektometrie
IGP	Indol-3-Glycerolphosphat
MBOA	6-Methoxy-2-Benzoxazolinon
mg	Milligramm
min	Minute(n)
ml	Milliliter
mm	Millimeter
MRM	Multiple Reaction Monitoring
msec	Millisekunden
nM	Nanomolar
OD	Optische Dichte
Psi	Pound-force per square inch
TRIBOA-Glc	2,4,7-Trihydroxy-1,4-Benzoxazin-3-on-Glycosat

TSATryptophan-SynthaseÜ.N.Über NachtUGTUridindiphosphat-GlycosyltransferaseVVoltµgMikrogrammµlMikroliterµMMikromolar

1 Einleitung

1.1 Pflanzenabwehr allgemein

Pflanzen besitzen eine Vielzahl natürlicher Feinde. Zu diesen Feinden gehören Pathogene wie Pilze, Bakterien, Viren, sowie Herbivore oder andere Pflanzen. Die Coevolution von Pflanzen und ihren natürlichen Feinden, sowie Prinzipien wie "Survival of the Fittest" entsteht ein "Wettrüsten", wobei immer mehr Verteidigungsbzw. Angriffsmechanismen evolvieren (Dawkins and Krebs 1979).

Pflanzliche Verteidigungsmechanismen kann man in konstitutive, physikalische Barrieren, wie das oberflächliche Abschlussgewebe (Borke, Periderm), und in (induzierte) chemische Abwehrstoffe, wie Gerbstoffe, Alkaloide, Terpene, cyanogene Glykoside, Benzoxazinoide und Senfölglykoside, unterteilen (Schopfer and Brennicke 2010).

1.2 Chemische Pflanzenabwehr

Es gibt eine große Zahl chemischer Abwehrstoffe. Die Vielfalt dieser Strukturen deutet auf vielfältige Zielstrukturen hin. Während einige Stoffe ubiquitär vorkommen, liegen andere nur in bestimmten Arten vor. Aufgrund der hohen Toxizität einiger Abwehrstoffe, werden diese in der Regel in Organellen mit geringer metabolischer Aktivität, wie Vakuole oder Apoplast, gespeichert und nur bei Bedarf freigesetzt.

Einige typische Wirkungsweisen sind Membranschädigungen oder Inhibierung wichtiger Transport- oder Signaltransduktionsprozesse, Metabolismen oder die hormonelle Kontrolle physiologischer Prozesse (Mithöfer and Boland 2012). Das Anlocken von Fraßfeinden (einer anderen Trophiestufe) der angreifenden Herbivoren durch den Ausstoß spezifischer, leicht flüchtiger Lockstoffe ist eine weitere Abwehrstrategie (Schopfer and Brennicke 2010).

1.3 Phytohormone

Pflanzen reagieren auf stresserzeugende Umweltfaktoren mit der Ausschüttung bestimmter Phytohormone (Ameye, Allmann et al. 2018). So bewirkt Abscisinsäure (ABA) physiologisch die Abwehr von Stressfolgen für die Pflanze. Ethylen löst Abwehrreaktionen wie zum Beispiel die Synthese von Abwehrstoffen gegen pathogene Pilze aus (Schopfer and Brennicke 2010). Untersuchungen zeigten allerdings, dass Ethylen die Produktion von DIMBOA und DIMBOA-Glc, zwei wichtige Abwehrverbindungen in Gräsern, in Pflanzen hemmt (Zhang, Li et al. 2020). Ein weiteres, für die pflanzliche Abwehr wichtiges Phytohormon ist Salicylsäure. Nach einer Infektion durch pathogene Pilze, Bakterien oder Viren steigt ihr Gehalt auf das 10- bis 100-fache. Ein hoher Gehalt an Salicylsäure sorgt als Alarmsignal ebenfalls für die Auslösung verschiedener Abwehrreaktionen. Vorherige Versuche zeigten den positiven Zusammenhang zwischen Salicylsäure und dem Vorhandensein von DIMBOA und MBOA in Mais-Wurzeln (Zhao, Gao et al. 2019). Das Phytohormon Jasmonsäure induziert physiologische Reaktionen bereits in geringen Konzentrationen. Es kann unter anderem die Synthese von Ethylen stimulieren und die Produktion von Proteinaseinhibitoren induzieren. Jasmonsäure ist außerdem fähig, die Akkumulation von Benzoxazinoiden zu induzieren (Oikawa, Ishihara et al. 2002). Systemin ist ein weiteres Phytohormon. Dieses wird in verwundeten Blättern freigesetzt und von dort in unverwundete Blätter weitertransportiert. Eine Verbindung zu Jasmonsäure wird vermutet, allerdings führten Überexpressionsversuche mit Prosystemin zu Proteinaseinhibitorbildung auch ohne vorherige Verwundung (Schopfer and Brennicke 2010).

1.4 Benzoxazinoide

1.4.1 Allgemein

Eine für die pflanzliche Abwehr wichtige Gruppe chemischer Abwehrstoffe bilden die Benzoxazinoide. Bei diesen Sekundärmetaboliten handelt es sich hauptsächlich um zyklische Hydroxamsäuren, die vor allem in monokotylen Süßgräsern (Poaceae), aber auch in einigen dikotylen Spezies vorkommen (De Bruijn, Gruppen et al. 2018).

Benzoxazinoide haben eine Reihe verschiedener Wirkungsformen. So wirken sie durch den Angriff essentieller Strukturen wie Amino-, Nuklein- und Fettsäuren (Hannemann, Lucaciu et al. 2018) allelopathisch, antimikrobiell, antimykotisch, entzündungshemmend und mutagen (Hashimoto and Shudo 1996).

Benzoxazinoide liegen unter Normalbedingungen glycosyliert in der Vakuole vor (Jonczyk, Schmidt et al. 2008), wobei in Plantaginaceae auch galactosylierte Formen nachgewiesen wurden (Wu, Chen et al. 2012). Bei Zellschädigungen werden die glycosylierten Benzoxazinoide von einer spezifischen Glucosidase zu ihrer toxischen Aglycon-Form hydrolysiert (Oikawa, Ebisui et al. 1999) und ins Cytoplasma freigesetzt (Jonczyk, Schmidt et al. 2008).

Die hauptsächlich vorkommenden Benzoxazinoide sind 2,4-Dihydroxy-7-Methoxy-2H-1,4-Benzoxazin-3(4H)-on (DIMBOA) und 2,4-Dihydroxy-2H-1,4-Benzoxazin-3(4H)-on (DIBOA), bzw. deren Glykoside. DIMBOA ist reaktiver als DIBOA (Hashimoto and Shudo 1996) und könnte daher einen evolutionären Vorteil bieten (Jonczyk, Schmidt et al. 2008).

1.4.2 Vorkommen

In der monokotylen Familie der Poaceae sind Benzoxazinoide bereits sehr gut erforscht. Prominente Beispiele für Benzoxazinoid-besitzende Arten sind Mais (*Zea mays*), Weizen (*Triticum aestivum*), oder Roggen (*Secale cereal*) (Niemeyer 1988).

Benzoxazinoide existieren auch in (Eu-) Dikotyledonen, jedoch sind sie dort vermutlich nicht so weit verbreitet. In den Dikotyledonen kommt DIMBOA kaum vor, das Hauptbenzoxazinoid der meisten Arten ist dort DIBOA (Sicker, Frey et al. 2000). Während Benzoxazinoide in Monokotyledonen hauptsächlich in Keimlingen und jungen Pflanzen vorkommen, wurden sie in Dikotyledonen in allen Pflanzenteilen gefunden (Schullehner, Dick et al. 2008).

Diese Verteilung in entfernte Arten macht es wahrscheinlich, dass Benzoxazinoide auf eine Zeit vor der Differenzierung von Mono- und Dikotyledonen zurückgehen (Sicker, Frey et al. 2000).

In folgenden Familien außerhalb der Poaceae wurden Benzoxazinoide bisher nachgewiesen: Akanthusgewächse (Acanthaceae) (Niemeyer 1988, Bhattarai, Steffensen et al. 2020), Braunwurzgewächse (Scrophulariaceae), Wegerichgewächse (Plantaginaceae), Hahnenfußgewächse (Ranunculaceae), Lippenblütler (Lamiaceae) (Alipieva, Taskova et al. 2003, Bhattarai, Steffensen et al. 2020).

1.4.3 Biosynthese

Die Benzoxazinoid-Biosynthese ist in Mais (*Zea mays*) vollständig aufgeklärt (Abbildung 1).

Ausgangssubstrat ist Indol-3-Glycerolphosphat (IGP). Dieses wird durch die Indol-3-Glycerolphosphat-Lyase BX1 zu Indol umgewandelt. Indol wird dann durch die vier Cytochrom P-450-abhängigen Monooxygenasen BX2-5 schrittweise zu DIBOA oxygeniert. Dabei wandelt BX2 Indol zu Indolin-2-on um. Dieses wird von BX3 zu 3-Hydroxyindolin-2-on umgesetzt, welches dann durch BX4 in 2-Hydroxy-1,4-Benzoxazin-3-on (HBOA) umgewandelt wird. BX5 setzt HBOA schließlich zu DIBOA um (Bailey and Larson 1991, Frey 1997). DIBOA wird von den UDP-Glycosyltransferasen BX8 und BX9 glycosyliert (Von Rad, Hüttl et al. 2002). DIBOA-Glc kann dann von der 2-Oxoglutarat-abhängigen Dioxygenase BX6 zu 2,4,7-Trihydroxy-1,4-Benzoxazin-3-on-Glycosat (TRIBOA-Glc) hydroxyliert werden (Frey, Huber et al. 2003), wobei erst später herausgefunden wurde, dass BX6 substratspezifisch für das DIBOA-Glycosat ist (Jonczyk, Schmidt et al. 2008). TRIBOA-Glc wird schließlich durch die O-Methyltransferase BX7 zu DIMBOA-Glc Omethyliert (Jonczyk, Schmidt et al. 2008). Als Aglucon vorliegendes DIMBOA kann ebenfalls von den UDP-Glycosyltransferasen BX8 und BX9 glycosyliert werden (Von Rad, Hüttl et al. 2002).

Abbildung 1: Benzoxazinoid-Biosynthese (modifiziert nach Frey, Schullehner et al. 2009). Abgebildet sind Enzyme, (Zwischen-) Produkte und deren Position innerhalb der Zelle sind abgebildet. In vielen Pflanzen ist DIBOA-GIc das Endprodukt. In einigen anderen Pflanzen wird dieses jedoch zu DIMBOA-GIc weiterverarbeitet. Nach derm letzten Syntheseschritt werden die Produkte (DIBOA-GIc/ DIMBOA-GIc) vom Cytosol in die Vakuole transportiert. IGP = Indol-3-Glycerolphosphat.

Eine Untergruppe bilden die Lactame. Sie unterscheiden sich von den Hydroxamsäuren nur in einem Sauerstoffatom. So besitzen Lactame keine Hydroxylgruppe am Stickstoffatom. Die Enzyme ihrer Biosynthese sind noch unbekannt. Es wird vermutet, dass es sich dabei um die gleichen, oder ähnliche Enzyme handelt, wie bei der Biosynthese der Hydroxamsäuren. HBOA wird dabei vermutlich zu HBOA-Glc glycosyliert. Dieses wird zum Zwischenprodukt 2,7-Dihydroxy-(2H)-1,4-Benzoxazin-3(4H)-on-Glycosat (DHBOA-Glc) und schließlich zu 2-Hydroxy-7-Methoxy-(2H)-1,4-Benzoxazin-3(4H)-on-Glycosat (HMBOA-Glc) umgesetzt (De Bruijn, Gruppen et al. 2018, Abbildung 2).

Abbildung 2: Lactam-Biosynthese (modifiziert nach Frey, Schullehner et al. 2009). Abgebildet sind (Zwischen-) Produkte der Lactam-Biosynthese. Die Enzyme wurden noch nicht identifiziert.

In den Dikotyledonen *Lamium galeobdolon, Consolida orientalis*, sowie *Aphelandra squarrosa* wurde die Benzoxazinoid-Biosynthese teilweise beschrieben. Aufgrund der Ähnlichkeit von Enzymen und deren Funktionen wird davon ausgegangen, dass die Biosynthese in Dikotyledonen, trotz unabhängiger Entwicklung, in den gleichen Schritten abläuft wie in Monokotyledonen (Frey, Schullehner et al. 2009).

1.5 Fragestellung

1.5.1 Verbreitung von Benzoxazinoiden in Dikotyledonen

Benzoxazinoide sind, wie in 1.4.2 bereits beschrieben, in (Eu-) Dikotyledonen vermutlich nicht so weit verbreitet wie in Monokotyledonen. Da die Verbreitung in (Eu-) Dikotyledonen zudem weniger gut erforscht ist, sollten in dieser Arbeit einige eudikotyle Arten (Tabelle 2, Tabelle 3, Tabelle 4) mit Hilfe von massenspektrometrischen Untersuchungen, auf die Anwesenheit von DIBOA-Glc, DIMBOA-Glc, HBOA-Glc und HMBOA-Glc überprüft werden. Die Existenz von Benzoxazinoiden wurde in einigen der untersuchten Spezies bereits nachgewiesen (Tabelle 1).

Familie	Spezies	Literatur	BXDs
Lippenblüter (Lamiaceae)	Gewöhnliche Goldnessel (<i>Lamium</i> galeobdolon)	(Alipieva, Taskova et al. 2003, Bhattarai, Steffensen et al. 2020)	DHBOA-glc, DIBOA-glc, DIBOA, HBOA- glc
Akanthusgewächse (Acanthaceae)	Aphelandra aurantiaca	(Pratt, Kumar et al. 1995, Bhattarai, Steffensen et al. 2020)	DIBOA, BOA, DIMBOA
	Crossandra pungens	(Bhattarai, Steffensen et al. 2020)* (Pratt, Kumar et al. 1995)	DIBOA, 7- hydroxy- DIBOA (TRIBOA)

Fabelle 1: Benzoxazinoide untersuchter Pflanzen in der Literatur.	*Crossandra pungens Lindau
---	----------------------------

1.5.2 Rekonstruktion der Benzoxazinoid-Biosynthese in *Nicotiana* benthamiana

Um die Lactam-Biosynthese, insbesondere den Effekt der Enzyme BX6 und BX7, weiter aufzuklären, wurden die Biosynthese-Gene von Mais (*Zea mays*) in einer früheren Arbeit durch Agroinfiltration in Tabakpflanzen (*Nicotiana benthamiana*) eingebracht und heterolog exprimiert (Himmighofen 2019).

Im Gegensatz zu aufwändigen Knockout- oder *in vitro*-Versuchen kann die Biosynthese so *in planta* untersucht werden (Gelvin 2003). Bei der Agroinfiltration wird *Agrobacterium tumefaciens* zunächst mit Vektoren, die die entsprechenden DNA-Sequenzen enthalten transformiert. In der Natur nutzen Agrobakterien beschädigte Pflanzen um, durch Integration ihrer Gene in die Pflanzenzelle, von den Produkten dieser natürlichen heterologen Expression profitieren zu können (Zupan, Muth et al. 2000). *N. benthamiana* eignet sich generell gut als Modellorganismus (Bally, Jung et al. 2018) und zur Expression der Benzoxazinoid-Biosynthese besonders, da dort keine Benzoxazinoide vorkommen und der Versuch so nicht durch endogene Enzyme verfälscht wird.

Durch die Verwendung einer fehlerhaften DNA-Sequenz im oben genannten Versuch war die Benzoxazinoid-Biosynthese in *N. benthamiana* ineffizient. In der Zwischenzeit wurden Plasmide mit der richtigen Sequenz hergestellt und die heterologe Expression sollte nun im Rahmen dieser Arbeit wiederholt werden.

2 Material und Methoden

2.1 Pflanzenmaterial

2.1.1 Verschiedene Lamiaceen, Acanthaceen, Ranunculaceen, Geraniaceen, Fabaceen und Polygonaceen

Die Pflanzen in Tabelle 2 wurden im Botanischen Garten Jena beprobt.

Lippenblüter (Lamiaceae)	Schwarznessel (Ballota hispanica)		
	Schwarznessel (Ballota nigra)		
	Weiße Taubnessel (Lamium album)		
	Gewöhnliche Galtnessel (Lamium galeobdolon)		
	Riesen-Taubnessel (Lamium orvala)		
	Purpurrote Taubnessel (Lamium purpureum)		
	Afrikanisches, bzw. Großblättriges Löwenohr		
	(Leonotis leonurus)		
	Sibirisches Herzgespann (Leonurus sibiricus)		
	Gewöhnlicher Andorn (Marrubium vulgare)		
	Phlomis tuberosa		
	Ziest (Stachys citrina)		
	Ziest (Stachys macrantha)		
	Sumpf-Ziest (Stachys palustris)		
Akanthusgewächse	Acanthus hungaricus		
(Acanthaceae)	Aphelandra aurantiaca		
	Barleria prionitis		
	Crossandra pungens		
	Eranthemum pulchellum		
	Gymnostachyum ceylanicum		
	Hemigraphis alternata		
	Hemigraphis repanda		
	Thunbergia erecta		
	Thunbergia mysorensis		
	Whitfieldia elongata		
	Crossandra flava		
	Justicia scheidweileri		
Hahnenfußgewächse	Hoher Rittersporn (Delphinium elatum)		
(Ranunculaceae)			

Tabelle 2: Liste aller beprobten Pflanzen aus dem Botanischen Garten Jena.

Es wurden jeweils Blätter von drei Pflanzen der gleichen Spezies geerntet. Ausnahmen bilden *L. purpureum*, von der nur eine Pflanze mit Blättern und Blüten gemeinsam beprobt wurde, *L. leonurus*, *L. sibiricus*, *S. macrantha* und *H. alternata*, wo je nur zwei Pflanzen beprobt wurden, sowie *P. tuberosa*, *E. pulchellum*, *T. erecta* und *T. mysorensis*, von denen je nur eine Pflanze beprobt wurde. *L. purpureum*, *E.* pulchellum, sowie *T. mysorensis* haben zum Zeitpunkt der Ernte geblüht. Auffällig waren außerdem die ungewöhnlich gepunkteten Blätter von *B. prionitis*.

Die Pflanzen in Tabelle 3 wurden im und rund um das Gewächshaus des Max-Planck-Instituts für Chemische Ökologie in Jena beprobt.

Tabelle 3: Liste aller beprobten Pflanzen aus dem Max-Planck-Institut für Chemische Ökologie Jena.

Lamiaceae	L. album
Storchschnabelgewächse	Wiesen-Storchschnabel (Geranium pratense)
(Geraniaceae)	
Ranunculaceae	Gewöhnlicher Feld-Rittersporn (Consolida
	regalis)
Hülsenfrüchtler (Fabaceae)	Weißklee (<i>Trifolium repens</i>)
Knöterichgewächse	Garten-Ampfer, bzw. Echter
(Polygonaceae)	Mönchsrhabarber (Rumex patientia)

Für *L. album* wurden von zwei Pflanzen jeweils Wurzeln, sowie einige Blüten und Blätter zusammen beprobt. Von *G. pratense*, sowie von *R. patientia* wurden von drei Pflanzen jeweils einige junge und einige ältere Blätter, sowie Wurzeln beprobt. Von *C. regalis* wurden von drei Pflanzen jeweils einige Blüten, Blätter, Wurzeln und Stängel beprobt. Von *T. repens* wurden von allen drei Pflanzen Blätter, von einer Pflanze Blätter und Blüten zusammen, sowie von einer Pflanze zusätzlich Wurzeln, beprobt.

Die Lamium-Spezies in Tabelle 4 wurden bestellt und beprobt.

Tabelle 4: Liste beprobter Lamium-Spezies.

Lamiaceae	L. orvala
	Weiße Riesen-Taubnessel (L. orvala Alba)
	Gefleckte Taubnessel (L. maculatum)
	Berg-Goldnessel (L. montanum)
	L. galeobdolon
	L. album

Es wurden jeweils von drei verschiedenen Pflanzen die ersten vier vollständig ausgebildeten Blätter verwendet. Nur bei *L. maculatum* wurden, aufgrund der geringen Blattgröße, jeweils die ersten sechs vollständig ausgebildeten Blätter verwendet. Von *L. maculatum* und *L. album* wurden jeweils von allen drei beprobten Pflanzen zusätzlich alle Blüten zusammen beprobt. Auffällig waren braune, trockene Stellen an den Blättern der dritten *L. orvala Alba*-Pflanze.

Die Proben wurden jeweils in Alufolie verpackt und in Flüssigstickstoff schockgefroren. Das Material wurde, unter ständiger Kühlung durch Flüssigstickstoff, zu einem feinen Pulver gemörsert und bis zur Weiterverarbeitung bei -80 °C gelagert.

2.1.2 Tabak (Nicotiana benthamiana)

Zur Anzucht von Tabaksamen (*Nicotiana benthamiana*) wurden TEKU JP 3050 104 Töpfe (Pöppelmann GmbH & Co. KG, Lohne, Deutschland) mit Erde von Klasmann-Deilmann (Geeste, Deutschland) verwendet. Diese befanden sich auf Plastikschalen, deren Deckel bis zur Keimblattbildung geschlossen gehalten wurden. Nach der Keimblattbildung wurden die Deckel über drei Tage hinweg schrittweise geöffnet und entfernt. Nach 15-20 Tagen wurden die Keimlinge in 7 cm × 7 cm Töpfe mit Fruhstorfer Nullerde der Hawita GmbH (Vechta, Deutschland) übertragen. Die Fruhstorfer Nullerde wurde zuvor mit 0,9 g/l Superphosphat, 0,5 g/l Multimix 14:16.18 von Yara (Vlaardingen B.V., Niederlande), 0,35 g/l MgSO₄*7H₂O von Merck KGaA (Darmstadt, Deutschland) sowie 0,05 g/l Micromax von Scotts Deutschland GmbH (Nordhorn, Deutschland) angereichert. Die Pflanzen wurden einmal wöchentlich mit 0,1 % Peters Professional Allrounder von ICL (Nordhorn, Deutschland) gedüngt. Im Gewächshaus wurde die Temperatur am Tag zwischen 23 und 25 °C und bei Nacht zwischen 19 und 23 °C gehalten bei einem Licht-/Dunkelzyklus von 16 h/ 8 h mit einer Lichtintensität von ca. 200 µmol/m².

2.2 Behandlung von L. album und C. regalis mit Jasmonsäure

Eine Jasmonsäure-Stammlösung (1 mg Jasmonsäure /ml Ethanol) wurde mit Leitungswasser zu einer Konzentration von 200 µM verdünnt (30 µl Jasmonsäure-Stammlösung + 70 ml Leitungswasser). Als Kontroll-Lösung wurden 30 µl Ethanol mit 70 ml Leitungswasser vermischt.

Jeweils ein Spross von *L.* album und *C. regalis* wurden mit einer Schere abgeschnitten und in 15 ml-Falcons mit 8 ml Jasmonsäure-Lösung, bzw. Ethanol-Lösung (Kontrolle) gestellt. Nach 24 h wurden die Proben wie in 2.1.1 beschrieben schockgefroren, gemörsert und gelagert.

2.3 Heterologe Expression von *Bx*-Genen in *N. benthamiana*

2.3.1 Transformation von Agrobacterium tumefaciens mit Bx-Genen

Auf 100 µl gefrorene Stocks kompetenter A. tumefaciens Zellen (von Mitgliedern der Arbeitsgruppe zur Verfügung gestellt) wurde je 1 µg DNA (Bx2 bzw. Bx8 enthaltende pCambia2300U-Vektoren) gegeben. Die Zellen wurden anschließend drei Minuten lang bei 37 °C im Wasserbad aufgetaut und eine Minute lang in flüssigem Stickstoff wieder eingefroren. Nach erneutem, dreiminütigem Auftauen bei 37 °C im Wasserbad wurden die Zellen 30 Minuten auf Eis inkubiert. Anschließend wurden die Zellen mit 1 ml LB-Medium versetzt und 2h bei 28 °C im Schüttelschrank inkubiert. Schließlich wurden die Zellen pelletiert und in 100 µl LB-Medium resuspendiert. Die Zellen wurden dann auf LB-Platten mit dem Antibiotikum Kanamycin, gegen welches ein Resistenzgen auf dem transformierten pCambia-Vector liegt, sowie zur besseren Selektion auf LB-Platten mit Kanamycin (50 µg/ml) und zusätzlich den Antibiotika Rifampicin (10 µg/ml) und Gentamycin (50 µg/ml), gegen welche Resistenzgene im GV3101-Stamm vorliegen, ausplattiert. Die Platten wurden 2 Tage bei 28 °C inkubiert. Aus den transformierten Kulturen wurden Glycerolstocks hergestellt und bei -80 °C gelagert. Glycerolstocks von A. tumefaciens-Kulturen, welche Vektoren mit Bx1, Bx3, Bx4, Bx5, Bx6, Bx7, eGFP sowie dem Pflanzentransformationsvektor pBIN19 tragen, waren noch vorhanden (Masterarbeit "Engineering of the benzoxazinoid pathway in Nicotiana benthamiana" (Himmighofen 2019)). Mit eGFP transformierte Pflanzen dienten als Kontrolle. Der Pflanzentransformationsvektor pBIN19 beinhaltet die Sequenz für das Protein p19, welches als Suppressor für post-transkriptionales Gene-Silencing fungiert und somit die Effektivität der heterologen Expression erhöht (Voinnet, Rivas et al. 2003). Die Bx-Gene wurden ebenfalls bereits im Rahmen der Masterarbeit (Himmighofen 2019) in pCambia2300U-Vektoren kloniert.

2.3.2 Agroinfiltration von N. benthamiana

Je 20 ml YEP-Medium wurden mit Material der mit *Bx*- und *p19* transformierten *A*. *tumefaciens*-Stocks angeimpft. Diese Vorkultur wurde einen Tag lang bei 28 °C und 220 rpm im Schüttelschrank inkubiert.

Anschließend wurden 50 ml YEP, dem zuvor die Antibiotika Kanamycin (50 µg/ml), Rifampicin (10 µg/ml) und Gentamycin (50 µg/ml) zugefügt wurden, mit 2,5 ml der Vorkultur beimpft. Diese Hauptkultur wurde über Nacht ebenfalls bei 28 °C und 220 rpm im Schüttelschrank inkubiert. Am nächsten Tag wurde die Hauptkultur in einem 50 ml Falcon pelletiert (6000 rcf, 15 min, 16 °C) und das Pellet in 10 ml Infektionsmedium (10 mM MES, pH 5.7 + 10 mM MgCl₂ + 100 μ M Acetosyringon (erst kurz vor Gebrauch hinzugefügt)) resuspendiert. Zur benötigten Menge Infektionsmedium wurde jeweils so viel Kultur-Infektionsmedium-Mischung hinzugefügt, bis die OD₆₀₀ zwischen 0,4 und 0,6 lag. Nach 2-3 h im Schüttelschrank wurden die für jedes Experiment jeweils benötigten Infektionskulturen gemischt. Dabei wurde ein Verhältnis von 1:1 zwischen dem Volumen des Infektionsmediums mit *p19*-Konstrukt und dem Gesamtvolumen der Infektionsmedien mit den jeweiligen *Bx*-Konstrukten, bzw. *eGFP* hergestellt.

Die Menge der hergestellten Medien wurde in jedem Experiment an die *Bx*-Zusammensetzung angepasst.

Um Trockenstress zu verhindern, wurden die 4-5 Wochen alten *N. benthamiana*-Pflanzen am Vorabend der Transformation zusätzlich gegossen.

Zur Agroinfiltration wurden die N. benthamiana-Pflanzen kopfüber in ein, sich in einem Vakuum-Exsikkator befindenden. Becherglas, mit der jeweiligen Infektionskultur-Mischung, getaucht. Um dem Herausfallen von Erde vorzubeugen wurden die Töpfe mit Plastikstücken, die einen Schlitz für den Stiel der N. benthamiana-Pflanzen besaßen, abgedeckt. Es wurde ein Vakuum für die Dauer von 2 Minuten angelegt. Dabei wurde der Druck auf ein Minimum von 30-40 mbar gesenkt. Anschließend wurden die Pflanzen aus dem Infektionsmedium entfernt und in Dunkelheit stehen gelassen. Nach 2 Tagen wurden die Pflanzen vor ein Fenster gestellt und zusätzlich mit einer Valoya® R300 NS1 Lichtquelle, mit einem Zyklus von 16 h Licht/ 8 h Dunkelheit, beleuchtet. Nach weiteren 2-3 Tagen wurden jeweils die oberen vier Blätter geerntet. Dabei wurden sehr junge Blätter (bei der Transformation noch nicht ausgebildet) ausgelassen. Die geernteten Blätter wurden in Aluminiumfolie eingepackt und in Flüssigstickstoff schockgefroren. Wie in 2.1.1 wurde das Material unter ständiger Kühlung durch Flüssigstickstoff, zu einem feinen Pulver gemörsert und bis zur Weiterverarbeitung bei -80 °C gelagert.

2.4 Chemische Analyse

2.4.1 Methanolextraktion

Ca. 100 mg des Pflanzenpulvers (aus 2.1, ,2.2, 2.3.2) wurden jeweils eingewogen (Einwaagen siehe Anhang 7.1.1) und zusammen mit 1 ml Methanol kurz gevortext.

Anschließend wurden die Proben 15 min geschüttelt (Raumtemperatur, ca. 850 rpm) und dann weitere 15 min bei 4 °C und max. rpm zentrifugiert. Mit einer Pipette wurden 500 ml des Überstands in ein Plastik-Probengefäß überführt. Von den Extrakten, der bereits bei -80 °C vorliegenden Proben, wurden 1:10-Verdünnungen in Glas-Probengefäß hergestellt. Die Extrakte wurden bei -20 °C gelagert.

2.4.2 Gezielte HPLC-MS/MS-Analyse

Die massenspektrometrische Analyse der Methanolextrakte erfolgte an einem an ein 1290 Infinity Hochleistungsflüssigkeitschromatographie-SyStiel (Agilent Technologies) gekoppeltes API5000 LC/MS/MS-System (AB Sciex). Zur Auftrennung wurde eine Zorbax Eclipse XDB-C18 Säule verwendet (50 × 4,6 mm, 1,8 µm; Agilent Technologies) und als Laufmittel haben 0,05 % Ameisensäure (A) und Acetonitril (B) fungiert.

Die Verbindung von HPLC und MS wurde durch Elekrospray-Ionisierung im Negativ-Modus hergestellt.

Das Massenspektrometer wurde mit folgenden Einstellungen (Tabelle 5) verwendet.

Ionenspray-Spannung:	-4500 V
Turbogas-Temperatur:	650°C
Kollisionsgas:	Medium-Druck
Curtain-Gas:	40 psi
Ionenquellen-Gas:	1: 70 psi
	2: 70 psi

Tabelle 5: Massenspektrometrie-Einstellungen (HPLC-MS).

Das Verhältnis der Masse-Ladungs-Verhältnisse von Ausgangsion zu Fragment-/ Produktion wurde durch Multiple Reaction Monitoring (MRM) erfasst.

Als Positivkontrolle wurde ein Methanolextrakt eines jungen Blattes von *A. squarrosa* verwendet. Das bereits in Pulverform vorliegende Pflanzenmaterial wurde vom Betreuer gestellt.

2.4.2.1 Benzoxazinoide

Die HPLC-Säule wurde mit den in Tabelle 6 aufgelisteten Gradienten eluiert.

 Tabelle 6: Elutionsgradient der HPLC-MS-Analyse zur Identifikation von Benzoxazinoiden.

 Laufmittel sind 0,05 % Ameisensäure (A) und Acetonitril (B).

Zeit (min)	A (%)	B (%)
0.00	90.0	10.0
0.50	90.0	10.0
3.50	45.0	55.0
3.52	0.0	100.0
4.00	0.0	100.0
4.01	90.0	10.0
6.00	90.0	10.0

In Tabelle 7 sind die MRM-Parameter genannt.

Tabelle 7: Multiple-Reaction-Monitoring-Parameter der HPLC-MS-Analyse zur Identifikation von **Benzoxazinoiden.** Q1-Masse = Masse des Ausgangsions, Q3-Masse = Masse des Fragment-/Produktions, Zeit = Dwell Time , DP = Declustering-Potential, EP = Eingangspotential, CE = Kollisionsenergie, CXP = Kollisions- und Zellausgangspotential)

Analyt	Q1-Masse	Q3-Masse	Zeit	DP	EP	CE	CXP
	(Da)	(Da)	(msec)	(V)	(V)	(V)	(V)
DIBOA- Glc	342.000	134.000	5.00	-52.00	-4.00	-24.00	-4.00
DIMBOA- Glc	372.000	164.000	5.00	-52.00	-4.00	-18.00	-5.00
HBOA- Glc	326.300	164.000	5.00	-64.00	-4.00	-20.00	-5.00
HMBOA- Glc	356.000	194.000	5.00	-60.00	-4.00	-22.00	-2.00

2.4.2.2 (Ox-) Indole

Die HPLC-Säule wurde mit den in Tabelle 8 aufgelisteten Gradienten eluiert.

Tabelle 8: Elutionsgradient der HPLC-MS zur Identifikation von (Ox-) Indolen.Laufmittel sind 0,05% Ameisensäure (A) und Acetonitril (B).

Zeit (min)	A (%)	B (%)
0.00	95.0	5.0
0.50	95.0	5.0
4.00	40.0	60.0
4.01	0.0	100.0
5.00	0.0	100.0
5.10	95.0	5.0
7.00	95.0	5.0

In Tabelle 9 sind die MRM-Parameter genannt.

Tabelle 9: Multiple-Reaction-Monitoring-Parameter der HPLC-MS zur Identifikation von (Ox-) Indolen. Q1-Masse = Masse des Ausgangsions, Q3-Masse = Masse des Fragment-/Produktions, Zeit = Verweilzeit (dwell time), CE = Kollisionsenergie)

Analyt	Q1-Masse (Da)	Q3-Masse (Da)	Zeit (msec)	CE (V)
Indole	118.00	91.000	4.90	30.00
Oxindole	134.000	116.000	3.40	20.00

2.4.3 Computergestützte Analytik der HPLC-MS-Daten

Die Analyse der Chromatogramme, sowie die Quantifizierung der Peak-Flächen erfolgte mit der Software Analyst 1.5.2 (AB Sciex). Die statistische Auswertung und Erstellung der Diagramme (Anhang 7) erfolgten in Microsoft Excel 2013 (Microsoft Corporation, Redmond, USA).

2.4.4 Hexanextraktion

Ca. 100 mg des Pflanzenpulvers (2.3.2) wurden jeweils eingewogen (Einwaagen siehe Anhang (6.1)) und mit 1 ml Hexan, welches zuvor mit 10 nM Nonylacetat (interner Standard) versetzt wurde, durchmischt. Ansätze mit Material von mit *eGFP* und mit *Bx1* transformierter *N. benthamiana*-Pflanzen wurden je 1 h sowie über Nacht inkubiert. Anschließend wurden die Hexanphasen abgenommen und in Glas-Reaktionsgefäß mit Glas-Einsatz überführt. Die GC-MS-Analyse zeigte keine Unterschiede zwischen den verschiedenen Inkubationszeiten, weshalb weitere Proben nur je 1 h inkubiert wurden. Die Extrakte wurden bei -20 °C gelagert.

2.4.5 GC-MS Analyse

Hexanextrakte wurden an einem Hewlett-Packard Gas-Chromatographen (Model 6890) mit gekoppeltem Hewlett-Packard Massenspektrometer (Quadrupol-Massenspektrometer, Model 5973) analysiert.

Die Analyse erfolgte mit folgenden Einstellungen (Tabelle 10) am Gas-Chromatographen.

Tabelle 10: Gaschromatographie-Einstellungen.

Trägergas:	Helium, 1 ml/min
Injektion:	Splitlos, 220°C, 1 µl

Säule:	Chrompack CP-SIL-5 CB-MS, (5%-Phenyl)-Methylpolysiloxan, 25 m x 0.25 mm i.d. x 0.25 µm Filmdicke (Varian, Palo Alto, CA, USA)				
Temperatur-	Anfangstemperatur: 40°C (3 min)				
Programm:	Temperaturerhöhung: 5°C/min				
-	Endtemperatur: 240°C (3 min)				

Mit folgenden Einstellungen (Tabelle 11) wurde das Massenspektrometer verwendet.

Tabelle 11: Massenspektrometrie-Einstellungen (GC-MS).

Temperaturen:	Transfer: 230°C Quelle: 230°C Quadrupol: 150°C
Ionisierungspotential:	70 eV
Scan-Bereich:	40-350 Atommasseneinheiten

2.5 Chemikalien

Tabelle 12: Chemikalien und Hersteller.

Methanol	Merck Millipore (Merck KGaA, Darmstadt, Deutschland)
Nonylacetat	Sigma-Aldrich (Merck KGaA, Darmstadt, Deutschland)
Jasmonsäure	Cayman Chemical (Ann Arbor, Michigan, USA)
Ethanol	VWR International GmbH (Darmstadt, Deutschland)
Acetonitril	
Ameisensäure	Carl Roth GmbH + Co. KG (Karlsruhe, Deutschland)
Hexan	

3 Ergebnisse

3.1 Nachweis von Benzoxazinoiden in verschiedenen Arten von Lamiaceen, Acanthaceen, Ranunculaceen, Geraniaceen, Fabaceen und Polygonaceen

Die HPLC-MS-Analyse von Methanolextrakten verschiedener Lamiaceen, Acanthaceen, Ranunculaceen, Geraniaceen, Fabaceen und Polygonaceen bestätigte das bereits beschriebene Vorkommen von Benzoxazinoiden in *L. galeobdolon, A. aurantiaca*, sowie *C. pungens* (Pratt, Kumar et al. 1995, Alipieva, Taskova et al. 2003, Bhattarai, Steffensen et al. 2020). Darüber hinaus konnten Benzoxazinoide ebenfalls in *A. hungaricus* und *C. flava* nachgewiesen werden (Tabelle 13, Abbildung 3). Bei einigen Arten ist das Ergebnis uneindeutig. Diese Arten sollten weiter untersucht werden.

Tabelle 13: Vorkommen von Benzoxazinoiden in ausgewählten dikotylen Pflanzenarten. Methanolextrakte wurden mittels HPLC-MS analysiert. Mit "X" markierte Benzoxazinoide wurden nachgewiesen. Peaks mit einer Höhe von mindestens 10.000 cps wurden als positives Ergebnis gewertet. Mit "X*" markierte Benzoxazinoide zeigten einen Peak mit einer Höhe zwischen 5.000 und 50.000 cps und befinden sich damit an der Grenze zu einem positiven Ergebnis und müssen weiter untersucht werden. Eine Liste der Peak-Höhen-Werte befindet sich im Anhang (7.2.4, Tabelle 33).

			DIBOA-GIC	DIMBOA-GIC	HBOA-GIC	HMBOA-GIC	Chromatogramm (Anhang 7.4.1)
	Lamiaceae	B. hispanica			Х		Abbildung 16
		B. nigra			Х		Abbildung 17
		L. album			Х	Χ*	
na		L. galeobdolon	Х		Х*		Abbildung 18
Je		L. orvala			Х*	Χ*	
en		L. purpureum			Х*		
art		L. leonurus			Х*		
Ū		L. sibiricus			Х*		
Ien		M. vulgare			Х*		
sch		P. tuberosa			Х*	Χ*	
anis		S. citrina			Х*	Χ*	
ota		S. macrantha			Х*	X*	
B		S. palustris			Х*	X*	
eπ	Acanthaceae	A. hungaricus	Х	Х*	Х		Abbildung 19
s d		A. aurantiaca	Х	Х	Х	Х	Abbildung 20
au:		B. prionitis			Х*	X*	Abbildung 3
Proben a		C. pungens	Х		Х		Abbildung 21
		E. pulchellum			Х*	Х*	
		G. ceylanicum				X*	
		H. alternata					
		H. repanda					
		T. erecta					

		T. mysorensis				
		W. elongata				
		C. flava	Х	Х	X*	Abbildung 3, Abbildung 22
		J. scheidweileri		Χ*		
	Ranunculaceae	D. elatum		Х		Abbildung 23
	Lamiaceae	L. album				
		(Wurzeln)				
		L. album		Χ*		
		(Blätter + Blüten)				
	Geraniaceae	G. pratense		X*		
-		(junge Blätter)				
ene		G. pratense		X*		
٩		(alte Blätter)				
gie		G. pratense				
90		(Wurzeln)				
le Ök	Ranunculaceae	C. regalis				
		(Blüten)				
SC		C. regalis		X*		
ü		(Blätter)				
he		C. regalis				
õ		(Wurzeln)				
fü		C. regalis		X*		
ΙЫ		(Stiel)				
2	Fabaceae	T. repens		X*		
len		(Blätter)				
s		T. repens		X*		
au		(Blatter +				
en		Blutern)				
ob€		1. repens				
д	Delement	(vvurzein)		V*		
	Polygonaceae	R. patientia		X"		
		(alte Blatter)			V*	
		K. patientia		Χ.	X.	
		(vvuizeiii)				
		π. μαιιε/itia				
		(junge blatter)		1		

Innerhalb der Lamiaceen konnten Benzoxazinoide bisher nur in einigen wenigen Arten der Gattung *Lamium* identifiziert werden (Alipieva, Taskova et al. 2003, Tabelle 13). Um die Verbreitung von Benzoxazinoiden in dieser Gattung detaillierter zu untersuchen, sollten weitere *Lamium*-Spezies untersucht werden. Auch in diesen Experimenten konnten Benzoxazinoide in *L. galeobdolon* nachgewiesen werden. Zusätzlich wurden Benzoxazinoide in *L. montanum* identifiziert. Das scheinbare Vorhandensein von Benzoxazinoiden in *L. album* ist nicht eindeutig und sollte weiter untersucht werden (Tabelle 14).

Tabelle 14: Vorkommen von Benzoxazinoiden in verschiedenen Lamium-Arten. Methanolextrakte wurden mittels HPLC-MS analysiert. Mit "X" markierte Benzoxazinoide wurden nachgewiesen. Peaks mit einer Höhe von mindestens 10.000 cps wurden als positives Ergebnis gewertet. Mit "X" markierte Benzoxazinoide zeigten einen Peak mit einer Höhe zwischen 5.000 und 50.000 cps und befinden sich damit an der Grenze zu einem positiven Ergebnis und müssen weiter untersucht werden. Eine Liste der Peak-Höhen-Werte befindet sich im Anhang (Mittelwerte nach Blank-Abzug, Tabelle 33).

			DIMBOA-GIC	HBOA-GIc	UD-AOBMH	Chromatogramm (Anhang 7.4.1.3)
Lamiaceae	L. orvala			Χ*	Χ*	
	L. orvala Alba			Χ*	Χ*	
	L. maculatum			Χ*	Х*	
	<i>L. maculatum</i> (Blüte)			Х*	Х*	
	L. montanum	Х	Х*	Х		Abbildung 28
	L. galeobdolon	Х	Х*	Х	Х*	Abbildung 29
	L. album	X*		X*	X*	
	<i>L. album</i> (Blüte)			X*		

3.2 Der Effekt des Phytohormons Jasmonsäure auf die Synthese von Benzoxazinoiden in *C. regalis* und in *L. album*

In *C. regalis* und in *L. album* konnten keine Benzoxazinoide nachgewiesen werden. Da ihre verwandten Arten *C. orientalis* und *L. galeobdolon* jedoch Benzoxazinoide akkumulieren (Pratt, Kumar et al. 1995, Alipieva, Taskova et al. 2003) und im Allgemeinen die Biosynthese von pflanzlichen Naturstoffen oft durch biotische oder abiotische Faktoren induziert werden kann, ist es möglich, dass *C. regalis* und *L. album* in Stresssituationen ebenfalls Benzoxazinoide bilden. Aus diesem Grund wurden beide Arten mit Jasmonsäure behandelt. Es konnten jedoch keine Unterschiede zu den unbehandelten Kontroll-Pflanzen festgestellt werden (Tabelle 15).

Tabelle 15: Vorkommen von Benzoxazinoiden in mit Jasmonsäure-Lösung behandelten Consolida regalis- und Lamium album-Pflanzen. Als Kontrolle wurden Pflanzen, die mit einer Ethanol-Lösung behandelt wurden, verwendet. Methanolextrakte wurden mittels HPLC-MS analysiert. Mit "X" markierte Benzoxazinoide wurden nachgewiesen. Peaks mit einer Höhe von mindestens 10.000 cps wurden als positives Ergebnis gewertet. Mit "X" markierte Benzoxazinoide zeigten einen Peak mit einer Höhe zwischen 5.000 und 50.000 cps und befinden sich damit an der Grenze zu einem positiven Ergebnis und müssen weiter untersucht werden. Eine Liste der Peak-Höhen-Werte befindet sich im Anhang (7.2.4, Tabelle 33). Ctr. = Kontrolle, JA = Jasmonsäure.

		DIBOA-GIc	DIMBOA-GIc	HBOA-GIc	HMBOA-GIC	Chromatogramm (Anhang 7.4.1.2)
Ranunculaceae	C. regalis Ctr.			Χ*		Abbildung 25
	C. regalis JA			Χ*		Abbildung 26
Lamiaceae	L. album Ctr.					
	L. album JA					

Abbildung 3: Beispiel-Chromatogramme (Screening). Methanolextrakte wurden mittels HPLC-MS analysiert. Retentionszeiten: DIBOA-Glc: 2,43 min, DIMBOA-Glc: 2,70 min, HBOA-Glc: 2,34 min, HMBOA-Glc: 2,64 min. Cps = counts per seconds, min = Minuten. A Aphelandra squarrosa (junges Blatt, Positivkontrolle). B Crossandra flava. C Barleria prionitis.

3.3 Heterologe Expression von Benzoxazinoiden in *N. benthamiana*

Um Rückschlüsse auf die Benzoxazinoid-Biosynthese in Mais ziehen zu können, wurden *N. benthamiana*-Pflanzen mit *Bx*-Genen in verschiedenen Kombinationen via Agroinfiltration transformiert.

Die Überexpression von Bx1 und Bx1-2 resultiert scheinbar in der Bildung von Indol und die Überexpression von Bx1-2 zusätzlich in der Bildung von Oxindol. Die in der HPLC-MS-Analyse enthaltenen Peaks für beide Stoffe konnten jedoch nicht eindeutig zugeordnet werden, sodass das Vorhandensein von Indol und Oxindol in diesen Pflanzen fraglich ist. In Pflanzen, in denen Bx1-3 exprimiert wurden, konnten keine Produkte identifiziert werden. In Bx1-4- und Bx1-5-Pflanzen wurde HBOA-Glc nachgewiesen. Nach der Überexpression von Bx1-8 konnten DIMBOA-Glc, HBOA-Glc und HMBOA-Glc nachgewiesen werden (Tabelle 16, Abbildung 4). Wie in der Tabelle ersichtlich, ist das Ergebnis für DIMBOA-Glc zwar nicht eindeutig, liegt aber sehr knapp an der Nachweisgrenze (Peak-Höhe: 41.200 cps (siehe Anhang 7.2.4, Tabelle 34), Peak-Höhen ab 50.000 wurden als eindeutig gewertet). HBOA-Glc konnte außerdem in Pflanzen mit Bx1-4+Bx6-8-, mit Bx1-6+Bx8- (ebenfalls nicht eindeutig), sowie mit Bx1-5+Bx8-Überexpression nachgewiesen werden. Pflanzen mit Bx1-5+Bx8- bildeten darüber hinaus DIBOA-Glc. Auch dort waren die Peaks jedoch nicht eindeutig.

Tabelle 16: Vorkommen von Benzoxazinoiden und (Ox-) Indolen in mit Bx-Genen transformierten Nicotiana benthamiana-Pflanzen. Methanolextrakte wurden mittels HPLC-MS analysiert. Als Negativkontrolle wurden N. benthamiana-Pflanzen mit eGFP transformiert. Mit "X" markierte Benzoxazinoide wurden nachgewiesen. Peaks mit einer Höhe von mindestens 10.000 cps wurden als positives Ergebnis gewertet. Mit "X" markierte Benzoxazinoide zeigten einen Peak mit einer Höhe zwischen 5.000 und 50.000 cps und befinden sich damit an der Grenze zu einem positiven Ergebnis und müssen weiter untersucht werden. Eine Liste der Peak-Höhen-Werte befindet sich im Anhang (7.2.4, Tabelle 34 und Tabelle 35).

	DIBOA-GIc	DIMBOA-GIc	HBOA-GIc	HMBOA-GIC	Indol	Oxindol	Chromatogramm (Anhang 7.4.2)
Bx1					X*		
Bx1-2					X*	X*	Abbildung 34
Bx1-3							
Bx1-4			Х				Abbildung 40
Bx1-5			Х				Abbildung 39
Bx1-8		Χ*	Х	Х			Abbildung 4,
							Abbildung 36
Bx1-4+6-8			Х				Abbildung 38

Bx1-6+8		X*	Abbildung 37
Bx1-5+8	Χ*	X	Abbildung 31
eGFP			Abbildung 4,
			Abbildung 41

Abbildung 4: Beispiel-Chromatogramme (Transformation von Nicotiana benthamiana). Methanolextrakte wurden mittels HPLC-MS analysiert. Retentionszeiten: DIBOA-Glc: 2,33 min, DIMBOA-Glc: 2,63 min, HBOA-Glc: 2,23 min, HMBOA-Glc: 2,57 min. Cps = counts per seconds, min = Minuten. A Aphelandra squarrosa (junges Blatt, Positivkontrolle). B Bx1-8. C eGFP.

Aus pulverisiertem Gewebe der mit *Bx1* und *Bx2* transformierten *N. benthamiana*-Pflanzen wurden zusätzlich Hexanextrakte erstellt. Diese wurden mittels GC-MS analysiert, um eventuell vorhandenes Indol besser identifizieren zu können. Die Chromatogramme zeigten keine Peaks. Somit konnte keine Indol nachgewiesen werden.
4 Diskussion

4.1 Evolution der Benzoxazinoide

Benzoxazinoide kommen hauptsächlich in den monokotylen Süßgräsern (Poaceae) und vereinzelt in dikotylen Familien vor.

Diese Verteilung über verschiedene Klassen hinweg könnte als ein Indiz für die monophyletische Entwicklung der Benzoxazinoid-Biosynthese bereits vor der Trennung von Mono- und Dikotyledonen verstanden werden (Sicker, Frey et al. 2000). Das Vorkommen von Benzoxazinoiden ist allerdings, gerade in Dikotyledonen, sehr sporadisch. So kommen sie nicht in ganzen Familien, sondern nur in einzelnen Gattungen vor. Sogar innerhalb dieser Gattungen, wie zum Beispiel Lamium, ist ihre beschränkt. Biosynthese auf wenige Spezies In der Annahme einer monophyletischen Entwicklung wäre der Benzoxazinoid-Biosyntheseweg also im Laufe der Evolution in vielen Spezies wieder verloren gegangen (Dick, Rattei et al. 2012).

Nach dem heutigen Stand der Wissenschaft ist jedoch eine unabhängige Entwicklung des Biosynthesewegs wahrscheinlicher. Dies ist für einige weitere Stoffe bekannt. So deuteten phylogenetische Untersuchungen pflanzlicher Terpensynthasen darauf hin, dass die Limonensynthasen (eine Gruppe der Terpensynthasen) in Gymnospermen und Angiospermen keine monophyletische Herkunft haben und das Enzym mehrfach in verschiedenen Pflanzen evolviert wurde. Die hier beschriebene mehrfache Evolution des gleichen Enzyms kann als "konvergente Evolution" bezeichnet werden (Cseke, Dudareva et al. 1998). Eine konvergente Evolution ist per Definition eine mehrfach unabhängig voneinander erfolgte Evolution der gleichen biologischen Funktion. Dieses Prinzip ist für zahlreiche weitere Enzyme bekannt (Pichersky and Lewinsohn 2011) und wäre auch für die Evolution der Enzyme der Benzoxazinoid-Biosynthese denkbar.

Innerhalb der Gräser wurde bereits eine monophyletische Herkunft der *Bx*-Gene nachgewiesen (Sue, Ishihara et al. 2000, Nomura, Ishihara et al. 2002, Nikus, Esen et al. 2003, Nomura, Ishihara et al. 2003, Frey, Schullehner et al. 2009, Sue, Nakamura et al. 2011). Das Enzym BX1 stellt dabei eine Ausnahme dar. Es entwickelte sich in den verschiedenen mono- und dikotylen Spezies unabhängig, jedoch aus einer othologen Tryptophan-Synthase (TSA). So entstand das *Bx1*-Gen aus der Duplikation des *TSA*-Gens (Schullehner, Dick et al. 2008). Die UDP-

Glycosyltransferasen (UGTs), die DIMBOA-Glc zu DIMBOA hydrolysieren, haben sich in Mono- und Dikotyledonen unabhängig voneinander entwickelt. Ihre Gene sind in beiden Klassen homo- allerdings nicht ortholog (Dick, Rattei et al. 2012).

Trotz dieser Indizien, die eine konvergente Evolution andeuten, besteht der Bedarf weiterer Experimente, um die Art der Benzoxazinoid-Evolution eindeutig zu belegen.

4.2 Einfluss des Phytohormons Jasmonsäure auf die Benzoxazinoid-Biosynthese in *L. album* und *C. regalis*

In den Gattungen Lamium und Consolida konnten Benzoxazinoide in einzelnen Spezies, wie L. galeobdolon und L. montanum, bzw. C. orientalis nachgewiesen werden (Pratt, Kumar et al. 1995, Alipieva, Taskova et al. 2003, Tabelle 13, Tabelle 14). In anderen Spezies der gleichen Gattungen, wie L. album und C. regalis konnten jedoch keine Benzoxazinoide identifiziert werden. Die nahe Verwandschaft der verschiedenen Benzoxazinoid-produzierenden und -nichtproduzierenden Spezies einer Gattung führt zu der Vermutung, dass Spezies wie L. album und C. regalis, die unter Normalbedingungen keine Benzoxazinoide aufweisen, in Stresssituationen ebenfalls solche bilden. Eine solche Stresssituation sollte im Rahmen dieser Arbeit durch die Behandlung mit dem Phytohormon Jasmonsäure imitiert werden. Eine Induktion der Benzoxazinoid-Biosynthese konnte jedoch nicht festgestellt werden. In einem vorherigen Versuch gelang die Induktion der Akkumulation von Benzoxazinoiden mit Jasmonsäure in Poaceae (Oikawa, Ishihara et al. 2002). Physiologische Unterschiede zwischen den Familien könnten ein Grund sein, weshalb die Induktion in L. album und C. regalis nicht funktioniert hat. Der Versuch könnte mit anderen Phytohormonen, die eine Stressantwort induzieren, wiederholt werden. Ein mögliches Phytohormon dafür ist Salicylsäure. Der positive Zusammenhang zwischen Salicylsäure und dem Vorhandensein von DIMBOA und MBOA in Mais-Wurzeln wurde bereits nachgewiesen (Zhao, Gao et al. 2019). Systemin ist ebenfalls an der pflanzlichen Stressantwort beteiligt (Schopfer and Brennicke 2010) und könnte für das Wiederholen des Experiments verwendet werden. Eine andere Möglichkeit ist jedoch, dass L. album und C. regalis trotz ihrer engen Verwandschaft zu Benzoxazinoid-synthetisierenden Spezies, die zur Synthese benötigten Gene nicht besitzen.

4.3 Rekonstruktion des Benzoxazinoid-Biosynthesewegs in *N. benthamiana*

Die Entstehung von DIMBOA-Glc, sowie der Lactame HBOA-Glc und HMBOA-Glc nach der Überexpression von *Bx1-8* zeigte, dass die Rekonstruktion des Biosyntheseweges in *N. benthamiana* funktioniert.

Die Überexpression einzelner Enzyme konnten vermutlich auch die Zwischenprodukte der Biosynthese in *N. benthamiana* nachgewiesen werden. So entstanden vermutlich bei der Expression von *Bx1* Indol und bei der Expression von *Bx1-2* Indol und Oxindole. Die Höhen der entstandenen Peaks beider Stoffe lagen jedoch nur knapp an der Nachweisgrenze, sodass das Vorhandensein von Indol und Oxindolen zwar wahrscheinlich ist, aber nicht eindeutig nachgewiesen werden konnte.

Nach der Überexpression von *Bx1-3* konnte kein (Ox-)Indol nachgewiesen werden. Die Enzyme BX1-3 synthetisieren in Mais 3-Hydroxy-indolin-2-on. Dieses wird in *N. benthamiana* eventuell durch endogene Enzyme weiter metabolisiert und konnte daher nicht im Extrakt identifiziert werden.

Die Überexpression von *Bx1-4* resultierte in HBOA-Glc als Produkt. Diese Enzyme bilden in Mais nur das Aglucon HBOA, so dass davon ausgegangen werden kann, dass *N. benthamiana* eine unspezifische Glucosyltransferaseaktivität besitzt.

Die Überexpression von *Bx1-5+Bx8* führte zur DIBOA-Glc-Synthese. Der Ausschluss von *Bx6* und *Bx7* hat zur Folge, dass DIBOA-Glc nicht zu TRIBOA-Glc und schließlich DIMBOA-Glc weiter umgewandelt wird.

Da die Rekonstruktion des Benzoxazinoid-Biosynthesewegs aus Zea Mays in N. benthamiana insgesamt gut funktioniert, kann dieses System für weitere Experimente verwendet werden. So könnte die Toxizität der Benzoxazinoide und deren Intermediate für herbivore Insekten durch Bioassays getestet werden. In einem weiteren Experiment könnte man die Pflanzen mit chemisch modifiziertem Indol behandeln, um so, falls die BX-Enzyme dieses weiterverarbeiten können, eventuell chemisch neuartige Benzoxazinoide zu erhalten. Sollte dies gelingen, könnten so entstandene chemisch neuartige Benzoxazinoide ebenfalls mit Hilfe von Bioassays untersucht werden.

4.4 Die Rolle des Cytochrom P450-Enzyms BX5

Bei Ausschluss von BX5 aus dem Biosyntheseweg und Überexpression von BX1-4 und BX6-8 wurde die Biosynthese der Lactame ausgehend von durch BX1-4 synthetisiertes HBOA erwartet. Allerdings entstanden außer HBOA-Glc, als Produkt der Enzyme BX1-4 und der unspezifischen Glucosyltransferaseaktivität, von N. benthamiana, keine weiteren Benzoxazinoide. Eine mögliche Erklärung dafür ist, dass HBOA, bzw. HBOA-Glc nicht, wie angenommen, das Substrat für die Lactam-Biosynthese ist. Stattdessen könnte DIMBOA-Glc, welches ja nur bei Vorhandensein von BX5 synthetisiert wird, direkt zu HMBOA-Glc reduziert werden. Die Möglichkeit der Glycoside als Ausgangspunkte für die Lactam-Biosynthese, wurde bereits diskutiert, nachdem in einem Versuch mit zellfreien Extrakten von Maiskeimlingen keine Umwandlung von Aglyconen in Lactame festgestellt werden konnte (Tipton, Ming-Chung et al. 1973). An der Biosynthese von Dhurrin, einem cyanogenen Glycosid, beteiligte Cytochrom P450-vermittelte Enzyme liegen als Komplex in der Membran des endoplasmatischen Retikulums vor. Dort interagieren sie mit dem löslichen UGT85B1 (Laursen, Borch et al. 2016). Eine ähnliche membrangebundene Komplexbildung der Cytochrom P450-vermittelten Enzyme BX2-5 wäre eine andere mögliche Erklärung. Durch das Fehlen von BX5 als Interaktionspartner mit den löslichen BX6-8 könnte so die gestörte Lactam-Biosynthese erklärt werden. Diese Möglichkeit kann mit Hilfe weiterer Untersuchungen, wie Fluoreszenzlebensdauer-Mikroskopie (FLIM) oder FRET (Förster-Resonanzenergietransfer) überprüft werden.

5 Zusammenfassung

Benzoxazinoide sind eine wichtige Klasse pflanzlicher Sekundärmetabolite. Sie spielen einerseits bei der Abwehr von Pathogenen, wie z.B. Bakterien und Pilzen eine Rolle, sind aber auch an der Abwehr von herbivoren Insekten beteiligt und vermitteln Wechselwirkungen mit anderen Pflanzen (Allelopathie). Benzoxazinoide kommen in einigen monokotylen Gräsern (Poaceae) und in wenigen dikotylen Familien vor. Aufgrund ihrer Autotoxizität liegen Benzoxazinoide unter normalen Bedingungen glycosyliert in der Vakuole vor. Bei Zellschäden werden sie zu ihrer toxischen Aglucon-Form hydrolysiert und ins Cytoplasma transportiert.

Das Vorkommen von Benzoxazinoiden in monokotylen Gräsern (Poaceae) und vereinzelt in Familien der Dikotyledonen ist bereits bekannt. In dieser Arbeit gelang es, das bereits nachgewiesene Vorhandensein von Benzoxazinoiden in einigen dikotylen Spezies zu bestätigen. Zudem wurden Benzoxazinoide in *Acanthus hungaricus, Crossandra flava* und *Lamium montanum* identifiziert.

Der Versuch, die Benzoxazinoid-Biosynthese in *Lamium album* und *Consolida regalis* mit dem Phytohormon Jasmonsäure zu induzieren, war nicht erfolgreich. In weiterführenden Experimenten sollte daher der Effekt anderer Phytohormone, wie beispielsweise Salicylsäure, auf die Benzoxazinoid-Biosynthese untersucht werden.

Im Rahmen dieser Arbeit gelang die Rekonstruktion des Benzoxazionid-Biosynthesewegs in *Nicotiana benthamiana*. Dies bildet die Grundlage für weitergehende Experimente zur Untersuchung der Benzoxazinoide. Die Produkte der Rekonstruktion lassen unspezifische Aktivitäten, wie die unspezifische Glycosyltransferaseaktivität, von *N. benthamiana*, vermuten. Diese könnten ebenfalls Gegenstand zukünftiger Experimente sein.

Es zeigte sich, dass das Enzym BX5 für die Lactam-Biosynthese essenziell ist. Die Ursache dafür sollte in zukünftigen Arbeiten erforscht werden.

6 Literatur

Alipieva, K. I., et al. (2003). "Benzoxazinoids and iridoid glucosides from four Lamium species." <u>Phytochemistry</u> **64**(8): 1413-1417.

Ameye, M., et al. (2018). "Green leaf volatile production by plants: a meta-analysis." <u>New</u> <u>Phytologist</u> **220**(3): 666-683.

Bailey, B. A. and R. L. Larson (1991). "Maize Microsomal Benzoxazinone N-Monooxygenase." <u>Plant Physiology</u> **95**(3): 792-796.

Bally, J., et al. (2018). "The Rise and Rise of Nicotiana benthamiana: A Plant for All Reasons." <u>Annual Review of Phytopathology</u> **56**(1): 405-426.

Bhattarai, B., et al. (2020). "Stepwise mass spectrometry-based approach for confirming the presence of benzoxazinoids in herbs and vegetables." <u>Phytochemical Analysis</u>.

Cseke, L., et al. (1998). "Structure and Evolution of Linalool Synthase." <u>Molecular Biology and</u> <u>Evolution</u> **15**(11): 1491-1498.

Dawkins, R. and J. R. Krebs (1979). "Arms races between and within species." <u>Proceedings of the Royal Society of London. Series B. Biological Sciences</u> **205**(1161): 489-511.

De Bruijn, W. J. C., et al. (2018). "Structure and biosynthesis of benzoxazinoids: Plant defence metabolites with potential as antimicrobial scaffolds." <u>Phytochemistry</u> **155**: 233-243.

Dick, R., et al. (2012). "Comparative Analysis of Benzoxazinoid Biosynthesis in Monocots and Dicots: Independent Recruitment of Stabilization and Activation Functions." <u>The Plant Cell</u> **24**(3): 915-928.

Frey, M. (1997). "Analysis of a Chemical Plant Defense Mechanism in Grasses." <u>Science</u> **277**(5326): 696-699.

Frey, M., et al. (2003). "A 2-oxoglutarate-dependent dioxygenase is integrated in DIMBOAbiosynthesis." <u>Phytochemistry</u> **62**(3): 371-376.

Frey, M., et al. (2009). "Benzoxazinoid biosynthesis, a model for evolution of secondary metabolic pathways in plants." <u>Phytochemistry</u> **70**(15-16): 1645-1651.

Gelvin, S. B. (2003). "Agrobacterium-Mediated Plant Transformation: the Biology behind the "Gene-Jockeying" Tool." <u>Microbiology and Molecular Biology Reviews</u> **67**(1): 16-37.

Hannemann, L., et al. (2018). "A promiscuous beta-glucosidase is involved in benzoxazinoid deglycosylation in Lamium galeobdolon." <u>Phytochemistry</u> **156**: 224-233.

Hashimoto, Y. and K. Shudo (1996). "Chemistry of biologically active benzoxazinoids." <u>Phytochemistry</u> **43**(3): 551-559.

Himmighofen, P. (2019). <u>Engineering of the benzoxazinoid pathway in Nicotiana</u> benthamiana Master Thesis. Jena.

Jonczyk, R., et al. (2008). "Elucidation of the Final Reactions of DIMBOA-Glucoside Biosynthesis in Maize: Characterization of Bx6 and Bx7." <u>Plant</u> <u>Physiology</u> **146**(3): 1053-1063.

Laursen, T., et al. (2016). "Characterization of a dynamic metabolon producing the defense compound dhurrin in sorghum." <u>Science</u> **354**(6314): 890.

Mithöfer, A. and W. Boland (2012). "Plant Defense Against Herbivores: Chemical Aspects." <u>Annual Review of Plant Biology</u> **63**(1): 431-450.

Niemeyer, H. M. (1988). "Hydroxamic acids (4-hydroxy-1,4-benzoxazin-3-ones), defence chemicals in the gramineae." <u>Phytochemistry</u> **27**(11): 3349-3358.

Nikus, J., et al. (2003). "Cloning of a plastidic rye (Secale cereale) β -glucosidase cDNA and its expression in Escherichia coli." <u>Physiologia Plantarum</u> **118**(3): 337-345.

Nomura, T., et al. (2002). "Molecular characterization and chromosomal localization of cytochrome P450 genes involved in the biosynthesis of cyclic hydroxamic acids in hexaploid wheat." <u>Molecular Genetics and Genomics</u> **267**(2): 210-217.

Nomura, T., et al. (2003). "Rearrangement of the genes for the biosynthesis of benzoxazinones in the evolution of Triticeae species." <u>Planta</u> **217**(5): 776-782.

Oikawa, A., et al. (1999). "Purification and Characterization of a β -Glucosidase Specific for 2,4-Dihydroxy- 7-methoxy-1,4-benzoxazin-3-one (DIMBOA) Glucoside in Maize." **54**(3-4).

Oikawa, A., et al. (2002). "Induction of HDMBOA-Glc accumulation and DIMBOA-Glc 4-O-methyltransferase by jasmonic acid in poaceous plants." **61**(3): 331-337.

Pichersky, E. and E. Lewinsohn (2011). "Convergent Evolution in Plant Specialized Metabolism." <u>Annual Review of Plant Biology</u> **62**(1): 549-566.

Pratt, K., et al. (1995). "Cyclic hydroxamic acids in dicotyledonous plants." <u>Biochemical</u> <u>Systematics and Ecology</u> **23**(7-8): 781-785. Schopfer, P. and A. Brennicke (2010). Pflanzenphysiologie, Spektrum Akademischer Verlag.

Schullehner, K., et al. (2008). "Benzoxazinoid biosynthesis in dicot plants." <u>Phytochemistry</u> **69**(15): 2668-2677.

Sicker, D., et al. (2000). Role of natural benzoxazinones in the survival strategy of plants. International Review of Cytology, Academic Press. **198:** 319-346.

Sue, M., et al. (2000). "Purification and characterization of a β -glucosidase from rye (Secale cereale L.) seedlings." <u>Plant Science</u> **155**(1): 67-74.

Sue, M., et al. (2011). "Dispersed Benzoxazinone Gene Cluster: Molecular Characterization and Chromosomal Localization of Glucosyltransferase and Glucosidase Genes in Wheat and Rye." <u>Plant Physiology</u> **157**(3): 985-997.

Tipton, C. L., et al. (1973). "Biosynthesis of 1,4-benzoxazin-3-ones in Zea mays." Phytochemistry **12**(2): 347-352.

Voinnet, O., et al. (2003). "Retracted: An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus." <u>The</u> <u>Plant Journal</u> **33**(5): 949-956.

Von Rad, U., et al. (2002). "Two glucosyltransferases are involved in detoxification of benzoxazinoids in maize." <u>The Plant Journal</u> **28**(6): 633-642.

Wu, W.-H., et al. (2012). "Benzoxazinoids from Scoparia dulcis (sweet broomweed) with antiproliferative activity against the DU-145 human prostate cancer cell line." **83**: 110-115.

Zhang, C., et al. (2020). "ZmMPK6 and ethylene signalling negatively regulate the accumulation of anti-insect metabolites DIMBOA and DIMBOA-Glc in maize inbred line A188." <u>New Phytologist</u>.

Zhao, Z., et al. (2019). "A unique aluminum resistance mechanism conferred by aluminum and salicylic-acid-activated root efflux of benzoxazinoids in maize." <u>Plant and Soil</u> **437**(1): 273-289.

Zupan, J., et al. (2000). "The transfer of DNA from Agrobacterium tumefaciens into plants: a feast of fundamental insights." <u>The Plant Journal</u> **23**(1): 11-28.

7 Anhang

7.1 Einwaagen

7.1.1 Methanolextraktionen

Tabelle 17:	Einwaagen d	les Pflanzenpulver:	s der Prol	en aus d	dem Botan	ischen G	arten .	Jena zur
Methanolex	traktion.							

	1.	2.	3.
B. hispanica	114 mg	111 mg	119 mg
B. nigra	102 mg	96 mg	107 mg
L. album	100 mg	104 mg	96 mg
L. galeobdolon	115 mg	80 mg	105 mg
L. orvala	110 mg	110 mg	119 mg
L. purpureum	88 mg	/	/
L. leonurus	106 mg	119 mg	/
L. sibiricus	106 mg	112 mg	/
M. vulgare	100 mg	90 mg	102 mg
P. tuberosa	114 mg	/	/
S. citrina	113 mg	109 mg	94 mg
S. macrantha	112 mg	104 mg	/
S. palustris	101 mg	117 mg	103 mg
A. Hungaricus	119 mg	112 mg	117 mg
A. aurantiaca	82 mg	121 mg	118 mg
B. prionitis	114 mg	87 mg	98 mg
C. pungens	89 mg	106 mg	117 mg
E. pulchellum	97 mg	/	/
G. ceylanicum	100 mg	110 mg	114 mg
H. alternata	95 mg	103 mg	/
H. repanda	105 mg	106 mg	111 mg
T. erecta	94 mg	/	/
T. mysorensis	97 mg	/	/
W. elongata	95 mg	85 mg	112 mg
C. flava	100 mg	96 mg	93 mg
J. scheidweileri	119 mg	108 mg	117 mg
D. elatum	115 mg	92 mg	/

Tabelle	18:	Einwaagen	des	Pflanzenpulvers	der	Proben	aus	dem	Max-Planck-Institut	für
Chemise	che Ĉ	Ökologie Jen	a zur	Methanolextrakti	on.					

		Wurzeln	Blüten + Blätter	/	/
L. album	1	111 mg	95 mg	/	/
	2	118 mg	118 mg	/	/
		Blatt jung	Blatt alt	Wurzeln	/
G. pratense	1	85 mg	103 mg	109 mg	/
	2	115 mg	106 mg	95 mg	/
	3	111 mg	117 mg	91 mg	/
		Blüten	Blätter	Wurzeln	Stängel
C. regalis	1	118 mg	113 mg	113 mg	116 mg

	2	98 mg	87 mg	115 mg	86 mg
	3	108 mg	92 mg	115 mg	91 mg
		Blätter	Blätter + Blüten	Wurzeln	/
T. repens	1	98 mg	/	/	/
_	2	/	104 mg	/	/
	3	101 mg	/	96 mg	/
		Blatt jung	Blatt alt	Wurzeln	/
R. patientia	1	105 mg	89 mg	106 mg	/
	2	110 mg	93 mg	115 mg	/
	3	89 mg	110 mg	mg	/

Tabelle 19: Einwaage der vom Betreuer zur Verfügung gestellten Aphelandra squarrosa-Positivkontrolle zur Methanolextraktion.

	Blatt	jung
A. squarrosa	93	3 mg

Tabelle 20: Einwaagen der Proben der Proben des Jasmonsäure-Induktionsversuches zur Methanolextraktion.

		1.	2.	3.	4.
L. album	Kontrolle	103 mg	104 mg	83 mg	119 mg
	Jasmonsäure	105 mg	82 mg	105 mg	119 mg
C. regalis	Kontrolle	96 mg	119 mg	105 mg	107 mg
	Jasmonsäure	113 mg	119 mg	104 mg	86 mg

Tabelle 21: Einwaagen der Lamium-Proben zur Methanolextraktion.

	1.	2.	3.	Blüten
L. orvala	102 mg	92 mg	108 mg	/
L. orvala Alba	100 mg	96 mg	100 mg	/
L. maculatum	98 mg	90 mg	95 mg	84 mg
L. montanum	96 mg	95 mg	112 mg	/
L. galeobdolon	88 mg	98 mg	88 mg	/
L.album	96 mg	85 mg	g	106 mg

Tabelle22:EinwaagendertransformiertenNicotianabenthamiana-PflanzenzurMethanolextraktion.

	1.	2	3.	4.	5.
Bx1	119 mg	107 mg	113 mg	72 mg	91 mg
Bx1+2	89 mg	87 mg	82 mg	88 mg	95 mg
Bx1-3	112 mg	90 mg	107 mg	/	/
Bx1-4	116 mg	102 mg	117 mg	/	/
Bx1-5	118 mg	94 mg	119 mg	/	/
Bx1-8	98 mg	119 mg	94 mg	/	/
Bx1-4+6-8	119 mg	113 mg	97 mg	/	/
Bx1-6+8	106 mg	99 mg	117 mg	/	/
Bx1-5+8	83 mg	98 mg	110 mg	85 mg	103 mg
eGFP	109 mg	90 mg	94 mg	/	/
eGFP	86 mg	98 mg	98 mg	/	/
eGFP	98 mg	116 mg	118 mg	/	/

7.1.2 Hexanextraktionen

Tabelle 23: Einwaagen der transformierten Nicotiana benthamiana-Pflanzen zur Hexanextraktion. $\ddot{U}.N. = \ddot{u}ber Nacht.$

	1.	2.	3.
eGFP (1 h)	107 mg	/	/
eGFP (ü.N.)	93 mg	/	/
Bx1 (1 h)	123 mg	/	/
Bx1 (ü.N.)	102 mg	/	/
Bx1	86 mg	90 mg	/
Bx1	91 mg	91 mg	/
eGFP	107 mg	117 mg	103 mg
eGFP	113 mg	111 mg	86 mg
eGFP	97 mg	89 mg	96 mg

7.2 Peak-Höhen

7.2.1 Originalwerte

Tabelle 24: Originalwerte der Peak-Höhen der Messung der Benzoxazinoide in Proben des Botanischen Garten Jena und des MPI für Chemische Ökologie Jena, der Lamium-Proben, sowie der Proben des Jasmonsäure-Induktionsversuches. Methanolextrakte wurden mittels HPLC-MS analysiert. Cps = counts per second.

			Peak Höhe (cps)					
		DIBOA-Glc	DIMBOA-Glc	HBOA-Glc	HMBOA-Glc			
	blank	0.00E+00	4.00E+02	6.00E+02	2.00E+02			
	A. squarrosa							
g	Blatt jung	4.00E+02	4.00E+02	4.00E+02	4.08E+02			
+ P	blank	2.25E+02	6.25E+02	4.00E+02	8.04E+02			
e a	A. squarrosa							
Jer og	Blatt jung	4.68E+04	1.40E+06	3.33E+05	1.43E+06			
kol V	blank	6.05E+02	1.80E+03	4.25E+02	6.08E+02			
Öüte	B. hispanica #1	4.25E+02	1.21E+03	4.90E+04	3.40E+03			
ne Ĉ	B. hispanica #2	7.13E+02	2.00E+03	6.05E+04	8.09E+02			
en	B. hispanica #3	6.97E+02	2.21E+03	6.39E+04	6.80E+02			
em ch	B. nigra #1	1.00E+03	1.49E+03	7.28E+04	2.57E+03			
ù sic	B. nigra #2	8.00E+02	3.00E+03	4.57E+04	8.95E+02			
otaı ür (B. nigra #3	1.31E+03	1.62E+03	4.55E+04	2.19E+03			
ΒΞ	L. album #1	1.82E+03	1.29E+03	1.48E+04	8.46E+03			
MP	L. album #2	6.00E+02	1.89E+03	1.91E+04	9.14E+03			
b n es	L. album #3	4.25E+02	1.55E+03	1.99E+04	1.27E+04			
de de	L. galeobdolon							
pro Den	Blatt #1	2.60E+06	6.27E+03	4.55E+05	8.92E+03			
Чġ	L. galeobdolon							
<u>م</u>	Blatt #2	2.61E+06	5.45E+03	1.67E+05	1.40E+03			
	L. galeobdolon							
	Blatt #3	2.61E+06	3.61E+03	2.22E+05	2.00E+03			

<i>L. orvala</i> Blatt #1	2.40E+03	2.02E+03	2.72E+04	1.39E+04
L. orvala				
Blatt #2	2.42E+03	1.23E+03	1.70E+04	1.14E+04
L. orvala				
Blatt #3	2.02E+03	1.01E+03	1.40E+04	1.24E+04
L. purpureum				
Blatt+ Blute	1.43E+03	2.20E+03	1.54E+04	4.63E+03
L. Ieonurus Plott #1	9 00E 102	1 605 102	5 20E 104	2 40 - 102
L Joonurus Blatt #2	1 73E±03	1.00E+03	2.69E±04	5.40E+03
L. leonurus Dialt #2	3.02E+03	4.08E+03	2.09L+04	6 00E+03
l sihiricus	5.022105	4.002102	4.002102	0.002102
Blatt #1	3.21E+03	6.00E+02	2.88E+04	1.72E+03
L. sibiricus	0.212100	0.002.02	21002101	
Blatt #2	3.81E+03	1.42E+03	4.53E+04	4.40E+03
M. vulgare				
Blatt #1	2.40E+03	1.25E+03	4.80E+04	8.93E+02
M. vulgare				
Blatt #2	2.60E+03	1.40E+03	2.56E+04	9.00E+02
M. vulgare			4 405 0 1	
Blatt #3	2.60E+03	1.20E+03	4.42E+04	1.90E+03
P. tuberosa		0.045.00	4 405 . 04	0.405.04
Blatt	6.00E+02	2.84E+03	4.48E+04	2.18E+04
S. CITTINA Blott #1	2 425 102	9 05E 102	2 075 104	1 255,04
S citrina	2.422+03	0.03E+02	2.97 E+04	1.55E+04
Blatt #2	1 00E+03	1 20E+03	7 00E+03	8 19E+03
S. citrina	1.002100	1.202100	7.002100	0.102100
Blatt #3	1.08E+03	1.40E+03	1.87E+04	6.67E+03
S. macrantha				
Blatt #1	2.01E+03	8.17E+02	3.93E+04	5.70E+03
S. macrantha				
Blatt #2	1.62E+03	1.41E+03	4.42E+04	8.40E+03
S. palustris				
Blatt #1	1.41E+03	6.75E+02	1.68E+04	1.32E+04
S. palustris	1.045.00			
Blatt #2	1.21E+03	1.01E+03	1.24E+04	1.73E+04
o. paiustris Blatt #3	2 205-02	8 00 - 102	0 585.02	1 34 - 04
Blank	2.20E+03	2 25F±02	9.00E+03	2 25F±02
A hundaricus	2.212703	2.232702	+.JULTUZ	2.232702
Blatt #1	2.71E+06	6.55E+03	8.36F+05	1.14E+03
A, hungaricus		0.002.00	0.002100	
Blatt #2	2.80E+06	3.45E+03	1.22E+06	2.03E+03
A. hungaricus				
Blatt #3	2.71E+06	7.43E+03	1.26E+06	1.67E+03
A. aurantiaca				
Blatt #1	2.24E+05	1.32E+05	9.63E+03	6.11E+05
A. aurantiaca				
Blatt #2	1.94E+06	1.51E+06	7.62E+04	2.58E+06
A. aurantiaca	4 005 00			
Blatt #3	1.39E+06	1.16E+05	9.36E+04	1.9/E+06
в. prionitis	2.6/E+03	6.08E+02	2.05E+04	5.81E+03

	Blatt #1				
	B. prionitis				
	Blatt #2	1.41E+03	2.25E+02	6.84E+03	6.82E+03
	B. prionitis				
-	Blatt #3	7.48E+02	4.00E+02	1.04E+04	4.63E+03
	C. pungens	0.575.00	0.475.00		
-	Blatt #1	2.57E+06	8.17E+02	1.63E+05	4.60E+03
	C. pungens		1.055.00	1 525 .05	2 405.02
-	Biall #2	2.08E+00	1.25E+03	1.53E+05	3.40E+03
	C. purigeris Blatt #3	2 65 5 +06	2 21 E±03	1 47E+05	6 00E+03
-	E pulchollum	2.032+00	2.212+03	1.47 L + 03	0.992+03
	Rlatt	2 05E±03	6 25E±02	1 66F±04	7 74E±03
Ī	<u>G</u> cevlanicum	2.002100	0.202102	1.002104	7.742100
	Blatt #1	1 43E+03	6 00E+02	1 20E+03	3.02E+03
ŀ	G cevlanicum	1.102100	0.002102	1.202100	0.022100
	Blatt #2	1.80E+03	4,00F+02	2.09E+03	6.65E+03
F	G. cevlanicum			2.002.00	0.002.00
	Blatt #3	2.40E+03	2.25E+02	2.43E+03	9.83E+03
Ē	blank	4.00E+02	2.25E+02	4.00E+02	4.08E+02
Ī	H. alternata				
	Blatt #1	8.08E+02	1.02E+03	1.14E+03	3.21E+03
ļ	H. alternata				
	Blatt #2	1.63E+03	4.08E+02	6.00E+02	1.80E+03
ļ	H. repanda				
	Blatt #1	1.00E+03	4.00E+02	6.00E+02	2.60E+03
ľ	H. repanda				
	Blatt #2	1.00E+03	4.08E+02	1.80E+03	2.46E+03
Ī	H. repanda				
	Blatt #3	2.01E+03	4.00E+02	6.00E+02	1.63E+03
	T. erecta				
	Blatt	6.05E+02	4.50E+02	5.27E+03	1.12E+03
	T. mysorensis				
ļ	Blatt	1.03E+03	8.04E+02	3.23E+03	3.43E+03
	W. elongata				
╞	Blatt #1	1.40E+03	6.00E+02	1.61E+03	3.75E+02
	W. elongata		0.005.00		
-	BIATT #2	3.00E+03	2.00E+02	2.23E+03	1.38E+03
	vv. elongata	2 005 002		2 22 - 22	
╞		3.00⊑+03	4.50E+02	ა.∠ა⊑+0პ	5.94⊑+02
	C. IIdVd Blatt #1	2 505 .06	8 055 02	1 61 - 05	5 80E 102
ŀ	C flava	2.395+00	0.05=+02	1.04⊏+00	J.09⊑+U3
	C. IldVa Blatt #2	2 58 5+06	1 035+03	1 60⊑⊥01	5 30E±02
ŀ		2.300+00	1.036+03	4.00ET04	3.38E+03
	0. <i>liava</i> Rlatt #3	2 62F±06	6 08F±02	7 88F±04	5 67F±03
ŀ	L scheidweileri	2.021700		1.002704	J.07 ET03
	Rlatt #1	1 01F+03	4 00F+02	1 92F+04	1 87F+03
ŀ	J. scheidweileri	1.012100	7.002102	1.022104	1.07 - 103
	Blatt #2	2.45E+03	0.00F+00	3.36F+04	1.46E+03
ŀ	J. scheidweileri		0.002.00	0.000	
	Blatt #3	9.60E+03	6.38E+02	2.40E+04	1.20E+03
ŀ	D. elatum	0.002.00	0.001.02		
	Blatt #1	1.20E+03	1.40E+03	6.56E+04	4.61E+03

	<i>D. elatum</i> Blatt #2	6 25E+02	1 66F+03	7 20F+04	5 95E+03
·	D elatum	0.202102	1.002100	7.202104	0.002100
	Blatt #3	1.00E+03	4.14E+03	1.30E+05	4.45E+03
Ī	blank	8.05E+02	2.00E+02	6.05E+02	4.08E+02
ŀ	L. album				
	Wurzel #1	1.20E+03	6.00E+02	4.00E+02	4.08E+02
ľ	L. album				
	Blatt + Blüte #1	1.41E+03	2.25E+02	2.05E+03	1.87E+03
ſ	L. album				
	Wurzel #2	1.01E+03	4.08E+02	2.00E+02	4.08E+02
	L. album				
	Blatt + Blüte #2	1.20E+03	1.03E+03	1.11E+04	2.66E+03
	G. pratense			_	
-	Blatt jung #1	1.00E+03	1.08E+03	9.34E+03	6.55E+02
	G. pratense			o (== o (
-	Blatt alt #1	6.62E+03	1.06E+03	3.17E+04	3.60E+03
	G. pratense	4.005.00	4.005.00	4 005.00	0.475.00
-	VVUIZEI #1	4.00E+02	4.00E+02	1.00E+03	8.17E+02
	G. praterise	1 625 02	9 57E 102	2 565 104	4 02 - 102
-	G protopso	1.022+03	0.57 E+02	2.500+04	4.920+03
	Blatt alt #2	8 08F±02	1 41 E±03	4 10E±04	1 39F±03
-	G pratense	0.002102	1.412100	4.102104	1.552105
	Wurzel #2	3 21E+03	6.00E+02	9 96E+02	1 23E+03
ŀ	G pratense	0.212100	0.002102	0.002102	1.202100
	Blatt jung #3	6.00E+02	1.00E+03	6.21E+03	2.06E+03
Ī	G. pratense				
	, Blatt alt #3	8.00E+02	6.08E+02	9.22E+03	3.40E+03
Ī	G. pratense				
	Wurzel #3	2.80E+03	2.00E+02	6.08E+02	4.08E+02
	blank	4.08E+02	2.00E+02	4.08E+02	6.00E+02
	C. regalis				
	Blüte #1	1.01E+03	5.25E+02	4.42E+03	3.40E+03
	C. regalis				
-	Blatt #1	1.40E+03	6.00E+02	1.88E+04	1.85E+03
	C. regalis	4.075.00	4.005.00	4 00 5 00	7.045.00
-	VVUIZEI #1	1.27E+03	4.08E+02	4.08E+02	7.61E+02
-	C. regalls Stiel #1	2.00E+03	1.20E+03	1.04E+04	2.20E+03
	C. regalis Blüto #2	1.055+03	8 17E+02	5 25E+03	0.055402
-	C recelis	1.032+03	0.17 L + 02	J.23L+03	9.93L+02
	Blatt #2	4 08F+02	1 21E+03	9 51E+03	2 52E+03
ŀ	C regalis	1.002102	1.212100	0.012100	2.022100
	Wurzel #2	8.04E+02	4.08E+02	4.25E+02	3.37E+02
Ē	C. regalis				
	Stiel #2	4.08E+02	1.20E+03	1.65E+04	1.82E+03
Ī	C. regalis				
	Blüte #3	4.08E+02	6.25E+02	6.16E+03	5.20E+03
	C. regalis				
	Blatt #3	1.40E+03	4.08E+02	5.65E+03	8.20E+03
	C. regalis				
	Wurzel #3	6.00E+02	6.00E+02	8.00E+02	6.58E+02
	C. regalis Stiel #3	2.00E+02	1.00E+03	5.81E+03	4.80E+03

	<i>T. repens</i> Blatt #1	8 17E±02	1 22E±03	3 72E±04	0 63E±02
	T renens	0.17 L + 02	1.222703	5.722704	9.032+02
	Blatt + Blüte	4.08E+02	1.03E+03	3.52E+04	2.00E+03
	T. repens				
	Blatt #2	8.00E+02	1.49E+03	2.91E+04	8.00E+02
	T. repens				
	Wurzel	6.05E+02	4.00E+02	6.08E+02	4.08E+02
	blank	1.02E+03	2.00E+02	4.08E+02	2.25E+02
	R. patientia	4.005.00		0.045.04	
	Blatt alt #1	4.00E+02	2.03E+03	2.94E+04	3.86E+03
	<i>R. patientia</i> Murzolo #1	2 005 02	4 005 02	4 09 - 102	1.025.02
	P notiontia	2.000+02	4.00E+02	4.000+02	1.03E+03
	Rlatt jung #1	6 00E±02	1 00E±03	2 64 E±03	1 48F±03
	R natientia	0.002102	1.002100	2.042100	1.402100
	Blatt alt #2	6.75E+02	2.41E+03	1.06E+04	5.22E+03
	R. patientia	01102.02	21112.00		0.222.00
	Wurzels #2	4.50E+02	4.66E+03	4.13E+04	1.06E+04
	R. patientia				
	Blatt jung #2	1.02E+03	2.00E+02	1.00E+03	1.80E+03
	R. patientia				
	Blatt alt #3	6.75E+02	1.40E+03	1.08E+04	2.21E+03
	R. patientia				
	Wurzels #3	8.08E+02	3.72E+02	5.44E+04	1.99E+04
	R. patientia				
	Blatt jung #3	1.00E+03	2.25E+02	4.08E+02	9.63E+02
	blank	2.00E+02	0.00E+00	2.00E+02	2.00E+02
	A. squarrosa				
	Blatt jung	4.42E+03	2.06E+05	1.15E+05	9.16E+04
	blank	6.05E+02	2.25E+02	1.00E+03	4.00E+02
	C. regalis				
	Ctr. 1	4.50E+02	3.26E+03	3.60E+04	3.26E+03
	C. regalis				
	Ctr. 2	4.08E+02	1.41E+03	9.44E+03	4.22E+03
<u> </u>	C. regalis	0.005.00			
Suc	Ctr. 3	6.08E+02	1.69E+03	2.66E+04	5.20E+03
ere	C. regalis			4.055.04	
۲ 2	Ctr. 4	0.05E+02	8.05E+02	1.25E+04	2.80E+03
IUL		2 00 5 + 02	6 25E+02	1 165+04	4 20E+03
lsä	C rogalis	2.000+02	0.25E+02	1.102+04	4.20E+03
ğ	C. τegans 1Δ2	2 25E±02	4 50E±02	9 20 E±03	4 20E±03
asn	C. recalis	2.252102	4.002102	3.202103	4.202100
с С	JA3	6.25E+02	8.45E+02	3.29E+04	2.69E+03
	C. regalis	0.202.02	01102102	0.202.01	21002100
	JA4	8.00E+02	1.05E+03	1.57E+04	2.40E+03
	blank	4.00E+02	4.00E+02	4.00E+02	1.00E+03
	blank	6.00E+02	2.00E+02	2.25E+02	4.08E+02
	A. squarrosa				
	Blatt jung	6.63E+03	2.14E+05	1.42E+05	1.25E+05
	blank	4.00E+02	2.00E+02	6.00E+02	4.00E+02
	L. album	6.25E+02	8.05E+02	3.21E+03	5.01E+03

	Ctr. 1				
	L. album				
	Ctr. 2	6.05E+02	4.50E+02	2.23E+03	3.12E+03
	L. album				
	Ctr. 3	4.08E+02	4.50E+02	1.88E+03	1.62E+03
	L. album				
	Ctr. 4	6.05E+02	1.00E+03	3.52E+03	5.78E+03
	L. album				
	JA 1	8.00E+02	6.25E+02	2.00E+03	5.00E+03
	L. album				
	JA 2	4.50E+02	4.00E+02	2.22E+03	4.17E+03
	L. album				
	JA 3	6.00E+02	1.61E+03	5.00E+03	2.82E+03
	L. album				
	JA 4	6.00E+02	1.03E+03	2.51E+03	3.69E+03
	blank	8.05E+02	2.00E+02	2.25E+02	4.50E+02
	blank	8.45E+02	2.25E+02	6.00E+02	6.25E+02
	A. squarrosa				
	Blatt jung	8.58E+03	8.23E+05	2.37E+05	1.53E+05
	blank	6.05E+02	6.50E+02	4.00E+02	6.08E+02
	L. orvala #1	1.23E+03	6.25E+02	2.55E+04	9.15E+03
	L. orvala #2	6.25E+02	1.00E+03	3.91E+04	9.46E+03
	L. orvala #2	8.17E+02	1.67E+03	2.45E+04	6.55E+03
	L. orvala Alba #1	8.17E+02	6.68E+02	1.90E+04	1.02E+04
	L. orvala Alba #2	8.45E+02	8.61E+02	2.72E+04	5.30E+03
	L. orvala Alba #3	1.20E+03	1.03E+03	2.29E+04	9.16E+03
C	L. maculatum #1	6.05E+02	5.24E+03	4.94E+04	1.25E+04
pe	L. maculatum #2	6.00E+02	7.42E+02	4.15E+04	1.35E+04
20	L. maculatum #3	8.04E+02	4.00E+02	1.00E+03	1.42E+03
4 H	L. maculatum Blüte	8.25E+02	5.02E+02	1.54E+04	1.01E+04
ini	blank	1.20E+03	4.00E+02	1.40E+03	1.03E+03
an	L. montanum #1	2.78E+06	1.52E+04	3.00E+06	6.06E+03
Γ	L. montanum #2	2.48E+06	2.29E+04	3.17E+06	3.29E+03
	L. montanum #3	3.00E+06	1.75E+04	3.16E+06	7.35E+03
	L. galeobdolon #1	2.88E+06	1.79E+04	3.07E+06	4.00E+03
	L. galeobdolon #2	2.60E+06	7.80E+03	1.55E+06	1.24E+04
	L. galeobdolon #3	3.07E+06	1.61E+03	2.92E+06	3.40E+03
	L. album #1	1.16E+04	3.81E+03	5.99E+04	6.96E+03
	L. album #2	4.89E+03	2.81E+03	4.34E+04	5.20E+03
	L. album #3	6.60E+03	1.00E+03	3.92E+04	6.20E+03
	L. album				
	Blüte	5.47E+03	1.10E+03	1.64E+04	3.55E+03
	blank	4.20E+03	6.00E+02	3.18E+03	8.00E+02

Tabelle 25: Originalwerte der Peak-Höhen der Messung der Benzoxazinoide in den mit Bx-Genen transformierten Nicotiana benthamiana-Pflanzen. Methanolextrakte wurden mittels HPLC-MS analysiert. Cps = counts per second.

			Analyte Peak Height (cps)				
		DIBOA-Glc	DIMBOA-GIc	HBOA-Glc	HMBOA-		
					Glc		
1	blank	4.60E+03	4.08E+02	1.80E+03	4.08E+02		
	<i>Bx1</i> +2 #1	1.62E+03	4.50E+02	1.03E+03	4.50E+02		

	Bx1+2 #2	6.00E+02	4.08E+02	1.07E+03	4.08E+02
	<i>Bx1-5</i> +8 #2	2.34E+04	2.25E+02	5.71E+04	2.25E+02
	<i>Bx1-5</i> +8 #1	1.45E+04	6.75E+02	7.10E+04	6.75E+02
	eGFP-Ctr. #1	1.01E+03	2.25E+02	1.23E+03	2.25E+02
	eGFP-Ctr. #2	6.08E+02	4.00E+02	1.07E+03	4.00E+02
	eGFP-Ctr. #3	4.60E+03	6.75E+02	2.10E+03	6.75E+02
	A. squarrosa	7.10E+03	4.46E+05	2.04E+05	4.46E+05
	Blatt jung	0.055.00	4.005.00	4 00 - 00	4.005.00
	Oxindol	8.25E+02	4.00E+02	1.60E+03	4.00E+02
	Indol	2.41E+03	2.25E+02	1.62E+03	2.25E+02
	Blank	1.20E+03	6.00E+02	1.80E+03	6.00E+02
	Blank	2.40E+03	4.08E+02	1.13E+03	4.08E+02
3	Blank	2.21E+03	4.00E+02	2.25E+02	1.03E+03
	A. squarrosa	1.05E+04	3.30E+05	2.43E+05	2.07E+05
	Blank	6.05E+02	6.08E+02	8 04F+02	4 08E+02
	Bx1-8 #1	1.86E+03	4.36E+04	8 10F+04	2 20E+05
	Bx1-8#2	1.00E+03	6 20E+04	4 14E+04	1 13E+05
	Bx1-8#3	4.08E+02	1 96E+04	3 18E+04	6.41F+04
	Bx1-6+8 #1	1.00E+02	2 25E+02	3 28E+04	2.33E+03
	Bx1-6+8 #2	4.00E+02	4 00F+02	1 27E+04	1 78E+03
	Bx1-6+8 #3	4.08E+02	4 00E+02	3 50E+04	2.01E+03
	Bx1-4+6-8#1	6.00E+02	6.05E+02	1 16E+05	2.58E+03
	Bx1-4+6-8 #2	8.00E+02	4.00E+02	1.11E+05	1.55E+03
	Bx1-4+6-8 #3	6.00E+02	8.17E+02	2.94E+05	2.41E+03
	Blank	6.25E+02	8.00E+02	4.08E+02	4.50E+02
	<i>Bx1-5</i> #1	2.00E+03	4.08E+02	1.02E+05	2.81E+03
	Bx1-5#2	1.21E+03	6.05E+02	6.96E+04	9.00E+02
	Bx1-5#3	2.09E+03	4.50E+02	7.64E+04	3.08E+03
	<i>Bx1-4</i> #1	4.00E+02	4.50E+02	7.44E+05	2.03E+03
	Bx1-4 #2	8.00E+02	1.01E+03	8.71E+05	1.05E+03
	Bx1-4#3	4.00E+02	1.61E+03	9.87E+05	2.33E+03
	eGFP #1	4.08E+02	4.00E+02	6.00E+02	3.49E+03
	eGFP #2	2.25E+02	4.00E+02	1.00E+03	2.03E+03
	eGFP #3	4.08E+02	2.25E+02	4.00E+02	2.10E+03
	Blank	1.21E+03	2.00E+02	2.25E+02	4.08E+02
4	Blank	1.07E+03	2.00E+02	6.00E+02	2.25E+02
	A. squarrosa	1.20E+04	5.06E+05	3.26E+05	2.57E+05
	Blatt jung				
	Oxindol	8.00E+02	4.08E+02	2.25E+02	8.04E+02
	Indol	1.00E+03	6.05E+02	4.08E+02	8.04E+02
	Blank	1.00E+03	4.00E+02	2.25E+02	2.25E+02
	Bx1-5+8 #1	9.25E+03	4.08E+02	9.86E+04	3.71E+03
	Bx1-5+8 #2	1.05E+03	1.00E+03	2.43E+03	1.59E+03
	Bx1-5+8 #3	9.51E+03	4.50E+02	3.78E+04	3.45E+03
	<i>Bx1-2</i> #1	4.00E+02	6.00E+02	6.05E+02	2.11E+03
	<i>Bx1-2</i> #2	4.08E+02	4.00E+02	4.50E+02	1.69E+03

<i>Bx1-2</i> #3	4.50E+02	4.00E+02	1.03E+03	2.30E+03
<i>Bx1</i> #1	4.08E+02	4.00E+02	8.00E+02	1.81E+03
Bx1 #2	4.08E+02	6.00E+02	4.08E+02	8.81E+02
Bx1 #3	4.50E+02	4.00E+02	8.00E+02	2.29E+03
blank	1.00E+03	4.50E+02	4.08E+02	4.08E+02
blank	6.25E+02	4.00E+02	8.04E+02	6.00E+02

 Tabelle 26: Originalwerte der Peak-Höhen der Messung der Indole in den mit Bx-Genen transformierten Nicotiana benthamiana-Pflanzen.
 Methanolextrakte wurden mittels
 HPLC-MS analysiert. Cps = counts per second.

		Analyte Peak Height (cps)			
		Oxindol	Indol		
1	Blank	7.03E+02	5.53E+02		
	<i>Bx1</i> +2 #1	4.21E+04	4.94E+02		
	Bx1+2 #2	2.53E+04	5.50E+02		
	Bx1-5+8#2	1.01E+03	3.75E+02		
	<i>Bx1-5</i> +8#1	5.71E+02	3.98E+02		
	eGFP-Ctr. #1	5.21E+02	3.81E+02		
	eGFP-Ctr. #2	6.32E+02	3.02E+02		
	eGFP-Ctr. #3	1.32E+03	3.73E+02		
	<i>A. squarrosa</i> Blatt jung	5.30E+02	2.47E+02		
	Oxindol	1.17E+06	2.64E+02		
	Indol	6.65E+02	5.70E+05		
1+2	blank	7.59E+02	2.66E+02		
	Bx1 #2	5.12E+02	4.98E+02		
	<i>Bx1</i> #1	5.62E+02	4.45E+02		
	<i>Bx1</i> +2 #1	1.57E+04	2.17E+02		
	Bx1+2 #2	9.03E+03	2.40E+02		
	<i>Bx1</i> +2+3#1	5.11E+02	2.57E+02		
	Bx1+2+3#2	0.00E+00	3.29E+02		
	Bx1+2+3#3	4.07E+02	2.43E+02		
	eGFP #1	5.79E+02	2.03E+02		
	eGFP #2	6.39E+02	2.51E+02		
	eGFP #3	3.61E+02	2.60E+02		
	<i>A. squarrosa</i> Blatt jung	0.00E+00	2.52E+02		
	Oxindol	6.86E+05	2.04E+02		
	Indol	0.00E+00	3.30E+05		
4	Blank	2.98E+03	8.85E+02		
	<i>A. squarrosa</i> Blatt jung	2.26E+03	0.00E+00		
	Oxindol	2.46E+03	1.18E+03		
	Indol	2.33E+03	9.42E+05		
	blank	5.18E+05	0.00E+00		
	<i>Bx1-5</i> +8#1	2.10E+03	0.00E+00		

<i>Bx1-5</i> +8 #2	1.10E+03	3.17E+02
Bx1-5+8#3	1.05E+03	8.79E+02
<i>Bx1-2</i> #1	8.15E+02	5.77E+02
Bx1-2 #2	7.02E+02	5.50E+03
Bx1-2 #3	6.68E+02	1.93E+04
<i>Bx1</i> #1	7.35E+02	1.58E+04
Bx1 #2	6.96E+02	8.00E+02
<i>Bx1</i> #3	1.92E+03	5.21E+02
blank	5.35E+02	0.00E+00
blank	4.23E+02	6.97E+02

7.2.2 Mittelwerte

Tabelle 27: Peak-Höhen-Mittelwerte der Messung der Benzoxazinoide in Proben des Botanischen Garten Jena und des MPI für Chemische Ökologie Jena, der Lamium-Proben, sowie des Jasmonsäure-Induktionsversuches. Methanolextrakte wurden mittels HPLC-MS analysiert. Cps = counts per second.

		Peak Höhe (cps)				
		DIBOA-GIc	DIMBOA-Glc	HBOA-Glc	HMBOA-Glc	
	blank	9.66E+02	4.76E+02	4.56E+02	4.53E+02	
	A. squarrosa					
	Blatt jung	2.36E+04	7.00E+05	1.67E+05	7.15E+05	
	B. hispanica	6.12E+02	1.81E+03	5.78E+04	1.63E+03	
	B. nigra	1.04E+03	2.04E+03	5.47E+04	1.89E+03	
	L. album	9.48E+02	1.58E+03	1.79E+04	1.01E+04	
	L.					
ene	galeobdolon	2.61E+06	5.11E+03	2.81E+05	4.11E+03	
+ –	L. orvala	2.28E+03	1.42E+03	1.94E+04	1.26E+04	
gie	L. purpureum					
a co	Blatt + Blüte	1.43E+03	2.20E+03	1.54E+04	4.63E+03	
Ö,	L. leonurus	4.87E+03	1.30E+03	4.00E+04	4.93E+03	
àar ìe (L. sibiricus	3.51E+03	1.01E+03	3.71E+04	3.06E+03	
U U	M. vulgare	2.53E+03	1.28E+03	3.93E+04	1.23E+03	
nii M	P. tuberosa	6.00E+02	2.84E+03	4.48E+04	2.18E+04	
isc he	S. citrina	1.50E+03	1.14E+03	1.85E+04	9.45E+03	
r an	S. macrantha	1.82E+03	1.11E+03	4.18E+04	7.05E+03	
g g	S. palustris	1.61E+03	8.28E+02	1.29E+04	1.46E+04	
ы Ы	Α.					
≥ de	hungaricus	2.74E+06	5.81E+03	1.11E+06	1.61E+03	
de,	A. aurantiaca	1.18E+06	8.06E+05	5.98E+04	1.72E+06	
qo u	B. prionitis	1.61E+03	4.11E+02	1.26E+04	5.75E+03	
P P	C. pungens	2.63E+06	1.43E+03	1.54E+05	5.00E+03	
L L	Е.					
_	pulchellum	2.05E+03	6.25E+02	1.66E+04	7.74E+03	
	<i>G.</i>					
	ceylanicum	1.88E+03	4.08E+02	1.91E+03	6.50E+03	
	H. alternata	1.22E+03	7.14E+02	8.70E+02	2.51E+03	
	H. repanda	1.34E+03	4.03E+02	1.00E+03	2.23E+03	
	T. erecta	6.05E+02	4.50E+02	5.27E+03	1.12E+03	
	T. myorensis	1.03E+03	8.04E+02	3.23E+03	3.43E+03	

	W. elongata	2.47E+03	4.17E+02	2.36E+03	7.83E+02
	C. flava	2.60E+06	8.14E+02	9.63E+04	5.65E+03
	J.				
	scheidweileri	4.35E+03	3.46E+02	2.56E+04	1.51E+03
	D. elatum	9.42E+02	2.40E+03	8.92E+04	5.00E+03
	L. album				
	Wurzeln	1.11E+03	5.04E+02	3.00E+02	4.08E+02
	L. album				
	Blatt + Blüte	1.31E+03	6.28E+02	6.58E+03	2.27E+03
	G. pratense				
	Blatt jung	1.07E+03	9.79E+02	1.37E+04	2.55E+03
	G. pratense				
	Blatt alt	2.74E+03	1.03E+03	2.73E+04	2.80E+03
	G. pratense				
	Wurzeln	2.14E+03	4.00E+02	8.68E+02	8.18E+02
	C. regalis				
	Blüte	8.23E+02	6.56E+02	5.28E+03	3.20E+03
	C. regalis				
	Blatt	1.07E+03	7.39E+02	1.13E+04	4.19E+03
	C. regalis				
	Wurzeln	8.91E+02	4.72E+02	5.44E+02	5.85E+02
	C. regalis				
	Stiel	8.69E+02	1.13E+03	1.29E+04	2.94E+03
	T. repens				
	Blatt	8.09E+02	1.36E+03	3.32E+04	8.82E+02
	T. repens				-
	Blatt + Blute	4.08E+02	1.03E+03	3.52E+04	2.00E+03
	I. repens	0.055.00			4 005 00
	Wurzeln	6.05E+02	4.00E+02	6.08E+02	4.08E+02
	R. patientia				0 705 00
	Blatt alt	5.83E+02	1.95E+03	1.69E+04	3.76E+03
	R. patientia	4.005.00			
	Wurzein	4.86E+02	1.81E+03	3.20E+04	1.05E+04
	R. patientia	0.705.00	4 755 . 00	4.055.00	4.445.00
	Blatt jung	8.73E+02	4.75E+02	1.35E+03	1.41E+03
	blank	4.02E+02	2.08E+02	5.33E+02	5.33E+02
	A. squarrosa	4.405.00		4.455.05	0.405.04
÷	Blatt jung	4.42E+03	2.06E+05	1.15E+05	9.16E+04
Suc	C. regalls		4 705 .00	0445.04	
ē	Ctr.	5.18E+02	1.79E+03	2.11E+04	3.87E+03
>	C. regalis	4 625 .02		4 745.04	2.275.02
nre	JA	4.63E+02	7.43E+02	1.74E+04	3.37E+03
ISä	blank	6.02E+02	2.00E+02	3.50E+02	419.33333333
D	A. squarrosa	0000	04 4000	4 40000	405000
SU	Blatt jung	6630	214000	142000	125000
٦a	L. album	500 75	070.05	0740	2000 5
		500.75	070.25	2710	3882.5
	L. album	640 5	040.05	2022 5	2000
	JA	1 74 5 . 00	910.25	2932.5	3920
ξĸ	DIANK	1./1E+03	4.69E+02	1.40E+03	1.66E+02
niu ⊃b€	A. squarrosa				
Pr	Blatt jung	8.58E+03	8.23E+05	2.3/E+05	1.53E+05
1	L. Orvala	8.91E+02	1.10E+03	2.97E+04	0.39E+03

L. orvala				
Alba	9.54E+02	8.53E+02	2.30E+04	8.22E+03
L.				
maculatum	6.70E+02	2.13E+03	3.06E+04	9.14E+03
L.				
maculatum				
Blüte	8.25E+02	5.02E+02	1.54E+04	1.01E+04
L. montanum	2.75E+06	1.85E+04	3.11E+06	5.57E+03
L.				
galeobdolon	2.85E+06	9.10E+03	2.51E+06	6.60E+03
L. album	7.70E+03	2.54E+03	4.75E+04	6.12E+03
L. album				
Blüte	5.47E+03	1.10E+03	1.64E+04	3.55E+03

 Tabelle 28: Peak-Höhen-Mittelwerte der Messung der Benzoxazinoide in den mit Bx-Genen transformierten Nicotiana benthamiana-Pflanzen.
 Methanolextrakte wurden mittels
 HPLC-MS analysiert. Cps = counts per second.

		Analyte Peak Height (cps)			
		DIBOA-GIc	DIMBOA-GIc	HBOA-Glc	HMBOA-Glc
1	blank	2.73E+03	4.72E+02	1.58E+03	4.72E+02
	Bx1-2	1.11E+03	4.29E+02	1.05E+03	4.29E+02
	Bx1-5+8	1.90E+04	4.50E+02	6.41E+04	4.50E+02
	eGFP	2.07E+03	4.33E+02	1.47E+03	4.33E+02
	<i>A. squarrosa</i> Blatt jung	7.10E+03	4.46E+05	2.04E+05	4.46E+05
	Oxindol	8.25E+02	4.00E+02	1.60E+03	4.00E+02
	Indol	2.41E+03	2.25E+02	1.62E+03	2.25E+02
3	blank	1.16E+03	5.02E+02	4.16E+02	5.74E+02
	<i>A. squarrosa</i> Blatt jung	1.05E+04	3.30E+05	2.43E+05	2.07E+05
	Bx1-8	1.09E+03	4.17E+04	5.14E+04	1.32E+05
	Bx1-6+8	6.79E+02	3.42E+02	2.68E+04	2.04E+03
	Bx1-4+6-8	6.67E+02	6.07E+02	1.74E+05	2.18E+03
	Bx1-5	1.77E+03	4.88E+02	8.27E+04	2.26E+03
	Bx1-4+6-8	5.33E+02	1.02E+03	8.67E+05	1.80E+03
	eGFP	3.47E+02	3.42E+02	6.67E+02	2.54E+03
4	blank	9.24E+02	3.63E+02	5.09E+02	3.65E+02
	<i>A. squarrosa</i> Blatt jung	1.20E+04	5.06E+05	3.26E+05	2.57E+05
	Oxindol	8.00E+02	4.08E+02	2.25E+02	8.04E+02
	Indol	1.00E+03	6.05E+02	4.08E+02	8.04E+02
	Bx1-5+8	6.60E+03	6.19E+02	4.63E+04	2.92E+03
	Bx1-2	4.19E+02	4.67E+02	6.95E+02	2.03E+03
	Bx1	4.22E+02	4.67E+02	6.69E+02	1.66E+03

		Analyte Peak Height (cps)			
		Oxindol	Indol		
1	blank	7.03E+02	5.53E+02		
	Bx1-2	3.37E+04	5.22E+02		
	Bx1-5+8	7.91E+02	3.87E+02		
	eGFP	8.24E+02	3.52E+02		
	<i>A. squarrosa</i> Blatt jung	5.30E+02	2.47E+02		
	Oxindol	1.17E+06	2.64E+02		
	Indol	6.65E+02	5.70E+05		
1-2	blank	7.59E+02	2.66E+02		
	Bx1	8.13E+03	3.31E+02		
	Bx1-2	4.77E+03	2.49E+02		
	Bx1-3	3.29E+02	2.58E+02		
	eGFP	3.33E+02	2.54E+02		
	<i>A. squarrosa</i> Blatt jung	0.00E+00	2.52E+02		
	Oxindol	6.86E+05	2.04E+02		
	Indol	0.00E+00	3.30E+05		
4	blank	1.30E+05	3.96E+02		
	A. squarrosa Blatt jung	2.26E+03	0.00E+00		
	Oxindol	2.46E+03	1.18E+03		
	Indol	2.33E+03	9.42E+05		
	Bx1-5+8	1.42E+03	3.99E+02		
	Bx1-2	7.28E+02	8.46E+03		
	Bx1	1.12E+03	5.71E+03		

Tabelle 29: Peak-Höhen-Mittelwerte der Messung der Indole in den mit Bx-Genen transformierten Nicotiana benthamiana-Pflanzen. Methanolextrakte wurden mittels HPLC-MS analysiert. Cps = counts per second.

7.2.3 Standardfehler der Mittelwerte

Tabelle 30: Standardfehler der Peak-Höhen-Mittelwerte der Messung der Benzoxazinoide in Proben des Botanischen Garten Jena und des MPI für Chemische Ökologie Jena, der Lamium-Proben, sowie des Jasmonsäure-Induktionsversuches. Methanolextrakte wurden mittels HPLC-MS analysiert. Cps = counts per second.

		Peak Höhe (cps)			
		DIBOA-	DIMBOA-	HBOA-	HMBOA-
		Glc	Glc	Glc	Glc
Proben des	blank	3.34E+02	1.72E+02	2.82E+01	7.10E+01
Botanischen	Α.				
Garten Jenas	squarrosa				
+	Blatt jung	2.32E+04	7.00E+05	1.66E+05	7.15E+05
Proben des	B. hispanica	9.34E+01	3.04E+02	4.51E+03	8.86E+02
MPI für	B. nigra				
	· ·	1.48E+02	4.83E+02	9.07E+03	5.07E+02
	L. album	4.39E+02	1.74E+02	1.58E+03	1.31E+03

Chemische	L.				
Ökologie Jena	galeobdolon	3.33E+03	7.86E+02	8.83E+04	2.41E+03
-	L. orvala	1.30E+02	3.07E+02	3.99E+03	7.26E+02
	L.				
	purpureum				
	Blatt + Blüte	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	L. leonurus	3.14E+03	3.00E+02	1.31E+04	1.53E+03
	L. sibiricus	3.00E+02	4.10E+02	8.25E+03	1.34E+03
	M. vulgare	6.67E+01	6.01E+01	6.92E+03	3.35E+02
	P. tuberosa	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	S. citrina	4.61E+02	1.75E+02	6.55E+03	2.07E+03
	S.				
	macrantha	1.95E+02	2.97E+02	2.45E+03	1.35E+03
	S. palustris	3.02E+02	9.77E+01	2.10E+03	1.33E+03
	A.				
	hungaricus	3.00E+04	1.21E+03	1.35E+05	2.58E+02
	A.				
	aurantiaca	5.06E+05	3.98E+05	2.56E+04	5.82E+05
	B. prionitis	5.64E+02	1.11E+02	4.09E+03	6.33E+02
	C. pungens	3.28E+04	4.12E+02	4.67E+03	1.06E+03
	Ε.				
	pulchellum	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	G.				
	ceylanicum	2.83E+02	1.08E+02	3.67E+02	1.97E+03
	H. alternata	4.11E+02	3.06E+02	2.70E+02	7.05E+02
	H. repanda	3.37E+02	2.67E+00	4.00E+02	3.03E+02
	T. erecta	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	Т.				
	myorensis	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	W. elongata	5.33E+02	1.17E+02	4.72E+02	3.05E+02
	C. flava	1.20E+04	1.22E+02	3.52E+04	1.45E+02
	J.				
	scheidweiler				
	i	2.66E+03	1.86E+02	4.23E+03	1.95E+02
	D. elatum	1.69E+02	8.73E+02	2.05E+04	4.76E+02
	L. album				
	Wurzeln	9.50E+01	9.60E+01	1.00E+02	0.00E+00
	L. album				
	Blatt + Blüte	1.05E+02	4.03E+02	4.53E+03	3.95E+02
	G. pratense				
	Blatt jung	2.97E+02	6.52E+01	6.01E+03	1.25E+03
	G. pratense				
	Blatt alt	1.94E+03	2.32E+02	9.43E+03	7.06E+02
	G. pratense				
	Wurzeln	8.76E+02	1.15E+02	1.30E+02	2.37E+02
	C. regalis				
	Blüte	2.08E+02	8.57E+01	5.02E+02	1.22E+03
	C. regalis		Т		
	Blatt	3.31E+02	2.42E+02	3.90E+03	2.01E+03
	C. regalis				
	Wurzeln	1.98E+02	6.40E+01	1.28E+02	1.28E+02
	C. regalis		Т		
	Stiel	5.69E+02	6.67E+01	3.55E+03	9.36E+02

	<i>T. repens</i>	8 50E+00	1 35E+02	4 05E+03	8 15E+01
	T. repens	0.002100	1.002102	4.002100	0.102101
	Blatt + Blüte	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	T. repens	0.002+00	0.002+00	0.002+00	0.002+00
	Wurzeln	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	<i>R. patientia</i> Blatt alt	9 17F+01	2 95E+02	6 23E+03	8 70F+02
	R. patientia	0.172101	2.002.02	0.202.00	0.702.02
	Wurzeln	1.76E+02	1.42E+03	1.63E+04	5.45E+03
	R. patientia				
	Blatt jung	1.37E+02	2.63E+02	6.68E+02	2.44E+02
Jasmonsäure-	blank	1.17E+02	1.16E+02	2.40E+02	2.40E+02
Versuch	A.				
	squarrosa				
	Blatt jung	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	C. regails	5 20E±01	5 23E±02	6 21 E±03	5 33E±02
	C regalis	5.202101	5.252102	0.212100	5.55E 102
	JA	1.49E+02	1.31E+02	5.35E+03	4.81E+02
					15.5062711
	blank	1.17E+02	0	125	3
	А.				
	squarrosa	-		-	
	Blatt jung	0	0	0	0
	L. album	E 11E 101	120 555400	390.021366	938.619331
		5.11E+01	265 450678	9	0
	L. album. .IA	8	203.430078	4	400.000290
l amium-	blank	8.38E+02	9 76E+01	6.33E+02	9.82E+01
Proben	A.	0.002102	0.702101	0.002102	0.022101
	squarrosa				
	Blatt jung	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	L. orvala	1.78E+02	3.06E+02	4.71E+03	9.23E+02
	L. orvala			_	_
	Alba	1.23E+02	1.05E+02	2.37E+03	1.49E+03
	L. maculatum	6.72E+01	1.56E+03	1.50E+04	3.87E+03
	L.				
	maculatum				
	Blüte	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	L.	, -	• • • •	_ _ . _ -	
	montanum	1.51E+05	2.28E+03	5.51E+04	1.20E+03
	L. galeobdolon	1.37E+05	4.75E+03	4.84F+05	2.91F+03
	L. album	2.01E+03	8,22E+02	6.32E+03	5.10E+02
	L. album				
	Blüte	0.00E+00	0.00E+00	0.00E+00	0.00E+00

		Analyte Peak Height (cps)			
		DIBOA-GIc	DIMBOA-Glc	HBOA-Glc	HMBOA-Glc
1	blank	9.96E+02	6.40E+01	2.23E+02	6.40E+01
	Bx1-2	5.10E+02	2.10E+01	2.00E+01	2.10E+01
	Bx1-5+8	4.45E+03	2.25E+02	6.95E+03	2.25E+02
	eGFP	1.27E+03	1.31E+02	3.20E+02	1.31E+02
	A. squarrosa				
	Blatt jung	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	Oxindol	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	Indol	0.00E+00	0.00E+00	0.00E+00	0.00E+00
3	blank	3.76E+02	1.30E+02	1.36E+02	1.52E+02
	A. squarrosa				
	Blatt jung	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	Bx1-8	4.22E+02	1.23E+04	1.51E+04	4.60E+04
	Bx1-6+8	2.75E+02	5.83E+01	7.10E+03	1.59E+02
	Bx1-4+6-8	6.67E+01	1.20E+02	6.02E+04	3.19E+02
	Bx1-5	2.80E+02	5.99E+01	9.86E+03	6.86E+02
	Bx1-4+6-8	1.33E+02	3.35E+02	7.02E+04	3.86E+02
	eGFP	6.10E+01	5.83E+01	1.76E+02	4.75E+02
4	blank	1.01E+02	5.54E+01	1.25E+02	8.96E+01
	A. squarrosa				
	Blatt jung	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	Oxindol	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	Indol	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	Bx1-5+8	2.78E+03	1.91E+02	2.81E+04	6.68E+02
	Bx1-2	1.55E+01	6.67E+01	1.73E+02	1.80E+02
	Bx1	1.40E+01	6.67E+01	1.31E+02	4.14E+02

Tabelle 31: Standardfehler der Peak-Höhen-Mittelwerte der Messung der Benzoxazinoide in denmit Bx-Genen transformierten Nicotiana benthamiana-Pflanzen.Methanolextrakte wurden mittelsHPLC-MS analysiert.Cps = counts per second.

Tabelle 32: Standardfehler der Peak-Höhen-Mittelwerte der Messung der Indole in den mit Bx-Genen transformierten Nicotiana benthamiana-Pflanzen. Methanolextrakte wurden mittels HPLC-MS analysiert. Cps = counts per second.

		Analyte Peak Height (cps)			
		Oxindol	Indol		
1	blank	0.00E+00	0.00E+00		
	Bx1-2	8.40E+03	2.80E+01		
	Bx1-5+8	2.20E+02	1.15E+01		
	eGFP	2.50E+02	2.51E+01		
	A. squarrosa	0.00E+00	0.00E+00		
	Blatt jung				
	Oxindol	0.00E+00	0.00E+00		
	Indol	0.00E+00	0.00E+00		
2	blank	0.00E+00	0.00E+00		
	Bx1	2.50E+01	2.65E+01		
	Bx1-2	3.34E+03	1.15E+01		

	Bx1-3	1.56E+02	2.66E+01
	eGFP	8.45E+01	1.77E+01
	A. squarrosa	0.00E+00	0.00E+00
	Blatt jung		
	Oxindol	0.00E+00	0.00E+00
	Indol	0.00E+00	0.00E+00
4	blank	1.29E+05	2.32E+02
	A. squarrosa	0.00E+00	0.00E+00
	Blatt jung		
	Oxindol	0.00E+00	0.00E+00
	Indol	0.00E+00	0.00E+00
	Bx1-5+8	3.42E+02	2.57E+02
	Bx1-2	4.44E+01	5.60E+03
	Bx1	4.02E+02	5.05E+03

7.2.4 Mittelwerte nach Blank-Abzug

Tabelle 33: Peak-Höhen-Mittelwerte der Messung der Benzoxazinoide in Proben des Botanischen Garten Jena und des MPI für Chemische Ökologie Jena, der Lamium-Proben, sowie des Jasmonsäure-Induktionsversuches nach Abzug des Mittelwertes der Blank-Proben (100% Methanol). Methanolextrakte wurden mittels HPLC-MS analysiert. Cps = counts per second.

		Peak Höhe (cps)			
		DIBOA-Glc	DIMBOA-Glc	HBOA-Glc	HMBOA-Glc
	blank	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	<i>A. squarrosa</i> Blatt jung	2.26E+04	7.00E+05	1.66E+05	7.15E+05
	B. hispanica	-3.54E+02	1.33E+03	5.73E+04	1.18E+03
sna	B. nigra	7.08E+01	1.56E+03	5.42E+04	1.43E+03
+s €	L. album	-1.76E+01	1.10E+03	1.75E+04	9.65E+03
ena ogie	L. galeobdolon	2.61E+06	4.63E+03	2.81E+05	3.65E+03
l Je colc	L. orvala	1.31E+03	9.44E+02	1.89E+04	1.21E+04
arter he Ök	L. purpureum Blatt + Blüte	4.64E+02	1.72E+03	1.49E+04	4.18E+03
n G isch	L. leonurus	3.90E+03	8.24E+02	3.95E+04	4.48E+03
she em	L. sibiricus	2.54E+03	5.34E+02	3.66E+04	2.61E+03
ch.	M. vulgare	1.57E+03	8.07E+02	3.88E+04	7.78E+02
otar für	P. tuberosa	-3.66E+02	2.36E+03	4.43E+04	2.13E+04
: Bc	S. citrina	5.34E+02	6.59E+02	1.80E+04	9.00E+03
des 8 M	S. macrantha	8.49E+02	6.38E+02	4.13E+04	6.60E+03
en (des	S. palustris	6.41E+02	3.52E+02	1.25E+04	1.42E+04
ob6	A. hungaricus	2.74E+06	5.33E+03	1.10E+06	1.16E+03
Pr obe	A. aurantiaca	1.18E+06	8.06E+05	5.94E+04	1.72E+06
Pr	B. prionitis	6.43E+02	-6.49E+01	1.21E+04	5.30E+03
	C. pungens	2.63E+06	9.50E+02	1.54E+05	4.54E+03
	E. pulchellum	1.08E+03	1.49E+02	1.61E+04	7.29E+03
	G. ceylanicum	9.11E+02	-6.76E+01	1.45E+03	6.05E+03
	H. alternata	2.53E+02	2.38E+02	4.14E+02	2.05E+03

	H. repanda	3.71E+02	-7.32E+01	5.44E+02	1.78E+03
	T. erecta	-3.61E+02	-2.59E+01	4.81E+03	6.67E+02
	T. myorensis	6.41E+01	3.28E+02	2.77E+03	2.98E+03
	W. elongata	1.50E+03	-5.92E+01	1.90E+03	3.30E+02
	C. flava	2.60E+06	3.38E+02	9.58E+04	5.20E+03
	J. scheidweileri	3.39E+03	-1.30E+02	2.51E+04	1.06E+03
	D. elatum	-2.42E+01	1.92E+03	8.87E+04	4.55E+03
	L. album				
	Wurzeln	1.39E+02	2.81E+01	-1.56E+02	-4.51E+01
	L. album				
	Blatt + Blüte	3.39E+02	1.52E+02	6.12E+03	1.81E+03
	G. pratense	4.075.00		4 225 - 04	
	Blatt jung	1.07E+02	5.03E+02	1.33E+04	2.09E+03
	<i>G. praterise</i> Blatt alt	1 78F±03	5 50E±02	2 69E±04	2 34E±03
	G pratense	1.702100	5.50L 102	2.032104	2.042100
	Wurzeln	1.17E+03	-7.59E+01	4.12E+02	3.65E+02
	C. regalis				
	Blüte	-1.43E+02	1.80E+02	4.82E+03	2.75E+03
	C. regalis				
	Blatt	1.03E+02	2.63E+02	1.09E+04	3.74E+03
	C. regalis	7 405 04			
	Vvurzeln	-7.46E+01	-3.89E+00	8.83E+01	1.32E+02
	C. regails	-9 66E±01	6 57E±02	1 24F±04	2 /0E±03
	T renens	-9.002+01	0.57 L+02	1.246704	2.432+03
	Blatt	-1.57E+02	8.79E+02	3.27E+04	4.28E+02
	T. repens				
	Blatt + Blute	-5.58E+02	5.54E+02	3.47E+04	1.55E+03
	T. repens				
	Wurzeln	-3.61E+02	-7.59E+01	1.52E+02	-4.51E+01
	R. patientia				
	Blatt alt	-3.83E+02	1.47E+03	1.65E+04	3.31E+03
	R. patientia				
	Vvurzeln P. potioptio	-4.80E+02	1.33⊑+03	3.16E+04	1.01E+04
	Rlatt iung	-9 26F+01	-8 895-01	8 93E+02	9.61F+02
	blank				0.000000
	Didiik A squarrosa	0.000+00		0.000+00	0.000+00
	Blatt iung	4.02F+03	2.06E+05	1.14F+05	9.11F+04
lch	C. regalis				
ersu	Ctr.	1.16E+02	1.58E+03	2.06E+04	3.34E+03
-Ve	C. regalis				
re	JA	6.08E+01	5.34E+02	1.68E+04	2.84E+03
säı	blank	0.00E+00	0.00E+00	0.00E+00	0
lon	A. squarrosa				
ISM	Blatt jung	6.03E+03	2.14E+05	1.42E+05	124580.6667
Ja	L. album			0.005.00	0.400.40000-
	Ctr.	-4.09E+01	4.76E+02	2.36E+03	3463.166667
	L. aibum		7 165 .02	2 585 102	3500 666667
	JA	1.U0 ⊑+ U1	1.100+02	2.000+03	100000.0000

	blank	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	A. squarrosa				
	Blatt jung	6.87E+03	8.23E+05	2.36E+05	1.52E+05
_	L. orvala	-8.22E+02	6.30E+02	2.83E+04	7.62E+03
ber	L. orvala Alba	-7.59E+02	3.84E+02	2.16E+04	7.45E+03
P.0	L. maculatum	-1.04E+03	1.66E+03	2.92E+04	8.37E+03
4	L. maculatum				
inir	Blüte	-8.88E+02	3.33E+01	1.40E+04	9.33E+03
an.	L. montanum	2.75E+06	1.81E+04	3.11E+06	4.80E+03
7	L. galeobdolon	2.85E+06	8.63E+03	2.51E+06	5.83E+03
	L. album	5.98E+03	2.07E+03	4.61E+04	5.35E+03
	L. album				
	Blüte	3.76E+03	6.31E+02	1.50E+04	2.78E+03

Tabelle 34: Peak-Höhen-Mittelwerte der Messung der Benzoxazinoide in den mit Bx-Genen
transformierten Nicotiana benthamiana-Pflanzen nach Abzug der Blank-Proben (100% Methanol).Methanolextrakte wurden mittels HPLC-MS analysiert. Cps = counts per second.

		Analyte Peak Height (cps)			
		DIBOA-GIc	DIMBOA-Glc	HBOA-Glc	HMBOA-Glc
1	blank	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	Bx1-2	-1.62E+03	-4.30E+01	-5.27E+02	-4.30E+01
	Bx1-5+8	1.62E+04	-2.20E+01	6.25E+04	-2.20E+01
	eGFP	-6.61E+02	-3.87E+01	-1.10E+02	-3.87E+01
	A. squarrosa				
	Blatt jung	4.37E+03	4.46E+05	2.02E+05	4.46E+05
	Oxindol	-1.91E+03	-7.20E+01	2.33E+01	-7.20E+01
	Indol	-3.23E+02	-2.47E+02	4.33E+01	-2.47E+02
3	blank	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	A. squarrosa				
	Blatt jung	9.34E+03	3.29E+05	2.43E+05	2.06E+05
	Bx1-8	-7.32E+01	4.12E+04	5.10E+04	1.32E+05
	Bx1-6+8	-4.83E+02	-1.60E+02	2.64E+04	1.47E+03
	Bx1-4+6-8	-4.96E+02	1.05E+02	1.73E+05	1.61E+03
	Bx1-5	6.04E+02	-1.43E+01	8.23E+04	1.69E+03
	Bx1-4+6-8	-6.29E+02	5.21E+02	8.67E+05	1.23E+03
	eGFP	-8.16E+02	-1.60E+02	2.51E+02	1.97E+03
4	blank	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	A. squarrosa				
	Blatt jung	1.11E+04	5.06E+05	3.25E+05	2.57E+05
	Oxindol	-1.24E+02	4.55E+01	-2.84E+02	4.40E+02
	Indol	7.63E+01	2.43E+02	-1.01E+02	4.40E+02
	Bx1-5+8	5.68E+03	2.57E+02	4.58E+04	2.55E+03
	Bx1-2	-5.04E+02	1.04E+02	1.86E+02	1.67E+03
	Bx1	-5.02E+02	1.04E+02	1.60E+02	1.30E+03

Tabelle 35: Peak-Höhen-Mittelwerte der Messung der Indole in den mit Bx-Genen transformiertenNicotianabenthamiana-PflanzennachAbzugderBlank-Proben(100%Methanol).Methanolextrakte wurden mittelsHPLC-MS analysiert. Cps = counts per second.

		Analyte Peak Height (cps)			
		Oxindole	Indole		
1	blank	0.00E+00	0.00E+00		
	Bx1-2	3.30E+04	-3.10E+01		
	Bx1-5+8	8.75E+01	-1.67E+02		
	eGFP	1.21E+02	-2.01E+02		
	A. squarrosa				
	Blatt jung	-1.73E+02	-3.06E+02		
	Oxindol	1.17E+06	-2.89E+02		
	Indol	-3.80E+01	5.69E+05		
2	blank	0.00E+00	0.00E+00		
	Bx1	-2.22E+02	2.06E+02		
	Bx1-2	1.16E+04	-3.75E+01		
	Bx1-3	-4.53E+02	1.03E+01		
	eGFP	-2.33E+02	-2.80E+01		
	A. squarrosa				
	Blatt jung	-7.59E+02	-1.40E+01		
	Oxindole	6.85E+05	-6.20E+01		
	Indole	-7.59E+02	3.30E+05		
4	blank	0.00E+00	0.00E+00		
	A. squarrosa				
	Blatt jung	-1.28E+05	-3.96E+02		
	Oxindol	-1.28E+05	7.85E+02		
	Indol	-1.28E+05	9.42E+05		
	Bx1-5+8	-1.29E+05	3.17E+00		
	Bx1-2	-1.30E+05	8.06E+03		
	Bx1	-1.29E+05	5.31E+03		

7.3 Quantifizierung Peak-Flächen

7.3.1 Originalwerte

Tabelle 36: Originalwerte der Peak-Flächen der Messung der Benzoxazinoide in Proben des Botanischen Garten Jena und des MPI für Chemische Ökologie Jena, der Lamium-Proben, sowie des Jasmonsäure-Induktionsversuches. Methanolextrakte wurden mittels HPLC-MS analysiert.

		Analyte Peak Area (counts)					
		DIBOA-Glc	DIMBOA-Glc	HBOA-Glc	HMBOA-Glc		
Proben des	blank	0.00E+00	1.28E+02	1.93E+02	6.42E+01		
Botanischen	A. squarrosa						
Garten Jenas	Blatt jung	1.29E+02	1.28E+02	1.29E+02	3.21E+02		
+ Proben des	blank	1.28E+02	3.21E+02	1.28E+02	3.20E+02		
MPI für	A. squarrosa						
	Blatt jung	1.49E+05	4.72E+06	1.95E+06	3.29E+06		

Chemische	blank	2.57E+02	2.25E+03	3.85E+02	7.70E+02
Ökologie Jena	B. hispanica				
	#1	3.21E+02	2.05E+03	1.50E+05	2.11E+02
	B. nispanica #2	4 18E±02	6 23E+03	2 00 5 105	2 02E+03
	#2 R hispanica	4.102+02	0.232+03	2.002+03	2.022+03
	<i>В.</i> пізрапіса #3	2.25E+02	3.40E+03	1.85E+05	6.32E+02
	<i>B. ni</i> ara #1	3.21E+02	2.57E+03	1.49E+05	3.88E+03
	B. nigra #2	2.57E+02	4.46E+03	1.52E+05	1.06E+03
	B. nigra #3	9.95E+02	4.17E+03	1.07E+05	3.78E+03
	L. album #1	3.79E+03	1.93E+03	4.85E+04	1.83E+04
	L. album #2	5.14E+02	2.25E+03	6.62E+04	1.90E+04
	L. album #3	5.78E+02	4.08E+03	5.88E+04	3.04E+04
	<i>L.</i>				
	galeobdolon			o (o= o=	
	Blatt #1	1.81E+07	3.08E+04	9.43E+05	1.98E+03
	L.				
	Blatt #2	1 75E±07	2 54 5+04	5 11E+05	1 085+03
		1.752+07	2.34L+04	J.11L+0J	1.002+03
	aaleobdolon				
	Blatt #3	1.74E+07	1.74E+04	6.67E+05	1.19E+03
	L. orvala				
	Blatt #1	5.65E+03	3.79E+03	2.41E+05	2.95E+04
	L. orvala				
	Blatt #2	3.53E+03	4.17E+03	5.94E+04	2.37E+04
	L. orvala				
	Blatt #3	5.07E+03	2.41E+03	1.52E+05	3.30E+04
	L.				
	<i>purpureum</i> Blatt⊥ Blüto	3 60 5 + 03	1 60E±03	4 855+04	2 085+04
		3.002+03	1.002+03	4.03L+04	2.002+04
	Blatt #1	2.07E+04	3.08E+03	8.13E+04	6.40E+03
	L. leonurus	2101 2 1 0 1	01002.00	0.102.01	01102100
	Blatt #2	3.21E+03	3.47E+03	8.98E+04	4.53E+03
	blank	5.46E+03	1.93E+02	3.21E+02	1.93E+02
	L. sibiricus				
	Blatt #1	5.01E+03	7.71E+02	7.89E+04	6.35E+02
	L. sibiricus				
	Blatt #2	4.94E+03	2.73E+03	1.27E+05	4.94E+03
	M. vulgare	4 505 .00		4 405 .05	
	Blatt #1	4.56E+03	2.25E+03	1.13E+05	9.77E+02
	NI. Vulgare Blatt #2	3 08E±03	2 31 E±03	7 81 E±01	3 00E+02
	M vulgare	3.002+03	2.312+03	7.04L+04	3.392+02
	Blatt #3	5.14E+03	1.28E+03	1.05E+05	1.59E+03
	P. tuberosa				
	Blatt	1.41E+03	4.05E+03	1.32E+05	1.79E+05
	S. citrina				
	Blatt #1	4.56E+03	1.28E+03	1.09E+05	6.99E+03
	S. citrina				
	Blatt #2	1.22E+03	2.70E+03	1.92E+04	2.53E+03
	S. citrina				
	Blatt #3	2.3/E+03	1.16E+03	4.58E+04	2.65E+04

S.				
Blatt #1	2.44E+03	5.78E+02	1.19E+05	3.34E+04
S.				
macrantha	1 675 02	1.025.02	1 175,05	2.245.04
S palustris	1.07E+03	1.03E+03	1.17E+05	2.24E+04
Blatt #1	2.70E+03	3.85E+02	5.42E+04	3.33E+04
S. palustris				
Blatt #2	1.41E+03	2.83E+03	4.22E+04	5.52E+04
Blatt #3	2.50E+03	1.09E+03	3.36E+04	4.40E+04
Blank	1.48E+03	1.28E+02	2.57E+02	1.93E+02
. A.				
hungaricus				
Diall #1	2.20E+07	2.39E+04	2.48E+06	1.30E+03
A.				
Rlatt #2	2 17E+07	4 24E+03	2 43E+06	2.06E+03
A.	2.17 2.107	1.212100	2.102.00	2.002.00
hungaricus		- · · - · · ·		
Blatt #3	2.16E+07	3.13E+04	2.71E+06	1.02E+04
aurantiaca				
Blatt #1	6.49E+05	3.10E+05	4.08E+04	1.72E+06
A.				
Blatt #2	6.08E+06	5.15E+06	3.07E+05	9.02E+06
A.	0.002.00	01102.00	0107 2 . 00	01022.00
aurantiaca	0 775 00		0 505 05	
Blatt #3	3.75E+06	2.11E+06	2.58E+05	6.23E+06
Blatt #1	4.75E+03	7.06E+02	7.01E+04	7.26E+03
B. prionitis				
Blatt #2	2.18E+03	1.28E+02	2.54E+04	1.19E+04
B. prioriitis Blatt #3	1.03E+03	1.28E+02	3.20E+04	1.13E+04
C. pungens				
Blatt #1	1.15E+07	3.85E+02	4.09E+05	1.31E+04
C. pungens Blatt #2	1 40E+07	1 41E+03	4 79E+05	9 78F+03
C. pungens	1.102107	1.112100	1.702.00	0.702100
Blatt #3	1.29E+07	1.41E+03	3.49E+05	1.36E+04
E.				
Blatt	2.63E+03	5.14E+02	4.37E+04	6.96E+02
G.				
ceylanicum			1 5 4 5 . 00	
Biatt #1	∠.ŏ∠⊏+U3	1.93E+02	1.54E+03	J.40E+U3
ceylanicum				
Blatt #2	1.93E+03	2.57E+02	2.50E+03	1.08E+04

G.				
Ceylanicum Blatt #3	3 47E±03	1 02E±02	7 13E±03	1 83E±04
blank	3 21E+02	1.92L+02	1 29E+02	1.92E+04
H. alternata	0.212102	1.202.02	1.202.02	1.022102
Blatt #1	1.28E+03	2.05E+03	2.38E+03	9.18E+03
H. alternata				
Blatt #2	1.22E+03	1.93E+02	3.85E+02	4.17E+03
H. repanda				
Blatt #1	3.85E+02	1.28E+02	5.78E+02	4.88E+03
H. repanda				
Blatt #2	8.99E+02	1.93E+02	1.80E+03	5.42E+03
H. repanda	1 995 102	1 20 - 102	0.625.02	5 07E 102
Diall #3	4.00E+03	1.29E+02	9.032+02	5.97 E+03
Blatt	2 57E+02	3 21E+02	1 45E+04	4 12E+03
T.	2.07 2 1 02	0.212.02	11.102.101	1.122.00
mysorensis				
Blatt	7.71E+02	3.21E+02	9.24E+03	-4.09E+02
W. elongata				
Blatt #1	2.12E+03	1.92E+02	2.34E+03	4.44E+02
W. elongata				
Blatt #2	1.09E+03	6.42E+01	3.21E+03	6.30E+02
W. elongata			7.005.00	1 505.00
Blatt #3	3.60E+03	2.57E+02	7.38E+03	1.59E+03
C. IIava Blatt #1	1 40E±07	1 41F±03	4 74E±05	1 61 E±04
C flava	1.402+07	1.412+03	4.742+03	1.012+04
Blatt #2	1.29E+07	1.35E+03	1.51E+05	1.43E+04
C. flava				
Blatt #3	1.64E+07	5.78E+02	2.00E+05	1.40E+04
J.				
scheidweileri				
Blatt #1	1.54E+03	4.43E+03	7.32E+04	1.65E+03
J.				
Blatt #2	1 67E±03	2 44E±03	6 56E±04	1 /1E+03
	1.07 L +03	2.442+03	0.302+04	1.412+03
scheidweileri				
Blatt #3	2.53E+04	7.77E+03	8.67E+04	4.09E+03
D. elatum				
Blatt #1	1.86E+03	1.83E+03	2.12E+05	1.98E+04
D. elatum				
Blatt #2	7.71E+02	2.18E+03	2.43E+05	2.90E+04
D. elatum	4 405 .00	4.045.04	4 005 05	
Blatt #3	1.10E+U3	1.31E+04	4.98E+05	2.59E+04
J album	0.300+02	0.420+01	2.57 E+02	1.935+02
Wurzel #1	4,49F+02	1.93F+02	1.28F+02	1.93E+02
L. album				
Blatt + Blüte				
#1	1.41E+03	1.93E+02	3.15E+03	2.69E+03
L. album				
Wurzel #2	4.49E+02	1.93E+02	6.43E+01	1.93E+02

	L. album				
	Blatt + Blüte	4.005.00	7.005.00	4.405.04	4.405.04
	#2	1.09E+03	7.06E+02	4.13E+04	1.12E+04
	<i>G. platerise</i> Rlatt jung #1	5 77E+02	1 54E+03	2 87E+04	1 68E+02
	G. pratense	0.112102	1.042100	2.07 2104	1.002102
	Blatt alt #1	1.57E+04	1.22E+03	9.62E+04	1.02E+04
	G. pratense				
	Wurzel #1	1.29E+02	3.85E+02	7.70E+02	1.03E+03
	G. pratense				
	Blatt jung #2	3.15E+03	1.03E+03	3.00E+04	-2.50E+02
	G. pratense				- · · - - · ·
	Blatt alt #2	1.67E+03	3.66E+03	7.27E+04	6.16E+01
	G. pratense		1.005.00	4 005.00	
	G protonso	7.58E+03	1.92E+02	1.99E+03	1.99E+03
	Blatt jung #3	3 21 E+02	1 35E+03	1 35F+04	3 47F+03
	G. pratense	0.212102	1.002100	1.002104	0.47 2 100
	Blatt alt #3	2.57E+02	7.06E+02	2.35E+04	9.44E+03
	G. pratense				
	Wurzel #3	5.01E+03	6.42E+01	5.78E+02	1.93E+02
	blank	1.93E+02	6.43E+01	2.57E+02	1.93E+02
	C. regalis				
	Blüte #1	4.49E+02	3.53E+02	1.28E+04	1.70E+03
	C. regalis			0 755 04	
	Blatt #1	1.03E+03	1.16E+03	2.75E+04	8.56E+03
		1 28E±03	3 21 E±02	2 57E±02	4 13E±02
·	C recalis	1.202+03	5.212+02	2.37 L+02	4.132+02
	Stiel #1	4.17E+03	8.35E+02	5.31E+04	1.07E+02
	C. regalis		0.001.01	0.0.2.0.	
	Blüte #2	1.61E+03	5.78E+02	1.54E+04	1.17E+03
	C. regalis				
	Blatt #2	1.93E+02	1.28E+03	3.06E+04	1.85E+03
	C. regalis			~ ~ / = ~ ~	
	Wurzel #2	5.14E+02	1.93E+02	3.21E+02	9.10E+01
	C. regalis		0.045.00	4 005 04	
	C rogalis	3.00E+02	2.312+03	4.030+04	4.202+03
	Blüte #3	1.93E+02	3.21E+02	9.50E+03	-2.41E+03
	C. regalis	11002.02	0.212.02	0.002.00	21112100
	Blatt #3	4.49E+02	1.93E+02	1.37E+04	-3.89E+03
	C. regalis				
	Wurzel #3	4.50E+02	1.93E+02	2.57E+02	3.76E+02
	C. regalis				
	Stiel #3	6.43E+01	6.42E+02	1.48E+04	-5.42E+03
	I. repens		1 075.00		
	Blatt #1	1.10E+02	1.67E+03	8.00E+04	0.74E+02
	I. (epens Blatt + Blüta	1 03⊑⊥∩ว	1 03E±03	9 42 F±04	1 04 5+03
	T renens	1.336702	1.036703	J.42LTU4	1.046703
	Blatt #2	8.35E+02	4.49E+03	5.80E+04	3.89E+02
	T. repens				
	Wurzel	5.14E+02	1.28E+02	7.06E+02	1.93E+02

	blank	9.63E+02	6.42E+01	1.92E+02	1.28E+02
	R. patientia			0.007.5	
	Blatt alt #1	1.29E+02	6.33E+03	8.08E+04	1.65E+04
	R. patientia				
	Wurzels #1	6.43E+01	1.28E+02	1.93E+02	8.86E+02
	R. patientia	1 025 02	1 255,02	0 445 .02	1 245,02
	Biall jung #1	1.93E+02	1.35E+03	9.44E+03	1.24E+03
	R. patientia	3 85 5 402	1 01E+03	1 505+04	6 05E+03
	Diall all #2	3.03E+02	4.946+03	1.59E+04	0.952+05
		5 78E±02	1 055+04	1 26E±05	1 70E±04
	R nationtia	J.70L+02	1.032+04	1.202+03	1.702+04
	Rlatt jung #2	8 35F±02	6 42 E±01	3 85F±02	7 22E±02
	R natientia	0.332+02	0.422401	3.00L+02	1.222702
	Riatt alt #3	3 85F±02	2 50E±02	3 19F±04	7 35E±03
	R natientia	5.00L102	2.302102	3.132104	7.002100
	Wurzels #3	1.09E+03	-2.96E+03	1.33E+05	4.19F+04
	R natientia	1.002100	2.002.00	1.002100	1.102104
	Blatt jung #3	5 13E+02	-2 09F+01	1 93E+02	9 90F+02
Jasmonsäure-	hlank	6 43F±01	0.00F±00	6 43F±01	6 43F±01
Versuch	A souarrosa				
Versuori	Rlatt jung	1 02F+04	5 01E+05	3 78E+05	2 77E+05
	blatt Jung	5 78E+02	1 93E+02	3.85E+02	1 28E+02
	C regalis	0.702102	1.002102	0.002102	1.202102
	Ctr 1	3.21F+02	6.16F+03	1.45E+05	1.03F+04
	C recalis	0.212102	0.102100		
	Ctr 2	1.92F+02	1.22E+03	2.49F+04	4.44F+03
	C recalis				
	Ctr. 3	3.85E+02	1.41E+03	7.05E+04	3.43E+03
	C. regalis				
	Ctr. 4	3.21E+02	5.13E+02	2.90E+04	4.10E+03
	C. regalis				
	JA1	6.43E+01	8.99E+02	1.93E+04	6.25E+03
	C. regalis				
	JA2	1.28E+02	6.42E+02	3.22E+04	4.65E+03
	C. regalis				
	JA3	3.21E+02	7.05E+02	6.70E+04	1.68E+03
	C. regalis				
	JA4	2.57E+02	1.67E+03	5.33E+04	5.12E+03
	blank	1.28E+02	1.28E+02	1.28E+02	3.20E+02
	blank	1.93E+02	6.42E+01	1.29E+02	1.93E+02
	A. squarrosa	Ī		ŀ	
	Blatt jung	1.23E+04	4.74E+05	4.40E+05	2.92E+05
	blank	1.28E+02	6.43E+01	1.93E+02	1.29E+02
	L. album				
	Ctr. 1	9.63E+02	6.42E+02	9.05E+03	3.09E+04
	L. album				
	Ctr. 2	7.06E+02	3.21E+02	5.59E+03	1.50E+04
	L. album				
	Ctr. 3	1.93E+02	3.21E+02	2.26E+04	8.60E+03
	L. album				
	Ctr. 4	1.28E+03	7.71E+02	5.13E+04	7.51E+04
	L. album	2.57E+02	3.21E+02	5.33E+03	2.01E+04

	JA 1				
	L. album				
	JA 2	2.57E+02	4.49E+02	4.24E+03	2.29E+04
	L. album				
	JA 3	4.49E+02	9.62E+02	2.09E+04	1.57E+04
	L. album				
	JA 4	3.21E+02	8.35E+02	5.47E+04	3.09E+04
	blank	5.14E+02	6.43E+01	1.28E+02	2.57E+02
Lamium-	blank	6.42E+02	1.93E+02	5.78E+02	3.21E+02
Proben	A. squarrosa				
	Blatt jung	2.09E+04	1.22E+06	9.16E+05	5.11E+05
	blank	3.21E+02	7.06E+02	1.29E+02	5.14E+02
	L. orvala #1	1.93E+03	8.35E+02	1.04E+05	3.26E+04
	L. orvala #2	7.06E+02	1.76E+04	1.06E+05	2.67E+04
	L. orvala #2	5.78E+02	3.72E+03	9.41E+04	1.82E+04
	L. orvala				
	Alba #1	3.85E+02	6.23E+03	8.41E+04	3.49E+04
	L. orvala				
	Alba #2	4.49E+02	2.38E+03	1.22E+05	2.64E+04
	L. orvala				
	Alba #3	3.85E+02	1.48E+03	1.01E+05	3.41E+04
	L.				
	maculatum				
	#1	5.13E+02	8.45E+04	2.12E+05	1.14E+05
	L.				
	maculatum				_
	#2	3.21E+02	3.56E+04	1.41E+05	6.83E+04
	L.				
	maculatum				
	#3	3.21E+02	1.29E+02	3.21E+02	7.06E+02
	L.				
	maculatum	0.405.00			
	Blute	6.42E+02	6.29E+03	4.24E+04	1.76E+04
	biank	5.78E+02	1.28E+02	5.13E+02	5.14E+02
	L.				
	montanum #1	1 905,07	6 525 104	1 145,07	2045.04
	#1	1.00E+07	0.335+04	1.14±+07	2.04E+04
	L.				
	וווטוונמוועווו #2	1 775,07	1.025.05	1 62 - 107	2545,04
	#2	1.77 E+07	1.020+03	1.032+07	2.046+04
	L. montanum				
	#3	2 00F±07	2 00E±05	1 83E±07	7 03E±04
	#3	2.002107	2.002103	1.032107	7.002104
	caleobdolon				
	guicebuoloi/ #1	2 78F+07	1 29F+05	1 11F+07	8 04F+03
	1				0.012100
	galeobdolon				
	#2	2.02E+07	3.48E+04	3.20E+06	2.29E+04
	galeobdolon				
	#3	2.84E+07	7.10E+04	1.05E+07	5.33E+03
	L. album #1	2.65E+04	9.69E+03	2.19E+05	2.77E+04
	L. album #2	1.25E+04	8.41E+03	1.11E+05	9.05E+04

L. album #3	1.04E+04	8.99E+02	1.24E+05	7.69E+03
L. album				
Blüte	8.99E+03	4.82E+03	5.00E+04	4.45E+03
blank	1.17E+04	3.85E+02	4.75E+03	2.57E+02

Tabelle	37: Originalwert	te a	ler Peak-Flächen der M	essung der Benzo	oxazinoid	le in de	en mit Bx-
Genen	transformierten	Ν.	benthamiana-Pflanzen.	Methanolextrakte	wurden	mittels	HPLC-MS
analysie	ert.						

		Analyte Peak Area (counts)					
		DIBOA-GIc	DIMBOA-Glc	HBOA-Glc	HMBOA-Glc		
1	blank	5.78E+03	1.93E+02	2.15E+03	1.93E+02		
	<i>Bx1</i> +2 #1	1.67E+03	2.57E+02	1.09E+03	2.57E+02		
	Bx1+2 #2	5.78E+02	1.93E+02	7.06E+02	1.93E+02		
	Bx1-5+8 #2	5.24E+04	1.28E+02	1.90E+05	1.28E+02		
	<i>Bx1-5</i> +8 #1	1.98E+04	3.85E+02	3.20E+05	3.85E+02		
	eGFP-Ctr. #1	1.28E+03	1.28E+02	1.35E+03	1.28E+02		
	eGFP-Ctr. #2	1.03E+03	1.29E+02	5.78E+02	1.29E+02		
	eGFP-Ctr. #3	4.69E+03	3.85E+02	3.63E+03	3.85E+02		
	A. squarrosa						
	Blatt jung	2.39E+04	1.06E+06	7.78E+05	1.06E+06		
	Oxindol	7.70E+02	1.29E+02	5.79E+02	1.29E+02		
	Indol	2.83E+03	1.28E+02	9.63E+02	1.28E+02		
	Blank	7.06E+02	1.93E+02	1.86E+03	1.93E+02		
	Blank	2.06E+03	1.93E+02	6.42E+02	1.93E+02		
3	Blank	8.99E+02	1.28E+02	1.93E+02	5.14E+02		
	A. squarrosa						
	Blatt jung	2.39E+04	8.61E+05	9.39E+05	6.03E+05		
	Blank	2.57E+02	8.35E+02	3.21E+02	2.57E+02		
	<i>Bx1-8</i> #1	1.54E+03	1.15E+05	3.08E+05	3.66E+05		
	Bx1-8 #2	1.09E+03	8.91E+04	1.56E+05	2.58E+05		
	Bx1-8 #3	6.42E+02	4.74E+04	1.60E+05	1.30E+05		
	<i>Bx1-6</i> +8 #1	2.05E+03	1.92E+02	1.62E+05	4.78E+03		
	Bx1-6+8 #2	1.29E+02	1.28E+02	3.43E+04	2.73E+03		
	Bx1-6+8#3	1.93E+02	1.28E+02	1.08E+05	4.43E+03		
	<i>Bx1-4</i> +6-8 #1	1.93E+02	2.57E+02	4.29E+05	3.08E+03		
	<i>Bx1-4</i> +6-8 #2	2.57E+02	1.28E+02	6.22E+05	1.96E+03		
	<i>Bx1-4</i> +6-8#3	1.93E+02	6.43E+02	1.16E+06	3.60E+03		
	Blank	4.49E+02	2.57E+02	4.50E+02	2.57E+02		
	<i>Bx1-5</i> #1	2.05E+03	1.93E+02	4.26E+05	5.39E+03		
	<i>Bx1-5</i> #2	3.27E+03	3.21E+02	2.33E+05	1.67E+03		
	<i>Bx1-5</i> #3	3.21E+03	2.57E+02	3.14E+05	2.85E+03		
	<i>Bx1-4</i> #1	2.57E+02	5.78E+02	3.33E+06	2.31E+03		
	<i>Bx1-4</i> #2	2.56E+02	8.99E+02	3.35E+06	2.38E+03		
	<i>Bx1-4</i> #3	1.29E+02	6.93E+03	4.27E+06	4.08E+03		
	eGFP #1	1.93E+02	1.28E+02	1.28E+03	4.49E+03		
	eGFP #2	1.93E+02	1.28E+02	5.78E+02	3.47E+03		
	eGFP #3	1.92E+02	1.28E+02	1.29E+02	4.04E+03		
	Blank	1.28E+03	6.43E+01	1.93E+02	2.57E+02		
---	--------------------	----------	----------	----------	----------		
4	Blank	7.70E+02	1.28E+02	1.93E+02	1.28E+02		
	A. squarrosa						
	Blatt jung	2.30E+04	6.81E+05	1.04E+06	6.81E+05		
	Oxindol	2.57E+02	3.21E+02	1.28E+02	3.21E+02		
	Indol	3.21E+02	3.20E+02	1.93E+02	3.20E+02		
	Blank	1.41E+03	1.28E+02	1.29E+02	1.28E+02		
	<i>Bx1-5</i> +8#1	2.03E+04	1.05E+04	3.09E+05	1.05E+04		
	<i>Bx1-5</i> +8 #2	1.22E+03	1.38E+03	8.35E+03	1.38E+03		
	Bx1-5+8#3	1.99E+04	3.18E+03	1.64E+05	3.18E+03		
	<i>Bx1-2</i> #1	3.85E+02	3.63E+03	5.78E+02	3.63E+03		
	<i>Bx1-2</i> #2	3.21E+02	2.25E+03	3.85E+02	2.25E+03		
	<i>Bx1-2</i> #3	3.85E+02	4.04E+03	6.42E+02	4.04E+03		
	<i>Bx1</i> #1	5.14E+02	1.93E+03	2.57E+02	1.93E+03		
	<i>Bx1</i> #2	3.21E+02	9.95E+02	2.57E+02	9.95E+02		
	Bx1 #3	2.57E+02	3.34E+03	8.99E+02	3.34E+03		
	blank	5.78E+02	4.49E+02	1.93E+02	4.49E+02		
	blank	5.14E+02	1.93E+02	3.22E+02	1.93E+02		

Tabelle 38: Originalwerte der Peak-Flächen der Messung der Indole in den mit Bx-Genen transformierten Nicotiana benthamiana-Pflanzen. Methanolextrakte wurden mittels HPLC-MS analysiert.

		Analyte Peak Area (counts)		
		Oxindol	Indol	
1	Blank	4.28E+02	2.25E+03	
	<i>Bx1</i> +2 #1	8.57E+04	1.62E+03	
	<i>Bx1+2 #2</i>	5.19E+04	1.94E+03	
	Bx1-5+8 #2	6.63E+02	3.08E+03	
	<i>Bx1-5</i> +8 #1	1.30E+02	1.74E+03	
	<i>eGFP</i> -Ctr. #1	1.74E+02	2.03E+03	
	eGFP-Ctr. #2	4.27E+02	6.00E+02	
	eGFP-Ctr. #3	1.88E+03	4.05E+02	
	A. squarrosa	_	_	
	Blatt jung	1.18E+02	4.38E+02	
	Oxindol	4.32E+06	8.99E+02	
	Indol	1.48E+02	1.49E+06	
1+2	blank	2.00E+02	1.11E+02	
	Bx1 #2	1.06E+02	2.21E+03	
	<i>Bx1</i> #1	2.49E+02	8.98E+02	
	<i>Bx1</i> +2 #1	3.72E+04	1.23E+02	
	<i>Bx1+2</i> #2	1.97E+04	5.08E+02	
	<i>Bx1</i> +2+3 #1	1.46E+02	5.13E+02	
	Bx1+2+3 #2	0.00E+00	1.05E+03	
	Bx1+2+3 #3	1.17E+02	1.06E+03	
	eGFP #1	1.65E+02	3.11E+02	
	eGFP #2	2.48E+02	5.99E+02	

	eGFP #3	1.04E+02	5.27E+02
	A. squarrosa		
	Blatt jung	0.00E+00	7.42E+02
	Oxindol	3.04E+06	6.64E+02
	Indol	0.00E+00	8.52E+05
4	blank	4.44E+03	1.83E+02
	blank	6.24E+02	0.00E+00
	A. squarrosa		
	Blatt jung	1.04E+03	3.32E+02
	Oxindol	1.37E+03	3.72E+06
	Indol	1.38E+06	0.00E+00
	blank	9.04E+03	0.00E+00
	<i>Bx1-5</i> +8 #1	4.80E+03	9.98E+01
	<i>Bx1-5</i> +8 #2	2.69E+03	6.55E+02
	Bx1-5+8 #3	3.01E+03	9.38E+01
	<i>Bx1-2</i> #1	2.83E+03	1.17E+04
	<i>Bx1-2</i> #2	2.43E+03	4.79E+04
	Bx1-2 #3	2.38E+03	3.91E+04
	<i>Bx1</i> #1	2.93E+03	1.62E+02
	<i>Bx1</i> #2	2.54E+03	1.18E+02
	<i>Bx1</i> #3	2.08E+03	0.00E+00
	blank	1.30E+03	1.13E+02

7.3.2 Mittelwerte

Tabelle39:Peak-Flächen-MittelwertederMessungderBenzoxazinoideinProbendesBotanischen Garten Jena und des MPI für Chemische Ökologie Jena, der Lamium-Proben, sowiedes Jasmonsäure-Induktionsversuches.Methanolextrakte wurden mittelsHPLC-MS analysiert.

		Analyte Peak Area (counts)			
		DIBOA-	DIMBOA-	HBOA-	HMBOA-
		Glc	Glc	Glc	Glc
Proben des					249.577777
Botanischen	blank	1.07E+03	3.71E+02	2.35E+02	8
Garten Jenas	А.				
+ Proben des	squarrosa				
MPI für	Blatt jung	7.46E+04	2360064	975064.5	1645160.5
Chemische			3893.33333	178333.333	954.333333
Ökologie Jena	B. hispanica	3.21E+02	3	3	3
	B niara	524.333333	3733.33333		2906.66666
	B: Ingla	3	3	136000	7
		1627.33333	2753.33333	57833.3333	22566.6666
	L. album	3	3	3	7
	L.	17666666.6	24533.3333		1416.66666
	galeobdolon	7	3	707000	7
			3456.66666		28733.3333
	L. orvala	4750	7	150800	3
	L.				
	purpureum				
	Blatt + Blüte	3600	1600	48500	20800

L. leonurus 11955 3275 85550 5465 L. sibiricus 4975 1750.5 102950 2787.5 Nudgare 4260 66666 988.66666 988.66666 M. udgare 4260 7 98800 77 P. tuberosa 1410 4050 132000 179000 2716.66666 1713.3333 12006.6666 5. 188000 7 S 3 1435 3 7 3 264000 4520 A 217666666.6 19813.333 44166.6666 3 7 A 217666666.6 19813.333 2540000 4520 A 2253.333 20666666 10153.333 10153.333 B. prionitis 3 7 42500 3 C. pungens 12800000 3 3 12160 E pulchellum 2633 4173.3333 12160 H 21740 214 3 1520 H. alternata<					
L. sibiricus 4975 1750.5 102950 2787.5 M. vuigare 4260 7 988.666666 M. vuigare 4260 7 988.00 7 P. tuberosa 1410 4050 132000 179000 2716.6666 1713.3333 12006.6666 7 S. citrina 7 3 58000 7 S. 2203.3333 43333.333 44166.6666 S. palustris 3 1435 3 7 A. 21766666.6 19813.333 201933.33 5656666.66 aurantiaca 3493000 3 7 42500 3 C. pungens 1280000 3 3 12160 E. 1068.3333 41233.333 12260 G. 3 12160 3 3 H. alternata 1250 1121.5 1382.5 6675 Juckellum 2630 514 43700 696 G. 3 3	L. leonurus	11955	3275	85550	5465
M. vulgare 4260 7 98800 7 P. tuberosa 1410 4050 132000 179000 2716.66666 1713.3333 58000 7 S. 203.3333 4333.333 4416.6666 S. citrina 7 3 58000 7 macrantha 2055 804 118000 27900 203.3333 4333.333 34166.6666 5 5 7 A. 217666666.6 19813.333 2540000 4520 A. 2523.333 201933.333 56566666 aurantiaca 3493000 3 3 10153.333 B. prionitis 3 7 42500 3 C. pungens 12800000 3 3 12160 E 4250 3 12160 E 4250 1121.5 1382.5 6675 Qulchellum 2630 514 43700 696 66	L. sibiricus	4975	1750.5	102950	2787.5
M. vulgare 4260 7 98800 7 P. tuberosa 1410 4050 132000 179000 2716.66666 1713.33333 4333.3333 4406.6666 S. citrina 7 3 58000 7 macrantha 2055 804 118000 27900 acarantica 3 1435 3 7 A. 217666666 19813.333 44333.333 44166.6666 S. palustris 3 1435 3 7 A. 217666666 19813.333 2540000 4520 A. 217666666 19813.333 254000 3 3 A. 217666666 10153.3333 10168.3333 41233.33 12160 B. prionitis 3 7 42500 3 3 12160 E. 1068.3333 4123.333 12160 1132.5 6675 G. pungens 12800000 3 3 1250 1121.5 1382.5 <td< td=""><td></td><td></td><td>1946.66666</td><td></td><td>988.666666</td></td<>			1946.66666		988.666666
P. tuberosa 1410 4050 132000 179000 2716.6666 1713.3333 12006.6666 S. citrina 7 3 58000 7 S. 2203.33333 4333.3333 44166.666 5. Macrantha 2055 804 118000 27900 2203.33333 4333.3333 44166.666 6. S. palustris 3 1435 3 7 A. 21766666.6 19813.333 201933.333 5656666.66 aurantiaca 3493000 3 3 7 A. 22653.3333 320.666666 10153.3333 C. pungens 12800000 3 3 12160 E. pulchellum 2630 514 43700 696 G. 3723.3333 11520 1121.5 1382.5 6675 Leylancum 2740 214 3 11520 H. alternata 1250 1121.5 1382.5 6675 Leylanum	M. vulgare	4260	7	98800	7
2716.66666 1713.33333 12006.6666 S. 2003.3333 4333.3333 44166.6666 S. palustris 3 1435 3 7 A. 217666666 19813.3333 4333.333 44166.6666 S. palustris 3 1435 3 7 A. 217666666 19813.3333 2540000 4520 A. 252333.33 201933.333 5656666.66 aurantiaca 3493000 3 3 10153.3333 B. prionitis 3 7 42500 3 2055.6666 10153.3333 12160 3 3 pulchellum 2630 514 43700 696 gatanicum 2740 214 3 11520 H. alternata 1250 1121.5 1382.5 6675 2054.66666 11113.66666 5423.33333 14500 4120 T. erecta 257 321 14500 4120 T. erecta 257	P. tuberosa	1410	4050	132000	179000
S. citrina 7 3 58000 7 S. 2203.3333 4333.3333 44166.6666 27900 2203.3333 1435 3 7 A. 21766666.6 1981.3333 201933.333 5656666.66 aurantiaca 3493000 3 3 7 A. 2653.3333 320.6666666 10153.3333 3 B. prionitis 3 7 42500 3 C. pungens 12800000 3 3 12160 E. 1068.33333 41233.333 12160 E. 10168.33333 41233.333 12160 G. 372.33333 3 12630 514 43700 696 G. 3723.3333 12160 1382.5 6675 1121.5 1382.5 6675 M. alternata 1250 1121.5 1382.5 6675 321 14500 4120 T. - - 7 33 7 4310 888<		2716.66666	1713.33333		12006.6666
S. macrantha 2055 804 118000 27900 2203.3333 4333.3333 44166.6666 S. palustris 3 1435 3 7 A. 21766666.6 19813.3333 2540000 4520 A. 21766666.6 19813.3333 201933.333 5656666.66 aurantiaca 3493000 3 3 7 2653.33333 320.66666 10153.3333 12160 B. prionitis 3 7 42500 3 C. pungens 12800000 3 3 12160 E. 3 12160 3723.3333 ceylanicum 2740 244 3 11520 H. alternata 1250 1121.5 1382.5 6675 2054.66666 1113.66666 5423.3333 7 3 T. erecta 257 321 14500 4120 T. recta 257 321 14500 4120 J. stas	S. citrina	7	3	58000	7
macrantha 2055 804 118000 27900 2203.33333 44166.6666 43333.3333 44166.6666 A. 21766666.6 19813.3333 2540000 4520 A. 252333.33 201933.333 5656666.66 10153.333 B. prionitis 3 7 42500 3 3 C. pungens 12800000 3 3 12160 3 3 C. pungens 12800000 3 3 12160 3 3 12160 Euclehlum 2630 514 43700 696 6 3723.33333 12160 G. 372.33333 2054.66666 1113.66666 5423.33333 1250 H. alternata 1250 1121.5 1382.5 6675 Z. 2054.66666 1113.66666 5423.33333 1450 T. erecta 257 321 14500 4120 T. receta 257 321 14500 420 J.	S.				
2203.3333 4333.333 44166.6666 S. palustris 3 7 A. 21766666.6 19813.333 hungaricus 7 3 2540000 A. 252333.33 201933.33 565666.66 aurantiaca 3493000 3 3 7 2653.3333 320.666666 10153.3333 3 10153.3333 B. prionitis 3 7 42500 3 C. pungens 12800000 3 3 12160 E. pulchellum 2630 514 43700 696 G. 3723.3333 12160 1121.5 1382.5 6675 G. 3723.3333 11520 1113.66666 5423.3333 1520 H. repanda 7 150 7 3 1430 888 C. flava 3 7 275000 14800 1443333.3 1112.66666 W. elongata 2270 7 3 7 24900	macrantha	2055	804	118000	27900
S. palustris 3 1435 3 7 A. 2176666.6 19813.333 particus 7 3 2540000 4520 A. 2523333.33 201933.333 5656666.66 10153.3333 7 2653.3333 320.6666666 10153.3333 3 12160 3 B. prionitis 3 7 42500 3 3 12160 E. 1068.33333 412333.333 12160 3 3 12160 E. 1020000 3 3 12160 3 3 12160 E. 12800000 3 3 12160 3 3 12160 E. 1200 1121.5 1382.5 6675 6675 675 3 11500 7 3 7 3 7 3 7 33 7 4310 888 14133333.3 1112.6 6666 64233.3333 114800 144300 4800 7 3 3	•	2203.33333		43333.3333	44166.6666
A. 21766666.6 19813.333 2540000 4520 A. 252333.33 201933.333 5656666.66 aurantiaca 3493000 3 3 7 2653.3333 320.666666 10153.3333 3 B. prionitis 3 7 42500 3 C. pungens 12800000 3 3 12160 E. 1 43700 696 G. 3723.3333 12160 E. 3 3723.3333 ceylanicum 2740 214 33 11520 H. alternata 1250 1121.5 1382.5 6675 H. alternata 1250 1131.66666 5423.3333 1120 T. erecta 257 321 14500 4120 T. atternata 1250 7 33 7 275000 14800 J. scheidweiler 9503.33333 75166.6666 2383.33333 112.666666 2405 29225 <th< td=""><td>S. palustris</td><td>3</td><td>1435</td><td>3</td><td>7</td></th<>	S. palustris	3	1435	3	7
hungaricus 7 3 2540000 4565666.66 aurantiaca 3493000 3 3 565666.66 aurantiaca 3493000 3 3 7 2653.3333 320.666666 10153.3333 3 1260 3 B. prionitis 3 7 42500 3 3 12160 E. pulchellum 2630 514 43700 696 G. 3723.3333 12160 3 1150 6675 Quarticum 2740 214 3 11520 H. repanda 7 150 7 3 T. erecta 257 321 14500 4120 myorensis 771 321 9240 -409 V. elongata 2270 7 4310 888 C. flava 3 7 275000 14800 J. scheidweiler 9503.33333 1112.66666 2383.33333 11263.66666 5703.33333 17666.6666	, A.	217666666.6	19813.3333	0540000	4500
A. 22333.33 201933.33 555666.6 aurantiaca 3493000 3 3 7 2653.3333 320.666666 10153.333 1260 B. prionitis 3 7 42500 3 C. pungens 12800000 3 3 12160 E. 9000 3 3 12160 E. 9000 3 3 12160 G. 3723.3333 12160 3 3 C. pungens 12800000 3 3 11210 H. alternata 1250 1121.5 1382.5 6675 2054.66666 11113.66666 5423.33333 3 T. erecta 257 321 14500 4120 T. 7 321 9240 -409 W. elongata 2270 7 4310 888 C. flava 3 7 275000 14800 J. 3 4860 7 3	hungaricus	1	3	2540000	4520
aurantiaca 343300 3 3 4 2653.3333 320.666666 10153.3333 B. prionitis 3 7 42500 3 C. pungens 12800000 3 3 12160 E pulchellum 2630 514 43700 696 G. 2740 214 3 11520 H. alternata 1250 1121.5 1382.5 6675 2054.66666 1113.66666 5423.3333 11520 H. repanda 7 150 7 3 T. erecta 257 321 14500 4120 T. erecta 257 321 14500 4120 T. erecta 257 321 14500 4120 J. scheidweiler 9503.33333 171.066666 2383.33333 75166.6666 2383.333333 j 3 4880 7 3 7 24900 41203.66666 <td< td=""><td>А.</td><td>0.400000</td><td>2523333.33</td><td>201933.333</td><td>5656666.66</td></td<>	А.	0.400000	2523333.33	201933.333	5656666.66
B. prionitis 3 7 42500 3 B. prionitis 3 7 42500 3 C. pungens 12800000 3 3 12160 E. 9 1068.33333 3 12160 E. 9 3 3 12160 G. 3723.33333 3 12160 H. alternata 1250 1121.5 1382.5 6675 Q054.66666 1113.66666 5423.33333 H. repanda 7 150 7 3 T. erecta 257 321 14500 4120 4120 T. erecta 257 321 14500 4120 T. erecta 2270 7 4310 888 1443333.3 1112.66666 2383.3333 175166.6666 2383.3333 J 1263.66666 5703.33333 317666.6666 2383.33333 J 1263.66666 5703.33333 317666.6666 24900 1.4800 J. album 126	aurantiaca	3493000	3	3	1
B. prionitis 3 7 42500 3 C. pungens 12800000 3 3 12160 E. 90000 3 3 12160 G. 3723.3333 12160 G. 3723.3333 1520 H. alternata 1250 1121.5 1382.5 H. alternata 1250 1121.5 1382.5 G. 7 33 7 T. erecta 257 321 14500 4120 T. myorensis 771 321 9240 -409 W. elongata 2270 7 4310 888 C. flava 3 7 275000 14800 J. scheidweiler 9503.3333 17166.6666 2383.33333 i 3 4880 7 3 J. elatum 7 3 7 24900 L. album 1263.66666 5703.3333 317666.6666 2383.33333 Blatt + Blüte	D. main a itia	2653.33333	320.666666	40500	10153.3333
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	B. prionitis	3	/	42500	3
C. pungens 12800000 3 3 12160 E. pulchellum 2630 514 43700 696 G. 3723.33333 3 1520 H. alternata 1250 1121.5 1382.5 6675 2054.66666 1113.66666 5423.33333 1.520 H. repanda 7 150 7 3 T. erecta 257 321 14500 4120 T. myorensis 771 321 9240 -409 W. elongata 2270 7 4310 888 C. flava 3 7 75166.6666 2383.3333 J. 3 4880 7 3	0	1000000	1068.33333	412333.333	40400
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	C. pungens	12800000	3	3	12160
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	E.	0000		40700	000
G. 3723.3333 ceylanicum 2740 214 3 11520 H. alternata 1250 1121.5 1382.5 6675 2054.66666 1113.66666 5423.3333 3 H. repanda 7 150 7 3 T. erecta 257 321 14500 4120 T. 9240 -409 409 409 myorensis 771 321 9240 -409 W. elongata 2270 7 4310 888 1443333.3 1112.66666 2383.3333 7 5166.6666 2383.3333 J. scheidweiler 9503.3333 75166.6666 2383.3333 317666.6666 D. elatum 7 3 7 24900 L. album 1263.66666 5703.3333 317666.6666 1129.33333 Blatt 1250 449.5 22225 6945 G. pratense 1349.3333 1306.66666 24066.6666 1129.33333 Bl	puicneiium	2630	514	43700	696
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	G.	0740	014	3123.33333	11500
H. alternata12501121.51362.566732054.666661113.666665423.33333H. repanda715073T. erecta257321145004120T. </td <td></td> <td>2740</td> <td>214</td> <td>1202 5</td> <td>11520</td>		2740	214	1202 5	11520
H. repanda 7 150 7 3 T. erecta 257 321 14500 4120 T.	п. ацеттаца	1230	6.121.J	1302.3	5400 22222
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	U ropondo	2004.00000	150	1113.00000	2423.33333
T. eretia2.37321143004120T. myorensis7713219240-409Welongata227074310888U. scheidweiler9503.333331112.666662383.33333J. scheidweiler9503.3333375166.66662383.33333J. 		7	201	14500	4120
myorensis 771 321 9240 -409 W. elongata 2270 7 4310 888 14433333.3 1112.66666 7 275000 14800 J. 3 7 275000 14800 J. scheidweiler 9503.33333 75166.6666 2383.33333 i 3 4880 7 3 Scheidweiler 9503.33333 317666.6666 2383.33333 i 3 4880 7 3 D. elatum 7 3 7 24900 L. album 449 193 96.15 193 L. album 449 193 96.15 193 L. album 1250 449.5 22225 6945 G. pratense 1349.3333 1306.66666 24066.6666 1129.33333 Blatt 129.66666 213.73333 1112.666666 64133.3333 Blatt 7 3 7 3 G. pratense		201	321	14500	4120
Information 171 321 3240 443 W. elongata 2270 7 4310 888 14433333.3 1112.66666 7 275000 14800 J. 3 7 24900 3 7 L.album 7 3 7 24900 L. album 449 193 96.15 193 L. album 4149.33333 1306.66666 24066.6666 1129.33333 Blatt + Blüte 1250 449.5 22225 6945 G. pratense 5875.6666	nvorensis	771	321	9240	-409
W. elongata 2270 7 4310 888 14433333.3 1112.66666 7 275000 14800 J. 3 75166.6666 2383.3333 3 b 9503.33333 317666.6666 2383.3333 3 D. elatum 7 3 7 24900 L. album 1263.66666 5703.3333 317666.6666 1129.33333 L. album 9 93 96.15 193 L. album 1449 193 96.15 193 L. album 1349.3333 1306.66666 24066.6666 1129.33333 Blatt + Blüte 1250 449.5 22225 6945 G. pratense 5875.666666 64133.3333 112.666666 Wurzeln 7 1862 3 6567.2 G. pr	myorensis		171 066666	5240	+00
In Storiguta Intervention Intervention<	W elongata	2270	7	4310	888
C. flava 3 7 275000 14800 J. scheidweiler 9503.33333 75166.6666 2383.33333 i 3 4880 7 3 1263.66666 5703.33333 317666.6666 2383.33333 D. elatum 7 3 7 24900 L. album 7 3 7 24900 L. album 449 193 96.15 193 L. album 449 193 96.15 193 L. album 1250 449.5 22225 6945 G. pratense 1349.33333 1306.66666 24066.6666 1129.33333 Blatt + Blüte 1250 449.5 22225 6945 G. pratense 5875.66666 64133.3333 6567.2 G. pratense 5875.66666 213.733333 1112.666666 Wurzeln 7 3 7 1071 C. regalis 750.666666 417.333333 12566.6666 153.333333	W. clongata	14433333 3	1112 66666	4010	000
J. J. <thj.< th=""> J. J. J.<!--</td--><td>C. flava</td><td>3</td><td>7</td><td>275000</td><td>14800</td></thj.<>	C. flava	3	7	275000	14800
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				210000	11000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	scheidweiler	9503 33333		75166 6666	2383 33333
1263.66666 5703.3333 317666.666 D. elatum 7 3 7 24900 L. album 449 193 96.15 193 Wurzeln 449 193 96.15 193 L. album 449 193 96.15 193 L. album 1250 449.5 22225 6945 G. pratense 1349.3333 1306.66666 24066.6666 1129.33333 Blatt + Blüte 1250 449.5 22225 6945 G. pratense 1349.33333 1306.66666 24066.6666 1129.33333 Blatt jung 3 7 7 3 G. pratense 5875.666666 64133.3333 112.66666 Wurzeln 7 3 7 1071 C. regalis 750.6666666 417.333333 12566.66666 153.333333 Blüte 7 3 7 3 C. regalis 557.333333 877.666666 23933.3333 2173.33333	i	3	4880	7	3
D. elatum 7 3 7 24900 L. album 449 193 96.15 193 L. album 449 193 96.15 193 L. album 1250 449.5 22225 6945 G. pratense 1349.3333 1306.66666 24066.6666 1129.33333 Blatt + Blüte 1250 449.5 22225 6945 G. pratense 1349.33333 1306.66666 24066.6666 1129.33333 Blatt jung 3 7 7 3 G. pratense 5875.666666 64133.3333 112.666666 Wurzeln 7 3 7 1071 C. regalis 750.6666666 417.333333 12566.66666 153.333333 Blüte 7 3 7 3 C. regalis 557.333333 877.666666 23933.3333 2173.33333 Blatt 3 7 3 3 C. regalis 557.333333 877.666666 278.333333		1263.66666	5703.33333	317666.666	0
L. album 449 193 96.15 193 L. album 449 193 96.15 193 L. album 1250 449.5 22225 6945 G. pratense 1349.3333 1306.66666 24066.6666 1129.33333 Blatt + Blüte 1250 449.5 22225 6945 G. pratense 1349.3333 1306.66666 24066.6666 1129.33333 Blatt jung 3 7 7 3 G. pratense 5875.666666 64133.3333 6567.2 G. pratense 4239.666666 213.733333 1112.666666 Wurzeln 7 3 7 1071 C. regalis 750.6666666 417.333333 12566.66666 153.333333 Blüte 7 3 7 3 3 C. regalis 557.333333 877.6666666 23933.3333 2173.33333 Blatt 3 7 3 3 C. regalis 557.333333 877.6666666 <t< td=""><td>D. elatum</td><td>7</td><td>3</td><td>7</td><td>24900</td></t<>	D. elatum	7	3	7	24900
Wurzeln 449 193 96.15 193 L. album	L. album				
L. album 1250 449.5 22225 6945 Blatt + Blüte 1250 449.5 22225 6945 G. pratense 1349.33333 1306.66666 24066.6666 1129.33333 Blatt jung 3 7 7 3 G. pratense 5875.66666 64133.3333 6567.2 G. pratense 4239.66666 213.733333 1112.66666 Wurzeln 7 3 7 1071 C. regalis 750.666666 417.33333 12566.6666 153.33333 Blüte 7 3 7 3 C. regalis 557.33333 877.666666 23933.3333 2173.33333 Blatt 3 7 3 3 C. regalis 557.333333 877.666666 23933.3333 2173.33333 Blatt 3 7 3 3 3 C. regalis 557.333333 877.666666 23933.3333 2173.333333 Blatt 3 7 3	Wurzeln	449	193	96.15	193
Blatt + Blüte1250449.5222256945G. pratense1349.33331306.6666624066.66661129.3333Blatt jung3773G. pratense5875.6666664133.33336567.2Blatt alt7186236567.2G. pratense4239.66666213.7333331112.66666Wurzeln7371071C. regalis750.666666417.33333312566.6666153.333333Blüte7373C. regalis557.333333877.66666623933.33332173.33333Blatt3733C. regalis525.66666623933.33332173.33333Blatt3733Wurzeln748733	L. album				
G. pratense 1349.33333 1306.66666 24066.6666 1129.33333 Blatt jung 3 7 7 3 G. pratense 5875.66666 64133.3333 6567.2 G. pratense 4239.66666 213.733333 1112.66666 Wurzeln 7 3 7 1071 C. regalis 750.666666 417.333333 12566.6666 153.333333 Blüte 7 3 7 1071 C. regalis 750.6666666 417.333333 12566.6666 153.333333 Blüte 7 3 7 3 C. regalis 557.333333 877.666666 23933.3333 2173.33333 Blatt 3 7 3 3 C. regalis 557.333333 877.666666 23933.3333 2173.33333 Blatt 3 7 3 3 C. regalis 235.6666666 278.333333 293.333333 Wurzeln 748 7 3 3	Blatt + Blüte	1250	449.5	22225	6945
Blatt jung3773G. pratense5875.6666664133.33336567.2Blatt alt7186236567.2G. pratense4239.66666213.7333331112.66666Wurzeln7371071C. regalis750.666666417.33333312566.6666153.333333Blüte7373C. regalis557.333333877.66666623933.33332173.33333Blatt3733C. regalis557.333333877.66666623933.3333293.333333Blatt3733Wurzeln748733	G. pratense	1349.33333	1306.66666	24066.6666	1129.33333
G. pratense 5875.66666 64133.3333 Blatt alt 7 1862 3 6567.2 G. pratense 4239.66666 213.733333 1112.666666 1071 C. regalis 750.666666 417.333333 12566.6666 153.333333 Blüte 7 3 7 1071 C. regalis 557.333333 877.666666 23933.3333 2173.33333 Blüte 7 3 7 3 C. regalis 557.333333 877.6666666 23933.3333 2173.33333 Blatt 3 7 3 3 C. regalis 557.333333 877.6666666 23933.3333 2173.33333 Blatt 3 7 3 3 3 C. regalis 235.6666666 278.333333 293.333333 3 Wurzeln 748 7 3 3	Blatt jung	3	7	7	3
Blatt alt7186236567.2G. pratense4239.66666213.733331112.66666Wurzeln7371071C. regalis750.666666417.3333312566.6666153.33333Blüte7373C. regalis557.33333877.66666623933.33332173.33333Blatt3733C. regalis557.33333877.66666623933.33332173.33333Blatt3733Wurzeln748733	G. pratense	5875.66666		64133.3333	
G. pratense 4239.66666 213.733333 1112.66666 Wurzeln 7 3 7 1071 C. regalis 750.666666 417.333333 12566.6666 153.333333 Blüte 7 3 7 3 C. regalis 557.333333 877.666666 23933.3333 2173.33333 Blatt 3 7 3 3 C. regalis 557.333333 877.666666 23933.3333 2173.33333 Blatt 3 7 3 3 C. regalis 235.6666666 278.33333 293.333333 Wurzeln 748 7 3 3	Blatt alt	7	1862	3	6567.2
Wurzeln7371071C. regalis750.666666417.3333312566.6666153.33333Blüte7373C. regalis557.33333877.66666623933.33332173.33333Blatt3733C. regalis235.666666278.33333293.33333Wurzeln748733	G. pratense	4239.66666	213.733333	1112.66666	
C. regalis750.666666417.33333312566.6666153.333333Blüte7373C. regalis557.333333877.666666623933.33332173.33333Blatt3733C. regalis235.6666666278.333333293.333333Wurzeln748733	Wurzeln	7	3	7	1071
Blüte7373C. regalis557.33333877.66666623933.33332173.33333Blatt3733C. regalis235.666666278.33333293.333333Wurzeln748733	C. regalis	750.666666	417.333333	12566.6666	153.333333
C. regalis557.333333877.66666623933.33332173.33333Blatt3733C. regalis235.666666278.333333293.333333Wurzeln748733	Blüte	7	3	7	3
Blatt 3 7 3 3 C. regalis 235.666666 278.33333 293.333333 Wurzeln 748 7 3 3	C. regalis	557.333333	877.666666	23933.3333	2173.33333
C. regalis235.666666278.33333293.333333Wurzeln748733		3	7	3	3
Wurzeln 748 7 3 3	C. regalis		235.666666	278.333333	293.333333
	Wurzeln	748	7	3	3

	C rogalia		1060 22222	20722 2222	
	C. regails	1540 1	1202.33333	30733.3333	-351
		1040.1	5	5	-001
	Blatt	802.5	3080	72300	531.5
	T. repens				
	Blatt + Blüte	193	1030	94200	1040
	T. repens	514	128	706	103
	R natientia	200 666666	120	42866 6666	10266 6666
	Blatt alt	7	3840	7	7
	R. patientia	577,433333	0010	86397,6666	19928.6666
	Wurzeln	3	2556	7	7
	R. patientia	513.666666	464.433333	3339.33333	
	Blatt jung	7	3	3	984
Jasmonsäure-	blank	2.57E+02	1.07E+02	1.92E+02	1.71E+02
Versuch	A.				
	squarrosa				
	Blatt jung	1.02E+04	5.01E+05	3.78E+05	2.77E+05
	C. regalis				
	Ctr.	3.05E+02	2.33E+03	6.74E+04	5.57E+03
	C. regalis				
	JA	1.93E+02	9.79E+02	4.30E+04	4.43E+03
	blank	2.78E+02	6.43E+01	1.50E+02	193
	А.				
	squarrosa				
	Blatt jung	12300	474000	440000	292000
	L. album				
	Ctr.	785.5	513.75	22135	32400
	L. album				
	JA	321	641.75	21292.5	22400
Lamium-	blank	3.31E+03	3.53E+02	1.49E+03	4.02E+02
Proben	A.				
	squarrosa				
	Blatt jung	2.09E+04	1.22E+06	9.16E+05	5.11E+05
	L. orvala	1.07E+03	7.39E+03	1.01E+05	2.58E+04
	L. orvala	4.005.00		1 005 05	2 405 . 04
	Alba	4.06E+02	3.36E+03	1.02E+05	3.18E+04
	L.	2 955,02	4.015.04		6 10E 104
	Inaculatum	3.00E+02	4.010+04	1.10E+00	0.10E+04
	L. maculatum				
	Rlüto	6 42 E±02	6 20F±03	4 24 E±04	1 76E±04
		0.422102	0.202100	7.272107	1.702104
	montanum	1.86E+07	1.22E+05	1.53E+07	3.87F+04
	1				
	galeobdolon	2.55E+07	7.83E+04	8.27E+06	1.21E+04
	L. album	1.65E+04	6.33E+03	1.51E+05	4.20E+04
	L. album				
	Blüte	8.99E+03	4.82E+03	5.00E+04	4.45E+03

		Analyte Peak Area (counts)				
		DIBOA-Glc	DIMBOA-Glc	HBOA-Glc	HMBOA-Glc	
1	blank	2.85E+03	1.93E+02	1.55E+03	193	
	Bx1-2	1124	225	898	225	
	Bx1-5+8	36100	256.5	255000	256.5	
	eGFP	2333.333333	214	1852.666667	214	
	A. squarrosa					
	Blatt jung	7100	446000	204000	446000	
	Oxindol	825	400	1600	400	
	Indol	2410	225	1620	225	
3	blank	7.21E+02	3.21E+02	2.89E+02	321.25	
	A. squarrosa					
	Blatt jung	10500	330000	243000	207000	
	Bx1-8	1090.666667	83833.33333	208000	251333.3333	
	Bx1-6+8	790.6666667	149.3333333	101433.3333	3980	
	Bx1-4+6-8	214.33333333	342.6666667	737000	2880	
	Bx1-5	2843.333333	257	324333.3333	3303.333333	
	Bx1-4+6-8	214	2802.333333	3650000	2923.333333	
	eGFP	192.6666667	128	662.3333333	4000	
4	blank	8.18E+02	2.25E+02	2.09E+02	224.5	
	A. squarrosa					
	Blatt jung	12000	506000	326000	257000	
	Oxindol	800	408	225	804	
	Indol	1000	605	408	804	
	Bx1-5+8	13806.66667	5020	160450	5020	
	Bx1-2	363.6666667	3306.666667	535	3306.666667	
	Bx1	364	2088.333333	471	2088.333333	

 Tabelle 40: Peak-Flächen-Mittlewerte der Messung der Benzoxazinoide in den mit Bx-Genen transformierten Nicotiana benthamiana-Pflanzen. Methanolextrakte wurden mittels HPLC-MS analysiert.

Tabelle 41: Peak-Flächen-Mittlewerte der Messung der Indole in den mit Bx-Genen transformierten Nicotiana benthamiana-Pflanzen. Methanolextrakte wurden mittels HPLC-MS analysiert.

		Analyte Peak Area (counts)			
		Oxindol	Indol		
1	blank	4.28E+02	2.25E+03		
	Bx1-2	6.88E+04	1.78E+03		
	Bx1-5+8	3.97E+02	2.41E+03		
	eGFP	8.27E+02	1.01E+03		
	A. squarrosa				
	Blatt jung	5.30E+02	2.47E+02		
	Oxindol	1.17E+06	2.64E+02		
	Indol	6.65E+02	5.70E+05		
1-2	blank	7.59E+02	2.66E+02		
	Bx1	1.78E+02	1.55E+03		
	Bx1-2	2.85E+04	3.16E+02		

	Bx1-3	8.77E+01	8.74E+02
	eGFP	1.72E+02	4.79E+02
	A. squarrosa		
	Blatt jung	0.00E+00	2.52E+02
	Oxindol	6.86E+05	2.04E+02
	Indol	0.00E+00	3.30E+05
4	blank	3.85E+03	7.40E+01
	A. squarrosa		
	Blatt jung	1.04E+03	3.32E+02
	Oxindol	1.37E+03	3.72E+06
	Indol	1.38E+06	0.00E+00
	Bx1-5+8	3.50E+03	2.83E+02
	Bx1-2	2.55E+03	3.29E+04
	Bx1	2.52E+03	9.33E+01

7.3.3 Standardfehler der Mittelwerte

Tabelle 42: Standardfehler der Peak-Flächen-Mittelwerte der Messung der Benzoxazinoide in Proben des Botanischen Garten Jena und des MPI für Chemische Ökologie Jena, der Lamium-Proben, sowie des Jasmonsäure-Induktionsversuches. Methanolextrakte wurden mittels HPLC-MS analysiert.

		Analyte Peak Area (counts)			
			DIMBOA-		
		DIBOA-Glc	Glc	HBOA-Glc	HMBOA-Glc
					68.8258708
	blank	5.72E+02	2.36E+02	2.83E+01	2
	A. squarrosa				
	Blatt jung	7.44E+04	2.36E+06	9.75E+05	1644839.5
- She	B. hispanica	5.57E+01	1.23E+03	1.48E+04	546.517561
+ s f	B. niara				923.784486
gie	g.«	2.36E+02	5.88E+02	1.45E+04	7
el el					3921.87596
ü en	L. album	1.08E+03	6.70E+02	5.13E+03	8
art le (L. galeobdolon	2.19E+05	3.89E+03	1.26E+05	283.450956
С Г					2711.90789
mis	L. orvala	6.33E+02	5.35E+02	5.24E+04	7
scr he	L. purpureum				
L ani	Blatt + Blüte	0.00E+00	0.00E+00	0.00E+00	0
fül	L. leonurus	8.75E+03	1.95E+02	4.25E+03	935
E B	L. sibiricus	3.50E+01	9.80E+02	2.41E+04	2152.5
≤de					343.861567
en e	M. vulgare	6.13E+02	3.34E+02	1.05E+04	8
bde n c	P. tuberosa	0.00E+00	0.00E+00	0.00E+00	0
Pro	S. citrina	9.80E+02	4.95E+02	2.66E+04	7360.15021
	S. macrantha	3.85E+02	2.26E+02	1.00E+03	5500
					6322.53465
	S. palustris	4.01E+02	7.27E+02	5.97E+03	3
					2848.46157
	A. hungaricus	1.20E+05	8.07E+03	8.62E+04	3

A (*				2126737.19
A. aurantiaca	1.57E+06	1.41E+06	8.18E+04	8
B priopitis	1 10E±03	1 03E+02	1 305+04	1456.99843
D. phonius	1.102+03	1.332+02	1.332+04	1198 72154
C. pungens	7.23E+05	3.42E+02	3.76E+04	1
E. pulchellum	0.00E+00	0.00E+00	0.00E+00	0
E. palononam	0.002100	0.002100	0.002.00	3724.03007
G. ceylanicum	4.46E+02	2.15E+01	1.73E+03	5
H. alternata	3.00E+01	9.29E+02	9.98E+02	2505
				314.660310
H. repanda	1.42E+03	2.15E+01	3.61E+02	7
T. erecta	0.00E+00	0.00E+00	0.00E+00	0
T. myorensis	0.00E+00	0.00E+00	0.00E+00	0
				355.083088
W. elongata	7.28E+02	5.66E+01	1.56E+03	9
				655.743852
C. flava	1.03E+06	2.68E+02	1.01E+05	4
		4 505 00	0.475.00	856.141213
J. scheidweileri	7.90E+03	1.56E+03	6.17E+03	/
Delatura	2 405 .02			2702.46800
D. elatum	3.19E+02	3.70E+03	9.06E+04	ð
L. album Murzolo			3 10E±01	0
	0.002+00	0.002+00	5.192+01	0
Blatt + Blüte	1 60E+02	2 57E+02	1 91F+04	4255
G pratense	1.002102	2.07 2 1 02	1.012.01	1176 53748
Blatt jung	9.03E+02	1.49E+02	5.30E+03	1
G. pratense				3260.19035
, Blatt alt	4.93E+03	9.11E+02	2.14E+04	8
G. pratense				519.154119
Wurzeln	2.19E+03	9.32E+01	4.42E+02	7
C. regalis				1290.76635
Blüte	4.36E+02	8.09E+01	1.71E+03	3
C. regalis		- · · - ·		3597.63965
Blatt	2.48E+02	3.44E+02	5.19E+03	8
C. regalis	0.075.00	4.075.04	0.405.04	101.728942
vvurzein	2.67E+02	4.27E+01	2.13E+01	/
C. regalls	1 225 102	5 07E 100	1 205,04	2803.74291
	1.32E+03	5.27E+02	1.200+04	5
I. Tepens Blatt	3 25E±01	1 /1E±03	1 /3E±0/	1/2 5
T ronons	5.252+01	1.412+03	1.432+04	142.5
1. Topons				
Blatt + Blüte	0.005.00			0
–	0.00E+00	0.00E+00	0.00E+00	0
I. repens				0
VVUIZEIN	0.00E+00	0.00E+00	0.00E+00	0
Right alt	8 53E±01	1 8/ 5+03		3110.00497 1
R nationtia	0.002701	1.042703	1.306704	11020 0324
Wurzeln	2 96F+02	4 07F+03	4.31F+04	F1323.3324
R. natientia	2.002 102			149,563810
Blatt jung	1.85E+02	4.43E+02	3.05E+03	2

	blank	1.62E+02	5.67E+01	9.80E+01	7.68E+01
	A. squarrosa				
	Blatt jung	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Ь	C. regalis				
suc	Ctr.	4.05E+01	1.29E+03	2.79E+04	1.59E+03
/er	C. regalis				
e-	JA	5.86E+01	2.37E+02	1.06E+04	9.75E+02
äur		119.317969	0.03333333		36.9504172
US	blank	2	3	21.5019379	3
IOU	A. squarrosa				
asr	Blatt jung	0	0	0	0
ŗ	L. album	229.748594	114.357170	10391.3734	14985.3817
	Ctr.	5	7	3	7
			152.735814	11767.9093	3197.39477
	L. album JA	45.254834	9	1	3
	blank	2.80E+03	1.30E+02	1.09E+03	6.63E+01
	A. squarrosa				
	Blatt jung	0.00E+00	0.00E+00	0.00E+00	0.00E+00
L.	L. orvala	4.31E+02	5.17E+03	3.68E+03	4.18E+03
bbe	L. orvala Alba	2.13E+01	1.46E+03	1.10E+04	2.71E+03
Pro	L. maculatum	6.40E+01	2.45E+04	6.22E+04	3.29E+04
Ę	L. maculatum				
niu	Blüte	0.00E+00	0.00E+00	0.00E+00	0.00E+00
an	L. montanum	7.22E+05	4.02E+04	2.05E+06	1.59E+04
7	L. galeobdolon	2.64E+06	2.74E+04	2.54E+06	5.46E+03
	L. album	5.05E+03	2.74E+03	3.40E+04	2.49E+04
	L. album				
1	Blüte	0.00E+00	0.00E+00	0.00E+00	0.00E+00

Tabelle 43: Standardfehler der Peak-Flächen-Mittlewerte der Messung der Benzoxazinoide in denmit Bx-Genen transformierten Nicotiana benthamiana-Pflanzen.Methanolextrakte wurden mittelsHPLC-MS analysiert.

		Analyte Peak Area (counts)					
		DIBOA-Glc	DIMBOA-Glc	HBOA-Glc	HMBOA-Glc		
1	blank	1516.889947	0.00E+00	0.00E+00 461.9817216			
	Bx1-2	546	32	192	32		
	Bx1-5+8	16300	128.5	65000	128.5		
	eGFP	1180.541307	85.50048733	916.184358	85.50048733		
	A. squarrosa		_	_			
	Blatt jung	0	0	0	0		
	Oxindol	0	0	0	0		
	Indol	0	0	0	0		
3	blank	229.7543525	175.9346156	61.49305516	64.25		
	A. squarrosa						
	Blatt jung	0	0	0	0		
	Bx1-8	259.2304852	19691.31224	50013.33156	68208.82967		
	Bx1-6+8	629.9376512	21.33333333	37009.74346	633.1139971		
	Bx1-4+6-8	21.33333333	154.7151504	218715.1877	483.8732616		
	Bx1-5	397.0446378	36.95041723	55953.35359	1097.532586		
	Bx1-4+6-8	42.50098038	2065.912577	310053.7588	578.6862516		

	eGFP	0.3333333333	0	334.9300093	295.1270913
4	blank	204.691638	76.38553528	40.49768512	76.38553528
	A. squarrosa				
	Blatt jung	0	0	0	0
	Oxindol	0	0	0	0
	Indol	0	0	0	0
	Bx1-5+8	6294.392566	2788.834882	86808.32813	2788.834882
	Bx1-2	21.333333333	541.4281526	77.24204382	541.4281526
	Bx1	77.24204382	681.5566333	214	681.5566333

Tabelle 44: Standardfehler der Peak-Flächen-Mittlewerte der Messung der Indole in den mit Bx-Genen transformierten Nicotiana benthamiana-Pflanzen. Methanolextrakte wurden mittels HPLC-MS analysiert.

		Analyte Peak Area (counts)					
		Oxindol	Indol				
1	blank	0.00E+00	0.00E+00				
	Bx1-2	1.69E+04	1.60E+02				
	Bx1-5+8	2.67E+02	6.70E+02				
	eGFP	5.32E+02	5.12E+02				
	A. squarrosa						
	Blatt jung	0.00E+00	0.00E+00				
	Oxindol	0.00E+00	0.00E+00				
	Indol	0.00E+00	0.00E+00				
1-2	blank	0.00E+00	0.00E+00				
	Bx1	7.15E+01	6.56E+02				
	Bx1-2	8.75E+03	1.93E+02				
	Bx1-3	4.46E+01	1.81E+02				
	eGFP	4.17E+01	8.65E+01				
	A. squarrosa						
	Blatt jung	0.00E+00	0.00E+00				
	Oxindol	0.00E+00	0.00E+00				
	Indol	0.00E+00	0.00E+00				
4	blank	1.92E+03	4.50E+01				
	A. squarrosa						
	Blatt jung	0	0				
	Oxindol	0	0				
	Indol	0	0				
	Bx1-5+8	6.57E+02	1.86E+02				
	Bx1-2	1.42E+02	1.09E+04				
	Bx1	2.46E+02	4.84E+01				

7.3.4 Mittelwerte nach Blank-Abzug

Tabelle 45: Peak-Flächen-Mittlewerte der Peak-Flächen der Messung der Benzoxazinoide in den Proben des Botanischen Garten Jena und des MPI für Chemische Ökologie Jena, der Lamium-Proben, sowie des Jasmonsäure-Induktionsversuches nach Abzug des Mittelwertes der Blank-Proben (100% Methanol). Methanolextrakte wurden mittels HPLC-MS analysiert.

DIBOA- DIMBOA- HBOA- HN	IBOA-
	Glc
blank 0 0 0	0
A. squarrosa 73493.7222 2359692.81 974829.055 164	1910.92
Blatt jung 2 1 6	2
749.444444 3522.14444 178097.888 704.	755555
B. hispanica 4 4 9	6
	7 00000
B. nigra 340.444444 3362.14444 135764.555 265	86660.
556 555555 2382 14444 57507 8888 223	9 17 0888
	ο Ω
	7 08888
L galeobdolon 9 4 6	.00000
3679.22222 3085.47777 150564.555 284	33.7555
_ L. orvala 2 8 6	6
L. purpureum 2529.22222 1228.81111 48264.5555 205	50.4222
$\begin{bmatrix} + & - \\ - & - \\ - & - \end{bmatrix}$ Blatt + Blüte 2 1 6	2
10884.2222 2903.81111 85314.5555 521	5.42222
$\square \Theta \Theta = L.$ leonurus 2 1 6	2
මු.ඊ 3904.22222 1379.31111 102714.555 253 ⁻	7.92222
E <u>L. sibiricus</u> 2 1 6	2
	088888
<u> </u>	9
$\begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$ D tubernee $\begin{bmatrix} 339.222222 \\ 36/8.81111 \\ 131/64.555 \\ 1/8 \\ 0 \end{bmatrix}$	/50.422
	2 0000
$\begin{bmatrix} 0 \\ - \end{bmatrix} = \begin{bmatrix} 1045.00000 \\ - 1045.0000 \\ - $	0000. <i>1</i> 0 0
0.00000000000000000000000000000000000	50 4222
$\begin{bmatrix} \sigma & \sigma \\ \sigma & 0 \end{bmatrix}$ S. macrantha 2 1 6	2
	7.0888
$\begin{bmatrix} 2 & -3 \\ -2 & -3 \end{bmatrix}$ S. palustris 6 1 9	9
21765595.8 19442.1444 2539764.55 4270).42222
A. hungaricus 9 4 6	2
3491929.22 2522962.14 201697.888 5650	6417.08
A. aurantiaca 2 4 9	9
1582.55555 50.5222222 42264.5555 9903	3.75555
B. prionitis 6 2 6	6
	10.4222
C. pungens 2 4 9	2
$\begin{bmatrix} 1559.22222 & 142.81111 & 43404.5555 & 440. \\ \hline & & & & & \\ \hline & & & & & \\ \hline & & & &$	422222
	Z
	70 4222
G. cevlanicum 2 9 9 9	2.7222
179.222222 750.311111 1147.05555 642	5.42222
H. alternata 2 1 6	2

H. repanda	983.888888 9	- 221.188888 9	878.222222 2	5173.75555 6
T. erecta	۔ 813.777777 8	۔ 50.1888888 9	14264.5555 6	3870.42222 2
T. myorensis	- 299.777777 8	- 50.1888888 9	9004.55555 6	- 658.577777 8
W. elongata	1199.22222 2	- 200.122222 2	4074.55555	638.422222 2
C. flava	14432262.5 6	741.477777 8	274764.555 6	14550.4222 2
J. scheidweileri	8432.55555 6	4508.81111 1	74931.2222 2	2133.75555 6
D. elatum	192.888888 9	5332.14444 4	317431.222 2	24650.4222 2
<i>L. album</i> Wurzeln	۔ 621.777777 8	۔ 178.188888 9	۔ 139.294444 4	- 56.5777777 8
<i>L. album</i> Blatt + Blüte	179.222222 2	78.3111111 1	21989.5555 6	6695.42222 2
<i>G. pratense</i> Blatt jung	278.555555 6	935.477777 8	23831.2222 2	879.755555 6
<i>G. pratense</i> Blatt alt	4804.88888 9	1490.81111 1	63897.8888 9	6317.62222 2
<i>G. pratense</i> Wurzeln	3168.88888 9	- 157.455555 6	877.222222 2	821.422222 2
<i>C. regalis</i> Blüte	- 320.111111 1	46.1444444	12331.2222 2	- 96.244444 4
C. regalis Blatt	- 513.444444 4	506.477777 8	23697.8888 9	1923.75555 6
<i>C. regalis</i> Wurzeln	- 322.777777 8	- 135.522222 2	42.8888888 9	43.7555555 6
<i>C. regalis</i> Stiel	469.322222 2	891.144444 4	38497.8888 9	- 600.577777 8
<i>T. repens</i> Blatt	- 268.277777 8	2708.81111	72064.5555 6	281.922222
T. repens	- 877.777777	658.811111	93964.5555	790.422222
	8	1	6	2
<i>T. repens</i> Wurzeln	556.777777 8	243.188888 9	470.555555 6	56.5777777 8
<i>R. patientia</i> Blatt alt	- 771.111111 1	3468.81111 1	42631.2222 2	10017.0888 9

	D. notiontio	-	0404 04444	00100 0000	10670 0000
	R. patientia	493.344444	2184.81111	86162.2222	19679.0888
	vvuizein	4	1	Z	9
	R. patientia	- 557.111111	93.2444444	3103.88888	734.422222
	Blatt jung	1	4	9	2
	blank	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	A. squarrosa				
_	Blatt jung	9.94E+03	5.01E+05	3.78E+05	2.77E+05
nct	C. regalis				
SLS	Ctr.	4.80E+01	2.22E+03	6.72E+04	5.40E+03
>-	C. regalis				
ire	JA	-6.42E+01	8.72E+02	4.28E+04	4.25E+03
sät	blank	0.00E+00	0.00E+00	0.00E+00	0
ü	A. squarrosa				
Ĕ	Blatt jung	1.20E+04	4.74E+05	4.40E+05	291807
Jae	L. album				
-	Ctr.	5.07E+02	4.49E+02	2.20E+04	32207
	L. album				
	JA	4.27E+01	5.77E+02	2.11E+04	22207
	blank	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	A. squarrosa				
	Blatt jung	1.76E+04	1.22E+06	9.15E+05	5.11E+05
L.	L. orvala	-2.24E+03	7.03E+03	9.99E+04	2.54E+04
bbe	L. orvala Alba	-2.90E+03	3.01E+03	1.01E+05	3.14E+04
Pre	L. maculatum	-2.93E+03	3.97E+04	1.16E+05	6.06E+04
Ę	L. maculatum				
niu	Blüte	-2.67E+03	5.94E+03	4.09E+04	1.72E+04
an	L. montanum	1.86E+07	1.22E+05	1.53E+07	3.83E+04
	L. galeobdolon	2.55E+07	7.79E+04	8.27E+06	1.17E+04
	L. album	1.32E+04	5.98E+03	1.50E+05	4.16E+04
	L. album Blüte	5.68E+03	4.47E+03	4.85E+04	4.05E+03

 Tabelle 46: Peak-Flächen-Mittlewerte der Messung der Benzoxazinoide in den mit Bx-Genen transformierten Nicotiana benthamiana-Pflanzen nach Abzug des Mittelwertes der Blank-Proben (100% Methanol). Methanolextrakte wurden mittels HPLC-MS analysiert.

		Analyte Peak Area (counts)					
		DIBOA-GIc	DIMBOA-Glc	HBOA-GIC	HMBOA-Glc		
1	blank	blank 0.00E+00		0.00E+00	0		
	Bx1-2	-1.72E+03	3.20E+01	-6.53E+02	32		
	Bx1-5+8	3.33E+04	6.35E+01	2.53E+05	63.5		
	eGFP	-5.15E+02	2.10E+01	3.02E+02	21		
	A. squarrosa						
	Blatt jung	4.25E+03	4.46E+05	2.02E+05	445807		
	Oxindol	-2.02E+03	2.07E+02	4.93E+01	207		
	Indol	-4.39E+02	3.20E+01	6.93E+01	32		
3	blank	1.00E+05	0.00E+00	0.00E+00	0		
	A. squarrosa						
	Blatt jung	9.78E+03	3.30E+05	2.43E+05	206678.75		

	Bx1-8	3.69E+02	8.35E+04	2.08E+05	251012.0833
	Bx1-6+8	6.94E+01	-1.72E+02	1.01E+05	3658.75
	Bx1-4+6-8	-5.07E+02	2.16E+01	7.37E+05	2558.75
	Bx1-5	2.12E+03	-6.41E+01	3.24E+05	2982.083333
	Bx1-4+6-8	-5.07E+02	2.48E+03	3.65E+06	2602.083333
	eGFP	-5.29E+02	-1.93E+02	3.73E+02	3678.75
4	blank	0.00E+00	0.00E+00	0.00E+00	0
	A. squarrosa				
	Blatt jung	1.12E+04	5.06E+05	3.26E+05	256775.5
	Oxindol	-1.80E+01	1.84E+02	1.58E+01	579.5
	Indol	1.82E+02	3.81E+02	1.99E+02	579.5
	Bx1-5+8	1.30E+04	4.80E+03	1.60E+05	4795.5
	Bx1-2	-4.54E+02	3.08E+03	3.26E+02	3082.166667
	Bx1	-4.54E+02	1.86E+03	2.62E+02	1863.833333

1	Tabelle	47:	Peak-Flächen-Mittlewerte	der	Messung	der	Indole	in	den	mit	Bx-Genen
1	transfori	mierte	en Nicotiana benthamiana-l	Pflanz	en nach Ab	bzug d	des Mitte	lwe	rtes d	er Bla	ank-Proben
((100% M	lethar	ol). Methanolextrakte wurde	n mitte	els HPLC-M	S ana	lysiert.				

		Analyte Peak Area (counts)					
		Oxindole	Indole				
1	blank	0	0				
	Bx1-2	68372	-470				
	Bx1-5+8	-31.5	160				
	eGFP	399	-1238.333333				
	A. squarrosa						
	Blatt jung	102	-2003				
	Oxindol	1169572	-1986				
	Indol	237	567750				
2	blank	0	0				
	Bx1	-581.5	1288				
	Bx1-2	27691	49.5				
	Bx1-3	-671.3333333	608.3333333				
	eGFP	-586.6666667	213				
	A. squarrosa						
	Blatt jung	-759	-14				
	Oxindole	685241	-62				
	Indole	-759	329734				
4	blank	0.00E+00	0				
	A. squarrosa						
	Blatt jung	-2.81E+03	258				
	Oxindol	-2.48E+03	3719926				
	Indol	1.38E+06	-74				
	Bx1-5+8	-3.51E+02	208.8666667				
	Bx1-2	-1.30E+03	32826				
	Bx1	-1.33E+03	19.33333333				

7.3.5 Diagramme der Peak-Flächen der HPLC-MS Messungen

Abbildung 5: Peak-Flächen der Benzoxazinoide der Proben des Botanischen Garten Jenas, sowie des MPI für Chemische Ökologie Jenas. Methanolextrakte wurden mittels HPLC-MS analysiert. Abgebildet sind nur Proben mit mindestens einem deutlich vorhandenen Benzoxazinoid (vorhanden: Peak-Höhe > 10.000 cps, deutlich vorhanden: Peak-Höhe > 50.000 cps). Als Standard diente ein Methanolextrakt eines jungen Aphelandra squarrosa-Blatts.

Abbildung 6: Peak-Flächen der Benzoxazinoide mit Jasmonsäure-Lösung (JA), bzw. Ethanol-Lösung (Ctr.) behandelter Consolida regalis-Proben. Methanolextrakte wurden mittels HPLC-MS analysiert. Als Standard diente ein Methanolextrakt eines jungen Aphelandra squarrosa-Blatts.

Abbildung 7: Peak-Flächen der Benzoxazinoide mit Jasmonsäure-Lösung (JA), bzw. Ethanol-Lösung (Ctr.) behandelter Lamium album-Proben. Methanolextrakte wurden mittels HPLC-MS analysiert. Als Standard diente ein Methanolextrakt eines jungen Aphelandra squarrosa-Blatts.

Abbildung 8: Peak-Flächen der Benzoxazinoide der Lamium-Proben. Methanolextrakte wurden mittels HPLC-MS analysiert. Als Standard diente ein Methanolextrakt eines jungen Aphelandra squarrosa-Blatts.

Abbildung 9: Peak-Flächen der Benzoxazinoide der mit Bx1-2 und der mit Bx1-5+8 transformierten Nicotiana benthamiana. Methanolextrakte wurden mittels HPLC-MS analysiert. Als Standard diente ein Methanolextrakt eines jungen Aphelandra squarrosa-Blatts.

Abbildung 10: Peak-Flächen der (Ox-) Indole der mit Bx1-2 und der mit Bx1-5+8 transformierten Nicotiana benthamiana. Methanolextrakte wurden mittels HPLC-MS analysiert. Die Positivkontrollen ("Oxindol", "Indol") wurden durch den Betreuer zur Verfügung gestellt.

Abbildung 11: Peak-Flächen der (Ox-) Indole der mit Bx1, Bx1-2 und der mit Bx1-5+8 transformierten Nicotiana benthamiana. Methanolextrakte wurden mittels HPLC-MS analysiert. Die Positivkontrollen ("Oxindol", "Indol") wurden durch den Betreuer zur Verfügung gestellt.

Abbildung 12: Peak-Flächen der Benzoxazinoide der mit Bx1-8, Bx1-6+8, Bx1-4+6-8, Bx1-5 und der mit Bx1-4 transformierten Nicotiana benthamiana. Methanolextrakte wurden mittels HPLC-MS analysiert. Als Standard diente ein Methanolextrakt eines jungen Aphelandra squarrosa-Blatts.

Abbildung 13: Peak-Flächen der Benzoxazinoide der mit Bx1-5+8, Bx1-2 und der mit Bx1 transformierten Nicotiana benthamiana. Methanolextrakte wurden mittels HPLC-MS analysiert. Als Standard diente ein Methanolextrakt eines jungen Aphelandra squarrosa-Blatts.

Abbildung 14: Peak-Flächen der (Ox-) Indole der mit Bx1-5+8, Bx1-2 und der mit Bx1 transformierten Nicotiana benthamiana. Methanolextrakte wurden mittels HPLC-MS analysiert. Die Positivkontrollen ("Oxindol", "Indol") wurden durch den Betreuer zur Verfügung gestellt.

7.4 Chromatogramme

7.4.1 Screening

Abbildung 15: Chromatogramm eines Methanolextrakts von Aphelandra squarrosa (junges Blatt, Positivkontrolle). Die im Extrakt enthaltenen Benzoxazinoide wurden mittels HPLC-MS identifiziert. Retentionszeiten: DIBOA-GIc: 2,43 min, DIMBOA-GIc: 2,70 min, HBOA-GIc: 2,34 min, HMBOA-GIc: 2,64 min. Cps = counts per seconds, min = Minuten.

Abbildung 16: Chromatogramm eines Methanolextrakts von Ballota hispanica. Die im Extrakt enthaltenen Benzoxazinoide wurden mittels HPLC-MS identifiziert. Retentionszeiten: DIBOA-Glc: 2,43 min, DIMBOA-Glc: 2,70 min, HBOA-Glc: 2,34 min, HMBOA-Glc: 2,64 min. Cps = counts per seconds, min = Minuten.

Abbildung 17: Chromatogramm eines Methanolextrakts von Ballota nigra. Die im Extrakt enthaltenen Benzoxazinoide wurden mittels HPLC-MS identifiziert. Retentionszeiten: DIBOA-Glc: 2,43 min, DIMBOA-Glc: 2,70 min, HBOA-Glc: 2,34 min, HMBOA-Glc: 2,64 min. Cps = counts per seconds, min = Minuten.

Abbildung 18: Chromatogramm eines Methanolextrakts von Lamium galeobdolon. Die im Extrakt enthaltenen Benzoxazinoide wurden mittels HPLC-MS identifiziert. Retentionszeiten: DIBOA-Glc: 2,43 min, DIMBOA-Glc: 2,70 min, HBOA-Glc: 2,34 min, HMBOA-Glc: 2,64 min. Cps = counts per seconds, min = Minuten.

Abbildung 19: Chromatogramm eines Methanolextrakts von Acanthus hungaricus. Die im Extrakt enthaltenen Benzoxazinoide wurden mittels HPLC-MS identifiziert. Retentionszeiten: DIBOA-Glc: 2,43 min, DIMBOA-Glc: 2,70 min, HBOA-Glc: 2,34 min, HMBOA-Glc: 2,64 min. Cps = counts per seconds, min = Minuten.

Abbildung 20: Chromatogramm eines Methanolextrakts von Aphelandra aurantiaca. Die im Extrakt enthaltenen Benzoxazinoide wurden mittels HPLC-MS identifiziert. Retentionszeiten: DIBOA-Glc: 2,43 min, DIMBOA-Glc: 2,70 min, HBOA-Glc: 2,34 min, HMBOA-Glc: 2,64 min. Cps = counts per seconds, min = Minuten.

Abbildung 21: Chromatogramm eines Methanolextrakts von Crossandra pungens. Die im Extrakt enthaltenen Benzoxazinoide wurden mittels HPLC-MS identifiziert. Retentionszeiten: DIBOA-Glc: 2,43 min, DIMBOA-Glc: 2,70 min, HBOA-Glc: 2,34 min, HMBOA-Glc: 2,64 min. Cps = counts per seconds, min = Minuten.

Abbildung 22: Chromatogramm eines Methanolextrakts von Crossandra flava. Die im Extrakt enthaltenen Benzoxazinoide wurden mittels HPLC-MS identifiziert. Retentionszeiten: DIBOA-Glc: 2,43 min, DIMBOA-Glc: 2,70 min, HBOA-Glc: 2,34 min, HMBOA-Glc: 2,64 min. Cps = counts per seconds, min = Minuten.

Abbildung 23: Chromatogramm eines Methanolextrakts von Delphinium elatum. Die im Extrakt enthaltenen Benzoxazinoide wurden mittels HPLC-MS identifiziert. Retentionszeiten: DIBOA-Glc: 2,43 min, DIMBOA-Glc: 2,70 min, HBOA-Glc: 2,34 min, HMBOA-Glc: 2,64 min. Cps = counts per seconds, min = Minuten.

Abbildung 24: Chromatogramm eines Methanolextrakts von Aphelandra squarrosa (junges Blatt, Positivkontrolle). Die im Extrakt enthaltenen Benzoxazinoide wurden mittels HPLC-MS identifiziert. Retentionszeiten: DIBOA-GIc: 2,38 min, DIMBOA-GIc: 2,70 min, HBOA-GIc: 2,31 min, HMBOA-GIc: 2,63 min. Cps = counts per seconds, min = Minuten.

Abbildung 25: Chromatogramm eines Methanolextrakts einer mit Ethanol-Lösung behandelter Consolida regalis-Pflanze (Kontrolle). Die im Extrakt enthaltenen Benzoxazinoide wurden mittels HPLC-MS identifiziert. Retentionszeiten: DIBOA-Glc: 2,38 min, DIMBOA-Glc: 2,70 min, HBOA-Glc: 2,31 min, HMBOA-Glc: 2,63 min. Cps = counts per seconds, min = Minuten.

Abbildung 26: Chromatogramm eines Methanolextrakts einer mit Jasmonsäure-Lösung behandelter Consolida regalis-Pflanze. Die im Extrakt enthaltenen BenzoxazinBxoide wurden mittels HPLC-MS identifiziert. Retentionszeiten: DIBOA-Glc: 2,38 min, DIMBOA-Glc: 2,70 min, HBOA-Glc: 2,31 min, HMBOA-Glc: 2,63 min. Cps = counts per seconds, min = Minuten.

Abbildung 27: Chromatogramm eines Methanolextrakts von Aphelandra squarrosa (junges Blatt, Positivkontrolle). Die im Extrakt enthaltenen Benzoxazinoide wurden mittels HPLC-MS identifiziert. Retentionszeiten: DIBOA-GIc: 2,38 min, DIMBOA-GIc: 2,69 min, HBOA-GIc: 2,29 min, HMBOA-GIc: 2,63 min. Cps = counts per seconds, min = Minuten.

Abbildung 28: Chromatogramm eines Methanolextrakts von Lamium montanum. Die im Extrakt enthaltenen Benzoxazinoide wurden mittels HPLC-MS identifiziert. Retentionszeiten: DIBOA-Glc: 2,38 min, DIMBOA-Glc: 2,69 min, HBOA-Glc: 2,29 min, HMBOA-Glc: 2,63 min. Cps = counts per seconds, min = Minuten.

Abbildung 29: Chromatogramm eines Methanolextrakts von Lamium galeobdolon. Die im Extrakt enthaltenen Benzoxazinoide wurden mittels HPLC-MS identifiziert. Retentionszeiten: DIBOA-Glc: 2,38 min, DIMBOA-Glc: 2,69 min, HBOA-Glc: 2,29 min, HMBOA-Glc: 2,63 min. Cps = counts per seconds, min = Minuten.

7.4.2 Transformation Nicotiana benthamiana

Abbildung 30: Chromatogramm eines Methanolextrakts von Aphelandra squarrosa (junges Blatt, Positivkontrolle). Die im Extrakt enthaltenen Benzoxazinoide wurden mittels HPLC-MS identifiziert. Retentionszeiten: DIBOA-Glc: 2,24 min, DIMBOA-Glc: 2,61 min, HBOA-Glc: 2,15 min, HMBOA-Glc: 2,55 min. Cps = counts per seconds, min = Minuten.

Abbildung 31: Chromatogramm eines Methanolextrakts einer mit Bx1-5+8 transformierten Nicotiana benthamiana-Pflanze. Die im Extrakt enthaltenen Benzoxazinoide wurden mittels HPLC-MS identifiziert. Retentionszeiten: DIBOA-GIc: 2,24 min, DIMBOA-GIc: 2,61 min, HBOA-GIc: 2,15 min, HMBOA-GIc: 2,55 min. Cps = counts per seconds, min = Minuten.

Abbildung 32: Chromatogramm einer Oxindol-Positivkontrolle (durch den Betreuer zur Verfügung gestellt). Das im Extrakt enthaltene Oxindol wurde mittels HPLC-MS identifiziert. Retentionszeit: 3,43 min. Cps = counts per seconds, min = Minuten.

Abbildung 33: Chromatogramm einer Indol-Positivkontrolle (durch den Betreuer zur Verfügung gestellt). Das im Extrakt enthaltene Indol wurde mittels HPLC-MS identifiziert. Retentionszeit: 4,82 min. Cps = counts per seconds, min = Minuten.

Abbildung 34: Chromatogramm eines Methanolextrakts einer mit Bx1-2 transformierten Nicotiana benthamiana-Pflanze. Das im Extrakt enthaltene (Ox-) Indol wurde mittels HPLC-MS identifiziert. Retentionszeiten: Oxindol: 3,43 min, Indol: 4,82 min. Cps = counts per seconds, min = Minuten.

Abbildung 35: Chromatogramm eines Methanolextrakts von Aphelandra squarrosa (junges Blatt, Positivkontrolle). Die im Extrakt enthaltenen Benzoxazinoide wurden mittels HPLC-MS identifiziert. Retentionszeiten: DIBOA-Glc: 2,33 min, DIMBOA-Glc: 2,63 min, HBOA-Glc: 2,23 min, HMBOA-Glc: 2,57 min. Cps = counts per seconds, min = Minuten.

Abbildung 36: Chromatogramm eines Methanolextrakts einer mit Bx1-8 transformierten Nicotiana benthamiana-Pflanze. Die im Extrakt enthaltenen Benzoxazinoide wurden mittels HPLC-MS identifiziert. Retentionszeiten: DIBOA-Glc: 2,33 min, DIMBOA-Glc: 2,63 min, HBOA-Glc: 2,23 min, HMBOA-Glc: 2,57 min. Cps = counts per seconds, min = Minuten.

Abbildung 37: Chromatogramm eines Methanolextrakts einer mit Bx1-6+8 transformierten Nicotiana benthamiana-Pflanze. Die im Extrakt enthaltenen Benzoxazinoide wurden mittels HPLC-MS identifiziert. Retentionszeiten: DIBOA-Glc: 2,33 min, DIMBOA-Glc: 2,63 min, HBOA-Glc: 2,23 min, HMBOA-Glc: 2,57 min. Cps = counts per seconds, min = Minuten.

Abbildung 38: Chromatogramm eines Methanolextrakts einer mit Bx1-4+6-8 transformierten Nicotiana benthamiana-Pflanze. Die im Extrakt enthaltenen Benzoxazinoide wurden mittels HPLC-MS identifiziert. Retentionszeiten: DIBOA-Glc: 2,33 min, DIMBOA-Glc: 2,63 min, HBOA-Glc: 2,23 min, HMBOA-Glc: 2,57 min. Cps = counts per seconds, min = Minuten.

Abbildung 39: Chromatogramm eines Methanolextrakts einer mit Bx1-5 transformierten Nicotiana benthamiana-Pflanze. Die im Extrakt enthaltenen Benzoxazinoide wurden mittels HPLC-MS identifiziert. Retentionszeiten: DIBOA-Glc: 2,33 min, DIMBOA-Glc: 2,63 min, HBOA-Glc: 2,23 min, HMBOA-Glc: 2,57 min. Cps = counts per seconds, min = Minuten.

Abbildung 40: Chromatogramm eines Methanolextrakts einer mit Bx1-4 transformierten Nicotiana benthamiana-Pflanze. Die im Extrakt enthaltenen Benzoxazinoide wurden mittels HPLC-MS identifiziert. Retentionszeiten: DIBOA-GIc: 2,33 min, DIMBOA-GIc: 2,63 min, HBOA-GIc: 2,23 min, HMBOA-GIc: 2,57 min. Cps = counts per seconds, min = Minuten.

Als Negativkontrolle wurden *N. benthamiana*-Pflanzen mit *eGFP* transformiert. Dabei konnten keine Benzoxazinoide nachgewiesen werden.

Abbildung 41: Chromatogramm eines Methanolextrakts einer mit eGFP transformierten Nicotiana benthamiana-Pflanze (Negativkontrolle). Die im Extrakt enthaltenen Benzoxazinoide wurden mittels HPLC-MS identifiziert. Retentionszeiten: DIBOA-Glc: 2,33 min, DIMBOA-Glc: 2,63 min, HBOA-Glc: 2,23 min, HMBOA-Glc: 2,57 min. Cps = counts per seconds, min = Minuten.

Danksagung

Ich möchte mich bei allen bedanken, die mich in irgendeiner Weise in der Zeit der Bachelorarbeit unterstützt haben.

Ein besonderer Dank geht an Dr. Tobias Köllner für das Bereitstellen des Themas, die Einführung in die Welt der Benzoxazinoide und die Betreuung der Arbeit.

Vielen Dank an Katrin Luck und Nathalie Lackus, die mich im Labor unterstützt und in neue Techniken eingeführt haben.

Bedanken möchte ich mich auch bei den anderen Studenten, die die Zeit im Büro immer mit Tee und Gesprächen bereichert haben.

Ich bedanke mich auch bei Prof. Dr. Helmut Pospiech, der sich als Gutachter der Arbeit zur Verfügung gestellt hat .

Schließlich möchte ich mich bei Prof. Dr. Jonathan Gershenzon und dem gesamten MPI für Chemische Ökologie für die Möglichkeit, diese Arbeit in der Abteilung Biochemie anzufertigen, bedanken.

DANKE!

Selbstständigkeitserklärung

Hiermit versichere ich, dass ich die vorliegende Arbeit selbstständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe.

Jena, 15.12.2020

Lena Klein