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Introduction

Introduction

“Bugs are not going to inherit the earth. They own it now. So we might as well make

peace with the landlord.”

-Thomas Eisner

1

“If I have seen further than others, it is by standing on the shoulders of giants.’

-Isaac Newton

General

Detoxification, or interactions with toxic chemical compounds as a process is
something only whispered about in the case of our daily human lives. Part of the reason for
this is that throughout history, humans have even gone to extreme lengths to reduce our
interactions with these compounds. In terms of crop plants, humans have endeavoured
painstaking breeding efforts and more recently targeted approaches in order to reduce the
toxicity of the food that we eat. The motivation for these actions are in actuality obvious,
as foods with lowered toxicity will result in a reduction of health complications or even
death associated with individuals who consume them. However, these efforts are not
without consequence, as the very chemical constituents that we often seek to reduce in these
plants also serves to protect them from other organisms that humans frequently term

“pests”.

The study of plant-pest interactions is part of the discipline known as chemical
ecology, which in a broad sense seeks to understand all the chemical interactions among
organisms in an ecosystem. Much of the research in chemical ecology has focused on the
interactions of herbivorous insects with the plants that they feed on. Due to the antagonistic
nature of this relationship, production of defense chemicals by plants and detoxification by
herbivores are two pillars of this field of study, with the dominating hypothesis being that
these interactions are a product of an evolutionary arms race. Although this concept was
originally coined in 1940 (Cott, 1940) it was hinted at by many before (Darwin, 1859), and
finally became popularized by usage in co-evolutionary theory (Ehrlich & Raven, 1964).

The evolutionary arms-race as a whole anthropomorphises the cyclical development of
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adaptations and counter-adaptations between an organism and its antagonists. With
reference to plant-herbivore interactions, it most often pertains to the selection pressures
put on plants to produce defensive metabolites, and in parallel, the mechanisms that

herbivores utilize to eliminate these pressures through detoxification or other adaptations.

Among animals, insects represent the largest and most diverse group of organisms
on the planet, with many of them being herbivores (Grimaldi & Engel, 2005). These insects
are studied not only in a purely scientific manner, but motivations also stem from the impact
that they have on agricultural around the world, where annual crop loss from the activities
of herbivorous insects amounts to an estimated 470 billion US dollars annually (Sharma,
Kooner, & Arora, 2017). This is exacerbated by the increase of international trade, which
has increased the introduction of pest species to new places. Introduced pest species may
be able to feed with absolute impunity on plants in their new environment (Bradshaw et al.,
2016) as plant species and predators in the new range did not co-evolve with them.
Therefore, studies of these insects in their natural habitats including interactions with
predatory insects, and importantly plants that exhibit resistance to herbivory contribute to
the understanding and development of control measures for these insects in other parts of

the world.

In parallel to their enormous phylogenetic diversity, insect herbivores also display
an enormous range of feeding preferences, from insects which are narrowly specialized to
feed on a handful of plant species such as the parsnip webworm Depressaria pastinacella
(Ali & Agrawal, 2012), to those that can feed on several hundreds of plant species. The
broad or narrow tuning of host preference may also be reflected in the respective insect’s
detoxification repertoire, where insects that feed on few plants are very successful at the
detoxification of only a few metabolites, while insects that feed on many plants can detoxify
a plethora of metabolites, with perhaps a lower efficiency (Ali & Agrawal, 2012). A prolific
example of a polyphagous insect is the phloem-feeder Bemisia tabaci, capable of feeding
on over 1000 observed plant species (Abd-Rabou & Simmons, 2010; Oliveira, Henneberry,
& Anderson, 2001). Not only can this insect cause direct damage to plants through feeding
behaviours, but it also happens to be an excellent vector for many plant disease-causing
viruses. Through the combination of its broad host range and vector capabilities (Navas-
Castillo, Fiallo-Olivé, & Sanchez-Campos, 2011), this insect is alone responsible for
substantial crop losses worldwide (W. Chen et al., 2016; Oliveira et al., 2001). As a

consequence of its extremely large host range, Bemisia tabaci represents an excellent model

2
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species for gaining insight into the detoxification of plant chemical defense compounds,

due to the diversity of compounds in its host plants.

The following sections of the introduction give a more detailed overview of (I) the
diversity of plant-chemical defense compounds, (II) detoxification with specific emphasis
on phase II detoxification in insects, (III) phloem feeding insects and Bemisia tabaci, and
finally (IV) plant responses and defenses to phloem feeders. The introduction concludes

with (V) the motivations of the thesis, highlighting the major contributions to the field.

[ Secondary Metabolites as Defense Compounds in Plants

As sessile organisms, plants are unable to simply uproot and leave when their biological
environment is dire, and thus produce chemical defenses to protect against herbivores and
pathogens. In the realm of natural product chemistry, especially when referring to plants,
there exist two major classifications of metabolites, primary metabolites and secondary
metabolites, the latter often also referred to as specialized metabolites. Primary metabolites
are ubiquitously produced across all or a majority of kingdoms of life. Representative
members of this class include nucleotides and amino acids used in DNA and protein
synthesis, lipids, sterols, sugars and other substances essential to the normal growth,
development and reproduction of an organism (Croteau, Kutchan, & Lewis, 2000).
Secondary metabolites in contrast are much more narrowly distributed taxonomically
(Bourgaud, Gravot, Milesi, & Gontier, 2001) and are produced to enable persistence in a
specific environment. These two classes of metabolites can be seen as a product of trade-
offs or compromises, being that an organism must find a balance between growth and
development (associated with primary metabolism) and defense against enemies
(associated with secondary metabolism), as stated in several plant defense theories (Bazzaz
& Grace, 1997; Coley, Bryant, & Chapin, 1985). In terms of plant insect-interactions,
especially involving phloem feeders, the distributions of both primary (mainly sugars and
free amino acids) and secondary metabolites are of great importance from an insect
perspective feeding on a host plant. Secondary metabolites have been studied for over 100
years, with the term first described in 1891 (Kossel, 1891), and expanded 30 years later
(Czapek, 1921). These metabolites have since been major factors spurring the development
of multiple facets of analytical science with the goal of isolation and characterization of

these bioactive molecules (Croteau et al., 2000). Indeed, many secondary metabolites are

3
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currently used in medicine such as vinblastine from Catharanthus roseus for the treatment
of certain cancers (Hudes et al., 1992; Samuels & Howe, 1970); or at the very least these
metabolites represent important starting points for the development of synthetic
pharmaceutical analogues (Sparks, Hahn, & Garizi, 2017; Winter & Tang, 2012). For
convenience, secondary metabolites are often broken into broad sub-categories, such as
nitrogen-containing metabolites (the major focus of this thesis), phenylpropanoids,
terpenoids, and fatty acid-derived compounds (Croteau et al., 2000). The following
subsection will focus on metabolites known as activated two-component defenses that are

highlighted in this thesis and important for phloem-feeding herbivore-plant interactions.

LI Activated two-component defense metabolites

As a subclass of metabolites not restricted to any of the aforementioned major
metabolite classes, two-component defense instead span a majority of specialized
metabolite categories. As the name implies, these defense compounds require the presence
of a second class of molecules in order to exert full toxicity in their role as defense
metabolites. Many of these compounds are glycosides (Jones & Vogt, 2001; Mithofer &
Boland, 2012) that are associated with an activating glycosidase. The glycoside and
glycosidase are typically spatially isolated until tissue disruption through actions, such as
herbivore damage, cause their mixture and release of a toxic product in a localized area of
destruction (Mithofer & Boland, 2012). These metabolites are well-known as defenses
against chewing herbivores (Cooper-Driver & Swain, 1976; Pentzold, Zagrobelny, Rook,
& Bak, 2014; Ratzka, Vogel, Kliebenstein, Mitchell-Olds, & Kroymann, 2002; Wittstock
et al., 2004), since maceration of plant tissue results in maximal compound activation.
However, two-component defenses have usually not been considered to be activated by

phloem-feeding insects since tissue damage is minimal (Pentzold et al., 2014).

[.II  Glucosinolates

Glucosinolates (GSLs) are nitrogen containing, and sulfur rich natural products
which are ubiquitously produced across the order Brassicales, including the family
Brassicaceae (Tripathi & Mishra, 2007), and importantly present in the model plant

Arabidopsis thaliana, thus contributing to their being very well studied (Blazevi¢ et al.,

4
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2020; Winde & Wittstock, 2011). There are approximately 88-137 individual glucosinolate
structures (Agerbirk & Olsen, 2012; Blazevi¢ et al., 2020) of which 88 have been
satisfactorily characterized, and 49 remain only partially characterized in literature
(Blazevi¢ et al., 2020). The compounds share common structural features of a thio-linked
B-D-glucose linked to a (Z)-N-hydroxyamino sulfate ester (Halkier & Gershenzon, 2006).
The variability in these compounds arises from the various amino acids from which the “R”
side chain is derived and further modified, being alanine, leucine, isoleucine, methionine,
and valine in the case of aliphatic glucosinolates, phenylalanine or tyrosine for benzenic
glucosinolates, and tryptophan for indolic glucosinolates (Halkier & Gershenzon, 2006).
Modification of side chains is extensive and variable, and includes chain elongation, O-
methylation, desaturation, hydroxylation, and acylation (Halkier & Gershenzon, 2006).
Biosynthesis of glucosinolates starts in many cases with the elongation of the amino acid
side chain, and then proceeds with modification of the amino acid core structure via the
sequential action of two cytochrome p450 enzymes (Du, Lykkesfeldt, Olsen, & Halkier,
1995) with the first (from CYP79 family) (Bak, Nielsen, & Halkier, 1998) resulting in the
formation of an aldoxime (Figure 1) and the second (from the CYP83 family) (Bak &
Feyereisen, 2001; Bak, Tax, Feldmann, Galbraith, & Feyereisen, 2001) resulting in the
formation of an unstable nitrile oxide. The responsible enzyme for the synthesis of the S-
alkyl-thiohydroximate (Figure 1) has not been isolated to date but is hypothesized to be a
glutathione-S-transferase (GST)-like enzyme (Halkier & Du, 1997) with the cysteine
conjugate then formed by cleavage of the remainder of the glutathione moiety. This product
is also relatively unstable, and therefore a tightly associated enzyme, CS-lyase (Geu-Flores
et al., 2009; Mikkelsen, Naur, & Halkier, 2004) produces the thiohydroximic acid. The
action of subsequent enzymes S-glucosyl transferase (S-GT) (Gachon, Langlois-Meurinne,
Henry, & Saindrenan, 2005) and sulphur transferase (ST) (Piotrowski et al., 2004) yield
the final glucosinolate product (Figure 1).
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Figure 1: Glucosinolate biosynthesis and typical hydrolysis products. (A)
Glucosinolate biosynthesis begins with an amino acid that is oxidized by sequentially
acting P450 enzymes. Next, reaction of glutathione is followed by cleavage of the glycine
and y-glutamyl moieties of the resulting conjugate to leave a cysteine conjugate. The
sulphur of cysteine is then reduced by CS-lyase to form the thiohydroximic acid. The last
two steps involve a glucosyltransferase followed by a sulphotransferase to form the final
glucosinolate. (B) The glucosinolate may be activated by contact with the enzyme
myrosinase forming the depicted unstable intermediate in brackets, which can rearrange to
some typical products, the most toxic of which is the isothiocyanate. Abbreviations: CYP
(CYtochrome P450), GST (Glutathione-S-Transferase), CS (Cysteine-S-conjugate), S-
UGT (Sulphur-Uridine diphosphate Glucosyl Transferase), ST (Sulphate Transferase).
Adapted from (Halkier & Gershenzon, 2006).

The activating enzyme associated with glucosinolates is a f-thioglucosidase known
as myrosinase (Bjorkman & Janson, 1972; Bussy, 1840) of the glycoside hydrolase (GH)
family 1 (Rask et al., 2000) and taken together with the glucosinolates themselves is
affectionately referred to as the mustard oil bomb (Liithy & Matile, 1984). Myrosinase is
responsible for the hydrolysis of the B-thioglucose moiety of the glucosinolate, resulting in
the release of a highly unstable intermediate (Figure 1) which can then undergo a series of
rearrangements to form compounds of variable toxicity (Benn, 1977; Stauber et al., 2012),
the most notable of which being the electrophilic isothiocyanates (Figure 1), which if left

unchecked are hypothesized to react with proteins and other macromolecules important for
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normal homeostasis (Borek, Elberson, McCaffrey, & Morra, 1998; Duus, 1979). Even
without myrosinase, some glucosinolates, such as the indolic type, are reported to be
chemically unstable resulting in spontaneous activation and degradation (Kim, Lee,
Schroeder, & Jander, 2008). The distribution of these two components within Arabidopsis
thaliana has also been extensively studied, with specific sulfur rich or “S”-cells (Koroleva
et al., 2000) containing large quantities of glucosinolates and dedicated idioblasts or “M”-
cells (Bones & Iversen, 1985; Guinard, 1890; Peche, 1913) serving in myrosinase storage.
It is important to note that indolic glucosinolates seem to be localized in the plant
surrounding the phloem tissue with aliphatic glucosinolates being more ubiquitously
distributed (Nintemann et al., 2018). In the Col-0 ecotype of the model plant species
Arabidopsis thaliana, the most abundant glucosinolate is the methionine-derived aliphatic
glucosinolate glucoraphanin or 4-methylsulfinylbutyl glucosinolate (4msob-GSL) (P. D.
Brown, Tokuhisa, Reichelt, & Gershenzon, 2003).

LLII Cyanogenic Glycosides

Cyanogenic glycosides are another class of two-component chemical defenses
believed to have originated over 300 million years ago (Bak et al., 2006). It is present in
over 2500 species of plants (Bak et al., 2006; Conn, 1980), as well as being produced by
some insects as defense compounds (Moore, 1967; Nahrstedt & Davis, 1983). Chemically
cyanogenic glycosides are perhaps more simple than their cousins, the glucosinolates, and
unsurprisingly share many chemical features and their biosynthetic origin (Bak et al.,
1998). These compounds are O-B-glycosides of a-hydroxynitriles that are typically
classified as aliphatic or aromatic, which is again dependent on the “R” group or the amino
acid from which their biosynthesis begins (Figure 2). The amino acids that contribute
especially to aliphatic cyanogenic glycosides are valine, leucine and isoleucine with
aromatic cyanogens derived from phenylalanine and tyrosine (Zagrobelny, Bak, & Mogller,
2008). Interestingly, these compounds are also known to exist as diglycosides in addition
to typical monoglycosides, and are hypothesized to have further roles in nitrogen storage
(Busk & Magiller, 2002), transport (Dirk Selmar, Reinhard Lieberei, & Bole Biehl, 1988;
Selmar et al., 1987) and protection from selenium toxicity in animals (Palmer, El Olson,
Halverson, Miller, & Smith, 1980; Smith Jr, Weisleder, Miller, Palmer, & Olson, 1980),

even having their own dedicated disaccharidases (Fan & Conn, 1985).
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A well-known crop plant that contains large amounts of cyanogenic glycosides as a
defense is the tropical carbohydrate crop Manihot esculenta (McMahon, White, & Sayre,
1995) or more commonly cassava. The most abundant cyanogenic glycoside present is the
valine derived aliphatic cyanogenic monoglycoside linamarin (Nartey, 1968), with
contributions from the isoleucine derived lotaustralin (Nartey, 1968). Biosynthesis of
linamarin like that of glucosinolates begins with the consecutive action of two cytochrome
p450s. The first, from the CYP79 family forms the corresponding oxime (Andersen, Busk,
Svendsen, & Moller, 2000) (Figure 2), and the second P450 from the CYP71 family
catalyzes the loss of water and subsequent hydroxylation to form an acetone cyanohydrin
(Jorgensen et al., 2011). Following this is the dedicated glucosyl-transfer reaction to form
the final cyanogenic glycoside product (Kannangara et al., 2011). Due to the ancient nature
of cyanogenic glycosides, and the conservation of the beginning CYP79 oxidation steps to
oximes, cyanogenic glycosides are hypothesized to be the predecessor of glucosinolates

(Bak et al., 1998; Bak et al., 2006).
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Figure 2: General biosynthesis, hydrolysis and detoxification of cyanogenic
glycosides. (A) Similar to glucosinolate biosynthesis, cyanogenic glycoside biosynthesis
begins with an amino acid which is oxidized by a CYP79 enzyme to form an aldoxime.
Following this, an NADPH-dependent CYP71 enzyme forms an unstable cyanohydrin
intermediate succeeded by immediate glucosylation by a dedicated glucosyltransferase. (B)
Hydrolysis occurs via the action of dedicated B-glucosidase, which again forms the unstable
cyanohydrin which can either spontaneously degrade or has its degradation enzymatically
facilitated forming a keto-compound and the toxin hydrogen cyanide. (C) General
detoxification reactions of cyanogenic glycosides typically found in plants include the

cysteine transferring enzyme beta-cyanoalanine synthase and the thiocyanate forming
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rhodanese. Abbreviations CYP (CYtochrome P450), UGT (Uridine diphosphate Glucosyl
Transferase), HNL (HydroxyNitrile Lyase), BCA (Beta-CyanoAlanine).

The dedicated enzyme for the activation of linamarin in cassava and other
linamarin-accumulating species is known as linamarase (Mkpong, Yan, Chism, & Sayre,
1990), which is responsible for the hydrolysis of the B-glucose of linamarin releasing an
unstable cyanohydrin intermediate (Figure 2). The cyanohydrin produced can quickly
degrade at pH values above 6 (Cooke, 1978), to form acetone and the toxin hydrogen
cyanide. To make the release of hydrogen cyanide occur even more rapidly, many plants
possess an enzyme known as hydroxynitrile lyase (HNL, Figure 2), which speeds the
formation of hydrogen cyanide approximately six-fold faster in crude enzyme preparations
than with linamarase alone (White & Sayre, 1992). Hydrogen cyanide is a respiratory toxin
because of its inhibition of the electron transport chain. Since this substance is also toxic to
the plant itself as well as to herbivore enemies, mechanisms have been developed by plants
to reduce its toxicity. Beta-cyanoalanine synthase and rhodanese (Figure 2) are enzymes
dedicated to the detoxification of hydrogen cyanide (Conn, 1980) with the former being
utilized by cyanogenic and non-cyanogenic plants alike, since hydrogen cyanide is formed

in all plants during the biosynthesis of the hormone ethylene (Peiser et al., 1984).

II. Detoxification

Detoxification as a broad definition should refer to the avoidance or mitigation of
the potential effects of harmful substances, and with herbivorous insects and plants having
together evolved for over 350 million years (Gatehouse, 2002) they have developed
multiple adaptations and counter-adaptations for one another. Although activated two-
component defenses represent one of the more sophisticated adaptations of plants to deal
with their pest insects, some insects are able to feed on plants that contain these toxic
metabolites with little to no mortality. Strategies employed by insect herbivores include
behavioral modulations such as leaf mining and leaf cutting to avoid chemical defense
activation (Pentzold et al., 2014). This is mirrored in phloem feeders, having a specialized
feeding locale (the phloem) where it is hypothesized that they can subvert two-component
defenses by avoiding causing enough tissue damage to activate them (Heil, 2009). In
addition, insects may possess digestive systems that do not present favorable conditions for

the activation of two-component defenses (Pentzold et al., 2014) and some specialized
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insects may even sequester plant defenses in certain organs or tissues before they can exert
their toxicity (Opitz, Jensen, & Miiller, 2010). If an insect is not so incredibly adapted to
avoid such defenses as is most commonly associated with insects having a broader host
range; then metabolites will most likely become activated or exert their toxicity during
regular feeding. Other adaptations involve various types of detoxification reactions
commonly referred to as phase I and phase II detoxification strategies (Gibson & Skett,
2013), the major enzymatic pathways of which are discussed in the following subsections.
Phase III detoxification, which typically involves the efflux and excretion of metabolites

(Ioannides, 2002), is also known but not covered in this section.

[I.I.  Phase I detoxification

Phase I detoxification is known as the functionalization stage of detoxification
(Ioannides, 2002), being largely catalyzed by enzymes involved in oxidation (cytochrome
P450s), reduction and hydrolysis such as carboxylesterases (Liska, 1998). Cytochrome
P450s are known to play an extensive role in the detoxification of many xenobiotics and
can have a very large substrate affinity. The oxidized products can be more readily excreted
due to an increase in polarity or may become substrates in phase II detoxification. In
humans, famous examples can be found in everyday life in the form of alcohol oxidases
(Grant, 1991), which are often targets for the pharmaceutical industry to reduce the
metabolism of certain drugs and so increase their efficacy (Purnapatre, Khattar, & Saini,
2008) as treatments. In insects, these enzymes are believed to be perhaps one of the most
important for insecticide resistance (Isaac Ishaaya, 1993; Lee & Scott, 1989). Numerous
examples of monooxygenase activity are observed in the metabolism of insecticides
(Bergé, Feyereisen, & Amichot, 1998; Hodgson, 1985; C. Wilkinson & Brattsten, 1972),
as well as observations that perturbations to this pathway is met with susceptibility in

otherwise resistant species (Tang, Zhao, Feng, Liu, & Qiu, 2012; Zhang et al., 2019).

Additionally in insects, hydrolases can play very important roles in the
detoxification of various insecticides (Isaac Ishaaya, 1993), such as organophosphates
(Dauterman, 1983) pyrethroids (I. Ishaaya, Ascher, & Casida, 1983) and benzoylphenyl
ureas (Eto, Kishimot.K, Matsumura, Ohshita, & Oshima, 1966). Indeed, the pest species
C. carnea displays a uniquely high tolerance to pyrethroids, attributed to the highly active
and specific pyrethroid esterase (I. Ishaaya & Casida, 1981). Further examples of

10



Introduction

hydrolysis are known in insects that pre-emptively metabolize glucosinolates by hydrolysis
of the sulphate residue by sulphatases (Falk & Gershenzon, 2007; Ratzka et al., 2002), thus
rendering these toxins inert to activation by myrosinase, a reaction interestingly also present
in the whitefly B. tabaci (Malka et al., 2016). As mentioned previously, enzymatic action
of phase I detoxification enzymes may be sufficient for the inactivation of a given toxin,
however the functionalization reactions performed allow the further utility of phase II

detoxification processes.

[L.II. Phase Il detoxification

Phase II detoxification is often referred to as conjugation detoxification, where toxic
compounds may be made inert by conjugation to a molecule that also serves to increase its
excretion via increasing polarity. Phase II enzymes may work after phase I detoxification
processes or independently when conjugation is possible without prior functionalization.
Enzymes which are typical members of this family are glutathione-S-transferases (GSTs),
sulphotransferases,  methyltransferases,  glycine  acyltransferases and  UDP-

glycosyltransferases (UDPGTs) (Meyer, 1996).

Glutathione conjugation and cysteine transferring enzymes are important members
of the phase II detoxification machinery that are inducible in a tissue dependent manner
following exposure to xenobiotics (Bhagwat, Mullick, Avadhani, & Raza, 1998). In the
case of glucosinolate hydrolysis products, detoxification involves the mercapturic acid
pathway, a well-characterized sequence of enzymatic steps utilized in the formation and
processing of stable conjugates of isothiocyanates and other dangerous electrophiles
(Figure 3). In this case, glutathione (GSH) is reacted with the electrophilic center of the
isothiocyanate, reducing the toxicity and the potential of the toxins to react with proteins
and other nucleophilic sites (Borek et al., 1998; Duus, 1979). The pathway does not simply
end after the initial conjugation, but the non-cysteine amino acid residues of the tripeptide
GSH are scavenged (Figure 3) so as to reduce the loss of nitrogen upon excretion. In
virtually all studied plants and select insects, cysteine transfer enzymes mimicking GST
action are also utilized in the detoxification of hydrogen cyanide via the action of beta-

cyanoalanine synthase (Conn, 1980; van Ohlen, Herfurth, Kerbstadt, & Wittstock, 2016).
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Figure 3: Meracapturic acid pathway for a general isothiocyanate. Isothiocyanates
produced from glucosinolate hydrolysis can be detoxified via phase II conjugation with the
tripeptide glutathione. This tripeptide is further broken down usually prior to excretion with
the hydrolysis of glutamate, followed by glycine and the product may be further N-

acetylated to aid in excretion.

Sulphotransferase detoxification is a multi-purpose transformation of xenobiotics
(B.-H. Chen, Wang, Hou, Mao, & Yang, 2015), neurotransmitters (Roth, 1986) and
hormones (Visser et al., 1998) alike. Flavanols in plants are well-known examples of
secondary metabolites that can undergo multiple degrees of sulphation in response to UV
stress (Gidda & Varin, 2006). In detoxification, this conjugation serves to increase the
solubility of the products and is usually associated with a decrease in biological toxicity;
however, it has been utilized in the past as a mechanism to activate certain pharmaceuticals.
Indeed, in some instances, the sulphation of certain chemicals has been shown to further
toxify them into dangerous carcinogens (Y. Wang et al., 2002). In plants especially, and in
some insects, the activity of a thiosulphate sulphotransferase known as rhodanese is
responsible for the conversion of the toxin hydrogen cyanide to the corresponding

thiocyanate (Figure 2) (Antony et al., 2006).

Glycosyltransfer reactions are a major detoxification step in all vertebrates (Karl W
Bock et al., 2012) and also extensively utilized in insects (Karl Walter Bock, 2016). This
closely related family of enzymes are typically membrane bound in animals and are
responsible for the transfer of a glycosyl moiety to molecules containing a nucleophilic
nitrogen, sulphur, carbon or oxygen atom (Gibson & Skett, 2013). Importantly, they
transfer an activated form of the glycosyl unit in the form of a diphosphate, and as a
consequence the name uridine diphosphate glycosyltransferases (UDPGT) is employed
(Karl Walter Bock, 2016). This conjugation is typically associated with a loss of activity

of a given toxin and a major increase to the solubility of resulting glycoside. In humans,
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drugs from virtually all classes are subject to the action of these enzymes, demonstrating
the catalytic flexibility of UDPGT enzymes. A unique example of this transformation in
insects is the detoxification of the plant toxin DIMBOA-glucose, in various lepidopteran
herbivores (Wouters et al., 2014). In this case the two-component defense metabolite
DIMBOA-glucose exists in the plant as B-linked glycoside, and is hydrolyzed within the
insect gut when feeding (Vassao et al., 2018). However, dedicated UDPGTs from this
insect can re-glucosylate the compound with an inversion in stereochemistry, resulting in a

compound inert to the activating B-glycosidases (Wouters et al., 2014).

ILIII Unique mechanisms in insect detoxification

Much of the work and research pertaining to detoxification in general has its roots
in mammalian research where pharmaceutical metabolism and its potential effects in
humans holds a bulk of all literature entries since its original categorization (Williams,
1959). However, the growing body of literature on insect detoxification processes shows
deviations from classical mammalian detoxification strategies, especially in regards to
phase II conjugation chemistry. The first of these differences pertains to the utilization of
sugars and sugar derivatives in transfer reactions. In vertebrates, the unit which is almost
always transferred is the glucose-derived sugar acid, glucuronic acid, which has the C-6
oxidized to a carboxylic acid rather than a hydroxyl group. In insects, plants and
invertebrates, on the other hand, the transferred unit is exclusively glucose (Karl Walter

Bock, 2016).

Further deviations in phase II detoxification in insects involve the transfer of
phosphate moieties to xenobiotics, a process completely absent in the mammalian
detoxification repertoire. Phosphorylation is not an uncommon modification of proteins,
where its presence or absence may change substrate specificity or activate an enzyme
(Mitra et al.,, 2011). However, in vertebrates or mammals the phosphorylation of
metabolites is not reported as a detoxification strategy, possibly due to metabolic cost
(Boeckler, Paetz, Feibicke, Gershenzon, & Unsicker, 2016), with phosphate supply limiting
basic energy metabolism (Acin-Perez, Gatti, Bai, & Manfredi, 2011). In insects however,
some of the first reports of this modification were seen as far back as the 1960s (Darby,
Heenan, & Smith, 1966), where phenolic metabolites were seen to be phosphorylated in

the excreta of Costelytra zealandica. Furthermore, the polyphagous pest S. gregaria has
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been known to modify numerous insecticides via this conjugation mechanism, rendering
them non-toxic (Olsen, Gabel-Jensen, Nielsen, Hansen, & Badolo, 2014; Olsen et al.,
2016). Even more exciting is the clear link between classical phase I detoxification
activities of monooxygenases (Olsen et al, 2014) in this insect, followed by
phosphorylation of the hydroxylated metabolite, or even phosphorylation of conjugated
glucose units transferred in a phase II detoxification manner (Olsen et al., 2016). With the
growing evidence for insect phosphorylation of dietary toxins and other xenobiotics by
insects (Scanlan, Gledhill-Smith, Battlay, & Robin, 2020), this should be recognized as a
subcategory of phase II detoxification.

[II.  Phloem feeding insects

[ILI  General characteristics of phloem feeding insects

Phloem-feeding insects, members of the order Hemiptera or “true bugs” (Raven,
1983) are piercing-sucking feeders that consume the contents of the phloem specifically
rather than the entirety of leaves, stems or other organs. They perform this task with a
uniquely adapted stylet which can navigate apoplastically between cells in search of the
sugar-laden phloem, which is pierced mechanically (Tjallingii & Esch, 1993). Examples of
phloem-feeding insects include aphids, leathoppers, plant hoppers and whiteflies, with
varying ranges of host utilization or preference (Raven, 1983). Many of the studies on
feeding behavior in this guild have been performed on aphids, where it has been found
through electrical penetration graph (EPGs) (Tjallingii & Esch, 1993) that the insect first
probes the plant superficially (Esch & Tjallingii, 1990) to determine if it will continue in
search of the phloem. If the insect determines that a plant is suitable for consumption,
further probing begins with eventual searching for the phloem or sieve element (Tjallingii
& Esch, 1993). Once the insect has pierced the phloem, the turgor pressure of the sieve
element allows for a steady stream of phloem content to exude and be consumed by the
insect, facilitated by sucking (Raven, 1983). The plant, through calcium-dependent
signaling cascades, naturally repairs damage to the phloem. Thus it is proposed that aphids
and other phloem feeders may have mechanisms to block calcium-dependent signaling such

as the use of calcium-chelating proteins (Will, Tjallingii, Thonnessen, & van Bel, 2007).
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Phloem feeders excrete sugary frass known as honeydew, which can serve as an excellent

substrate for the growth of fungi on the leaves of plants (Raven, 1983).

[II.LLI The nitrogen barrier

It is generally accepted that phloem feeders (and most insects) are limited by the
supply of nitrogen, which is usually present as free amino acids (Douglas, 2006).
Interestingly, in some cases total nitrogen content may be adequate but there may be a lack
of essential amino acids (Douglas, 1993). In the aphid host plant Vicia faba, the dominant
amino acid within the phloem is asparagine (a non-essential amino acid), while the ratio of
essential amino acids to non-essential amino acids is extremely low when compared to that
present in aphid proteins (Douglas, 1993, 2006). In order to overcome this barrier, aphids
and other phloem feeders utilize bacterial endosymbionts that are capable of producing
essential amino acids lacking in their diets (Douglas, 1998; Hansen & Moran, 2011).
Nitrogen quality in various species of plants also seems to have a distinct effect on the
population of aphid symbionts, showing the importance of nitrogen or amino acid content

in the utilization of a plant by a phloem feeder (TL Wilkinson, Koga, & Fukatsu, 2007).

IILLIT The sugar barrier and the importance of osmoregulation

The most dominant metabolites in the phloem are sugars, with a majority being the
disaccharide sucrose, formed directly from the photosynthetic fixation of carbon (Byrne &
Miller, 1990; Hayashi & Chino, 1990). However, phloem sap composition differs in some
plants, such as in the case of cucurbits where raffinose and higher order saccharides make
a large contribution (Haritatos, Keller, & Turgeon, 1996). The problem with this extremely
high concentration of sugar in the form of sucrose is that it can cause the dehydration of
feeding insects as sugars represent important osmolytes that influence the influx and efflux
of water (Douglas, 2006). Aphids, whiteflies and other phloem feeders, however, still
manage to feed on a sucrose-rich diet without ill effects through the use of sugar modifying

enzymes, and tight regulation of aquaporins (Douglas, 2006).

The most important class of osmoregulatory enzymes, critical for all phloem feeders

are the sugar modifying enzymes commonly referred to as sucrase-transglucosidases. They
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are part of the glucohydrolase (GH) family of enzymes within the GH13 subfamily. The
mechanism of these enzymes (Figure 4) begins with the formation of a glucosyl-enzyme
intermediate (André, Potocki-Véronese, Morel, Monsan, & Remaud-Siméon, 2010; Moulis
et al., 2006) and the release of fructose, followed by a concentration dependent fate of this
intermediate (Cristofoletti, Ribeiro, Deraison, Rahbé, & Terra, 2003). In the case of low
sucrose or nucleophile concentrations, water may enter the catalytic pocket and result in a
net hydrolysis of sucrose to its substituent monosaccharides glucose and fructose (Figure 4
C). However, when sucrose or nucleophile concentrations are high enough, then these
nucleophiles may enter the catalytic pocket instead (Figure 4 C’), resulting in
transglucosidation to the nucleophilic center, which in the case of sucrose itself results in a
trisaccahride. Fructose is typically absorbed and transported selectively out of the insect
gut and utilized for energy purposes (Ashford, Smith, & Douglas, 2000). Thus, the overall
conversion is two molecules of sucrose to one molecule of a trisaccharide, which halves
the osmotic strength. It is important to note that this process may repeat with the same
metabolite, producing larger and larger saccharides (Figure 4 D) until an equilibrium is
reached as seen in the measurement of the iso-osmotic pressure of honeydew excreted from
aphids (T Wilkinson, Ashford, Pritchard, & Douglas, 1997). Although protein fractions
with such a transglucosidase activity have been isolated from aphids (Cristofoletti et al.,
2003), and attempts have been made to characterize enzymes with such activities in other
insects (Jing et al., 2016; Price et al., 2007), the only genes encoding enzymes with these
activities are from bacteria (Robyt, Yoon, & Mukerjea, 2008).

OH
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Figure 4: Basic mechanism of a retaining sucrase-transglucosidase. The binding of
sucrose (A) causes an initial inversion of stereochemistry at the anomeric carbon with the
release of fructose to form a glucosyl-enzyme intermediate (B). From here the intermediate

can have two fates which are typically hypothesized to be concentration dependent. When
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nucleophile (depicted as general H-O-X) concentrations are low, water enters the catalytic
pockets resulting in net hydrolysis (C). However, when nucleophile concentrations are
sufficient the result is a net transglucosidation (C”) which may happen numerous times (D)

to the same molecule following the binding of another sucrose molecule.

[ILIT The whitefly Bemisia tabaci

IIIL.II.I General

Bemisia tabaci was originally described in 1889 in Greece (Gennadius, 1889),
where it was noted to persist with tobacco plantations, originally named Aleyrodes tabaci
or the tobacco whitefly. Some of the first collections of B. fabaci in North America were
made from sweet potatoes in the United States, at the time described as Aleyrodes
inconspicua and commonly referred to as the sweet potato whitefly (Quaintance & Banks,
1900). Whitefly populations of the genus Bemisia have expanded recently from subtropical
and tropical to temperate regions of the world, and are currently distributed on every
continent, excluding Antarctica (Martin, Mifsud, & Rapisarda, 2000). As a result in part of
the individual documentation history of whiteflies, B. tabaci represents a number of
herbivorous phloem-feeding whitefly species, that until recently (Xu, De Barro, & Liu,
2010) was regarded as a complex species. Now being represented as a cryptic species
complex, composed of at least thirty six (Firdaus et al., 2013) morphologically
indistinguishable species which were commonly referred to as biotypes (Boykin et al.,
2007). Typically species have been identified by means of cytochrome oxidase 1 (COI)
sequencing with a divergence threshold of 3.5% (Dinsdale, Cook, Riginos, Buckley, & De
Barro, 2010). The life cycle of B. tabaci is broken into six developmental stages that last
anywhere from 14-28 days (Byrne & Bellows Jr, 1991), including egg deposition, hatching
of the first mobile nymphal instar, the second-fourth sessile nymphal instars, the fourth
nymphal instar with red eyes, and finally emergence of the adult from red eyed nymphs. B.
tabaci is an arrhenotokous parthogenic species in which unfertilized eggs develop into

haploid (male), or diploid (female) offspring (Byrne & Bellows Jr, 1991).
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MLILIT Economic impact

Along with the observed expansion in global distribution, B. tabaci has now been
observed to have a massive host range being able to feed and reproduce on over 1000 plant
species to date (Abd-Rabou & Simmons, 2010). This whitefly causes extensive crop
damage globally and has been named as one of the top 100 worst crop pests in the world
(W. Chen et al., 2016; Zubair et al., 2020). The whitefly causes damage to plants by phloem
feeding and by depositing honeydew. This sugary frass represents a perfect medium for
growth of sooty molds, causing a decrease in crop yields (V. Srivastava & Thakre, 2000).
In certain crops such as cotton, the deposition of honeydew represents a large problem with
regards to crop harvests with processing costs being raised in order to eliminate
contaminating sugar (Cheung, Roberts, & Perkins Jr, 1980). Whiteflies also serve as ideal
vectors for plant disease-causing viruses (J. Brown, 1994). B. tabaci is capable of vectoring
over 100 different viruses (W. Chen et al., 2016) which cause various forms of mosaic
phenotypes (Basu, 2019; Jacobson, Duffy, & Sseruwagi, 2018), crippling crop yields, and
even loss of harvestable material as is the case in cassava brown-streak disease (Jacobson
et al., 2018), where tubers have observed tissue necrosis (figure 5) rendering them useless

for consumption.

Figure 5: Necrotic tissue caused by cassava brown streak disease (CBSD). The whitefly

in addition to causing damage via feeding and the deposition of sugar honeydew on the
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leaves of plant is also an excellent vector for plant disease causing viruses such as CBSD

depicted above, which results in tubers with necrotic tissue, seen as brown circular veins.

IILIILIII Sugar metabolism

Sugar metabolism in whiteflies, specifically B. tabaci, is unique in comparison to
other phloem feeders because of the activity of sucrose-isomerizing enzymes known as
trehalulose synthases. Trehalulose synthase is an enzyme responsible for the conversion of
sucrose [o-D-fructofuranosyl-(2<>1)-D-glucose] to trehalulose [a-D-fructofuranosyl-
(1>1)-D-glucose], with the majority of reports from bacteria (Rhimi, Haser, & Aghajari,
2008). Trehalulose was first detected in the honeydew of Aleyrodoidea in the early 1990s
and seems to be particularly present in whitefly metabolism (Byrne, Hendrix, & Williams
II1, 2003; Byrne & Miller, 1990; Hendrix, Wei, & Leggett, 1992). Following this, and in
part due to the lack of reports of any insect performing this conversion and the numerous
reports in bacteria (Rhimi et al., 2008), research was conducted to determine whether this
isomerization was the product of whitefly symbionts or a distinct whitefly enzyme
(Davidson, Segura, Steele, & Hendrix, 1994), with the latter found to be true (Salvucci,
2003). The metabolic advantages of sucrose to trehalulose conversion are not entirely
obvious, however this reaction is hypothesized to represent a relatively fast conversion of
sucrose to a less hydrolysable form, thus lowering the risk of sucrose inversion, which
would exacerbate osmoregulatory challenges (Salvucci, Wolfe, & Hendrix, 1997).
Whiteflies, particularly B. tabaci, have also been shown to produce a host of other unique
sugar polymers such as the trisaccharides bemisiose (Hendrix & Wei, 1994) and
isobemisiose (Hendrix & Salvucci, 2001), as well as other larger order saccharides (Y.-a.

Wei, Hendrix, & Nieman, 1996; Y. A. Wei, Hendrix, & Nieman, 1997).

IV.  Plant defenses to phloem-feeders and B. tabaci

Phloem feeders, being inconspicuous herbivores in their feeding mode, do not cause
significant tissue disruption (Heil, 2009), especially when compared to chewing herbivores,
where maceration of leaf plant tissue triggers large defensive responses. The plant however,
is still able to recognize phloem-feeders and can mount several, fairly specific responses

upon detection of phloem feeder damage. Hormonally, these responses seem to be mediated
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via salicylic acid, rather than the jasmonic acid response typically associated with tissue
damage and chewing herbivory (Soler et al., 2012). One of the most characteristic defenses
against phloem feeders is the induction of phloem-blocking proteins that in essence cut off
the supply of food for the feeding herbivore. Typically, these phloem disruption responses
are triggered by an influx of calcium due to loss of local tissue integrity (Luna et al., 2011;
V. K. Srivastava & Tuteja, 2014). Two major phloem-blocking mechanisms are known.
One is the deposition of callose proteins in the sieve plates (Hao et al., 2008), resulting in
a permanent disruption to phloem bulk flow. This phloem associated mechanism was
originally discovered in the late 19" century (Naegeli, 1861), and later was found to be a
defensive strategy for the deterrence of phloem feeding aphids, since callose deposits were
found to be significantly increased in plants plagued by aphids (Saheed et al., 2007). A
second example, restricted to the Fabaceae, is the more transient forisomes, which are
protein aggregates within the sieve element that upon calcium influx, disperse to clog the
vasculature current (Giordanengo et al., 2010). Once again, studies with aphids have found
an increase in the number of forisomes when generalist aphids feed on the broad bean Vicia

faba in comparison to more specialist aphids (Medina-Ortega & Walker, 2015).

Another prominent response to phloem-feeders is the induction of plant defense
metabolites or secondary metabolites that serve as toxins and deterrents to phloem-feeder
herbivory. In certain aphid species feeding on Pisum sativum the induction of
phenylpropanoids was highlighted by the large accumulation in leaves where aphids had
previously fed (Morkunas et al., 2016), correlating directly with the number of aphids
feeding. This induction is hypothesized to have defensive roles against aphids from other
studies (Lattanzio, Arpaia, Cardinali, Di Venere, & Linsalata, 2000) including one in which
certain flavonoids were shown to inhibit aphid feeding (Golawska & Lukasik, 2012).
Interestingly, it has been shown that specific two-component defenses, the glucosinolates
can have major deterrent effects on aphids (Kim et al., 2008; Pfalz, Vogel, & Kroymann,
2009) feeding on Brassica plants, and are also induced upon herbivory by the same aphids
(Kim & Jander, 2007). Indolic glucosinolates are hypothesized to be particularly active
against phloem feeders, due to their inherent instability, resulting in hydrolysis without the
presence of myrosinase (Kim et al., 2008). Furthermore, it is important to note that in
Arabidopsis thaliana, “S”-cells containing high glucosinolate concentrations seem to be
localized around the phloem, with a particular abundance of indolic glucosinolates being

found in the surrounding tissues (Nintemann et al., 2018). In a study outlining the effects
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of various glucosinolates on whitefly performance (Markovich et al., 2013), it was observed
that aliphatic and indolic glucosinolates had variable effects on the fecundity of B. tabaci
with performance effects associated with the overexpression of certain transcription factors
associated with glucosinolate biosynthesis. With regards to a related two component plant
defense, cyanogenic glycosides, the induction of detoxification enzyme activities in B.
tabaci such as rhodanese and beta-cyanoalanine synthase, represents indirect evidence of

the toxic effects of cyanogenic glycosides present in cassava (Antony et al., 2006).

V. Goals and scope of the thesis

Bemisia tabaci is capable of feeding on over 1000 species of plants (Abd-Rabou &
Simmons, 2010), and represents a major agricultural and ornamental pest species. Through
its inconspicuous mode of feeding and ability to vector a multitude of plant viruses, it is
responsible for major economic losses across the globe. This loss becomes even more
important when considering the impact it has on small shareholder farmers in places such
as Sub Saharan Africa where whitefly populations have recently exploded. Despite the
economic impact of whiteflies, few studies have been published that investigate the
mechanisms that allow this insect to feed on so many different plants, some known to

contain high concentrations of defenses, without apparent ill effects.

The subject of B. tabaci speciation remains very controversial. However, regardless
of possible biotypes and cryptic sub-species, many questions can be raised about the
mechanisms that have allowed whiteflies to become such a successful group of herbivores.
Do these insects have interactions with classical plant defenses, such as two-component
defenses? If so, what mechanisms exist to detoxify them, and are they unique to the phloem
feeding guild? Finally, what are the enzymes that perform these reactions in the prolific
phloem feeder B. tabaci? These unanswered questions were the motivation for my thesis,
where [ aimed to expand our knowledge of chemical-based interactions between whiteflies

and plants.

Among the more specific interactions I explored were the interactions of the
whitefly B. tabaci and two-component defenses from plants via analysis of the honeydew
produced after feeding on phloem tissues. Even though whiteflies were not previously

believed to interact with two-component defenses, in Manuscript I my colleagues and I
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were able to show that the two-component defense 4msob-GSL was activated during
regular feeding behaviours on Arabidopsis thaliana with classical phase Il mercapturic acid
pathway detoxification mitigating the toxicity of this activation. Furthermore, we were able
to show a unique pre-emptive detoxification pathway utilized by whiteflies that resulted in
repeated glucosylation of glucosinolates. This pathway was demonstrated to be exclusive
to phloem feeding insects and seems to have been derived from osmoregulatory enzymes
of the glucohydrolase (GH) family. Phylogenetic analysis showed a large number of GH
enzymes within this insect. Utilizing sequence homology analysis to other known GH13
enzymes and complementary expression data, we characterized two potential GH enzymes
from B.tabaci Middle-East-Asia-Minor 1 biotype (MEAMI1) with transglucosidation
activity with 4msob-GSL.

Following the discovery of this unique form of detoxification and the potential
threat that two-component defenses can have towards the whitefly and other phloem
feeders; the ubiquity of this detoxification mechanism was tested with whitefly populations
feeding on cassava (Manuscript IT). We were curious to find out if the same detoxification
pathway would be utilized for other two-component defense systems in plants, and the
related cyanogenic glycosides was an excellent candidate to investigate. We once again
found evidence that cyanogenic glycosides were activated during whitefly feeding through
the accumulation of a cyanide detoxification product in the insect body. We also discovered
that the B. tabaci Sub-Saharan-Africa 1 biotype (SSA1) was capable of producing o-
glycoside derivatives of linamarin similar to those produced with 4msob-GSL. However,
the relative abundance of derivatives with glucosylation at different positions varied
between these two defense compounds. Finally, we were able to detect yet another pre-
emptive detoxification/modification not detected with glucosinolates, being the
phosphorylation of the cyanogenic glycoside linamarin. The same two GH enzymes were
tested again for potential transglucosidation activity with linamarin and a range of other

secondary metabolites.

Whiteflies and other phloem feeders are perhaps most often associated with primary
metabolites such as sugars (i.e sucrose) which are abundant in the phloem. Interestingly,
the mechanism of secondary metabolite detoxification discovered here seems to have its
origins in osmoregulation, or the modification of sugars. In order to gain further insight
into the important ecological role of sugar isomerization in these insects, we searched for a

potential trehalulose synthase in B. tabaci MEAMI. Using TIMS-ToF analysis in
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Manuscript I1I, we were able to characterize three genes encoding proteins from B. tabaci
with trehalulose synthase activity in vitro. Additionally, these enzymes also functioned as
active transglucosidases of sucrose and other related sugars, highlighting their role in an
osmoregulatory context. These enzymes were also tested for their ability to conjugate
sugars to the secondary metabolite 4msob-GSL for which transglucosidation activity was
previously observed. We found that none of the enzymes were capable of modifying
4msob-GSL and propose a division between osmoregulatory functions and secondary
metabolite modification, perhaps providing a reason for the large GH gene expansion

observed in these insects as compared to other herbivores.
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Brief Summary

In this chapter, we examined the fate of ingested two-component defenses, the
glucosinolates in phloem feeding insects, specifically the whitefly B. tabaci. Here we
discovered that during feeding by B. tabaci on Arabidopsis thaliana, the most abundant
aliphatic defense compound 4msob-GSL is hydrolyzed in the insect and detoxified using
the mercapturic acid pathway. We further investigated the metabolism of this glucosinolate
through metabolic analysis of the honeydew from whiteflies feeding on glucosinolate
containing plants and discovered that a majority of 4msob-GSL was being converted to
myrosinase-inert poly-glucosylated derivatives and excreted, in line with a phase II
detoxification process. Through labeling studies we showed that the responsible enzyme
was a sucrase-transglucosidase and not a UDPGT, due to the exclusive utilization of
sucrose for the transfer of glucose to 4msob-GSL. We further characterized two enzymes
from B. tabaci, being SUC2 and SUCS5 which were capable of utilizing sucrose to catalyze
the transfer of glucose to 4msob-GSL. The phenomenon of poly-glucosylation was
determined to be a unique detoxification mechanism to the phloem feeding-guild, with
these compounds being inherently absent in insect excreta from other feeding guilds.
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Brief Summary

Manuscript II further explored the metabolism of two-component defenses in B. tabaci
with cyanogenic glycosides from cassava, specifically linamarin. In order to find evidence
of cyanogenic glycoside hydrolysis during whitefly feeding, a cyanide detoxification
product, beta-cyanoalanine was measured and found to be enriched in whitefly bodies that
fed on cyanogenic cassava versus non-cyanogenic eggplant. Previous observations in
Manuscript I showed that B. fabaci may metabolize cyanogenic glycosides in a similar
fashion to glucosinolates and indeed, poly-glucosylated linamarin derivatives were purified
from honeydew produced by whiteflies feeding on cassava. The enzymes which catalyzed
the transglucosidation of 4msob-GSL (BtSUC2 and BtSUCS5) were utilized in enzyme
assays with linamarin and found to also transglucosidate this metabolite with variable
efficiency. Interestingly, an additional metabolism of linamarin was detected in the
honeydew of cassava fed whiteflies which upon purification was revealed to be the addition
of a phosphate to both native linamarin and the insect modified glycosides. The addition of
phosphate also rendered linamarin inert to the activating enzyme linamarase, adding to this
insect’s detoxification toolset. This variation in the metabolism of linamarin illustrates the
plethora of unique detoxification processes associated with B. tabaci, and further highlights
the roles of two-component defenses in phloem-feeder and plant interactions.
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Isomerization and olicomerization of dietary disaccharides by Bemisia tabaci

transglucosidases
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Brief Summary

Manuscript IIT sought to investigate the enzymes responsible for the unique activity
observed in whitefly sugar metabolism, being the isomerization of sucrose to trehalulose.
Here we were able to show for the first time in insects, three B. fabaci enzymes of the
glycoside hydrolase 13 family which showed activity in the isomerization of sucrose to
form trehalulose in vitro, aided by TIMS-ToF analysis for the identification of this product.
Further analysis of these enzymes activities showed the utilization of sucrose, as well as
other disaccharides in the formation of sugar oligomers of variable composition with some
products identified by their respective ion-mobilities and corresponding momentum
collision cross-sections (CCSs). Incubations with various sugar isotopomers provided
mechanistic details to the observed in vitro activities, as well as the composition of
unknown transglucosidation products. The characterization of these enzyme activities
marks the first trehalulose synthases identified in insects, as well as the first saccharide
transgluosidating enzymes identified in B. fabaci which are most likely important for
osmoregulatory functions. Taken together with the other manuscripts in this thesis, it
further highlights the utility of GH13 enzymes in B. tabaci metabolism of ingested plant
substrates.
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Glucosylation prevents plant defense activation in
phloem-feeding insects

Osnat Malka®'22, Michael L. A. E. Easson®?27, Christian Paetz ®?, Monika G6tz3, Michael Reichelt®?,
Beate Stein®, Katrin Luck?, Aleksa Stanisic¢?, Ksenia Juravel ®'4, Diego Santos-Garcia®],

Lilach L. Mondaca®, Simon Springate®, John Colvin®, Stephan Winter3, Jonathan Gershenzon®?,

Shai Morin' and Daniel G. Vassao ©®2X

The metabolic adaptations by which phloem-feeding insects counteract plant defense compounds are poorly known.
Two-component plant defenses, such as glucosinolates, consist of a glucosylated protoxin that is activated by a glycoside hydro-
lase upon plant damage. Phloem-feeding herbivores are not generally believed to be negatively impacted by two-component
defenses due to their slender piercing-sucking mouthparts, which minimize plant damage. However, here we document that
glucosinolates are indeed activated during feeding by the whitefly Bemisia tabaci. This phloem feeder was also found to detoxify
the majority of the glucosinolates it ingests by the stereoselective addition of glucose moieties, which prevents hydrolytic
activation of these defense compounds. Glucosylation of glucosinolates in B. tabaci was accomplished via a transglucosidation
mechanism, and two glycoside hydrolase family 13 (GH13) enzymes were shown to catalyze these reactions. This detoxification

reaction was also found in a range of other phloem-feeding herbivores.

sist of a glucosylated protoxin that is cleaved by a glycoside

hydrolase (GH), yielding an unstable aglycone that rearranges
to form toxic products. The protoxin and glycoside hydrolase are
stored in separate compartments that mix upon plant damage,
activating the toxin. Two-component defenses, which include glu-
cosinolates (GSLs), cyanogenic glycosides, benzoxazinoids and iri-
doids, have long been known to play decisive roles in interactions
between plants and chewing herbivores"“. However, how such com-
pounds affect other herbivorous guilds, especially piercing-sucking,
phloem-feeding herbivores such as aphids and whiteflies, is less well
established. Piercing-sucking herbivores reach the sugary phloem
sap by maneuvering their flexible mouthparts (stylets) between
plant cells*. Therefore, in comparison to chewing insect herbivores
such as caterpillars, phloem-feeding insects cause considerably less
tissue damage and may not activate two-component defenses™®.
Nevertheless, infestations of phloem-feeding insects can still be
very harmful to plants, as these pests vector a multitude of plant
viruses and excrete large amounts of a sugary honeydew that sup-
ports fungal colonization, thus promoting disease and reducing
yields of crop plants”*.

GSLs are among the best-studied examples of two-component
plantchemical defenses. Theseaminoacid-derived -thioglucosides
are produced by species of the order Brassicales, such as cab-
bages, turnips, radishes and mustard plants, as well as the model
plant Arabidopsis thaliana. The hydrolytic enzymes required for
GSL activation are the p-thioglucose hydrolases referred to as
myrosinases’. Following tissue damage, myrosinase-catalyzed
GSL cleavage results in unstable O-sulfated thiohydroximate agly-
cones, which rearrange to toxic isothiocyanates (ITCs) and other
hydrolysis products (Fig. 1a). Some herbivorous insects are able to

| wo-component chemical defenses of plants commonly con-

feed on GSL-containing plants without apparent negative effects.
They may metabolize ITCs to glutathione derivatives (reviewed
in ref. %) or convert GSLs to desulfated products before myrosi-
nase action'’"'?, which produces derivatives that cannot be cleaved
by myrosinase. This latter reaction has also been observed in a
phloem feeder, the whitefly Bemisia tabaci (species MED-Q2)".
The presence of such a preemptive detoxification mechanism in
a phloem-feeding insect suggests the threat of exposure to GSL
hydrolysis products, as does the fact that plant GSLs have negative
effects on the performance of phloem feeders'*".

Besides plant chemical defenses, herbivores that live on phloem
sap, such as aphids and whiteflies, must also overcome other hur-
dles. The sugar-rich phloem sap has very high osmolarity, which
may cause dehydration and cell damage. Sucrose is often the main
saccharide in the phloem vasculature, with concentrations ranging
from 0.4M to 0.8 M (refs. '®”), and the phloem sap gains further
osmotic contributions from monosaccharides and larger oligosac-
charides'®". To prevent dehydration, phloem feeders tightly regu-
late water transport and employ sugar-modifying enzymes known
as sucrase-transglucosidases’”. These enzymes catalyze sucrose
hydrolysis, followed by transglucosidation of the bound glucose moi-
ety onto a growing sugar chain. After fructose absorption for energy
metabolism, this effectively lowers the osmolarity of the insect gut
content, reducing the threat of dehydration. The honeydew excreted
by whiteflies therefore contains an oligosaccharide composition very
different from that of the incoming plant sap, with a majority of di-
and higher-order (n > 3) saccharides containing differing regio- and
stereo-chemistries than those of the plant-derived saccharides™.

Researchers have long wondered how plant defenses affect
phloem-feeding insects, and whether these insects possess mecha-
nisms to minimize toxicity after exposure. Here, we offer evidence
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Fig. 1| Activation and metabolism of 4-methylsulfinylbutyl
glucosinolate (4msob-GSL) in the whitefly Bemisia tabaci. a,
Myrosinase-catalyzed hydrolysis activates this GSL (1), forming the
corresponding nitrile (light blue oval background) and isothiocyanate
(dark blue oval background). The resulting isothiocyanate is then
conjugated to glutathione (green oval background) and metabolized
via the previously described mercapturic acid pathway (purple oval
background). b, Representative LC-MS extracted ion chromatogram
of concentrated honeydew from whiteflies fed on GSL-containing
plants, showing the activation products of 4msob-GSL (4msob,
4-methylsulfinylbutyl; 4msob-CN, 4msob-nitrile; 4msob-ITC,
4msob-isothiocyanate) and known isothiocyanate detoxification
products (4msob-GSH, glutathione conjugate of 4msob-ITC;
4msob-NAC, N-acetylcysteine conjugate of 4msob-ITC).
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demonstrating the risks of two-component defenses for phloem
feeders. We describe the detection of GSL-derived hydrolysis prod-
ucts in the honeydew of the phloem feeder B. tabaci MEAMI1 and a
novel preemptive GSL detoxification pathway based on the stereose-
lective addition of glucose moieties. Feeding of isotopically labeled
sugars implicated the involvement of transglucosidase activity in
these reactions, and we identified two different B. tabaci enzymes
capable of catalyzing these transformations. Furthermore, we found
this same detoxification reaction in a range of other phloem-feeding
herbivores, but not in insect herbivores from other feeding guilds.

Results

Glucosylation by phloem feeders blocks toxin activation. To
determine if B. tabaci whiteflies encounter GSLs while feeding and
metabolize these compounds, we chemically analyzed the honey-
dew excreted from whiteflies fed on A. thaliana. Targeted HPLC-MS
analyses identified intact and desulfated GSLs", as well as known
GSL hydrolysis products and GSH conjugates (Fig. 1b). Whiteflies
therefore not only encounter GSLs during feeding, but are also
exposed to their toxic hydrolysis products. Untargeted HPLC-MS
analyses of whitefly honeydew revealed large additional peaks of
unknown metabolites with MS fragmentation patterns similar to
those of 4-methylsulfinylbutyl (4msob)-GSL (1), the most abundant
GSL in the leaves of A. thaliana accession Col-0. These unidenti-
fied compounds were also excreted in honeydew after whiteflies fed
on other crucifer species containing 4msob-GSL, such as Brussels
sprouts and broccoli, and on sucrose-based artificial diets contain-
ing 4msob-GSL. However, they were not found in any plant extracts,
confirming that they were insect-derived GSL metabolites.

The mass spectra of these unknown compounds suggested a
serial addition of one to five hexose units to the basic GSL skel-
eton. Because these additions did not affect MS fragmentation of
the methylsulfinyl and sulfate groups, they appeared to be attached
to the pre-existing GSL glucose residue. To elucidate further aspects
of their structures, HPLC-purified 4msob-GSL derivatives with one
and two hexose additions were investigated by NMR. The spectra
obtained (Supplementary Table 1 and Supplementary Note) estab-
lished that the hexose units were glucose moieties that had been
added to the existing GSL f-thioglucose via a-(1—6) (2 and 4) or
a-(1—4) (3) bonds (Fig. 2a). Such GSL metabolites have not been
reported previously from any other organism. To determine if this
glucosylation is a major metabolic fate of GSLs in whiteflies, NMR
and targeted HPLC-MS/MS were used for the quantification of these
derivatives. The combined mono- and di-glucosides of 4msob-GSL
were present in a 14.2:1 ratio (standard error (s.e.) =1.3, N=3) rela-
tive to the unmodified GSL in honeydew from A. thaliana-fed B.
tabaci MEAM1, while the previously reported desulfo-4msob-GSL
was produced in a 2:1 ratio relative to unmodified 4msob-GSL in
this species (s.e.=0.4, N=3). These results support glucosylation
being a major route of 4msob-GSL metabolism in B. tabaci.

We found analogous derivatives of other GSLs in honeydew
from B. tabaci feeding on A. thaliana, and on other GSL-containing
plants (Extended Data Fig. 1). Therefore, B. tabaci can glucosylate
other GSLs with short aliphatic side chains, although glucosylated
indolic GSLs were low in abundance and these GSLs were primar-
ily metabolized to desulfated GSLs". In addition to whiteflies,
HPLC-MS-based screening of extracts from the honeydew and
feces of other herbivores indicated that glucosylated 4msob-GSL
derivatives were also produced by other piercing-sucking insects
feeding on A. thaliana, including aphids, mealybugs and other
whiteflies, but not by chewing herbivores, such as lepidopter-
ans, beetles, grasshoppers and single-cell feeders such as mites
(Supplementary Table 2). Furthermore, we also detected analogous
glucosylated derivatives of a cyanogenic glucoside in the honey-
dew of cassava-fed B. tabaci (species SSA1-SG3, which can feed
on cassava, while B. tabaci MEAM1 cannot), but not when other

NATURE CHEMICAL BIOLOGY | www.nature.com/naturechemicalbiology
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Fig. 2 | 4msob-GSL metabolites in B. tabaci whitefly honeydew. a, 4msob-GSL metabolites in honeydew contain additional a-linked glucose moieties, with
up to four further glucose residues. Compounds 2, 3 and 4 were purified and their structures determined by MS and NMR. b, Glucosylated 4msob-GSLs
are resistant to activation by plant myrosinase, while the parent 4msob-GSL is readily hydrolyzed. Samples were incubated for 0.5 h with myrosinase in

phosphate buffer at pH 7.0.

glucosylated defense compounds (benzoxazinoid, iridoid and cou-
marin glucosides) were fed in artificial diets to B. tabaci MEAM1
(Supplementary Table 3). These results suggest that the capacity
to glucosylate GSLs is a broad characteristic of piercing-sucking
insects, and this reaction may occur on other activated plant

defenses present in their diets.

To determine whether serial a-glucosylation of GSLs might serve
as a potential detoxification strategy, insect-produced glucosylated
GSLs were incubated in vitro with a GSL-activating myrosinase
(p-thioglucosidase) of plant origin. Myrosinase readily hydrolyzed
4msob-GSL, but the insect-derived glucosylated GSLs resisted

hydrolysis (Fig. 2b). Taken together, these observations provide
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Fig. 3 | Elucidation of the biochemical mechanism for B. tabaci whitefly glucosylation of GSLs. Glucosylation of GSLs in B. tabaci is catalyzed by a
transglucosidase activity, based on feeding of [*C]sucrose isotopologues and the glucosinolate 4msob-GSL to insects on an artificial diet. Shown are
regions of mass spectra from LC-MS analyses of substrates and products of feeding experiments on three different diets. Feeding fully *C-labeled sucrose
and sucrose *C-labeled in the glucose moiety gave labeling in the newly added glucose of glucosylated 4msob-GSL (1) metabolites (2, 3, 4 and others).
However, feeding sucrose *C-labeled in the fructose moiety gave no label in the products, demonstrating initial hydrolysis of sucrose and reaction of only
the glucose portion with the glucosinolate. Feeding of *C-labeled glucose and fructose with 4msob-GSL gave no incorporation into glucosylated derivatives

of 4msob-GSL (Extended Data Fig. 2b). Peaks in red are isotopically enriched.

strong evidence that serial a-glucosylation serves as an important
preemptive detoxification mechanism of certain glucosylated plant
defenses in piercing-sucking herbivorous insects, generating deriva-
tives that cannot be activated by plant glycoside hydrolases.

Glucosylation is carried out by GHI13 transglucosidases.
Glucosylation of dietary constituents by herbivores typically results
from the action of UDP-glucosyltransferases, but transglucosidases
(Extended Data Fig. 2a) might also be involved. To obtain infor-
mation on the enzyme class and mechanism involved in serial
GSL glucosylation, we fed B. tabaci MEAM1 with 4msob-GSL in
diets containing "*C isotopologues of sucrose, glucose or fructose.
13C-labeled 4msob-GSL derivatives were only formed in vivo when
[*C),]sucrose and [glucose-"*Cg]sucrose were added to diets, but not
when [fructose-"*Cg]sucrose, [*Cglglucose or [*Cg]fructose were
offered (Fig. 3 and Extended Data Fig. 2b). Therefore the additional
glucose moieties in whitefly-produced glucosylated GSLs originated

34

from the glucose residue of sucrose, but not from its fructose group
or from free monosaccharides, consistent with a-transglucosidase
activity. This type of enzyme, belonging to the glycoside hydrolase
class, converts glucose-containing saccharides to enzyme-bound
glucose intermediates, which can then either be hydrolyzed to give
free glucose, or the enzyme-bound glucose residue can be transglu-
cosidated to an acceptor molecule. Transglucosidation is isoener-
getic and often serves in vivo to add glucose residues to a growing
chain, for example for carbohydrate storage* or to reduce osmo-
larity*, but has not been previously implicated in detoxifying plant
defense compounds.

A glycoside hydrolase carrying out transglucosidation reactions
has been previously characterized in the gut of a phloem-feeding
insect, the aphid Acyrthosiphon pisum (where it was named sucrase
1 (SUC1)**) and some of these enzymes have been identified
in honeybees®. They belong to the large GH family 13 (GH13,
http://www.cazy.org/GH13.html), ~whose members catalyze

NATURE CHEMICAL BIOLOGY | www.nature.com/naturechemicalbiology
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was assayed with 4msob-GSL and sucrose. a, Extracted multiple reaction monitoring (MRM) LC-MS chromatograms for mono-glucosylated 4msob-GSL
derivatives. The enzymes SUC2 and SUC5 showed transglucosidation activity, producing a-(1—4)-linked glucose derivatives of 4msob-GSL (3), which

are present in B. tabaci honeydew along with a-(1—6)-linked derivatives (2). b,c, When incubated with 4msob-GSL and sucrose *C-labeled in the glucose
moiety, the enzymes SUC2 (b) and SUC5 (¢) produced the 2C-labeled, a-(1—4)-linked glucosylated derivative of 4msob-GSL. Depicted are the extracted
MRM LC-MS chromatograms for unlabeled transglucosidase product (m/z 598) and the *C-labeled product (m/z 604). d,e, LC-MS analyses of sucrose
metabolism by S2 control and S2 cells producing the SUC1-5 enzymes. Depicted are the monosaccharide MRM results showing hydrolysis of sucrose to
glucose and fructose (d) and the trisaccharide MRM results showing that there was no significant activity above control levels for the transglucosidation of
sucrose (e). The S2 control assay used extracts of the cell medium of untransformed cells.

stereochemistry-retaining reactions on a-glucosidic substrates, and
which contains thousands of enzymes in a wide range of organisms
from all kingdoms of life. To identify the transglucosidase enzymes
responsible for the glucosylation of GSLs, we carried out a compara-
tive phylogenetic analysis of the GH13 families of B. tabaci MEAM1
and eight other herbivorous arthropod species, including phloem
feeders and representatives of other feeding guilds. The resulting
tree showed a large expansion of the GH13 family in B. tabaci and
other phloem-feeding insects (Extended Data Fig. 3).

For heterologous expression, we selected the most likely homolog
of the A. pisum transglucosidase-encoding gene SUCI (ref. ') in B.

NATURE CHEMICAL BIOLOGY | www.nature.com/naturechemicalbiology

tabaci MEAM1 (BtMEAM1 SUCI). We also selected four additional
candidate GH13 genes (BtMEAM1 SUC2-5) to represent all three
major B. tabaci GH13 sub-groups and to include genes encoding
enzymes with high similarity to the characterized honeybee trans-
glucosidase enzymes® (Extended Data Fig. 3). Most of the selected
genes (except for SUC2) were more highly expressed in B. tabaci
MEAMI1 guts than in other tissues” (Supplementary Table 4), and
all the encoded proteins possessed predicted signal peptides. The
candidate genes were expressed in Drosophila melanogaster S2 cells
and the medium was assayed for activity using 4msob-GSL and
sucrose. Both SUC2 and SUC5 enzymes generated the a-(1—4)

35



Glucosylation prevents plant defense activation in phloem feeding insects

NATURE CHEMICAL BIOLOGY

ARTICLES

mono-glucosylated derivative of 4msob-GSL (Fig. 4a—c) and only low
amounts of free glucose and fructose (Fig. 4d). The enzymes SUC1, 3
and 4 did not exhibit transglucosidase activity with 4msob-GSL, but
readily hydrolyzed sucrose (Fig. 4d). None of the enzymes was able
to produce detectable transglucosidase products from sucrose itself
(higher-order glucose oligomers of sucrose) (Fig. 4e), as had been
previously described for the activity of A. pisum midgut enzymes?'.
SUCS5 displayed apparent Michaelis—Menten kinetics with an esti-
mated K, of ~0.2 M for sucrose and 460 pM for 4msob-GSL. At 1M
sucrose, SUC2 reached 1/2 v,,, at ~1,000uM 4msob-GSL, but we
were unable to saturate SUC2 with sucrose and therefore could not
estimate its K, towards this substrate, which must be greater than
0.5M (Supplementary Fig. 1). Trehalose, a major disaccharide in
hemolymph®, was only poorly used as a glucose donor (<1% relative
to sucrose, Supplementary Fig. 2). For a phloem-feeding insect, such
as B. tabaci, the concentration of sucrose in its gut originating from
the plant is expected to be several hundred millimolar'”**!,

Discussion

Activated defenses are well known to defend plants against chewing
herbivores, but piercing-sucking insects, such as aphids and white-
flies, have not been thought to cause sufficient plant tissue dam-
age to trigger defense activation. In this research, we found that B.
tabaci MEAM1 whiteflies feeding upon glucosinolate-containing
plants excrete toxic hydrolysis products such as ITCs and known
ITC detoxification products in their honeydew, indicating activa-
tion (Fig. 1b). Hydrolysis might occur from GSLs present on the leaf
surface’ or found in the mesophyll along the path to the phloem™*.
The activating enzyme myrosinase is present in cells surrounding
the phloem*>*, and after stylet penetration might come into con-
tact with phloem GSLs, or GSLs could be hydrolyzed by insect
enzymes'’. Previous evidence of GSL breakdown by phloem-feeding
insects comes from work on aphids'**. The activation of GSLs
by phloem feeders indicates that these herbivores might be well
served by preemptively metabolizing GSLs and other protoxins to
non-hydrolyzable derivatives to prevent their activation.

Here we discovered that the phloem-feeding B. tabaci MEAM1
converts ingested GSLs into a-(1—6) and a-(1—4) glucosylated
conjugates (Fig. 2a). These represent the major GSL metabolites
detected in whitefly honeydew when feeding on A. thaliana, out-
numbering the parent GSLs 14:1 and the previously described"
desulfated GSL metabolites by 7:1. Glucosylated 4msob-GSL is not
susceptible to cleavage by plant myrosinases (Fig. 2b) and thus can
no longer be activated. Similar glucosylated GSLs were found in all
other investigated phloem-feeding insects (Supplementary Table 2).
However, glucosylated 4msob-GSL derivatives were absent in
excreta from chewing insects such as grasshoppers, caterpillars and
beetles and also from cell content feeders such as mites. Additionally,
glucosylation was used by B. tabaci (species SSA1-SG3) to modify
a related group™ of activated defenses, the cyanogenic glycosides
(Supplementary Table 3). Representatives of other classes of acti-
vated glucoside defense metabolites fed to B. tabaci (the benzoxa-
zinoid DIMBOA-GIc, the iridoid catalpol and the hydroxycoumarin
esculin) were not converted to their corresponding glucosylated
derivatives, suggesting that not all glucosidic defense compounds
can be glucosylated by this process.

The B. tabaci glucosylated GSLs were shown to be produced by
a transglucosidase activity. Transglucosidation has already been
described in phloem-feeding insects to form higher-order sugar
oligomers from sucrose, helping to lower the high osmotic pres-
sures encountered when feeding on phloem sap***. When supplied
with sucrose and 4msob-GSL, two of the five enzymes we tested
formed glucosylated derivatives of 4msob-GSL with a-(1—4)
linkages (Fig. 4a—c), while the other three only catalyzed sucrose
hydrolysis (Fig. 4d). The enzymes catalyzing the a-(1—6) modifi-
cation remain elusive. None of the enzymes tested could produce
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higher-order oligomers of sucrose, as previously described for
aphid gut transglucosidase(s)” (Fig. 4e). These data suggest that
B. tabaci transglucosidases use a variety of different substrates, and
the enzymes responsible for osmoregulation may be different from
those capable of detoxifying plant defenses.

Glucose conjugation can render plant defenses less harmful,
not only by preventing enzymatic activation, but also by increasing
their polarity (to enhance excretion) or by otherwise altering their
structures to prevent toxic or deterrent activity. Moreover, trans-
glucosidases move glycosidic linkages between substrates without
extra inputs of chemical energy, as opposed to glucosylation via
UDP-glucosyltransferases, which utilizes phosphodiester bonds.
From the phylogenetic analysis performed (Extended Data Fig. 3),
the GH13 family expanded substantially in phloem feeders, with
B. tabaci possessing the greatest number of genes among the spe-
cies surveyed” (Supplementary Table 7). Given that GH13 proteins
are involved in sugar metabolism, it is perhaps not surprising that
phloem-feeding insects possess a large diversity of these enzymes.
They may be responsible for various functions, including osmoreg-
ulation, furnishing energy, glycosylation of defenses for detoxifica-
tion and others to be determined. The B. tabaci species complex
is an ideal group for future studies on the function, evolution and
structure-activity relationships of GH13 enzymes, because different
taxa in the group have different feeding preferences®, which might
be mediated by the spectrum of GH13 activities present.

The identification of new traits important in the adaptation of a
pest insect to its host plant can provide new targets for control mea-
sures. Thus, chemical inhibitors of GH13 detoxification enzymes or
RNA interference (RNAi) directed against the corresponding genes
could reduce whitefly damage to agricultural crops by decreasing
insect growth and survival. RNAj, in particular supplied by plants
or by direct application, is considered to have great promise in the
control of hemipteran pests®*’.

In summary, the modification of activated plant defenses via
transglucosidase-catalyzed glucose addition represents a novel route
for avoiding the release of toxic hydrolysis products in phloem feed-
ers. The GH13 enzymes responsible are abundant in B. tabaci and
other phloem-feeding insects, and might help to explain the evolu-
tionary radiation of hemipterans and their success as plant feeders.
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Methods

Plants. Arabidopsis thaliana accession Col-0 was cultivated in a growth chamber
under short-day conditions (10:14h, light:dark) at 21 °C and 50-60% relative
humidity. Brussels sprout (Brassica oleracea var. gemmifera, cv. Franklin), broccoli
(Brassica oleracea var. italica, cv. Autumn Spear), kale (Brassica oleracea var.
sabellica, cv. Dwarf Green Curled), eggplant (Solanum melongena, cv. Black
Beauty), potato (Solanum tuberosum, cv. Marabel), cotton (Gossypium hirsutum,
cv. Acala) and cassava (Manihot esculenta, cv. MCol22) plants were grown under
standard greenhouse conditions at 26 2 °C, with supplemental lighting at a
photoperiod of 14:10h (light:dark).

Insects. Bemisia tabaci (Hemiptera: Aleyrodidae) species MEAM1 were

collected in southern Israel in 2003 and from Sudan in the late 1990s, then reared
continuously on cotton. B. tabaci of species SSA1-SG3 (sub-Saharan Africa species
group) were collected on Bagamoyo Road, Tanzania in 2013 and reared on cassava
plants. Aleyrodes proletella (Hemiptera: Aleyrodidae) were collected in Kent (UK)
and reared on kale. Myzus persicae (Hemiptera: Aphididae) were from a culture
initiated from individuals collected in Hannover, Germany in 2005 and reared on
A. thaliana Col-0. Planococcus citri (Hemiptera: Pseudococcidae) were collected
in Israel in 2016 from cotton plants and reared on potato tubers. Schistocerca
gregaria (Orthoptera: Acrididae) were provided by A. Ayali and maintained as
previously described™. Tetranychus cinnabarinus (Trombidiformes: Tetranychidae)
were obtained from the Israel Cohen Institute for Biological Control (Rehovot,
Israel) and reared on bean plants. These insects were reared under standard
greenhouse conditions of 26 + 2 °C, with supplemental lighting at a photoperiod
of 14:10h (light:dark). Spodoptera littoralis (Lepidoptera: Noctuidae), Helicoverpa
armigera (Lepidoptera: Noctuidae), Mamestra brassicae (Lepidoptera: Noctuidae),
Trichoplusia ni (Lepidoptera: Noctuidae), Pieris rapae (Lepidoptera: Pieridae),
Plutella xylostella (Lepidoptera: Plutellidae), Diabrotica balteata (Coleoptera:
Chrysomelidae) and Phyllotreta striolata (Coleoptera: Chrysomelidae) were
collected and maintained as described previously™~"'.

Insect feeding on A. thaliana and other species. Groups of adult whiteflies
(50-100 individuals), mealybugs (20 individuals), aphids (>100 individuals) and
locusts (10 individuals) were collected from their host plants and switched to

A. thaliana Col-0 plants. A. thaliana plants were used before bolting when the
rosette had 5-7 leaves. Insects were fed on leaves enclosed within Petri dishes
with aluminum foil beneath the plant leaf. After 72-96h, the honeydew and feces
deposited on the aluminum foil were washed with water:methanol (20:80, vol/
vol). B. tabaci whiteflies were also raised on Brussels sprouts (MEAM1 species) or
cassava (SSA1-SG3 species). Nymph honeydew was collected under binoculars into
a glass vial containing water:methanol (20:80, vol/vol). Groups of 200 adult mites
were transferred from beans to A. thaliana and their feces were collected under
binoculars into a glass vial containing water:methanol (20:80, vol/vol). Collection
and extraction of feces from lepidopteran (three larvae, at third or fourth larval
stages) and coleopteran (three adult insects) herbivores were performed as
previously described*-*'.

B. tabaci feeding on artificial diets with different glucosylated protoxins.
Groups of 150 B. tabaci (MEAMI1 species) adults were collected from cotton
plants and switched to artificial diet feeders (consisting of a glass tube, 3cm
height x 2 cm diameter, with a liquid diet covered with a double layer of Parafilm).
Insects were allowed to feed through the Parafilm on a 10% sucrose solution
containing no additives (control) or 4-methylsulfinylbutyl GSL (4msob, from
Brassica oleracea seeds) at a concentration of 5mM. Other glucosides, including
linamarin, DIMBOA-GIc, quercitrin, catalpol or esculin were also tested using
this concentration. After 96 h, the honeydew deposited on the glass tubes and the
aluminum foil was washed with water:methanol (20:80, vol/vol).

B. tabaci feeding on artificial diets containing isotopically labeled sugars. Four
different sucrose isotopologues were added to artificial diets: ['>C,]sucrose, [°C,,]
sucrose, [glucose-"*Cg]sucrose and [fructose-">Cg]sucrose. The monosaccharides
[*Cglfructose and [*Cg]glucose were also fed. The artificial feeding devices
consisted of a glass tube (5 cm high X 2.5 cm diameter) with the liquid diet

(50 ul) held within a double layer of Parafilm. About 50 B. tabaci MEAMI adults
were placed in each tube. Feeding assays were performed for 72h on diets that
contained 5mM 4msob-GSL and 0.29 M labeled sugars. After feeding, the vials
were held at —80°C to kill the whiteflies, and the bodies were transferred and
stored for analysis. The honeydew deposited on the glass tubes was washed with
water:methanol (20:80, vol/vol) and stored at —20°C until analysis. A full summary
of the artificial diet constituents is provided in Supplementary Table 5.

1 1.t

Purification and LC-MS analysis of glucosylated gluc
hydrolysis products and sugars. Purification of glucosylated glucosinolates was
performed via fractionation on a Nucleodur Sphinx RP column (250 X 4.6 mm,
5um, Macherey-Nagel) using an HP 1200 HPLC system (Agilent Technologies)
coupled to a fraction collector (Advantec). Chromatographic separation was
achieved using a gradient of 0.05% aqueous formic acid (solvent A) and acetonitrile
(solvent B) at a flow rate of 1 mlmin~" at 25°C as follows: 0.5% B (9 min), 0.5-6% B

gluc
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(8 min), 6-7% B (2min), 7-100% B (0.1 min), a 3.8-min hold at 100% B, 100-0.5%
B (0.1 min) and a 6-min hold at 0.5% B.

Qualitative analysis of glucosylated glucosinolates in feces and honeydew
extracts was also performed on an HP 1100 series HPLC system. Separation was
achieved on a Nucleodur Sphinx RP column (250 X 4.6 mm, 5 pum; Macherey—
Nagel) with a gradient of 0.2% aqueous formic acid (solvent A) and acetonitrile
(solvent B) with a flow rate of 1 mlmin~" at 25°C as follows: 0.5% B (9 min),
0.5-6% B (8 min), 6-10% B (23 min), 10-50% B (14 min), 50-70% B (3.9 min),
70-100% B (0.1 min), a 3-min hold at 100% B, 100-0.5% B (0.1 min) and a 3.9-min
hold at 0.5% B. The HPLC was coupled to an Esquire 6000 ESI-Ion Trap mass
spectrometer (Bruker Daltonics) operated in both positive and negative modes in
the range of m/z 50-1,500, with a skimmer voltage of —40V, capillary exit voltage
of —146.7V, capillary voltage of 4,000V, nebulizer pressure of 35 p.s.i., drying gas
rate of 111min~" and gas temperature of 330 °C. DataAnalysis software V4 (Bruker
Daltonics) was used for chromatogram analysis.

Qualitative analysis of isotopically labeled glucosylated glucosinolates in
feces and honeydew extracts was performed on an HP 1100 series HPLC system.
Separation was achieved on a Nucleodur Sphinx RP column (250 X 4.6 mm, 5 um,
Macherey-Nagel) with a gradient of 0.2% aqueous formic acid (solvent A) and
acetonitrile (solvent B) with a flow rate of 1 mlmin~" at 25°C as follows: 5-55% B
(25min), 55-100% B (0.1 min), 100% B 0.9-min hold, 100-5% B (0.1 min), 5% B
3.9-min hold. The HPLC device was coupled to an Esquire 6000 ESI-ion trap mass
spectrometer (Bruker Daltonics) operated in both positive and negative modes in
the range of m/z 60-1,400, with skimmer voltage of —40'V, capillary exit voltage
of —128.5V, capillary voltage of 4,000V, nebulizer pressure of 35 p.s.i., drying gas
rate of 111min~" and gas temperature of 330 °C. DataAnalysis software V4 (Bruker
Daltonics) was used for chromatogram analysis.

Quantification of the glucosylated glucosinolates in transglucosidation and
myrosinase assays and in honeydew was accomplished using an HP 1260 series
HPLC system coupled to an AB Sciex API 5000 mass spectrometer (Applied
Biosystems). The column was a Nucleodur Sphinx RP column (250 X 4.6 mm, 5 um,
Macherey-Nagel) and used a chromatographic gradient of 0.05% aqueous formic
acid (solvent A) and acetonitrile (solvent B) with a flow rate of 1 mlmin~! at 25°C
as follows: 1.5% B (2min), 1.5-10% B (2.5 min), 10-40% B (7.5 min), 40-70% B
(5min), 70-100% B (0.1 min), hold at 100% B (2.4 min), 100-1.5% B (0.1 min) and
hold at 1.5% B (3.9 min). The mass spectrometer was operated in negative mode
with a collision gas value of 2, curtain gas pressure of 35 p.s.i., spray gas pressures
of 70 p.s.i., ion spray voltage of —4,500 V and turbogas temperature of 700 °C.
Compounds were detected using MRM detection with the parameters outlined
in Supplementary Table 6. Quantification was achieved using external calibration
curves constructed from solutions of purified glucosylated glucosinolates of known
concentrations (determined in solution via NMR as described below). Analyst
1.5 software (Applied Biosystems) was used for data acquisition and processing.
Averages and standard errors were calculated from three independent biological
replicates. No other statistical tests were performed.

Analysis of 4msob-GSL hydrolysis products in concentrated honeydew from
B. tabaci MEAM1 fed on broccoli and Brussels sprouts was performed on an HP
1260 HPLC system coupled to an AB Sciex API 5000 mass spectrometer. The
column utilized was a Agilent XDB-C18 column (50 X 4.6 mm, 1.8 um, Agilent
Technologies) and used a chromatographic gradient of 0.05% aqueous formic acid
(solvent A) and acetonitrile (solvent B) with a flow rate of 1.1 mlmin~" at 25°C
as follows: 3-15% B (0.5 min), 15-85% B (2.0 min), 85-100% B (0.1 min), hold of
100% B for 0.9 min, 100-3% B (0.1 min) and a hold at 3% B (2.4 min). The mass
spectrometer was operated in positive mode with collision gas value of 4, curtain
gas pressure of 35 p.s.i., spray gas pressures of 60 p.s.i., ion spray voltage of 5,500 V
and turbogas temperature of 700 °C. Compounds were detected using scheduled
MRM detection with the parameters outlined in Supplementary Table 6. Analyst
1.5 software was used for data acquisition and processing.

Sugar products from the transglucosidase enzyme assays were analyzed on
an HP 1260 system coupled to an AB Sciex API 5000 mass spectrometer with an
apHeraNH2 polymer column (150 X 4.6 mm, 5um, Supelco Analytical) with a
chromatographic gradient of water (solvent A) and acetonitrile (solvent B) at a
flow rate of 1 mImin~" at 20°C as follows: 80% B (0.5min), 80-55% B (12.5min),
55-80% B (1 min), hold at 80% for 4 min. The mass spectrometer was operated in
negative mode with a collision gas value of 2, curtain gas pressure of 35 p.s.i., spray
gas pressure of 70 p.s.i., ion spray voltage of —4,500V and turbogas temperature
of 700°C. Compounds were detected using scheduled MRM detection with the
parameters outlined in Supplementary Table 6. Analyst 1.5 software was used for
data acquisition and processing.

NMR spectroscopy. NMR spectra (‘H, 'H-'H COSY, 'H-"C HSQC, 'H-*C HMBC
and 'H-'H SELTOCSY) were acquired on a 700-MHz Avance III HD spectrometer
equipped with a 1.7-mm cryoprobe (Bruker Biospin). Further information is
provided in the Supplementary Information. Data acquisition and processing

were accomplished using TopSpin version 3.2 (Bruker Biospin). Samples were
measured in MeOH-d, or D,0, as indicated, at 293 K. For quantification via '"H
NMR (10-s delay between scans), purified compounds were dried under a N, flow
and resuspended in D,0 and a sucrose solution (3.13mM in D,0) was used as an
external quantification standard.
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Phylogenetic analysis of glycoside hydrolase family 13 proteins. Protein
sequences of species representing different orders and families of arthropod
herbivores, including A. pisum (Hemiptera: Aphididae), B. tabaci (MEAM1)
(Hemiptera: Aleyrodidae), Bombyx mori (Lepidoptera: Bombycidae),
Frankliniella occidentalis (Thysanoptera: Thripidae), Leptinotarsa decemlineata
(Coleoptera: Chrysomelidae), Manduca sexta (Lepidoptera: Sphingidae), M.
persicae (Hemiptera: Aphididae), P. rapae (Lepidoptera: Pieridae) and T. urticae
(Trombidiformes: Tetranychidae), were downloaded from open databases
(Supplementary Table 7). Putative GH13 protein sequences were identified in the
downloaded proteomes using the pfam alpha-amylase domain (PF00128)* as a
query for hmmsearch from the HMMER 3.1b1 software package (http://hmmer.
org/ (2013)). The relevant amino acid sequences were then aligned using MUSCLE
with default parameters®.

The alignment was quality-trimmed, obtaining a final alignment of 456
positions, with trimal v1.4 automated1 option*’. Model Finder selected VT +R7
(heterogenity free rate with seven categories)””. Maximum likelihood tree inference
was conducted with IQ-TREE multicore version 1.5.5 with 1,000 ultrafast
bootstrap*® and 5,000 SH-aLRT* (Shimodaira-Hasegawa-like approximate
likelihood ratio test) as node support values'**. Tree representation was performed
in Figtree version 1.4.3 (http://tree.bio.ed.ac.uk/software/figtree/).

After identifying putative GH13 domain-containing proteins, two B. tabaci
MEAM1 RNA-Seq paired libraries were downloaded from the SRA-NCBI:
adult midguts (SRX272314)" and adult whole bodies (SRX022878)".
Trimmotmatic v0.33* (TruSeq2-PE.fa:2:30:10 LEADING:3 TRAILING:3
SLIDINGWINDOW:4:15 MINLEN:35) was used to clip/trim bad sequences and
generate clean libraries. Both clean libraries and the B. tabaci MEAMlannotation
v1.1 (http://www.whiteflygenomics.org, last accessed 19 March 2020) were used
as queries and reference, respectively. RSEM™' was used to extract all coding
genes from the B. tabaci MEAM1 GFF annotation file and non-GH13-encoding
putative genes were filtered out. Gene expression quantification as fragments per
kilobase million (FPKM) was performed with RSEM in paired mode (--paired-end
--bowtie2). Finally, genes of interest (SUCI-5) were selected and their expression
in the midgut™ was compared against the whole body (Supplementary Table 4).

The list of proteins from each species was analyzed to identify the
corresponding GH13 subfamilies. The search was done using the dbCAN2 meta
server’ and the dbCAN CAZyme HMM database™* for identifying CAZyme
domain boundaries™ with HMMER v3.3. A default threshold of iE-value <1 x 107"
and coverage >0.35 was used for protein classification. For some of the proteins
that did not reach the above-mentioned threshold, a more relaxed threshold was
applied using the coverage parameter >0.3 (ref. ). Even after the relaxed threshold
was applied, the coverage parameter of some proteins was below the threshold.
These proteins presented open reading frames that were shorter than the HMM
GH13 subfamily profile. Therefore, these proteins were assigned to a subfamily
based on their phylogenetic location (Extended Data Fig. 3). The HMMER
classification of each protein was compared to the phylogenetic assignment in
the tree (Extended Data Fig. 3). Cases in which conflicts were identified between
the phylogenetic assignment and the HMMER classification are indicated in the
comments of Supplementary Table 8 and also in some cases in the tree (Extended
Data Fig. 3). The different enzyme activities and substrate specificities” " are
described in Supplementary Table 9.

Cloning and expression in Drosophila S2 cells. Vectors, cells and cell media
were obtained from ThermoFisher Scientific. Candidate GH13-encoding genes
were amplified from B. tabaci MEAM1 whitefly guts and whole-body cDNA
using primer sets outlined in Supplementary Table 10, cloned into PCR4 Blunt
TOPO and released using corresponding restriction enzymes according to each
primer. The digested fragment was further ligated into the pAc5.1/V5-His A
vector for expression in Drosophila S2 cells using Schneider’s medium. Insect
cells were co-transformed with pCOBLAST vector for selection via blasticidin.
Transformation was achieved via CaCl, incubation following the manufacturer’s
standard protocols and selected with 50 ug ml~' blasticidin in six-well plates. After
one week of selection, cells were maintained in T-flasks at 27 °C with 10 pgml™'
blasticidin. Cells were regularly maintained by splitting 1:20 when cells had
achieved a confluency of 90% (approximately every 4-5 days). Cells and media
were collected for enzyme activity studies when cells reached 90% confluency.

Enzyme assays. Drosophila S2 cells producing candidate GH13 enzymes as well
as non-transfected control cells were centrifuged at 100g for 5 min. The resulting
supernatant was utilized as the secreted protein fraction for enzyme assays. For
determination of 4msob-GSL transglucosidation activity, 5 ul of each supernatant
containing an equivalent total protein content (verified by Bradford assays) was
mixed with 5 ul 50mM phosphate buffer at pH 7.0 containing 2 M sucrose and
5mM 4msob-GSL, and reacted for 6h at 25 °C with no stirring. Assay conditions
were chosen after screening a range of substrate concentrations and pH

values that reflect previous work on glycoside hydrolases and phloem-feeding
insects’*. The reaction was stopped using 15 pl of methanol and immediately
stored at —20 °C. Before analysis, enzyme assays were centrifuged at 5,200g for
5min and the supernatant obtained was analyzed by LC-MS. A dilution of 1:10
in water was used for analysis of glucosylated 4msob-GSL and a dilution of
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1:1,000 in water for analyzing sugars such as glucose, fructose and trisaccharides
formed from these incubations.

For K, estimation, crude enzyme preparations were assumed to catalyze no
other reactions on the substrates supplied except transglucosidation and sucrose
hydrolysis. Enzyme assays were performed in the same manner as described above,
except incubation times were reduced to 30 min. Peak areas were integrated and
compared based on duplicate analysis. Sucrose Ky, determination was performed
at a constant 4msob-GSL concentration of 2.5mM with sucrose concentrations
ranging from 0.05 to 1 M. The 4msob-GSL K, determination utilized sucrose at a
final concentration of 1 M and a range of 4msob-GSL concentrations from 25 uM
to 20mM. All assays were carried out under linear reaction conditions with respect
to time and protein concentration. Substrate concentration was never reduced
below 95% during the 30-min assay period. K}, calculations were performed in
SigmaPlot 12.0.

For tests on the reactivity of glucosylated GSL with plant myrosinase,
purified 4msob-GSL (10 ul of a 5mM solution) and honeydew from A. thaliana
Col-0-reared adult MEAM1 whiteflies containing insect-derived glucosylated
4msob-GSL glycosides were mixed with a 20 mM phosphate buffer solution (10 pl),
pH 7.0, containing one unit of S. alba myrosinase (Sigma Aldrich). Negative
control reactions were supplemented with 5l of water instead of the myrosinase
solution. Reactions were incubated at room temperature with no stirring, stopped
after 1h with 20 ul acetic acid and stored frozen until LC-MS analysis.

Statistics and reproducibility. All experimental repetitions (>2) and biological
replicates analyzed showed consistent results.

Reporting Summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this Article.

Data availability

The datasets generated and/or analyzed during the current study are available
from the corresponding authors upon reasonable request. Public databases used in
the construction of the protein phylogenetic tree are provided in Supplementary
Table 7 and are available from the following websites: HGSC (https://www.hgsc.
bem.edu/arthropods/colorado-potato-beetle-genome-project), BIPAA (https:/
bipaa.genouest.org/sp/acyrthosiphon_pisum/), Whitefly Genome Database
(http://www.whiteflygenomics.org/cgi-bin/bta/index.cgi), BIPAA (https://bipaa.
genouest.org/sp/myzus_persicae/), NCBI (https://www.ncbi.nlm.nih.gov/genome/
annotation_euk/Bombyx_mori/101/), HGSC (https://www.hgsc.bcm.edu/
arthropods/tobacco-hornworm-genome-project), NCBI (https://www.ncbi.nlm.
nih.gov/genome/annotation_euk/Pieris_rapae/100/), NCBI (https://www.ncbi.
nlm.nih.gov/assembly/ GCA_000697945.4), Ensembl (http://metazoa.ensembl.
org/Tetranychus_urticae/Info/Index) and dbCAN (http://bcb.unl.edu/dbCANY/).
All other data supporting this work, if not already indicated, are available in the
Supplementary Information.
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Extended Data Fig. 1| Bemisia tabaci glucosylates GSLs with various side chains. LC-MS traces of allyl-GSL, 4mtb [4-methylthiobutyl]-GSL, 3msop
[3-methylsulfinylpropyl]-GSL and 4moi3m [4-methoxyindolyl-3-methyl]-GSL and their glycosides detected in the combined honeydew of 50-100 adult
Bemisia tabaci MEAM1 whiteflies feeding on GSL-containing plants (kale or A. thaliana Col-0). The detected parent GSL is indicated with structure and
representative color for the mass spectral trace (light gray), and the dectected subsequent glycosides represented as +162 Da and +324 Da (dark gray and
black respectively).
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Extended Data Fig. 2 | GSL glucosylation in the whitefly Bemisia tabaci is catalyzed by a transglucosidase activity. a, Simplified reaction mechanism

of a sucrase-transglucosidase showing the two competing reaction paths: After binding of sucrose to the enzyme (A), hydrolysis of the fructose residue
occurs with retention of bound glucose (B). Glucose is released (C) when sucrose concentrations are low, while transglucosidation to an acceptor (C")
occurs when acceptor concentrations are sufficiently high. This product may undergo further transglucosidation (D). b, Depiction of the results from two
of the five diets not shown in Fig. 3, those diets with the *C-labeled monosaccharides glucose and fructose. None gave labeled glycosylated GSLs, unlike
feeding with sucrose labeled in the glucose portion. The results are consistent with a transglucosidase activity that initially hydrolyzes sucrose and links
the resulting glucose moiety to the plant GSL.
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Extended Data Fig. 3 | Maximum likelihood circular cladogram showing the relationship of glycoside hydrolase family 13 enzymes from nine chosen
herbivore species. The tree was inferred using a total of 205 sequences. Ultrafast bootstrap*® and Shimodaira-Hasegawa approximate likelihood ratio test
(SH-aLRT)* validation values lower than 95 are presented close to the corresponding nodes. GH13 members from Bemisia tabaci are highlighted by red
nodes. SUC1-5 are indicated by bold text in red. Colors surrounding the cladogram indicate the feeding guild of the corresponding species. Thin colored
inner circles specify the subfamily of the corresponding GH13 enzymes. Subfamilies with less than four proteins are marked only by the subfamily number
(for more details see Supplementary Table 8). The protein sequences are named according to their GenBank accession numbers, or their names in the
released proteome. Species name abbreviations are as indicated: Ld, Leptinotarsa decemlineata; ACYP, Acyrthosiphon pisum; BT, Bemisia tabaci; MPER, Myzus
persicae; Bm, Bombyx mori; Msex, Manduca sexta; Prapae, Pieris rapae; FOCC, Frankliniella occidentalis; Tetur, Tetranychus urticae.
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Database (http://www.whiteflygenomics.org/cgi-bin/bta/index.cgi), BIPAA (https://bipaa.genouest.org/sp/myzus_persicae/), NCBI (https://www.ncbi.nlm.nih.gov/
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Wild animals The study did not involve wild animals.
Field-collected samples No samples directly collected from the field were chemically analyzed in this study.
Ethics oversight No ethical approval was necessary for the use of the insects in this study.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Supplementary Table 1: '"H and '*C NMR shifts and coupling constants for glucosylated

glucosinolates.
Monoglucosylated a-(1,6)-4msob-GSL | Diglucosylated a-(1,6), a-(1,6)-4msob-GSL a-(1,4)-4 b- L 4 b-GSL
(27 (@7 (© °
oH mult,, J [Hz] 5C SH mult., J [Hz] 5 SH mult,, J [Hz] s5c | oH mult., J [Hz) 5
Aglycone
Aglycone 0 - - 160.6 - - 161.6
0 - - 163.0 - - 163.0 1a 280  ddd, 15.0/7575 329 | 294  ddd, 13.06.7/9.2 330
1 272 dd, 6.5/8.5 316 272 dd, 6.5/8.5 318 1b 274  ddd,15.0/7575 329 | 283  ddd, 13.06.7/9.2 330
2 183 m 253 1.83 m 253 2 1.93 m 267 | 193 m 27.0
3 177 m 21.1 177 m 21.1 3 186 m 206 | 187 m 209
4 288 m 519 288 m 51.9 4a } 282  ddd 1557575 542
2.88 m 54.1
-S(0O)CH3 262 s 36.2 262 s 36.2 4b 276 ddd 15.5/7.5/7.5 542
-S(0O)CH3 264 s 377 265 s 38.1
Original glucose of GSL Original glucose of GSL
1 5.00 d, 10.0 81.8 5.00 d, 10.0 818 1 4.89 d, 10.0 83.4 4.86 ovip. 83.6
2 3.38 dd, 10.0/9.5 716 3.38 dd, 10.0/9.5 7 2 3.31 dd, 9.5/9.0 737 3.25 dd, 10.0/9.5 743
3 349 dd, 9.5/9.5 771 3.49 m 771 3 3.67 dd, 9.5/9.5 79.2 3.40 dd, 9.5/9.5 79.6
4 3.50 dd, 9.5/9.5 68.7 3.48 m 68.9 4 3.55 dd, 9.5/9.5 80.2 3.29 dd, 9.5/9.5 714
5 370 m 783 372 m 783 5 3.49 m 80.6 3.36 ddd, 9.5/6.5/2.0 82.3
6a’ 3.88 dd, 12.0/5.0 65.5 3.90 bd, 12.0 65.5 6a’ 3.90 dd, 12.5/2.5 62.2 3.86 dd, 12.3/2.0 62.9
6b’ 3.69 bd, 12.0 65.5 3.70 bd, 12.0 65.5 6b’ 3.76 dd, 12.5/5.0 62.2 3.62 dd, 12.3/6.5 62.9
First added glucose moiety First added glucose moiety
17 4.86 d, 35 97.8 4.87 d, 35 97.7 1" 5.18 d, 3.6 102.6 - - -
2" 3.46 dd, 9.6/3.5 73 3.48 dd, 9.6/3.5 71.3 2" 343 dd, 9.5/3.6 74.2 - - -
3" 362 dd, 9.6/9.0 732 3.61 dd, 9.6/9.0 732 3" 3.61 dd, 9.5/9.5 751 - - -
4" 3.35 dd, 9.5/9.0 69.4 3.43 dd, 9.5/9.0 69.4 4" 3.27 dd, 9.5/9.5 714 - - -
5" 3.60 m 70.2 3.78 m 70.2 5" 3.67 m 747 - - -
6a” 374 bd, 12.0 65.4 3.87 bd, 12.0 65.4 6a” 3.82 m 62.5 - - -
6b” 3.68 dd, 12.0/4.5 65.4 3.66 bd, 12.0 65.4 6b” 3.66 m 62.5 - - -
Second added glucose moiety Second added glucose moiety
1" - - - 4.88 d, 35 97.6 ™ - - - - - -
2" - - - 3.46 dd, 9.5/3.6 71,4 2" - - - - - -
3 - - - 3.64 dd, 9.5/9.5 732 3" - - - - - -
47 - - - 3.34 dd, 9.5/9.5 69.4 4" - - - - - -
5" - - - 3.63 m 71.8 5 - - - - - -
6a” - - - 3.77 bd, 12.0 60.4 6a™” - - - - - -
6b™ - - - 3.68 bd, 12.0 60.4 6b™ - - - - - -

3 Measured in D;O

b Measured in MeOH-ds3
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Supplementary Table 2: Glucosylated GSLs are produced by phloem-feeding hemipterans,
but not by representatives of other insect groups. Ability of various selected insect species to

produce glucosylated 4msob-GSLs when fed on 4. thaliana Col-0 leaves containing 4msob-GSL
as the major GSL. Honeydew or feces extracts were analyzed by LC-MS.

Class Order Species  Glucosylated 4msob-GSLs
o Bemisia tabaci +
Whiteflies

. Aleyrodes proletella +

Hemiptera
Aphid Myzus persicae +
Mealybug Planococcus citri +

Insecta

Diabrotica balteata -

Coleoptera
Phyllotreta striolata -
Lepidoptera Six species (1) -
Orthoptera Schistocerca gregaria -
Arachnida Trombidiformes Tetranychus cinnabarinus -

(1): Helicoverpa armigera , Mamestra brassicae , Pieris rapae , Plutella xylostella , Spodoptera littoralis , Trichoplusia ni

Supplementary Table 3: Bemisia tabaci can glucosylate glucosinolates and cyanogenic
glucosides, but not other plant glycosides tested. Ability of B. tabaci to produce glucosylated
derivatives of various plant glycosides fed on artificial diets. Resulting honeydews were screened

by LC-MS.
4msob-GSL Linamarin DIMBOA-Glc Catalpol Esculin Quercitrin
Cyanogenic Benzoxazinoid Tridoid Hydroxycoumarin Flavonoid
Glucosinolates glucoside glucoside glucoside glucoside glucoside
Glucosylated
derivatives in + + - - - -
honeydew
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Supplementary Table 4: Ratios of normalized SUCI-5 gene expression. Values are based on
RNA-Seq SRX272314 (midgut tissue) and SRX022878 (whole body).

FPKM Ratio
SUC Name Bta Number Midgut/All body
SUCI Bta03818 274
SUC2 Btal1977 No de‘Fectlon in
midgut
SUC3 Btal 5649 554
SUC4 Bta04298 554
SUCs Btal4419 4.63

FPKM (fragments per kilobase of exon model per million reads mapped)
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Supplementary Table 5: Constituents of artificial diets fed to Bemisia tabaci MEAMI1.

Diet number| Isotopically-labeled compound (concentration) | Unlabeled constituents (concentration)
Sucrose (0.145 M)
1 13
[ "Cy2] sucrose (0.145 M) 4msob-GSL (5 mM)
13 Sucrose (0.145 M)
2 [glucose- "C¢] sucrose (0.145 M) 4msob-GSL (5 mM)
Sucrose (0.145 M)
13
3 [fructose- " Cg¢] sucrose (0.145 M) 4msob-GSL (5 mM)
Sucrose (0.145 M)
4 [*Cq] glucose (0.0725 M) 4msob-GSL (5 mM)
Fructose (0.0725 M)
Sucrose (0.145 M)
5 [*Cq] fructose (0.0725 M) 4msob-GSL (5 mM)
Glucose (0.0725 M)
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Supplementary Table 6: List of multiple reaction monitoring (MRM) parameters for
individual compounds analyzed by LC-MS.

Quadrupole 1 [Quadrupole 2 |Declustering| Entrance | Collision COH]SIO,H
. . cell exit
Compound (precursor mass |(product mass | potential |potential| energy ential
Da) Da) v | » | Py
4msob-ITC 178.11 114 51 5 13 4
4msob-GSH 48511 179.1 76 55 29 6
4msob-CG 356.07 136.1 46 11 15 4
4msob-Cys 299.06 136.1 51 3 15 4
4msob-NAC 341.07 178.1 51 3 17 6
4msob-CN 146 129 63 10 13 4
3msop-GSL 4218 959 -100 -4.5 -60 0
4msob-GSL 4359 95.9 -100 -5 -60 0
4mtb-GSL 420 95.9 -100 -5 -58 0
4moi3m-GSL 477 959 -100 -12 -50 0
Allyl-GSL 358 95.9 -100 -5 -60 0
4msob-GSL + Glucose 598 95.9 -100 -5 -60 0
4msob-GSL + 2 Glucoses 760 95.9 -100 -5 -60 0
4msob-GSL + 3 Glucoses 922 95.9 -100 -5 -60 0
4moi3m-GSL + Glucose 639 95.9 -100 -12 -50 0
4moi3m-GSL + 2 Glucoses 801 95.9 -100 -12 -50 0
4mtb-GSL+ Glucose 582 95.9 -100 -5 -60 0
4mtb-GSL + 2 Glucoses 744 95.9 -100 -5 -60 0
Ally-GSL + Glucose 520 95.9 -100 -5 -60 0
Allyl-GSL + 2 Glucoses 682 95.9 -100 -5 -60 0
3msop-GSL + Glucose 584 95.9 -100 -5 -60 0
3msop-GSL+ 2 Glucoses 746 95.9 -100 -5 -60 0
Monosaccharide 178.8 89 -50 -9.5 -10 0
Disaccharide 340.9 59 -65 -10 -46 0
Trisaccahride 503.1 179 -95 -10 -28 -4
Tetrasaccharide 665.2 179 -100 -10 -48 -4
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Supplementary Table 7: List of insect protein databases searched for GH13 sequences used
in the production of the phylogenetic tree.

Order Species l:fugll_l;i; Genome version Database
Coleoptera Leptinotarsa decemlineata 6 Maker annotation v0.5.3 HGSC
Hemiptera Acyrthosiphon pisum 30 Version v1.0 BIPAA
Hemiptera Bemisia tabaci (MEAMI) 71 Version v1.1 Whitdeizbiesréome
Hemiptera Myzus persicae 31 Version v1.0 BIPAA

Lepidoptera Bombyx mori 11 ASM15162v1 NCBI
Lepidoptera Manduca sexta 29 0GS2 HGSC
Lepidoptera Pieris rapae 14 GCF_001856805.1 NCBI
Thysanoptera Frankliniella occidentalis 8 Focc v1.0 NCBI
Trombidiformes Tetranychus urticae 5 ASM23943v1 Ensembl
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Supplementary Table 10: Primer sets used for cloning B. fabaci GH13 family genes in
pAc5.1/V5-HIS A for expression in D. melanogaster S2 cells.

Primer name Sequence
SUCI1
PpACVS5-HIS Full CGTACGAATTCGAGATGAAAATAGCAGTGCTTTCATTT
EcoR1 Forward S2
SUCI1
PACVS5-HIS Full TACCTCGAGCAGAGGTTTTTAGGCCACCCC
Xhol Reverse S2
SuC2
PACVS5-HIS Full GCACGTGGTACCATGAGTCGGAATTTGACAATACTGC
Kpnl Forward S2
SUC2
pACV5-HIS Full CACCGGCTCTAGAATTGGATTTACCGGTTAATCTACTGC
Xbal Reverse S2
SUC3
PACVS5-HIS Full GCACGTGGTACCATGCTGTTAGAGATAATGTGCAAATTTACG
Kpnl Forward S2
SUC3
pACVS5-HIS Full CACCGGCTCTAGATAGGAGTAACCTATGAGTGAAAAGAAATACA
Xbal Reverse S2
SUC4
PACVS5-HIS Full
Kpnl Forward S2
SuUC4
pACV5-HIS Full CACCGGCTCTAGACAGGGAATATTTACAGTACAGGAACAG
Xbal Reverse S2
SUC5
PACVS5-HIS Full GCACGTGAATTCACCATGGAGAGACTACTCTACTTTGTTGTG
EcoRI Forward S2
SUC5
pACV5-HIS Full | CACCGGCTCTAGAGCTGATGAAGATTTTTAAATAAATTGATAGTAGAAG
Xbal Reverse S2

GCACGGGGTACCATGATAGTTTTAAATTATTTCATAATCGATCTCT
ATTACAA
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Supplementary Figure 1: Kinetic characterization of SUC2 and SUCS shows activity at
high sucrose concentrations. Depicted are the relations between substrate concentration and
reaction rate (product peak area) for both sucrose and 4msob-GSL. Assays were carried out as
described in the methods section. When the sucrose concentration was varied from 0.05 to 1.0
M, 4msob-GSL concentration was held at 2.5 mM. When the 4msob-GSL concentration was
varied from 25 uM to 20 mM, sucrose concentration was held at 1 M.
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Supplementary Figure 2: SUC2 and SUCS enzymes utilize sucrose to glucosylate GSLs as a
preferential substrate to trehalose. The enzymes SUC2 and SUCS5 were incubated in vitro with
4msob-GSL and either sucrose or trehalose as potential glucose donors for 6 h at 25°C and pH
7.0. Depicted are extracted multiple reaction monitoring LC-MS chromatograms for the
glucosylated a-(1—4) 4msob-GSL products of SUC2 and SUCS. Both enzymes utilized
trehalose as a glucose donor only poorly, at <1 % efficiency when compared to sucrose.
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Supplementary Note 1

Supporting information NMR

NMR spectra were recorded on a Bruker Avance lll HD 700 MHz spectrometer, equipped with a
cryoplatform and a 1.7 mm cryoprobe (Bruker Biospin GmbH, Rheinstetten, Germany). Spectrometer
control and data processing was accomplished using Bruker TopSpin ver. 3.2. NMR spectra for compounds
1 and 3 were recorded in D,O and the chemical shifts were left uncorrected. 3C chemical shifts were
determined indirectly by means of H-*C HSQC (heteronuclear single quantum coherence) and *H-3C
HMBC (heteronuclear multiple bond correlation) experiments. The glucosidic substitutions were
elucidated with the help of 1D *H-*H SELTOCSY (selective total correlation spectroscopy) experiments. The
resulting spectra served as projection spectra for the 2D homo- and heteronuclear experiments. The
positions of the chemical shifts in the molecules were furthermore determined based on 3Ju4 coupling
constants and 3C chemical shifts. Important spectral details have been assembled for deeper
understanding of the structure elucidation as follows.

Figure SN1-1. Structure of glucoraphanin (4MSOB) with numbering

Figure SN1-2. Structure of glucoraphanin (4MSOB) with chemical shifts in D,O
Figure SN1-3. 'H NMR spectrum of Glucoraphanin (4MSOB) in D,O

Figure SN1-4. 'H-3C HSQC spectrum of Glucoraphanin (4MSOB) in D;0

Figure SN1-5. Structure of 1 with numbering

Figure SN1-6. 'H NMR spectrum of 1 in D,O with water suppression

Figure SN1-7. 'H NMR spectra of the S-glucosidic moieties of 1 and 4MSOB
Figure SN1-8. *H-'H SELTOCSY spectrum of 1, transmitter on 1, in D,0

Figure SN1-9. *H-13C HSQC spectrum of 1 in D,0, glucosidic range

Figure SN1-10. Structure of 3 with numbering

Figure SN1-11. *H NMR spectrum of 3 in D,0 with water suppression

Figure SN1-12. 'H NMR spectra of the S-glucosidic moieties of 3 and 4MSOB
Figure SN1-13. *H-'H SELTOCSY spectra of the second and third glucosidic moiety of 3

Figure SN1-14. *H-13C HSQC spectrum of 3 in D,0, glucosidic range
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Figure SN1-15.
Figure SN1-16.
Figure SN1-17.
Figure SN1-18.
Figure SN1-19.
Figure SN1-20.

Figure SN1-21.

Figure SN1-22

Figure SN1-23.
Figure SN1-24.

Figure SN1-25.

Figure SN1-26

Structure of glucoraphanin (4MSOB) with chemical shifts in MeOH-d3
'H NMR spectrum of glucoraphanin (4MSOB) in MeOH-d3

Detail of the 'H NMR spectrum of glucoraphanin (4MSOB) in MeOH-d;
Detail of the 'H NMR spectrum of glucoraphanin (4MSOB) in MeOH-d;
13C NMR (DEPTQ) spectrum of glucoraphanin (4MSOB) in MeOH-d
Structure of 2 with numbering

'H NMR spectrum of 2 in MeOH-ds with water suppression

. 'H NMR spectra of the S-glucosidic moieties of 2 and 4MSOB

'H-'H SELTOCSY spectrum of 2, transmitter on 1°, in MeOH-d;3
1H-13C HSQC spectrum of 2 in MeOH-d;, glucosidic range

'H-'H ROESY spectrum of 2 in MeOH-d3, glucosidic range

. Structure of 2 with prominent NOE correlations
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=0

Figure SN1-1. Structure of glucoraphanin (4MSOB) with numbering.

3.81dd (2.0, 12.8
3.62 dd (5.8, 12.8

~

2.72 bd (6.8, 6.8) 1.75m T
31.6 21.1

-

494 d

Figure SN1-2. Structure of glucoraphanin (4MSOB) with chemical shifts (3 ppm; ¢ blue, o4 red) and
coupling constants (mult., 3Juy in Hz) from NMR measurements in D,0.
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Figure SN1-3. *H NMR spectrum of Glucoraphanin (4MSOB) in D,O with water suppression.

ppm

F 100

5.0 4.5 4.0 3.5 3.0 25 2.0 ppm

Figure SN1-4. 'H-13C HSQC spectrum of Glucoraphanin (4MSOB) in D,0.
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Figure SN1-5 Structure of 1 with numbering.

5.0 4.5 4.0 3.5 3.0 25 20 15 1.0 ppm

Figure SN1-6. 'H NMR spectrum of 1 in D,O with water suppression.
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SELTOCSY, compound 1, transmitter on 1/, in D,0

1
}h\ S S—
r T T T T T
50 49 48 47 46

1H NMR with water suppression, 4MSOB reference, glucosidic range, D,0
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Figure SN1-7. 'H NMR spectra of the S-glucosidic moieties of 1 and 4MSOB.

1“

5.0 4.9 4.8 4.7 4.6 45 4.4 43 4.2 41 4.0 3.9 3.8 3.7 3.6 35 34 ppm

Figure SN1-8. 'H-'H SELTOCSY spectrum of 1, transmitter on 1, in D,0.
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Figure SN1-9. *H-3C HSQC spectrum of 1 in D,0, glucosidic range, with numbering. Grey fields cover
impurities.

Figure SN1-10. Structure of 3 with numbering.
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5.0 45 4.0 35 3.0 25 2.0 15 1.0 ppm

Figure SN1-11. *H NMR spectrum of 3 in D,O with water suppression.
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SELTOCSY, compound 3, transmitter on 1/, in D,0

1
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1H NMR with water suppression, 4MSOB reference, glucosidic range, D,0

Figure SN1-12. 'H NMR spectra of the S-glucosidic moieties of 3 and 4MSOB.
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1lll

SELTOCSY, compound 3, transmitter on 1, in D,0

3lll+51ll
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SELTOCSY, compound 3, transmitteron 1, in D,0
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Figure SN1-13. *H-'H SELTOCSY spectra of the second and third glucosidic moiety of 3.
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Figure SN1-14. *H-13C HSQC spectrum of 3 in D,0, glucosidic range, with numbering. Grey fields cover

impurities.
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OH 2.94 ddd (9.2, 6.7, 13.0) O
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Figure SN1-15. Structure of glucoraphanin (4MSOB) with chemical shifts (6 ppm; &c blue, &y red) and
coupling constants (mult., *Juy in Hz) from NMR measurements in MeOH-ds.

T TN Ao

T T T T T T T T T T T T T T T T T
39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 ppm

Figure SN1-16. *H NMR spectrum of glucoraphanin (4MSOB) in MeOH-d;.
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6a
3.95 3.90 3.85 3.80 3.75 3.70 3.65 3.60 3.55 3.50 345 3.40 3.35 3.30 3.25 3.20 ppm

Figure SN1-17. Detail of the *H NMR spectrum of glucoraphanin (4MSOB) in MeOH-ds.

5(0)-Me

4a

4b

1a

Figure SN1-18. Detail of the *H NMR spectrum of glucoraphanin (4MSOB) in MeOH-d;.
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T T T T T T T T T T T T T T T
160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 ppm

Figure SN1-19. *C NMR (DEPTQ) spectrum of glucoraphanin (4MSOB) in MeOH-d;.

Figure SN1-20. Structure of 2 with numbering.
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Figure SN1-21. *H NMR spectrum of 2 in MeOH-ds with water suppression.
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Figure SN1-22. *H NMR spectra of the S-glucosidic moieties of 2 and 4MSOB.
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Figure SN1-23. *H-H SELTOCSY spectrum of 2, transmitter on 1, in MeOH-ds.
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Figure SN1-24. *H-13C HSQC spectrum of 2 in MeOH-ds, glucosidic range, with numbering. Grey fields
cover impurities.

83



Glucosylation prevents plant defense activation in phloem feeding insects

6b’

ppm

3.5

5*+6b"

4.0

4.5

5.0

ppm

Figure SN1-25. *H-'H ROESY spectrum of 2 in MeOH-d;, glucosidic range. SELTOCSY spectra of the
glucosidic moieties were used as projection spectra.
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Figure SN1-26. Structure of 2 with prominent NOE correlations
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Abstract

Two-component activated defenses such as cyanogenic glucosides are produced by many plant species, but phloem
feeding herbivores have long been thought to cause little to no activation of these compounds due to their mode
of feeding. Here, however, we report that cyanogenic glycoside defenses from cassava (Manihot esculenta), a
major staple crop in Africa, are activated during feeding by a pest insect, the tobacco whitefly Bemisia tabaci,
and the resulting hydrogen cyanide is detoxified by conversion to beta-cyanoalanine. Additionally, the whitefly
was found to utilize two detoxification pathways to prevent the activation of cyanogenic glucosides. First, a
transglucosidation reaction converts the cyanogenic glycoside linamarin to glucosides that are excreted in the
honeydew. Two glycoside hydrolase family 13 enzymes were shown to glucosylate linamarin in vitro utilizing
sucrose as a co-substrate. Second, phosphorylation of both linamarin and the insect-derived linamarin glucosides is
described. Both phosphorylation and glucosidation of linamarin render this plant pro-toxin inert to the activating
plant enzyme linamarase, thus representing pre-emptive detoxification strategies that avoid cyanogenesis.

Keywords: Bemisia tabaci, Transglucosidase, Phosphorylation, Cyanogenic glycosides, Detoxification

Introduction

Many plants produce two-component
chemical defenses as protection against attacks
from herbivores and pathogens. In these systems,
protoxins that are often chemically protected by a
glucosyl group are activated by an enzyme such
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as a glycoside hydrolase, yielding an unstable
aglycone that is toxic or rearranges to form toxic
products '. The glycoside and the hydrolase are
stored in separate compartments that mix upon plant
damage, activating the toxin only when necessary
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for defense. Two-component defenses include
cyanogenic, benzoxazinoid and iridoid glycosides
and glucosinolates, and have long been known to
play decisive roles in interactions between plants
and herbivores, especially when extensive plant
tissue disruption happens during feeding, such as
during attack by chewing herbivores'?. However,
the activation of such defenses by piercing-
sucking phloem-feeding herbivores such as aphids
and whiteflies is poorly understood ? in spite of the
agricultural importance of these insects.
Cyanogenic glycosides are well-studied
two-component plant chemical defenses believed
to have arisen over 300 million years ago,
and found in many diverse plant species *°.
Cyanogenic glycosides are O-B-glycosides of
a-hydroxynitriles which are typically classified as
aliphatic or aromatic, depending on the amino acid
from which they are derived 7. They also occur as
disaccharides in some plant species, believed to be
important as more stable transport forms *°. Crops
that produce cyanogenic glycosides include several
legumes and fruits, as well as the tropical staple
crop cassava (manioc, yuca; Manihot esculenta).
Cassava originated in the Amazon basin '° and was
introduced to Africa in the 16" century '°, where it
has become an extremely important crop, being the
currently most produced carbohydrate staple crop
in Central and Western Africa '1? with production
expected to grow further to 100 Mt in Sub-Saharan
Africa by 2025 '2. The main cyanogenic glycoside
present in cassava is a valine-derived cyanogenic
mono-glycoside called linamarin, highly abundant
in both aerial and root tissues of this plant 3,
reaching up to 2 mg cyanide per g dry weight 4.
The hydrolytic enzyme required for the activation
of linamarin and other cyanogenic glycosides in
cassava is a B-glucosidase commonly referred to as
linamarase '*!5 that, upon tissue damage, cleaves
linamarin to give an unstable hydroxynitrile that
rearranges to produce the respiratory toxin cyanide
and acetone. This reaction happens spontaneously
but can be accelerated by an enzyme known as
hydroxynitrile lyase . As a crop, cassava displays
resistance to drought, however it is challenged by
several viral diseases (e.g. cassava mosaic, cassava
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brown streak, and cassava vein mosaic virus to
name a few) !, many of which are vectored by
biotypes of the tobacco whitefly (Bemisia tabaci
Sub-Saharan Africa, BtSSA) that feed on cassava
phloem tissue '8. This problem of severe viral
epidemics is gaining increased relevance in Africa
in recent years !'! and is often associated with large
whitefly outbreaks ! that contribute as vectors for
viral complexes.

The whitefly B. tabaci is a complex of
cryptic species or biotypes that are morphologically
indistinguishable !°.  Collectively they are
polyphagous phloem feeders able to feed on over
600 species of plants 2°, and thus an extremely
important as a crop pest named in the top 100 of the
world’s worst 2!. This is in part due to its ability to
vector over 300 plant viruses 2!. As a consequence,
discovery of the mechanisms by which whiteflies
feed so successfully on crops represents an
important area of research for the protection of
African small share-holder farmers, and could lead
to new control measures in conjunction with other
whitefly research !12!-23,

There is evidence for the involvement
of two-component defenses in the interactions
of phloem feeders and their host plants 2*
30, Glucosinolates have been shown to affect
aphid feeding with certain indolic glucosinolate
hydrolysis products detected after Myzus persicae
feeding 3!, In B. tabaci, glucosinolates were
observed to alter performance and host selection *2.
Furthermore these latter insects were shown to be
able to detoxify glucosinolates via the formation of
desulpho-glucosinolates 33, and more recently via
novel sucrase-transglucosidases and the transfer
of multiple additional glucose residues . Finally,
in the case of cassava cyanogenic glycosides, the
activities of the cyanide detoxification enzymes
rhodanese and beta-cyanoalanine synthase in
whiteflies are increased when feeding on cassava
in comparison to sweet potato (cyanogenic versus
non-cyanogenic plants) .

Here we provide evidence supporting the
role of cassava cyanogenic glycosides in defense
against the phloem feeder B. tabaci, and elucidate
multiple pathways for the detoxification of these
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Figure 1. Cyanogenic glycosides are acti-
vated during whitefly feeding. (A) Scheme
of linamarin hydrolysis and the known detoxi-
fication pathway of beta-cyanoalanine forma-
tion. (B) Native beta-cyanoalanine concen-
trations in both eggplant and cassava leaves
were not different (P-value from unpaired t-test
with N=3). (C) Whitefly extracts from insects
feeding on cassava showed elevated levels
of beta-cyanoalanine (BCA) in comparison to
eggplant-fed insects, supporting the hydroly-
sis of cyanogenic glycosides during feeding
(P-value from unpaired t-test with N=3).

compounds in this cosmopolitan pest. We first
describe the formation of beta-cyanoalanine as a
strategy to mitigate the toxicity of the cyanogenic
glycoside hydrolysis product hydrogen cyanide 34
in the bodies of B. tabaci SSA1 (BtSSA1). Then
we elucidate the detoxification of cyanogenic
glycosides via both transglucosidation and
phosphorylation of sugar moieties. Since the
glucoslylated and phosphorylated derivatives
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are resistant to hydrolysis by the plant activating
enzymes, they therefore serve as pre-emptive
detoxification pathways.

Results

Beta-cyanoalanine is increased in cassava-fed
whiteflies

The potential activation of cyanogenic
glycosides during whitefly feeding would lead
to the release of hydrogen cyanide. We therefore
investigated the levels of a known cyanide
detoxification — metabolite, beta-cyanoalanine
(Figure 1 A), in whiteflies feeding on leaves of
the cyanogenic plant cassava (M. esculenta) in
comparison to beta-cyanoalanine levels in a non-
cyanogenic plant, eggplant (Solanum melongena).
Since all plants produce beta-cyanoalanine as a
natural by-product of ethylene biosynthesis 3#3° the
concentrations of this amino acid in the tissues of
both of these plant species were also measured to
determine the native levels of this compound prior
to ingestion. The levels of beta-cyanoalanine in the
respective plants were not different (p=0.11 N=3)
(Figure 1 B); however, cassava-fed whiteflies
produced much higher levels of this compound
than whiteflies feeding on eggplant (p=<0.0001,
N=3) (Figure 1 C). The accumulation of beta-
cyanoalanine provides evidence for activation
of cyanogenic glycosides during feeding by the
whitefly B. tabaci.

Cassava cyanogenic glycosides are metabolized
by glucosylation by whiteflies

Honeydew from whiteflies (BtSSA1-SG3)
feeding on cassava was collected and chemically
analyzed via an untargeted LC-MS approach for the
presence of the cyanogenic glycoside linamarin and
possible derivatives. A peak corresponding to the
native glycoside was easily observed, confirming
that this insect was exposed to linamarin while
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feeding on cassava phloem sap. Additionally, MS
signals consistent with glycosylated linamarin
derivatives were also detected. The molecular
masses of these putative products presented a
characteristic serial mass addition of +162Da
units up to +648Da, suggestive of glucosylation,
with elution times being slightly shorter with
each addition. These peaks were also detected
in honeydew from whiteflies (BtMEAMI1) fed
artificial diets consisting of sucrose and linamarin,
but not when fed sucrose alone, confirming they
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were linamarin derivatives produced by the insects.

In order to elucidate the structure of these
whitefly linamarin derivatives, the compounds
corresponding to the addition of 1 and 2 apparent
glucose moieties, which also corresponded to
the most intense MS signals, were purified using
HPLC fractionation. NMR analyses revealed that
the structures of these compounds were consistent
with metabolism via glucose conjugation. The
derivatives with additional glucose moieties
showed sugar addition to the original glucose
of linamarin in either an a-(1—6) or a-(1—4)

C
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Figure 2. Novel linamarin-derived metabolites in B. tabaci whitefly honeydew. Linamarin-
derived metabolites in the honeydew contain additional alpha-linked glucose moieties. Panel
(A) shows metabolites corresponding to 1 glucose addition (compounds 1 and 2) and Panel (B)
shows metabolite peaks corresponding to 2 glucose additions (Compounds 3, 4 and 5). Metabo-
lites with up to 4 further hexose additions were detected via untargeted analysis (Panels C and
D). Compounds 1, 2 and 3 were purified from honeydew and their structures determined by MS

and NMR.
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Figure 3. Novel phosphorylated linamarin derivatives in B. tabaci honeydew. Linamarin
and its insect-produced glycosides were further modified by B. tabaci via phosphorylation. (A)
The position for phosphorylation of linamarin was elucidated as C3 6. The structures of both
the monoglucosylated (7, panel B) and diglucosylated (8, panel C) phosphorylated derivatives
could not be determined by NMR analysis due to low abundance, but the mass spectral data
are completely consistent with the structures given

orientation (compounds 1 and 2, respectively
Figure 2 A and Supplemental Note 1 Table SN1-
1) with the latter having slightly greater retention.
The diglucose derivative showed the serial addition
of two a-(1—6) linked glucose moieties to the
previously existing B-linked glucose (Compound
3, Figure 2 B and Supplemental Note 1 Table SN1-
1). Quantitative 'H-NMR techniques using sucrose
as an external standard were utilized to estimate
the amount of the monoglucose derivative 1 and
diglucose derivative 3 purified (5.88 ug and 3.38
png respectively). LC-MS standard curves for
these purified metabolites were then constructed,
allowing for the calculation of molar ratios
for these compounds in comparison to intact
linamarin in the honeydew of BtSSA whiteflies
feeding on cassava. It was found that glycosylated
linamarin derivatives corresponding to 1 and 2
glucose additions were present in the honeydew in
a combined 5.62:1 (SE=0.89, N=3) ratio to intact
linamarin. Additional peaks with mass spectra
consistent with two glucose additions were also
observed (Compounds 4 and 5); however the
quantities and purities of the fractions obtained after
chromatographic separation were not sufficient for
adequate structure elucidation. Glycosides with
masses corresponding to three and four glucose
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additions to the original B-linked glucose were
also detected (Figure 2 C and D).

The cyanogenic glycoside linamarin is metabolized
by phosphorylation

In addition to glucosides, further unknown
metabolites were detected in the honeydew of
both cassava-fed whiteflies (BtSSA1) and those
that fed on linamarin-containing artificial diets
(BtMEAM1),butwere absentin diets not containing
linamarin. These metabolites again showed a
pattern suggesting serial glucose additions (+162),
with characteristic progressively earlier eluting
peaks. The smallest of these metabolites displayed
a mass of 326 Da (Figure 3 A) 6, which is 80 mass
units greater than linamarin, but eluted much later.
There were also two earlier eluting metabolites
consistent with +162 and +324 Da additions to 6
(Figure 3 B and C, compounds 7 and 8 respectively).
We hypothesized that the addition of 80 Da could
correspond to either a sulphate or phosphate group
linked to linamarin, with the earlier eluting peaks
being a result of subsequent glycosylation. The
addition of a phosphate was further supported by
accurate mass data (Supplemental Figure S1 and
Supplementary Table S2) and the disappearance
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Figure 4. Incorporation of glucose during B. tabaci glucosylation of linamarin. Glucosyl-
ation of cyanogenic glycosides in B. tabaci is catalyzed by a transglucosidase activity based
on feeding of [3C] sucrose isotopologues and the CN-Glc linamarin to insects in artificial diet.
Shown are MS regions from LC-MS analyses of substrates and products of feeding experiments
on five different diets. Feeding fully '*C-labeled sucrose and sucrose *C-labeled in the glucose
moiety gave labeling in the newly added glucose of glucosylated linamarin metabolites. How-
ever, feeding sucrose '*C-labeled in the fructose moiety gave no label in the products, demon-
strating incorporation of only the glucose of sucrose with the CN-Glc. Feeding of free *C-labeled
glucose and fructose with linamarin also gave no incorporation into glucosylated derivatives of
linamarin (Supplementary Figure S3), showing that the glucose must originate from sucrose.

of these metabolites upon incubation with alkaline
phosphatase (Supplemental Figure S2). Purification
via HPLC fractionation followed by NMR analysis
revealed the addition of a phosphate to linamarin
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at position 3 of the B-linked sugar (6) based on
the deshielding of the 'H and "*C signals at this
position (Supplemental Note 1 Figure SN1-5 A).
Due to the low abundance of the purified products,
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no NMR spectroscopic evidence could be obtained
for the glucosylated phosphate derivatives.

Mechanism of glucose additions to linamarin

Glycosylation reactions are most often
catalyzed by either of two known enzyme
classes, UDP-glucosyl-transferases (UGTs) and
transglucosidases The latter of these two enzymes
utilizes a mechanism which transfers a glucose
unit from a donor disaccharide directly to an
acceptor molecule, while the former utilizes an
activated form of glucose (UDP-glucose). In order
to elucidate the mechanism by which glucose
units are being added to linamarin by whiteflies, a
simple artificial diet experiment using '3C sucrose
isotopologues was performed. Upon feeding
isotopically labeled sugars in diets containing
linamarin, labeled glucose was incorporated into
the glycosides in the cases of diets containing [°C,, ]
sucrose and [glucose-"*C Jsucrose, but not in diets
containing [fructose-"*C Jsucrose, ["*C ]glucose
or [BC]fructose (Figure 4 and Supplemental
Figure S3). The labels were also incorporated into
phosphorylated glycosides in the same manner
as described for the unphosphorylated glycosides
(Supplemental Figure S4). This mechanism
is consistent with a transglucosidase activity,
which is typically carried out by enzymes of the
glucohydrolase (GH) family 3°.

Insect-derived linamarin products resist enzymatic
activation

In order to determine whether the linamarin
glycosides and further phosphorylated metabolites
can be activated by the enzymes present within
the plant to form cyanide, extracts of cassava
leaves containing linamarase activity, as well as
linseed extracts containing linustatinase %7 (a
disaccharidase) activity were incubated with pure
linamarin and with the honeydew of cassava-fed B.
tabaci. Linamarin was degraded in the presence of
both cassava enzyme extracts and linseed enzyme
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Figure 5. Stability of linamarin and glyco-
sylated derivatives to activation by plant
enzymes. Linamarin and linustatin as well as
glycosides in the honeydew from whiteflies
fed on cassava were tested. Honeydew and
standards were incubated with crude enzyme
extracts from cassava and linseed or with
water alone. Linamarin was readily hydro-
lyzed by both cassava and linseed extracts,
and linustatin was hydrolyzed by linseed en-
zymes. Conversely, the insect-derived glyco-
sides were not substrates for both of the en-
zyme mixtures.

extracts, while the disaccharide linustatin was
only hydrolyzed in the presence of linseed enzyme
extract. The insect-derived glycosides, however,
remained stable in the presence of both enzyme
extracts, resisting both plant monosaccharidase
and disaccharidase activities (Figure 5).
Phosphorylated linamarin and phosphorylated
linamarin glycosides also showed similar stability
against enzymatic activation in the presence of
the cassava extracts (Supplemental Figure S5).
Therefore, formation of these derivatives likely
serves as a true pre-emptive detoxification of
linamarin rendering products that can no longer by
hydrolyzed with the release of hydrogen cyanide.

Expression profiles of BtSUC2 and BtSUCS5 in B,
tabaci feeding on various host plant

BtSUC2 and 5 were previously identified
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as whitefly transglucosidases that glucosylate
glucosinolates to prevent their hydrolysis and
release of toxic products *°. Thus their potential
to participate in the glucosylation of cyanogenic
gluycosides was investigated. First the genomic
sequences of BtSUC2 and BtSUCS in the cassava-
feeding B. tabaci biotype SSA1-SG3 were
found to be approximately 95% identical to their
counterparts in the Brassica-feeding B. tabaci
biotype MEAM1 (Supplemental Figure 6A). Next,
the expression of the BtSUC2 and BtSUCS genes
was compared in the two whitefly biotypes feeding
on two different plant species. It was found that
BtSUC2 was expressed to a greater extent on
cassava in MEAM1 whiteflies with no significant
increase in expression on eggplant in comparison
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Figure 6. Chromatographic analyses of
products from B. tabaci BtSUC2 and 5. Me-
dium of Drosophila S2 cells expressing these
enzymes was assayed with linamarin and su-
crose. Depicted are extracted multiple reaction
monitoring (MRM) LC-MS chromatograms for
mono- and di-glucosylated linamarin deriva-
tives. (A) BtSUC2 and 5 showed transglu-
cosidation activity, producing a-(1—4)-linked
glucose derivative 2 of linamarin with BtSUC2
also producing small amounts of the a-(1—6)-
linked derivative 1 above control levels. (B)
BtSUCS5 additionally produced the diglycosyl-
ated product 5. S2 cell control assay was of
cell medium extracts of untransformed cells.
(1: a-(1—6)-linked glucose derivative of lina-
marin; 2: a-(1—4)-linked glucose derivative of
linamarin; 3: a-(1—6),a-(1—6)-linked digluco-
sylated derivative of linamarin; 4, 5: unknown
diglucosylated derivatives of linamarin).

to SSA1-SG3 whiteflies, and BtSUC5 was overall
expressed to a much larger extent in the cassava
associated whiteflies SSA1-SG3(supplemental
figure 6B), both on cassava and eggplant as food
sources. The inducibility of these genes was also
assessed for each whitefly species and it was
observed that both genes were expressed to a
greater extent in MEAMI1 when feeding on cassava
in comparison to eggplant. Only BtSUC2 was
seemingly induced in SSA1-SG3 whiteflies when
feeding on cassava, with BtSUCS showing signs of
constitutive expression of this gene (Supplemental
Figure S6C).
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In vitro activities of previously characterized GH
enzymes BtSUC2 and BtSUCS5

Drosophila S2 cells expressing BtSUC2
and BtSUC5 were utilized in enzyme assays
with cyanogenic glycosides and other substrates
with the donor disaccharide sucrose and the
acceptor molecule linamarin. BtSUC2 produced
the a-(1—4) glycoside 2 approximately 50
times more efficiently than S2 control cells, and
smaller amounts of the o-(1—6) derivative 1
(Figure 6 A). No higher order glycosides were
formed by BtSUC2 (Figure 6 B). BtSUCS5 on the
other hand produced much larger amounts of 2
(more than 50,000 times more efficient than S2
control cells) (Figure 6 A), as well as a glycoside
corresponding to a further glucose addition (5)
(Figure 6B) with a similar efficiency. BtSUCS also
produced a smaller amount of 1 (approximately
7 times more active than controls) and a peak
corresponding to an unknown derivative 4 (Figure
6 A & B respectively). BtSUCS5 displayed apparent
Michaelis-Menten kinetics with an estimated
K,, of ~0.5 mM towards linamarin and ~0.13
M towards sucrose (Supplemental Figure S7).
For BtSUC2, however, the low activity towards
linamarin prevented an estimation of K|, values
for this enzyme. BtSUC2 and BtSUCS activities
towards the purified phosphorylated linamarin
derivatives 6 and 7 were also investigated, although
the precise amounts of these compounds added
were not determined due to their low abundance.
Nevertheless, both enzymes seemed to glucosylate
6 forming a product with very slightly different
retention time compared to 7 (Supplemental Figure
S8 A), suggesting a positional isomer. While
BtSUC2 could apparently not use 7 as substrate,
BtSUC5 produced a compound corresponding
by mass to 8, but with a different retention time
(Supplemental Figure S8 B).

BtSUC2 and BtSUCS5 were also assayed
with other plant-derived glucosides as potential
substrates. Secondary metabolites from various
two-component defensive compound classes
were tested including benzoxazinoid, cyanogenic,
phenolic, iridoid, flavonoid and other cyanogenic
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glycosides, as well as glucosinolates. BtSUC2 and
5 had detectable transglucosidase activity with all
substrates (Supplemental Figure S9), with BtSUCS5
having the greatest activity.

Discussion

Phloem feeding insects have long been
thought to be largely unaffected by activated two-
component plant defenses, as the feeding mode of
these herbivores does not appear to cause enough
macroscopic tissue damage to initiate hydrolytic
activation of these compounds. Hence these insects
may be assumed to not need mechanisms which
detoxify these compounds. This report, however,
offers further evidence of plant glycoside two-
component defense activation during feeding by a
piercing-sucking herbivore 2327283% The production
of aliphatic glucosinolate hydrolysis products,
isothiocyanates 23 and subsequent glutathione
conjugates *°, in B. tabaci feeding on Brassica
plants offers evidence of tissue disruption during
phloem feeding since aliphatic glucosinolates are
not spontaneously activated as is the case with
indole-derived glucosinolates 2. Here, we report
whitefly accumulation of beta-cyanoalanine, a
metabolite derived from the detoxification of
cyanide. Beta-cyanoalanine is also produced by
plants upon detoxification of the cyanide produced
by the enzyme ACC oxidase during production
of the hormone ethylene 3*%. However, while
undamaged cassava and eggplant tissues contained
similar amounts of beta-cyanoalanine (Figure 1 B),
insects fed on these plants exhibited stark contrasts
with cassava-fed whiteflies containing 50 times
higher amounts of this detoxification metabolite
than their eggplant-fed counterparts (Figure 1 C).
Activation of cyanogenic glycosides is presumed
to happen upon stylet penetration, navigation to the
phloem, or in the gut of the whitefly post ingestion.
A beta-cyanoalanine synthase has been identified
in Pieris rapae 3¢ and although an exact homologue
has not been characterized in Bemisia tabaci, a
cystathione beta-synthase (Bta12658 or Ssa04689)
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is predicted to have similar functionality 2'-.

Given the activation of cyanogenic
glycosides upon whitefly feeding, we explored
whether this insect possessed any pre-emptive
detoxification measures. The glycosylated
linamarin derivatives found in the honeydew of
whiteflies feeding on cassava with the additions
of a-glycosides in either an a-(1—6) or a-(1—4)
fashion are mirrored in the glucosylation of the
glucosinolate 4msob 3°. However, subtle differences
in the ability of these insects to modify cyanogenic
glucosides are clear by the appearance of many
more peaks than for glucosylated glucosinolate
metabolites. Multiple sugar additions occur that
are hypothesized to be combinations of various
linkage modes (a-(1—6) or a-(1—4)) of glucose.
For example, chromatographically 1 (an o-(1—6)
addition) shows an earlier elution time than the
a-(1—4)derivative 2. The most abundant peak from
two glucose additions 3 with the earliest elution
time was determined to be a-(1—6); a-(1—06). The
additional two peaks may therefore correspond to
a compound with both a-(1—6);0-(1—4) mixture
4 and a compound with two o-(1—4);0-(1—4)
additions 5. This is supported by the fact that
the enzyme BtSUCS5, which produces almost
exclusively a-(1—4) glucosylated linamarin 2
in incubations with sucrose and linamarin, also
produces the latest eluting also produces the latest
5 of the diglycoside peaks (Figure 6 B). This
catalytic flexibility seems to be heavily influenced
by the “R group” which is hypothesized to allow for
more promiscuity in the pocket of the responsible
modifying transglucosidases. When looking at the
various substrates tested with enzymes BtSUC2
and 5, rutin (the largest substrate) was the poorest
acceptor (Supplemental Figure S8) as seen by the
retention of substrate peak intensity in all assays.
A similar size-oriented influence of activity is
observed in studies with a dextransucrase where
the velocity of the reaction was reduced when
switching the acceptor from maltose to maltotriose
39

Phosphorylation of plant and insect derived
glycosides was also detected as part of whitefly
metabolism  of linamarin.  Phosphorylation
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of sugars is often a marker for catabolism or
breakdown, as in the case of glycolysis 4041,
However, phosphorylation may also be utilized in
cases of transglycosylation such as in the process of
glycogen synthesis >4 where C3 phosphorylation
(a rare addition) *4¢ plays an important role in
glycogen synthesis and storage #*. Phosphorylation
of plant glycosides was also reported in the gypsy
moth Lymantria dispar and its close relative Orgyia
antigua, where salicinoids were phosphorylated
on the B-linked glucose at position C3 . Here we
also observed the phosphorylation of linamarin at
the same position 6.

Phosphorylationin B. tabaciishypothesized
to be independent from the glucosylation
mechanism due to the capability of BtSUC2 and
BtSUCS5 to glucosylate both phosphorylated and
non-phosphorylated  substrates  (Supplemental
Figure S8). The biological role of phosphorylation
is likely as a detoxification process since
phosphorylation stabilizes glycosides against
activation by linamarase. Detoxification has
already been proposed as an explanation for the
formaton of phosphorylated phenolic glycosides
in Lymantria dispar ¥. Although phosphorylation
represents an atypical mammalian phase II
detoxification process, reports in insects are
growing in number #*3° and this might represent a
typical conjugation in this order of animals.

BtSUC2 and BtSUCS both
transglucosylated the cyanogenic glycoside
linamarin in vitro, showing their promiscuity
to modify both glucosinolates and cyanogenic
glycosides. BtSUC2 managed to produce a-(1—6)
1 and a-(1—4) 2 linked monoglycosylated products
above control levels, with a-(1—6) not previously
observed with glucosinolates °. BtSUCS5 also
displayed other activities, being capable of
producing a not yet isolated compound 5 with a
second glucose addition, possibly corresponding
to the abovementioned o-(1—4)0-(1—4)
diglycoside. K|, values for BtSUC5 were within
physiologically expected levels for both linamarin
and sucrose. The role of both of these enzymes in
detoxifying cyanogenic glycosides is supported
by the greater expression of their corresponding
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genes when flies fed on cassava, which contains
cyanogenic glycosides, than when fed on eggplant,
which does not contain any cyanogenic glycosides.

Further incubations of BtSUC2 and 5 with
various substrates resulted in the transglucosidation
of virtually all tested metabolites (Supplemental
Figure S9), aside from rutin for which activity was
very low. However, when some of these substrates
(e.g.benzoxazinoids) were fed directly to whiteflies,
no transglucosidase products were detected in the
honeydew 3°. Given that whiteflies use a variety of
host plants, many of which have glucosylated two-
component defenses, the formation of pre-emptive
detoxification metabolites may be responsible
for preferences of whiteflies for certain plants.
Much more work needs to be done, however, in
identifying potential defenses in whitefly host
plants and determining how they are processed by
the detoxification machinery. Investigations into
the honeydew of other phloem feeding insects that
regularly feed on plants containing such defenses
would also be interesting, in order to determine
if these types of detoxification reactions differ
between specialist and generalist phloem feeders.

The inducibility or relative expression of
these BtSUC2 and 5 was variable with respect to
both the whitefly species and the plant which they
fed upon. Perhaps the most striking observation
was the expression levels of BtSUCS in the cassava
associated whiteflies SSA1-SG3 in comparison
to MEAMI1 whiteflies (Supplemental Figure
S6B). BtSUCS in SSA1-SG3 was seemingly not
induced when feeding on cassava versus eggplant
(Supplemental Figure S6C) and may speak to the
observation of the constitutive nature of B. tabaci
detoxification genes 3!, however it may also be
evidence of the lack of involvement of this specific
GH13 genes for detoxification of cyanogenic
glycosides.

In conclusion, the investigations into
whitefly metabolism of cyanogenic glycosides
illustrate the plethora of chemical transformations
carried out by this phloem feeding insect.
Although cyanogenic glycosides and other two
component defenses were previously believed not
to be activated by this feeding guild, our results
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suggest that whiteflies are indeed susceptible to
two-component defenses and developed metabolic
adaptations to pre-emptively detoxify them. Further
research on phloem-feeders should discover many
more metabolic adaptations to plant defenses.

Materials and Methods

Plants

Eggplant (Solanum melongena, cv. Black
Beauty), and cassava (Manihot esculenta, cv.
MCol22) plants were grown under standard
greenhouse conditions at 26£2 °C with
supplemental lighting and a photoperiod of 14:10
h (light:dark).

Insects

Bemisia tabaci (Hemiptera: Aleyrodidae)
species MEAM1 were collected in southern Israel
in 2003 and from Sudan in the late 1990s, and
reared continuously on cotton . Bemisia tabaci of
species SSA1-SG3 (sub-Saharan Africa species
group) was collected on Bagamoyo Road, Tanzania
in 2013 and reared on cassava plants.

Insect feeding on Manihot esculenta and other
species

Groups of adult whiteflies (50-100
individuals), were collected from their host plants
and switched to fresh cassava (SSA1-SG3) or
eggplant (MEAMI1 and SSA1-SG3). Insects were
fed on plants enclosed within glass clip-cages.
After 72-96 h, the honeydew/feces deposited on
the glass feeding chamber was washed off with
water : methanol (20:80, v:v). Samples were dried
down using nitrogen gas and resuspended in water
prior to analysis.

B. tabaci feeding on artificial diets with linamarin

Groups of 150 B. tabaci (MEAMI1 species)
adults were collected from host plants and switched
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to artificial diet feeders (consisting of a glass tube,
3 cm height x 2 cm diameter, with a liquid diet
covered with a double layer of Parafilm). Insects
were allowed to feed through the Parafilmona 10 %
sucrose solution containing no additives (control)
or the cyanogenic glycoside linamarin (Sigma) at a
concentration of 5 mM. After 96 h, the honeydew
deposited on the glass tubes was washed off with
water : methanol (20:80, v:v). Honeydew was then
dried down under nitrogen gas and resuspended in
water prior to analysis.

Bemisia tabaci feeding on artificial diets containing
isotopically-labeled sugars

Four different sucrose isotopomers were
added to artificial diets: ["*C,,]sucrose, ["*C,,]
sucrose, [glucose-"3C,Jsucrose, and [fructose-
BC,]sucrose. The monosaccharides [*C Jfructose
and [“C,]glucose were also fed. The artificial
feeding devices consisted of a glass tube (5 cm
high x 2.5 cm diameter) with the liquid diet (50
uL) held within a double layer of Parafilm. About
50 Bemisia tabaci MEAM1 adults were placed in
each tube. Feeding assays were performed for 72
h on diets that contained 5 mM linamarin and 0.29
M of the labeled sugars. After feeding, vials were
placed at -80 °C in order to kill whiteflies, and
bodies were transferred and stored for analysis.
The honeydew deposited on the glass tubes was
washed with water : methanol (20:80, v:v) and
stored at -20 °C until processing and analysis.
A full summary of artificial diet constituents is
outlined in Supplementary Table S2.

Purification and LC-MS analysis of glucosylated
and phosphorylated cyanogenic  glycosides,
subsequent hydrolysis products and sugars

Purification of  glucosylated or
phosphorylated cyanogenic  glycosides was
performed via fractionation on a Nucleodur Sphinx
RPcolumn (250 x 4.6 mm, 5 pm, Macherey—Nagel,
Diiren, Germany) using an HP 1200 HPLC (Agilent
Technologies, Santa Clara, CA, USA) coupled to a
fraction collector (Advantec, Dublin, CA, USA).
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Chromatographic separation was attained using a
gradient of 0.05 % aqueous formic acid (Solvent
A) and acetonitrile (Solvent B) at a flow rate of 1
mL min' at 20°C as follows: 5-29 % B (12 min),
29-100 % B (0.1 min), a 2.9 min hold at 100% B,
100-5 % B (0.1 min), and a 3.9 min hold at 5 % B.
Linustatin was purified from flax seeds by crushing
10 g of seeds in liquid nitrogen and extracting with
80% methanol prior to centrifugation at 10000 x
g. The methanol supernatant was then dried down
and concentrated before resuspension in water for
purification.

Qualitative  analysis of glucosylated
cyanogenic glycosides in feces and honeydew
extracts was also performed on an HP 1100 series
HPLC. Separation was achieved on a Nucleodur
Sphinx RP column (250 x 4.6 mm, Spum, Macherey-
Nagel, Germany) with a gradient of 0.2 % aqueous
formic acid (solvent A) and acetonitrile (solvent B)
with a flow rate of 1 mL min'' at 25°C as follows:
as follows 5-55 % B (25 min), 55-100 % B (0.1
min), 100 % B 0.9 min hold, 100-5 % B (0.1 min),
5 % B 3.9 min hold. The HPLC was coupled to
an Esquire 6000 ESI-Ion Trap mass spectrometer
(Bruker Daltonics, Bremen, Germany) operated
in both positive and negative modes in the range
of m/z 60-1500 with skimmer voltage -40 V;
capillary exit voltage -146.7 V; capillary voltage
4000 V; nebulizer pressure 35 psi; drying gas 11
L min’'; and gas temperature 330°C. DataAnalysis
software V4 (Bruker Daltonics) was used for
chromatogram analysis.

Qualitative analysis of isotopically labeled
glucosylated cyanogenic glycosides in feces
and honeydew extracts was performed on an HP
1100 series HPLC. Separation was achieved on a
Nucleodur Sphinx RP column (250 x 4.6 mm, Sum,
Macherey-Nagel, Germany) with a gradient of 0.2
% aqueous formic acid (solvent A) and acetonitrile
(solvent B) with a flow rate of 1 mL min' at 25°C
as follows 5-55 % B (25 min), 55-100 % B (0.1
min), 100 % B 0.9 min hold, 100-5 % B (0.1 min),
5 % B 3.9 min hold. The HPLC was coupled to
an Esquire 6000 ESI-Ion Trap mass spectrometer
(Bruker Daltonics, Bremen, Germany) operated
in both positive and negative modes in the range
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of m/z 60-1000 with skimmer voltage -40 V;
capillary exit voltage -113.5 V; capillary voltage
4000 V; nebulizer pressure 35 psi; drying gas 11
L min'; and gas temperature 330°C. DataAnalysis
software V4 (Bruker Daltonics) was used for
chromatogram analysis.

High resolution mass spectrometry of
phosphorylated compounds was achieved on
an Thermo Scientific UltiMate 3000 UHPLC
coupled to Bruker TIMS-TOF mass spectrometer.
Separation was achieved on a Nucleodur Sphinx
RP column (250 x 4.6 mm, Spm, Macherey-Nagel,
Germany) with a gradient of 0.2 % aqueous formic
acid (solvent A) and acetonitrile (solvent B) with
a flow rate of 1 mL min-! (split 1:3 source: waste)
at 25°C as follows: as follows 5-55 % B (25 min),
55-100 % B (0.1 min), 100 % B 0.9 min hold, 100-
5% B (0.1 min), 5 % B 3.9 min hold. The MS was
operated in negative mode scanning from m/z 50-
1500 with the following parameters. Source: End
plate offset: 500 V, capillary: 3500 V, Neubilizer:
3.5 bar, Dry gas: 11.0 L min™!, Dry temperature 330
°C. Tune General: Funnel 1RF: 150 Vpp, Funnel
2 RF: 200 Vpp, isCID energy: 0.0 eV, Multipole
RF: 50 Vpp, Deflection Delta: -70 V, Quadrupole
energy: 4.0 eV, Low mass: 90 m/z Collision energy:
7.0 eV, Collision RF: 400 Vpp, Transfer time: 80.0
us, Pre-pulse storage: 5.0 ps. Calibration took
place externally immediately before the samples
were run using Agilent ESI-L Low Concentration
Tune Mix and an enhanced quadratic calibration
curve.

Quantification of the  glucosylated
cyanogenic glycosides in transglucosidation and
linamarase/linustatinase assays and in honeydew
was accomplished via an HP 1260 series
HPLC coupled to an AB Sciex API 5000 mass
spectrometer (Applied Biosystems, Darmstadt,
Germany). The column utilized was a Nucleodur
Sphinx RP column (250 x 4.6 mm, Sum, Macherey-
Nagel, Germany) using a chromatographic
gradient of 0.05 % aqueous formic acid (Solvent
A) and acetonitrile (Solvent B) at a flow rate of 1
mL min! at 20°C as follows: 5-29 % B (12 min),
29-100 % B (0.1 min), a 2.9 min hold at 100% B,
100-5 % B (0.1 min), and a 3.9 min hold at 5 %
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B.The MS was operated in the negative mode with
collision gas value 7, curtain gas pressure 35 psi,
spray gas pressures 60 psi, ion spray voltage -4500
V, and turbogas temperature 600°C. Compounds
were detected using multiple reaction monitoring
(MRM) detection with the parameters outlined
in Supplementary Table S3. Quantification
was achieved using external calibration curves
constructed from solutions of purified glucosylated
cyanogenic glycosides of known concentrations
(determined in solution via NMR as described
below). Analyst 1.5 software (Applied Biosystems)
was used for data acquisition and processing. All
averages and standard errors were calculated from
three independent biological replicates. No other
statistical tests were performed.

Analysis of betacyanoalanine accumulation
in the bodies of Bemisia tabaci SSA1-SG3 fed on
cassava and eggplant was performed on an HP
1260 HPLC coupled to an AB Sciex API 5000 mass
spectrometer. The column utilized was a Agilent
XDB-C18 column (50 x 4.6 mm, 1.8um, Agilent
Technologies, Boeblingen, Germany) using a
chromatographic gradient of 0.05 % aqueous
formic acid (Solvent A) and acetonitrile (Solvent
B) with a flow rate of 1.1 mL min! at 25°C as
follows: 0.5 min hold at 10 % B, 10-45 % B (3.5
min), 45-100 % B (0.02 min), 0.98 min hold at 100
% B, 100-10 % B (0.02 min), 1.98 min hold at 10
% B. The mass spectrometer was operated in the
negative mode with collision gas value 8, curtain
gas pressure 25 psi, spray gas pressures 60 psi, ion
spray voltage -4500 V, and turbogas temperature
700°C. Compounds were detected using scheduled
multiple reaction monitoring (MRM) detection
with the parameters outlined in Supplementary
Table S3. Analyst 1.5 software was used for data
acquisition and processing.

Sugar products from the transglucosidase
enzyme assays were analyzed on an HP 1260
coupledtoan AB Sciex AP1 5000 mass spectrometer
with an apHeraNH2 Polymer column (150 x 4.6
mm, 5um, Supelco Analytical, Munich, Germany)
with a chromatographic gradient of water (Solvent
A) and acetonitrile (Solvent B) at a flow rate of 1
mL min' at 20°C as follows: 80 % B (0.5 min), 80-
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55 % B (12.5 min), 55-80 % B (1 min), hold at 80
% for 4 min. The mass spectrometer was operated
in the negative mode with collision gas value 2,
curtain gas pressure 35 psi, spray gas pressure
70 psi, ion spray voltage -4500 V, and turbogas
temperature 700°C. Compounds were detected
using scheduled multiple reaction monitoring
(MRM) detection with the parameters outlined in
Supplementary Table S3. Analyst 1.5 software was
used for data acquisition and processing.

NMR spectroscopy

NMR spectra (‘H, 'H-'H COSY, 'H-13C
HSQC, 'H-*C HMBC and 'H-'H SELTOCSY)
were acquired on a 700 MHz Avance III HD
spectrometer equipped with a 1.7 mm cryoprobe
(Bruker Biospin, Rheinstetten, Germany). Further
information is available in the supplementary
NMR data files. Data acquisition and processing
was accomplished using TopSpin ver. 3.2 (Bruker
Biospin, Rheinstetten, Germany). Samples were
measured in MeOH-d, or D,O as indicated at 293
K. For quantification via 'H NMR (10 s delay
between scans), purified compounds were dried
under N, flow and resuspended in D,O, and a
sucrose solution (3.13 mM in D,0) was used as an
external quantification standard.

Cloning and Expression in Drosophila S2 cells

Vectors, cells and cell media were
obtained from ThermoFisher Scientific (Waltham,
MA, USA). Full-length ORFs from previously
characterized GH13 genes (BtSUC2 and BtSUCYS)
were amplified from Bemisia tabaci MEAMI
whole-body ¢cDNA using primer sets outlined in
Supplemental Table S4, cloned into PCR4 Blunt
TOPO and digested using specific restriction
enzymes according to each primer as previously
described 3°. The digested fragment was further
ligated into the pAc5.1/V5-His A vector for
expression in Drosophila S2 cells using Schneider’s
medium. Insect cells were co-transformed with
pCOBLAST vector for selection via blasticidin.
Transformation was achieved via CaCl, incubation
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following the manufacturer’s standard protocols
and selected with 50 pg mL-! blasticidin in 6 well
plates. After one week of selection, cells were
maintained in T-flasks at 27°C with 10 pg mL!
blasticidin. Cells were regularly maintained by
splitting 1:20 when cells had achieved confluency
of 90 % (approximately every 4-5 days). Cells and
media were harvested for enzyme activity studies
when cells reached 90 % confluency.

Enzyme Assays

Drosophila S2 cells expressing candidate
GHI13 enzymes as well as non-transfected control
cells were centrifuged at 100 xg for 5 min.
The resulting supernatant was utilized as the
secreted protein fraction for enzyme assays. For
determination of linamarin transglucosidation
activity, 5 uL of supernatant from each
culturecontaining an equivalent total protein
content (verified by Bradford assays) was mixed
with a 5 pLL 50 mM phosphate buffer at pH 7.0
containing 2 M sucrose and 5 mM linamarin, and
reacted for 6 h at 25°C with no stirring. These assay
conditions were also repeated for other metabolites
(I3M-GSL  (Phytoplan Diehm & Neuberger
GmbH), pOHBz-GSL(Phytoplan), DIMBOA-
Glc , amygdalin (Roth), dhurrin (Roth), salicin
(Sigma), arbutin (Roth), aucubin (Roth), and rutin
(Sigma)), to test the breadth of substrate activity
of these enzymes. Assay conditions were chosen
after screening a range of substrate concentrations
and pH values that reflect previous work on
glucohydrolases and phloem-feeding insects. The
reaction was stopped using 15 pL of methanol
and immediately stored at -20°C. Before analysis,
enzyme assays were centrifuged at 5200 xg for 5
min and the supernatant obtained was analyzed by
LC-MS. A dilution of 1:10 in water was used for
analysis of glucosylated linamarin, and a dilution
of 1:1000 in water used for analyzing sugars such
as glucose, fructose and trisaccharides formed
from these incubations.

For K|, estimation, crude enzyme
preparations of control cells were demonstrated to
catalyze less than 1% of the supplied linamarin to



Cassava cyanogenic glucosides are detoxified via multiple pathways in the pest

Bemisia tabaci

Manuscript Il. Easson, M.L.A.E. et al., Cassava cyanogenic glucosides are detoxifiedvia multiple pathways in B. tabaci

transglucosidated products and also catalyze low
level of sucrose hydrolysis. Enzyme assays were
performed in the same manner as described above,
except incubation times were reduced to 30 min.
Peak areas were integrated and compared based on
duplicate analysis. Sucrose K|, determination was
performed at a constant linamarin concentration
of 2.5 mM with sucrose concentrations ranging
from 0.05 — 1 M. The linamarin K|, determination
utilized sucrose at a final concentration of 1 M and
a range of linamarin concentrations from 25 pM
to 20 mM. All assays were carried out under linear
reaction conditions with respect to time and protein
concentration. Substrate concentration was never
reduced below 95 % of the initial level during the
30 min assay period.

For tests on the reactivity of glucosylated
cyanogenic glycosides with plant myrosinase,
pure standard linamarin (sigma) (10 pL of a 5 mM
solution), linustatin purified from seed extracts of
flax (see above section on cyanogenic glycoside
purification) and honeydew from cassava-reared
adult SSA1-SG3 whiteflies containing insect-
derived glucosylated linamarin glycosides were
mixed with a crude leaf enzyme extract from
cassava with native linamarase activity or crude
flax seed extracts with native linustatinase activity
in 20 mM phosphate buffer solution (10 pL), pH
7.0. Approximately 10 g of cassava leaves and
10 grams of flax seeds were flash frozen in liquid
nitrogen and crushed using a mortar and pestle.
These crushed materials were extracted with
phosphate buffer (20mM pH 7.0) and filtered using
vacuum filtration. The resultant extracts were
utilized as cassava crude leaf and flax crude seed
extracts for enzyme assays as described above.
Negative control reactions were supplemented
with 5 uL of water instead of the cassava or linseed
extract solutions. Reactions were incubated at
room temperature with no stirring, stopped after
1 h with 20 pL acetic acid and stored frozen until
LC-MS analysis. Phosphorylated derivatives were
tested for stability to cassava crude enzyme under
the same reaction conditions; however flax crude
enzyme preparation was not utilized.
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Figure S1: HRMS supports the addition of a phophate. HRMS data of a honeydew sample run
on a Bruker-TOF showing mass spectra and retention time for compounds (6, 7 and 8) (panels A,

B and C respectively).
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Figure S2: Alkalkine phosphatase incubation results in the disappearance of mass signals
for phopshorylated compounds. Phosphoryalated compounds (6, 7 and 8) in the honeydew of
the whitefly feedign on cassava were incubated with water (A) and alkaline phosphatase (B). The
disappearance of the mass signals supports the compounds being phosphorylated products.
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Figure S3: CN-Glc glucosylation in the whitefly B. tabaci is catalyzed by a
transglucosidase activity. Depiction of the results from two of the five diets not shown in Figure
4, those diets with the '*C-labeled monosaccharides glucose and fructose. None gave labeled
glycosylated linamarin products, unlike feeding with sucrose labeled in the glucose portion. The
results are consistent with a transglucosidase activity that initially hydrolyzes sucrose and links

the resulting glucose moiety to linamarin.
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Figure S4: Glucosylation of phosphorylated linamarin derivatives is also catalyzed by a
transglcusoidase. Shown are regions of mass spectra from LC-MS analyses of substrates and
products of feeding experiments on three different diets. Feeding fully '*C-labeled sucrose and
sucrose '3C-labeled in the glucose moiety gave labeling in the newly added glucose(s) of linmarin
phosphate derivatives (7 and 8).
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Figure S5: Phosphorylated linamarin metabolites in B. tabaci whitefly honeydew are
resitant to linamarase activation as well. (A) Phosphorylated metabolites (6, 7 and 8) in
honeydew were incubated with water (A) and crude cassava leaf enzyme containing linamarase
activity (B). Compounds (6), (7) and (8) were resistant to activation by cassava linamarase, while
the parent linamarin is readily hydrolyzed. Samples were incubated for 1 h with cassava crude
enzyme extract or water in phosphate buffer at pH 7.0.
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A
Protein name % ide_ntity at % ider_ltity at
protein level nucleotide level
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B MEAM1 versus SSA1-SG3 fold change in
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Supplemental Figure S6: BtSUC2 and 5 in SSA1-SG3 whiteflies and relative expression
levels. (A) The percent identity of SSA1-SG3 homologues of BtSUC2 and 5 was determined at
the DNA and protein level. Fold changes were calculated for BtSUC2 and 5 based on differences
between species feeding on different plants (B) and within a species of whitefly feeding on
different plants (C). Asterisks denote statistically significant differences (p value < 0.05) between
sample ratios (N=3).
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Figure S7: Kinetic characterization of BtSUC5 with linamarin and sucrose. Depicted are the
relations between substrate concentration and reaction rate (product peak area) for both sucrose
and linamarin.GSL. Assays were carried out as described in the methods section. When the
sucrose concentration was varied from 0.05 to 1.0 M, linamarin concentration was held at 2.5
mM. When the linamarin concentration was varied from 25 yM to 20 mM, sucrose concentration
was held at 1 M.
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Figure S8: Chromatographic analyses of products from BtMEAM1 BtSUC2 and 5 enzymes
heterologously produced in D. melanogaster S2 cells. Cell medium actviity was assayed with
phoshorylated linamarin derivatives and sucrose. (A) Depicted are extracted multiple reaction
monitoring (MRM) LC-MS chromatograms for (7) upon incubating (6) with sucrose and enzymes
BtSUC2 and BtSUCS5. The enzymes BtSUC2 and 5 showed transglucosidation activity, producing
a glycosylated derivative of (6) however the retention differed from that of the (7) found within the
honeydew. (B) Repeating the assay with purified (7) as a starting substrate, enzyme BtSUC2
produced low levels of a glycoside of (7) but again differing from honeydew peaks and BtSUC5
produced a glycoside of even greater retention difference. S2 cell control assay was of cell

medium extracts of untransformed cells.
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Figure S9: Substrate tests for BtMEAM1 BtSUC2 and 5 enzymes heterologously produced
in D. melanogaster S2 cells. Cell medium actviity was assayed with various secondary
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metabolites and sucrose. Depicted are masses for the native glycoside and the addition of one
glucose (+162 Da) and 2 glucose units (+324 Da). BtSUC2 and BtSUC5 showed
transglucosdiation activity with all substrates above control levels, with rutin poorest glucose
acceptor based on native glycoside peak depletion. Compounds used were (A) DIMBOA-Glucose
(benzoxazinoid), (B) amygdalin (cyanogenic diglycoside), (C) dhurrin (cyanogenic mono-
glycoside), (D) salicin (phenolic glycoside), (E) arbutin (phenolic glycoside), (F) aucubin (irridoid
glycoside), (G) rutin (flavanoid diglycoside), (H) indoyl-3-methyl glucosinolate (glucosinolate), and
(I) para-hydroxybenzyl glucosinolate (glucosinolate). S2 cell control assay was of cell medium
extracts of untransformed cells. All peaks are normalized within each set of assays to the largest
peak of the respective metabolite.
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Supplementary Tables

Table S1: HRMS data for phosphorylated linamarin derivatives showing measured and
expected masses of the metabolites.

Measured m/z | lon Formula m/z err[ppm] | mSigma | rdb confidence | N-rule
326.0642 C,H,NOP 326.0646 1.2 0.8 4 even ok
488.1166 C,H;NO, P 488.1175 17 2.7 5 even ok
650.1697 C,H,NO, P 650.1703 1.0 3.5 6 even ok
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Table S2: Constituents of artificial diets fed to Bemisia tabaci MEAM1.

Diet number| Isotopically-labeled compound (concentration) | Unlabeled constituents (concentration)
Sucrose (0.145 M)
1 13
[ "Ci2] sucrose (0.145 M) T )
13 Sucrose (0.145 M)
2 [glucose- "Cg4] sucrose (0.145 M) Linamain (5 mM)
Sucrose (0.145 M)
3 RE
[fructose- "Cg] sucrose (0.145 M) Linamarin (5 mM)
Sucrose (0.145 M)
4 [*C¢] glucose (0.0725 M) Linamarin (5 mM)
Fructose (0.0725 M)
Sucrose (0.145 M)
5 [*Cy] fructose (0.0725 M) Linamarin (5 mM)
Glucose (0.0725 M)
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Table S3: List of multiple reaction monitoring (MRM) parameters for individual compounds
analyzed by LC-MS.

Quadrupole 1 Quadrupole 2 | Declustering | Entrance | Collision CO“iSbf]
Compound (precursor mass (product mass potential | potential | energy cel e)Am
Day Da) v W V) potential
(0]
Linamarin-59 246 59 -50 -10 -46 -2
Linamarin + Glucose 408.129 178.9 -50 -3.5 -20 -4
Linamarin + 2 Glucoses 570 179 -50 -7.75 -30 -4
Linamarin Phosphate 326 79 -50 -7 -48 -2
Linamarin Glucose Phosphate 488 79 -50 -7 -48 -2
Linamarin + 2 Glucose Phosphate 650 79 -50 -7 -48 -2
Betacyanoalanine 113 96 -50 -10 -13 -5
Monosaccharide 178.8 89 -50 -9.5 -10 0
Disaccharide 3409 59 -65 -10 -46 0
Trisaccharide 503.1 179 -95 -10 -28 -4
Tetrasaccharide 665.2 179 -100 -10 -48 -4
13
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Table S4: List of primers used for cloning of GH13 genes from B. tabaci

Primer name Sequence
SuC2
pACVS-HIS Full GCACGTGGTACCATGAGTCGGAATTTGACAATACTGC
Kpnl Forward S2
SuUC2
pACVS-HIS Full CACCGGCTCTAGAATTGGATTTACCGGTTAATCTACTGC
Xbal Reverse S2
SuUCs
pACVS5-HIS Full GCACGTGAATTCACCATGGAGAGACTACTCTACTTTGTTGTG
EcoRI Forward S2
SUC5
pACV5-HIS Full | CACCGGCTCTAGAGCTGATGAAGATTTTITAAATAAATTGATAGTAGAAG
Xbal Reverse S2

14
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Supplementary Note 1
Supporting information NMR

NMR spectra were recorded on a Bruker Avance lll HD 700 MHz spectrometer, equipped with a
cryoplatform and a 1.7 mm cryoprobe (Bruker Biospin GmbH, Rheinstetten, Germany).
Spectrometer control and data processing was accomplished using Bruker TopSpin ver. 3.2. 3C
chemical shifts were determined indirectly by means of H-*C HSQC (heteronuclear single
quantum coherence) and H-3C HMBC (heteronuclear multiple bond correlation) experiments.
The glucosidic substitutions were elucidated with the help of 1D *H-'H SELTOCSY (selective total
correlation spectroscopy) experiments. The resulting spectra served as projection spectra for
the 2D homo- and heteronuclear experiments. The positions of the chemical shifts in the
molecules were furthermore determined based on 3Juu coupling constants and *C chemical
shifts. Important spectral details have been assembled for deeper understanding of the
structure elucidation as follows.

Figure SN1-1: Structure of 2 with chemical shifts in DO

Table SN1-1: Table of chemical shifts of 1, 2 and 3 in D,O

Figure SN1-2: Structure of 2 with chemical shifts in D,O

Figure SN1-3: Structure of 1 with chemical shifts in DO

Figure SN1-4: Structure of 3 with chemical shifts in D,0

Figure SN1-5: Table of chemical shifts of 6 in D,O with numbered structure
Figure SN1-6: Structure of 6 with chemical shifts in DO

Figure SN1-7: 1dNOESY (black trace) and a SELTOCSY spectrum of 6
Figure SN1-8: DQFCOSY of 6

Figure SN1-9: 1H-13C HSQC spectrum of 6, glucosidic range

Figure SN1-10: 'H-13C HSQC spectrum of 6, CHs range

Figure SN1-11: 1H-13C HSQC spectrum of linamarin in MeOH-d;

15
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OH

Figure SN1-1: Structure and of glucosylated linamarin derivatives (compounds 1, 2 and

3) with numbering.
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Table SN1-1: 'H and *C NMR shifts and coupling constants for glucosylated
linamarin derivatives.

Monoglucosylated a-(1—86)-linamarin (1) Monoglucosylated a-(1—4)-linamarin (2) Diglucosylated a-(1—8), a-(1—8)-linamarin (3)
&H mult, J[Hz] S5C &H mult,, J [Hz] 5C &H mult, J [Hz] 5C
Aglycone
1 - - 121.7 - - 121.7 - - 1219
2 - - 726 - - 726 - - 729
3 1.69 s 28.5 1.67 s 283 1.69 s 286
4 1.67 s 27.5 1.66 s 276 1.67 s 275

Original glucose of linamarin

1 465 d,7.8 101.0 4.64 d79 101.0 466 d,76 101.2
2 3.21 dd, 9.5/7.8 74.6 3.24 dd, 9.5/7.9 74.3 322 dd, 9.5/7.6 74.6
3 341 dd, 9.5/9.5 77.8 367 dd, 9.5/9.5 776 342 dd, 8.5/9.5 77.8
4 3.38 dd, 9.5/9.5 7.5 3.57 dd, 9.5/9.5 80.6 3.40 dd, 9.5/9.5 71.4
5 3.56 ddd, 9.5/5.6/2.1 76.3 344 m 76.6 3.58 m 76.3
6a’ 3.93 dd, 11.0/5.6 67.3 3.86 m 61.9 3.96 dd, 10.7/5.6 67.4
6b’ 370 dd, 11.0/2.1 67.3 3.82 m 61.9 371 dd, 10.7/1.6 67.4

First added glucose moiety

1" 4.84 d, 3.6 99.7 5.17 d,36 102.6 4.85 d 36 99.8
27 3.38 dd, 9.6/3.8 735 3.44 dd,9.5/3.6 74.0 3.39 dd, 9.6/3.6 735
37 3.65 dd, 9.5/9.5 750 361 dd, 9.5/9.5 74.9 365 m 753
4" 3.31 dd, 9.5/9.5 7.5 3.26 dd, 9.5/9.5 71.4 3.36 dd, 9.5/9.5 715
5" 3.65 m 75.0 3.68 m 74.6 365 m 75.3
6a” 379 bd, 11.0 624 3.83 bd, 10.9 624 3.90 dd, 10.7/5.2 67.4
6b” 3.68 dd, 11.0/5.2 62.4 3.65 m 62.4 3.73 bd, 10.7 67.4

Second added glucose moiety

- } _ _ - - - 487 d,36 976
o B _ . - - - 3.41 dd, 9.5/3.6 714
3 ; , B - - - 365 m 73.2
& _ . . B - - 3.32 dd, 9.5/9.5 69.4
5 - - - - - - 3.87 m 718
6a” . - - - - - 3.79 bd, 11.6/5.0 60.4
b B B - - - - 3.68 bd, 11.6 60.4
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3.79 (bd, 11.0)
3.68 (dd, 11.0/5.2)
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~ 1217

\_—
\
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HO $3.38(dd, O 72.6
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Figure SN1-2: Structure and chemical shifts of monoglucosylated a-(1—6)-linamarin
(1). 'H chemical shifts in red, '*C chemical shift in blue.
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N
}(, 121.9
HO 2 0] 1.67 (s) ~ 1.66 (s)
j , 10. 28.3 27.6
3.65 (m) OH \/
62.4 /2.5
H O/, 61.9 §3-82(m) O

3.26 (dd, 9.5/9.5)" O  s44(mes 10107464 (d,7.9)

74.3 |3.24 (dd, 7.9/9.5)

5. 1“‘7",’””" ", \\\\‘\\\\\“\_3: 57
HO™ :.4(4 T (d36) 0

n,
1y,
7y,
7

(dd, 3.67 OH
3.6/9.5) £ 9.5/9.5) (dd, 9.5/9.5)
OH OH

Figure SN1-3: Structure and chemical shifts of monoglucosylated a-(1—4)-linamarin
(2). 'H chemical shifts in red, '3C chemical shift in blue.
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OH OH

3.32 (dd:
9.5/9.5):

3.68 (bd, 11.6)
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HO\\\\3 a1 (dd 287 (d, 3.6)

3.6/9.5) :
O._
674} 373 (bd, 10.7)
" 13.90(dd, 10.7/5.2)
HO// 3.65 {m) N
336 (dd, 9.5/9.5] (715 @) ‘ 1o
3.65(m)|753 99.8|4.85(d,3.6) L1-691s) C 1y (s)
73.5 28.6 ~27.5
HO :3.39(dd, 03 96 {dd, 10.7/5.6) 72.9
:3.6/9.5)  |3.71(dd, 10.7/1.6)
OH ©674 @ O

3.58 (m)]76.3 101.2] 4.66 (d, 7.6)

3.40 (dd, 95/95) 71%78746’322((]’0’ 7.6/9.5)

HO" 242 'OH
(dd, 9.5/9.5)
OH

Figure SN1-4: Structure and chemical shifts of diglucosylated a-(1—6), a-(1—6)-
linamarin (3). 'H chemical shifts in red, 1*C chemical shift in blue.
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Linamarin Phosphate (6)

&H mult., J [Hz] oC
Aglycone
1 - - 121.7
2 - - 726
3 1.61 s 26.9
4 1.60 s 25.8

Original glucose of linamarin

1 4.82 d,7.8 98.5
2 3.30 dd, 9.5/7.8 727
3 3.94 dd, 9.5/9.5 78.9
4 3.43 dd, 9.5/9.5 69.5
5 3.49 ddd, 9.5/5.6/2.1 757
6a’ 3.80 dd, 11.0/5.6 60.6
6b’ 3.63 dd, 11.0/2.1 60.6

First added glucose moiety
1
o
3
4
5
6a”

6b”

Figure SN1-5: (A) 'H and '*C NMR shifts and coupling constants for phopshorylated
linamarin (6) and its structure (B) with numbering.
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3.80/3.63
60.6

Figure SN1-6: Structure and chemical shifts of linamarin-3’-O-phosphate (6). 'H
chemical shifts in red, *C chemical shift in blue.
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SELTOCSY, 40K scans

1dNOESY, 64 scans

r T T T T T T T T T T T T T T T T T T T T T T T T d
49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 ppm

Figure SN1-7: Details of the 1dNOESY (black trace) and a SELTOCSY spectrum of
linamarin-3’-O-phosphate (700 MHz, in D>0O). Numbers indicate the position in the
glucose part of the molecule. The transmitter frequency for the SELTOCSY experiments
(position one of the glucose part) was extracted from an HSQC experiment (figure SN1-
9).
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54
3 6a gb

ppm

3.0

35

ra.0o

45

- o> @= o

T T T T T T T T T T T T 5.0
5.0 a8 4.6 4.4 42 4.0 38 36 3.4 3.2 3.0 28 26 ppm

Figure SN1-6: Detail of the DQFCOSY of linamarin-3’-O-phosphate (700 MHz,
magnitude mode, in D20). The SELTOCSY from Fig. SN1-7 served as F1- and F2-
projection
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et
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- - ._o -2 L 70
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Figure SN1-9: Detail of the 'H-">*C HSQC spectrum of linamarin-3’-O-phosphate. The
SELTOCSY from Fig. SN1-7 served as F2-projection.
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@ ° CH;-2 =
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>
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23 22 21 20 19 18 1.7 16 15 14 13 1.2 11 1.0 ppm

Figure SN1-10: Detail of the 'H-'3C HSQC spectrum of linamarin-3’-O-phosphate. The
1dNOESY from Fig. SN1-7 served as F2-projection.
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M m UL_W_ o
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b F100
a7 46 45 44 43 42 41 40 39 38 37 36 35 34 33 3.2 31 ppm

Figure SN1-11: Detail of the 'H-'3C HSQC spectrum of linamarin (in MeOH-d3). A
SELTOCSY (transmitter on pos.1 of the glucose part) was used as F2-projection. The
spectrum illustrates the chemical shifts of position 3 of the glucose part without
phosphorylation.
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Abstract

The importance of the interaction between sugars in the phloem sap and the enzymes of phloem feeding insects that
modify them has been an area of great interest in understanding the metabolic adaptations of phloem feeding insects.
The whitefly Bemisia tabaci is capable of feeding on numerous plant species, and research into the sugar modifications
it performs when feeding on phloem is well documented. However the responsible enzymes for these modifications/
transformations remain all but elusive. Here we document the characterization of three B.tabaci glucohydrolase (GH)
enzymes which perform unique sugar isomerization reactions to form trehalulose from sucrose, as well as a plethora
of other sugar transglucosidation reactions. This marks the first entry of characterized genes encoding sucrase-
transglucosidases with specific roles in osmoregulation or the formation of sugar oligomers in insects.

Keywords: Sucrase-transglucosidase, Glycoside Hydrolase, Trehalulose Synthase, , Isomerization, Osmoregulation, B. tabaci

Introduction

Bemisia tabaci is a cryptic species complex
composed of morphologically indistinguishable
populations and represents an important pest
for agricultural and ornamental plants (1). It is a
phloem feeding insect, and therefore has specific
adaptations for feeding on this specialized tissue.
First and foremost is the navigation of the plant
tissue by their unique stylet in order to find their
sugary food source. Once within the phloem, the
insectmustbe able to overcome the extreme osmotic
pressures imposed by the high concentrations of
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sugars present therein, mainly in the form of the
disaccharide sucrose.

One of the main ways that the insect
can overcome this sugar barrier (2, 3) is via
sugar modifying enzymes known as sucrase-
transglucosidases (3-5) of the glucohydrolase
(GH) family of enzymes (3). Phloem feeding
insects produce sugar oligomers via the action of
these enzymes (2, 4, 6) and by doing so reduce the
solute concentration, and thus osmotic pressure of
the ingested phloem sap. Mechanistically, sucrose
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will enter the catalytic pocket and form a glycosyl-
enzyme intermediate with the release of fructose
(7), which is absorbed for energy purposes (8).
From here the bound glucose has two fates
which are largely dictated by the concentration of
sucrose. If the concentrations are low enough (and
osmoregulation is not important), water may enter
the catalytic pocket and release glucose, resulting
in a net total hydrolysis of sucrose (7). However,
when sucrose or sugar concentrations are high, then
anothermolecule may enterthe catalyticpocketsuch
as sucrose, resulting in glucose being transferred
to this molecule. In the most relevant example
being sucrose, the result is a trisaccharide, and an
overall halving of sugar concentration exerted by
the two previous molecules of the disaccharide.
This process may repeat, thus lowering the sugar
concentration of the solution until it reaches a
physiologically tolerable level. Genes encoding
enzymes from Bemisia tabaci of the GH family
have been cloned and characterized previously (9,
10), however genes encoding enzymes responsible
for sucrose transglucosidation processes have not
been observed to date.

Transglucosidation is  of  general
importance to the phloem feeding guild (3-6, 8,
11), however there are other processes particularly
present in Bemisia tabaci hypothesized to be
carried out by GH enzymes. One of the major
chemical transformations that B. tabaci performs
by evidence of investigations of their honeydew is
the isomerization of sucrose (o-D-fructofuranosyl-
(2>1)-D-glucose) to the a-(1—1) isomer known
as trehalulose (Figure 1) (12-16). The benefit for
this isomerization has been hypothesized to be
in order to mitigate the hydrolysis of sucrose,
by converting it to a less hydrolysable form,
thus lowering the potential threat of increasing
overall sugar concentrations while feeding (16).
Enzymes responsible for this transformation are
of the GH family of enzymes (more specifically
GH13)(17) and akin to enzymes responsible for
transglucosidation, none have been formally
characterized with this activity profile in insects.
The activity of trehalulose synthases have largely
been researched in bacteria (18-22), where

they share homology and activity profiles with
enzymes known as isomaltulose (sucrose o-(1—6)
isomer) synthases (18, 21, 22). Enzymes that
are characterized as trehalulose synthases have
minor activities in producing isomaltulose and
isomaltulose synthases produce small amounts of
trehalulose.

The mechanism of isomerization follows a
very similar path to transglucosidation with the
formation of the glucosyl-enzyme intermediate
being identical (19, 22). However, the fructose
which would otherwise be released from sucrose
following the formation of this glucosyl-enzyme
intermediate may then be utilized in the formation
of isomerized products. One of the main factors
that controls the specificity of these enzymes in
bacteria is the motif of amino acids *>RLDRD3%
(21, 22). Changes to this motif results in the
stabilization of a glucosylpyranose intermediate
state which results in the (1—1) sugar linkage
observed (21). This activity in insects seems to be
particularly present in species of whiteflies (12,
14, 23) and recent evidence supports this activity

Ho o Ao o
HO HO
%% o
Trehalulose OH Isomaltulose OH OH
o
HO (o}

OH
OH
OH OH

Figure 1: Sucrose is isomerized to form
a-(1—1) linked trehalulose and a-(1—6)
isomaltulose. Depicted is the typical
activity of enzymes known as trehalulose
and isomaltulose synthases. In bacteria,
trehalulose synthesizing enzymes produce
small amounts of isomaltulose and vice
versa.
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originating from an insect derived enzyme rather
than a possible endosymbiotic bacteria (15).

In the realm of phloem feeders, the enzymes
responsible for the modification of their sugary
diet are an area of high interest for understanding
the evolution of these specialized feeders. The
whitefly Bemisia tabaci is a prolific phloem feeder
(1) and represents an interesting study species;
possessing a large number of GH family enzymes
(3), and being well-studied in it’s sugar modifying
activities (12-14, 23-26). Here we explore and
characterize for the first time multiple B. tabaci
genes encoding enzymes capable of modifying
sucrose to trehalulose. We demonstrate the breadth
and utility of these enzymes for the formation of
sugar oligomers, illustrating the function of these
enzymes in osmoregulation in this phloem feeding
insect. Incubation of isotopically labeled sugars
with these enzymes also provides a window into
the mechanistic action of these isomerases and
transglucosidases in vitro.

Results

Cloning of a Trehalulose Synthase from Bemisia
tabaci MEAM 1 whitefly

Trehalulose (a-D-fructofuranosyl-
(1>1)-D-glucose) has been identified in the
honeydew of Bemisia tabaci since metabolic
characterizations of its contents began. However,
the enzymes responsible for the conversion of
sucrose to trehalulose in this insect had not yet
been identified. In fact, any isolated enzyme and
the gene encoding it which are responsible for
the conversion of sucrose to the a-(1—1) linked
isomer had not been identified in insects thus far,
and only genes encoding enzymes with trehalulose
synthase activity have been identified in bacteria.
Parallel activities to trehalulose synthase are
the isomaltulose (a-D-fructofuranosyl-(1—6)-
D-glucose) synthases. In bacteria, usually the
activities of these enzymes are characteristically
linked, with trehalulose synthases producing small
amounts of isomaltulose as a side product and vice
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versa. In an effort to find candidate enzymes from
Bemisia tabaci with trehalulose synthase activity,
protein sequences of a previously characterized
trehalulose  synthase  from  Pseudomonas
mesoacidophila (GenBank: ACO05018.1) and an
isomaltulose synthase from Erwinia rhapontici
(GenBank: HM461324.2) were utilized in separate
BLAST searches on the compiled whitefly genome
database (whiteflygenomics.org) for Bemisia
tabaci MEAM1 (BtMEAM1). The results of the
BLAST (Supplemental Figure S1) provided 8
different gene candidates. Surprisingly, Bta03818
previously characterized (BtSUCT) (10) appeared
in both the trehalulose and isomaltulose BLAST
searches and previously characterized Btal4419
(BtSUCS) from BtMEAMI (10) was annotated
as having potential isomaltulose synthase activity.
All candidates were cloned into expression vectors
for S2 insect cell transformation except Bta01478
as it was not possible to amplify from whitely
cDNA. Analysis by SDS-PAGE under denaturing
conditions showed single bands for the expressed
proteins at the expected size for each amino
acid sequence demonstrating that no extensive
additional post-translational modifications took
place. For all genes cloned, activity of the encoded
proteins seemed to exist in the media of expressing
S2 insect cells, as had been previously observed
(10). Phylogenetic analysis was also performed
on all glycoside hydrolase (GH) genes in the
BtMEAMI1 genome (Figure 2A and supplemental
Figure S2). A majority of the gene candidates can
be seen as originating from a clade of GH genes
marked with an asterisk (Figure 2A), and all
candidates were of the GH13 family of GH genes,
even further categorized in the GH13-17 subfamily
(10).

Sucrose Hydrolysis and Isomerization Activity of
Candidate Trehalulose Synthases

Of all the candidate genes expressed and
assayed, only three showed any isomerization
activity, or any detectable activity with sucrose (1)
as a substrate (Figure 2 B and Supplemental Figure
S3). Among these was the previously characterized
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Bta04298

Bta07453
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Bta04297

Bta05518
Bta05397
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Bta07453

(BtSUC?)

A’\_ Bta05397
70 8.0

(BtSUC5)

Bta03818
(BtSUC1)

Time [min]

Figure 2: Glucohydrolase genes Bta03818 (BtSUC1), Bta05397 (BtSUC6) and Bta07453
(BtSUC7) are caplable of sucrose isomerization. (A) A phylogeney of the glucohydrolase
(GH) enzymes in Bemisia tabaci highlighting the phlogenetic relationship of BtSUC1,6 and 7
with (B) isomerization activity utilizing sucrose and producing trehalulose and other dissaccha-
rides. Phylogeny and bootstrap was performed based on 1000 repetitions utilizing PhyML online

phylogenetic tool.

BtSUC1 which has already been shown to have
functionality as a hydrolase, but now also revealed
is its isomerization potential, which was only
detectable after sucrose hydrolysis using yeast
inveratse due to the similar retention time. Two
additional GH genes encoding enzymes Bta05397
(BtSUC6) and Bra07453 (BtSUC7) displayed
seemingly lower trehalulose (2) synthase activity
than BtSUC1 with SUC7 producing a peak with
similar retention time to isomaltulose.

TIMS-ToF (Trapped Ion Mobility Spectromotry-
Time of Flight) mass spectrometry is a method of
mass spectral analysis which allows for an extra
dimension of separation and discrimination in

metabolite analysis. This method of separation
subjects ions from a sample to an electric field in
which they are trapped within a moving column
of gas (27). The electric field is then slowly
lowered and ions which are more influenced by
the gas (larger ions) are eluted towards a time of
flight analyzer where their mass is recorded. The
information from this type of analysis allows one
to collect mobilograms for each ion and assign
momentum collision cross-sections (CCS) (28)
values which are unique to these ions and can thus
be diagnostic in combination with retention time
in an HPLC column. When analyzed via TIMS-
ToF, BtSUCI, 6 and 7 were shown to be able to
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Figure 3: Trehalulose isomerization is con-
firmed with authentic standard and TIMS-
ToF analysis. Common ions formed in the
standard injection of trehalulose (grey trace)
and other disaccharides were utilized in the
comfirmation of trehalulose synthesis activ-
ity in BtSUC1 (A), BtSUC6 (B) and BtSUC7
(C) assays with sucrose as a substrate (black
trace). Further detailed analysis of ion mobil-
ity values can be found in Supplemental Table
S1.
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perform the isomerization of sucrose to trehalulose
by retention time and the identity to the mobility
of multiple ions (Figure 3 A, B and C respectively)
confirming them as an authentic insect GH enzyme
with trehalulose synthase activity. BtSUCI
showed the greatest of all trehalulose synthase
activity (Figure 3 A) with accumulation being the
greatest in assays with this enzyme. In order to
gain further mechanistic insight into the formation
of trehalulose in vitro by these enzymes and to
confirm its chemical composition, enzyme assays
utilizing various labeled sugars were performed.
Full hexose label incorporation was seen when
the enzymes were given *C ,-sucrose as a donor
sugar (Supplemental Figure S4) and only one
hexose label was seen to incorporate when given
[glucose]"*C,- sucrose and [fructose]*C,- sucrose
(Supplemental Figure S4 C and D respectively).
It was unexpected that label was incorporated in
both *C,-glucose with unlabeled sucrose and "*C,-
fructose with unlabeled sucrose containing assays
(Supplemental Figure S4 E and F), with more hexose
label being incorporated (by isotopic abundance of
the peak) in the '“C -fructose unlabeled sucrose
assay. This provides evidence for the enzymes to
utilize hydrolysis products of sucrose (free glucose
and fructose) to form trehalulose in vitro.

The activity of BtSUC7 for the formation of
the other notable disaccharide (3) in its assay
was tested against the authentic standard of
isomatlulose. However, the peak showed poor
mobility and was unable to be matched to any
sugar run in this study (Supplemental Table S1).
Labeling studies indicates that this is compound
is composed of two units of glucose, and dual
hexose-label incorporation in [glucose]"C,-
sucrose assays indicates the ability of BtSUC7
to also bind free glucose in transglucosidation
reactions (Supplemental Figure S5).

Sucrose Transglucosidation Activity of Trehalulose

Synthases

When incubated with sucrose, the
three encoded enzymes were also assayed for
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Figure 4: BtSUC1 is capable of a-(1—6) transglucosidation reactions resulting in iso-
maltose and isomaltotriose synthesis. (A) Depicted is the formation of isomaltose (4) and
isomaltotriose (10) via subsequent transglucosidation. Through labeling studies (Supplemental
Figure S6 and S8), it was shown that the source of glucose can be from either free glucose

or sucrose. BtSUC1 (black trace) was confirmed by TIMS-ToF with authentic standards to be
capable of the formation of the disaccharide isomaltose (panels B-D) and isomaltotriose (pan-
els E-G) illustrating the ability of this enzyme to perform a-(1—6) transglucosidation reactions.
Further detailed CCS and ion mobility values can be found in Supplemental Table S1.

potential sucrose transglucosidation activity, or
the formation of larger order sugar oligomers, a
process associated with osmoregulation. After
concentration of protein fractions and incubation
with sucrose, all enzymes were shown to be able
to form a various trisaccharides from sucrose.
BtSUCT1 seemed to produce an unexpected
disaccharide product with retention further than 8.0
min (Figure 4A peak number 4). When analyzed
via TIMS, this metabolite seems to correspond
to isomaltose (Figure 4A) and no other sugar
analyzed (Supplemental Table S1). In the labeled
assay studies, *C was seen to be incorporated as
expected in assays containing '*C,, sucrose and
[glucose]*C,- sucrose, but not in [fructose]"*C6-

sucrose or “C-fructose and unlabeled sucrose
assays (Supplemental Figure S6 B, C and D
and E respectively). Interestingly, hexose label
was detected in various levels of incorporation
(Supplemental Figure S5 F) in assays which
contained "C-glucose with unlabeled sucrose,
even full label incorporation, corresponding to two
labeled glucose units in the final molecule showing
the ability of this enzyme to bind free glucose in
vitro.

BtSUC1 was also able to produce two
peaks corresponding respectively to an unknown
trisaccharide (Figure 4 B peak 6 and supplemental
Table S1) and isomaltotriose (Figure 4 B peak 10)
confirmed by TIMS analysis (Figure 3 B). Through
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Figure 5: BtSUCG6 produced trisaccharide peaks of unknown identity from incubations
with sucrose. Incubations of BtSUC6 and sucrose (black trace) resulted in the formation of
two prominent peaks corresponding to trisaccharides. Despite the similarity in retention time
to known standards raffinose (A, red trace) with (5) and panose (B, grey trace) with (9), these
sugars formed by the enzyme displayed drastically different mobilities for common trisaccha-
ride ions (B and C). Labeling studies with these enzymes (Supplemental Figure S9) confirms
(5) has similar composition to maltotriulose, containing two units of glucose and one of fruc-
tose and (9) is composed entirely of glucose units (Supplemental Figure S10). Further detailed
analysis of ion mobility values can be found in Supplemental Table S1.

analysis of the labeling assays, it was seen that
labeled hexose units were incorporated into the
unknown peak in '*C , sucrose resulting in full label
incorporation, [glucose]"*C,- sucrose resulting in
two labeled hexoses added and in [fructose]*C,-
sucrose with only one labeled hexose (Supplemental
Figure S7 A,B and C). Label was also incorporated
in assays containing “C -glucose with unlabeled
sucrose, displaying isotope peaks corresponding to
no label incorporation, one and two hexose labels.
Again, only one hexose label was incorporated in
BC,-fructose with unlabeled sucrose composition
assays. Isomaltotriose was labeled in assays
containing "C,, sucrose, [glucose]"*C - sucrose
and "*C-glucose with unlabeled sucrose
(Supplemental figure S8). The labels were absent
in [fructose]"C,- sucrose and "*C-fructose with
unlabeled sucrose assays (Supplemental figure
S8) as expected for a molecule containing only
glucose units. This further illustrates the ability
of this enzyme to transglucosidate in an a-(1—6)
fashion with additional activity for the binding of
free glucose. No further higher order glycosides
were detected in these assays with BtSUCI.

With the assumption of similar ionization
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potential for all compounds within a single class
(di, tri and tetrasaccharides) BtSUC6 showed the
greatest potential for transglucosidation activity
in vitro, producing two trisaccharide peaks of
unknown identity (Figure 5 A and Supplemental
Table S1). Both of these peaks through labeling
studies showed label incorporation at varying
levels, giving insight into their chemical
composition. For the first eluting peak (peak 5) full
label incorporation was seen in assays with 3C, -
sucrose, and importantly two and one hexose label
was incorporated for [glucose]"*C - sucrose and
[fructose]"*C,- sucrose respectively (Supplemental
Figure S9). This pattern of addition shows that the
molecule consists of two units of glucose and one
of fructose. For the second eluting peak (Figure 5
B peak 9) full label incorporation in *C,, sucrose,
and [glucose]"*C,- sucrose as well as various levels
of label incorporation were seen for *C-glucose
with unlabeled sucrose indicates the molecule
consists of entirely glucose units (Supplemental
Figure S10). Larger oligosacchairdes were also
seen for BtSUC6 (Supplemental Figure S11 A)
corresponding to 4 hexose units polymerized
(11 and 13), consisting of an earlier eluting peak
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Figure 6: Incubations of BtSUC1 result

in different products depending on the
starting sugar substrate. BtSUC1 was
incubated in parallel assays with sucrose (A),
trehalulose (B) and isomaltulose (C) in order
to visualize substrate promiscuity. Between
sucrose and trehalulose, identical products
were formed with greater amounts of higher
order products (6) and (12) being formed in
trehalulose assays. In incubations with iso-
maltulose, a trisaccharide (7) was produced
by BtSUC1 with similar retention to (6) but
different TIMS for ions used diagnosis (Sup-
plemental Table S1). Interestingly, isomaltose
(4) and isomaltotriose (10) were not detected
in isomaltulose incubations.

showing patterns of incorporation for three units
of glucose and one unit of fructose (Supplemental
Figure S11 B-G) and a later eluting peak who’s
composition was unable to be determined due to
abundance in labeling studies.

BtSUC7 produced yet another peak for
trisaccharides unable to be identified by any
standards utilized in this study (Supplemental
Figure S12 A peak 8). Labeling studies for this peak
provide evidence for the presence of three glucose
units as *C,, sucrose and [glucose]*C- sucrose
result in full hexose labeling but [fructose]C,-
sucrose results in no incorporation (Supplemental

Figure S12 B).

Trehalulose Incubation with Trehalulose Synthases

Trehalulose incubation was also an
important process to understand with regards to
enzyme activities, as this is metabolite represents
the most abundant compound in the honeydew
of whiteflies feeding on virtually every plant.
Interestingly, the first activity that was apparent
was the hydrolysis of trehalulose to glucose and
fructose by both BtSUCT1 and 6, but absent in SUC7
(Supplemental Figure S13). Following a similar
pattern, BtSUC1 also showed transglucosidation
activity with trehalulose and formed the same
peaks that were formed in the sucrose incubation
assays (Figure 6A), with variable efficiency and
an additional peak corresponding to 4 hexose
additions (Figure 6 B peak 12). The inability
of BtSUCI1 to form detectable quantities of
tetrasaccharide product utilizing sucrose perhaps
marks trehalulose as the better substrate for
transglucosidation and osmoregulation. BtSUC6
was also able to produce peaks which corresponded
identically to those formed in sucrose assays
(Supplemental Figure S14), but interestingly in
lower levels than seen previously. BtSUC7 was
unable to utilize trehalulose as a substrate to form
any other products.

Isomaltulose Incubation with of Trehalulose

Synthases
In a parallel set of experiments, incubations

with isomaltulose provided insight into the perhaps
inevitable promiscuity of these enzymes, but also
observed specificity. BtSUCI1 and 6 were capable
of hydrolyzing this metabolite, despite the fact that
they seemingly do not form it in vitro (Supplemental
Figure S13 C). The enzyme that forms an unknown
disaccharide with similar retention to isomaltulose
(BtSUC7) does however not hydrolyze this
substrate, mimicking the observed inactivity
towards trehalulose (Supplemental Figure S13).
Interestingly in  these isomaltulose
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Figure 7: BtSUC1, 6 and 7 are unable to glycosylate secondary metabolite 4msob us-
ing substrate sugars sucrose, trehalulose and isomaltulose. Incubations of BtSUC2
(previously shown to have transglucosidase activity with 4msob), 1, 6 and 7 with sucrose (A),
trehalulose (B) and isomaltulose (C) containing 2.5mM 4msob-GSL resulted in the formation
of glycosylated 4msob-GSL products only in BtSUC2 incubations with sucrose. Depicted are
4msob-GSL (black trace) and 4msob+1 glucose (red).

incubations, it was surprising that BtSUCI
was unable to form isomaltose or subsequent
isomaltotriose (Figure 6 C), despite the observed
hydrolysis of isomaltulose and the observation
that these metabolites can be formed via
transglucosidation reaction utilizing free glucose
(Supplemental Figure S6 and S8). The absence of
these peaks from incubations with isomaltulose
is unexpected and perhaps gives insight into new
nuances regarding the formation of glucosyl-
enzyme intermediates with various substrates.
BtSUC1 displayed further differential
transglucosidase activity with this substrate;
forming a peak with slightly different retention
to the dominant trisaccharide in trehalulose
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incubations and a distinct TIMS separation (Figure
6 C peak 7). BtSUC6 however formed identical
products to the trehalulose and sucrose incubations
(Supplemental Figure S14), however to a lesser
extent than sucrose incubation once again. BtSUC7
was unable to utilize this substrate in any capacity.

Transglucosidation of Secondary Metabolite
4msob

Since the discovery of modified secondary
metabolites, both 4msob-glucosinolate (GSL)
and the cyanogenic glycoside linamarin (10) (and
in preparation), it is still not entirely determined
whether the mechanism or enzymes involved in
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osmoregulation (isomerization and oligosaccharide
formation) is the same utilized in the modification
of secondary metabolites. With the current data
supporting enzymes isomerizing sucrose to form
trehalulose and this metabolite being utilized in
trisaccharide and larger saccharide formation,
sucrose and trehalulose were utilized in enzyme
assays containing 4msob-GSL and expressed
trehalulose synthases BtSUCI1, 6 and 7 as well
as BtSUC2 which showed transglucosidation
of 4msob-GSL previously (10). Isomaltulose
was also used in a similar assay in order to test
if there is any promiscuity in its utilization
by these enzymes. Only transglucosidation of
4msob-GSL was accomplished in BtSUC2 assays
utilizing sucrose and none of the enzyme-substrate
combinations were capable of producing the
transglucosidation product of 4msob-GSL (Figure
7A, B and C respectively). This observation
provides further evidence for a division between
secondary metabolite modification and the
reactions important for osmoregulation.

K, estimation for sucrose utilization

Due to the multi-product nature of the
transformations highlighted by these enzymes, K,
determination was accomplished via the reduction
of sucrose peak areas in assays (Supplemental
Figure S15). Here it was found that BtSUCI1 has
a K, estimated for sucrose utilization of ~0.2
M, BtSUC6 being somewhat higher at ~0.5 M
and finally BtSUC7 the lowest at 0.04 M. With
BtSUCT7 being the best of all enzymes in terms of
hydrolysis, it seems to make sense that it too has the
lowest K, as it has been previously hypothesized
that greater hydrolysis is seen with lower sucrose
concentrations in aphids (29), while BtSUC1 and
6 have higher K, ;s, more reflective of the processes
and concentrations seen with transglucosidating
activites (6).

Discussion
Phloem feeders are a unique feeding
guild among herbivores, choosing to feed on the
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sugar-rich phloem through navigation of their
specialized stylets. As a consequence, phloem
feeders such as Bemisia tabaci must be able to
utilize their food source without ill effects of
feeding on such a sugar dense mixture. Bemisia
tabaci (and other phloem feeders) accomplish
this task through the tight regulation of water
transporters (2) and the transformation of their food
into a less threatening composition (osmotically)
via sucrase-transglucosidases. These enzymes,
of the GH superfamily of enzymes (17) seem to
have undergone a huge expansion in terms of the
number of individual genes present in the genome
compared to non-phloem feeders(10), with B.
tabaci having the most of phloem feeders surveyed
to date (3, 10). This research aimed to identify
candidate enzymes responsible for the impressive
polymerizations and isomerizations in Bemisia
tabaci.

Trehalulose is one of the major components
of whitefly honeydew (12) and seems to be
particularly present in whitefly metabolism (12,
14, 23), where aphids and other phloem feeders
do not seem to produce this sucrose isomer at all
(12). Trehalulose has been previously thought to
serve as a quick sugar transformation of sucrose
to a less or non-hydrolyzable isomer (16). This
strategy would effectively allow a majority of
the incoming disaccharide (sucrose) (30, 31), in
phloem to become more resistant to hydrolyzing
enzymes that may increase or exacerbate the
problem of osmoregulation. Interestingly, BtSUC1
and 6 were shown to have significant hydrolysis
activity towards trehalulose (Supplemental Figure
S13) while also being able to form it in vitro, but
BtSUC7 who also formed trehalulose to a lesser
extent in vitro (Figure 2 C) was unable to perform
any chemical transformation of this substrate,
including hydrolysis. The hydrolysis of trehalulose
was unexpected and perhaps speaks against the
aforementioned hypothesis that the benefit of this
compound is lowering potential hydrolysis, or at
the very least it may still reduce this potential in
other enzymes. However, the hydrolytic action of
the observed may be an in vitro construct as these
enzymes are also known to form what appears to be
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higher order protein complexes in the whitefly (15),
which were not seen here, and may have drastic
effects on catalysis such as transglucosidation and

hydrolysis.
Activities of further interest are provided by
labeling studies with trehalulose synthases,

demonstrating that these enzymes were capable
of incorporating free glucose and fructose in the
formation of trehalulose from sucrose with free
fructose being incorporated to a greater extent by
isotopic abundance (Supplemental Figure S4).
This catalytic flexibility may indicate that the
enzymes which form trehalulose are also capable
of synthesizing it from sucrose hydrolysis products
in the whitefly gut. This flexibility would also help
in osmoregulatory functions within the insect
in order to already produce disaccahrides from
glucose and fructose alone, thus mitigating effects
of hydrolysis.

Originally, the genes were chosen by
amino acid sequence shared homology to bacterial
trehalulose and isomaltulose synthases with
the hypothesis that catalytic motifs would be
similar, however the sequences are fairly distinct
(Supplemental Figure 15). The motif which is of
noted importance for direction towards trehalulose
and isomaltulose, being the >RLDRD3% (21, 22)
was present in the isomaltulose synthase from
Erwinia, and a sequence of similarity “RYDRA”
present in trehalulose synthase from Pseudomonas
did not align with our candidate enzymes
(Supplemental Figure S15). Upstream of this
sequence in the alignment however, exists a motif
of RYXR present in BtSUCI and 6 illustrating
their similarity to the trehalulose synthase with
tyrosine being possibly playing an important role
for direction towards trehalulose. Interestingly,
none of the enzyme here seemed to produce
isomaltulose, which is an expected side-product
always present with bacterial enzyme activities
(18-22), but is consistent with reports of whitefly
gut activities (15). Although the activity has been
described (15), any gene encoding an enzyme that
produced trehalulose from sucrose in insects has
not been cloned and characterized, marking this as
the first full description of this activity in insects to
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date.

Transglucosidation is of paramount
importance to whitefly and phloem feeder
metabolism, being one of the two pillars for
osmoregulation (2). All of the enzymes tested
here were multifunctional in the sense that they
were able to produce trehalulose from sucrose,
but also transglucosidation products. The most
effective of all three enzymes by far in terms of
transglucosidation efficiency using sucrose was
BtSUC6 (Figure 4 A and B). The activity for
transglucosidation was incredibly variable between
each of the enzymes tested, producing unique
peaks corresponding by mass to trisaccaharides.
BtSUC1 was interestingly able to produce two
compounds that were identifiable as isomaltose
and isomaltotriose (Figure 3 A and B respectively),
an activity that was not observed previously (10),
most likely due to the concentration of enzymes
extracts (approximately 10 times greater here).
Both of these metabolites are composed entirely
of glucose units with a-(1—6) linkages and thus
are prime examples of transglucosidation activity.
Similar to the observed formation of trehalulose in
labeling studies, this enzyme was able to bind free
units of glucose as donors in the polymerization
process (Supplemental Figure S6 and S7). This
process was approximately 33% as efficient in
the formation of trehalulose than using sucrose
as the glucose donor based on isotopic abundance
of the labeled products (Supplemental Figure
S4), but was utilized more so in the formation of
isomaltose (Supplemental Figure S6). This activity
is unprecedented as it is not expected from this
family of GH enzymes, however similar activity
is observed for the polymerization of glucose
units with glucoamylases of Aspergillus niger
(32). It can perhaps be expected for enzymes with
significant hydrolyase activity as the equilibrium
exists for the reaction with water and naturally
vice versa where glucose may enter the catalytic
pocket (32). The formation of isomaltose and
isomaltotriose is also observed when BtSUCI
was incubated with trehalulose. An explanation
for why this activity is inherently absent from
incubations with isomaltulose is not clear, as it is



Isomerization and oligomerization of dietary disaccharides by Bemisia

tabaci transglucosidases

Articles Preprint

effeciently hydrolyzed by BtSUCI to produce free
monosaccharides to a degree similar to sucrose
(Supplemental Figure S13).

BtSUC6 produced trisaccharides of
variable composition, being of similar composition
to maltotriulose (Figure 5 A) consisting of two
units of glucose and one unit of fructose and
those consisting of only glucose units (Figure
5 B). It is expected that the first of the eluting
peaks is a transgluosidation product of sucrose
directly, which places the activity well in line
with osmoregulatory function in lowering sugar
concentration in the insect gut. As seen with
BtSUC1; BtSUC6 is capable of utilizing free
glucose in the formation of glucosyl-enzyme
intermediates for transglucodiation reactions
(Supplemental Figure S7 and S8). The peak
formed for the glucose only polymer (peak #9)
is different than isomaltotriose, and at this point
unidentified. There are reports however, for
unusual trisaccharides in whitefly honeydew that
have been identified as bemisiose (A glucose
trisaccahride) (13) and this peak may correspond
to this metabolite. Additionally, BtSUC6 was able
to form detectable transglucosidation products
corresponding to tetrasaccharides (Supplemental
Figure S11 A). Once more it was seen that for
peak # 11 (Supplemental Figure S11 A), sucrose
may be the glucose unit acceptor as indicated
by labeling studies (Supplemental figure Sl11
B), notably the incorproration of three labeled
hexose units in [glucose]*C,- sucrose assays. The
composition of the later eluting peak was not able
to be determined through labeling studies due to
abundance in these assays, however it is expected
to be yet another glucose-only polymer due to the
duality of transglucosidase products seen thus far
by these enzymes. BtSUC6 was also able to form
the same products in incubations with trehalulose
and isomaltulose (Supplemental Figure S14) as
seen in the enzyme assays with sucrose, however
to a lesser extent, perhaps showing a preference
for the utilization sucrose rather than trehalulose
in transglucosidation activities, seemingly the
opposite of BtSUCT.

BtSUC7 has the highest activity as a

12

hydrolase forsucrose of thethree GH enzymes tested
here, however shows no activity as a hydrolase
with trehalulose or isomaltulose (Supplemental
Figure S13). The formation of trisaccharide by
this enzyme in sucrose assays was seen as being
the result of glucose unit polymerization by label
incorporation (Supplmental Figure S12), and the
compound remains unidentified at this point. The
inactivity of this enzyme towards trehalulose and
isomaltulose in any capacity (both hydrolysis and
transglucosidation) 1is unexpected, however it
perhaps gives credence to the theory of trehalulose
isomerization lowering the overall hydrolysis in
this insect’s gut with other GH-13 enzymes aside
from BtSUCI and 6.

Finally, the incubation of BtSUCI, 6 and
7 with sucrose, trehalulose, and isomaltulose
in assays containing the secondary metabolite
4msob-GSL provides further evidence for a
division between osmoregulatory functions within
this insect and enzymes dedicated to secondary
metabolite modification (10). This division in
many areas seems to make sense as the K, for
sugar oligomer formation is many factor higher
in terms of concentration as uM concentrations
of sugar (corresponding to secondary metabolite
concentration) in the insect gut are of no concern
from an osmoregulatory perspective. Having
dedicated enzymes for both processes is a good
strategy, which mechanistically allows the two
separate paths to operate on drastically different
concentration ranges such as molar, for sugar
modification and pmolar for secondary metabolite
detoxification.

In conclusion, the analysis of candidate
trehalulose synthases from the whitefly Bemisia
tabaci has resulted in the characterization of
three genes encoding enzymes with trehalulose
synthase activity; catalysis previously only
characterized in bacteria. These enzymes were
discovered to be multi-product forming, and
capable of a vast array of sugar modifications,
including hydrolysis of sucrose and its isomers,
isomerization and transglucosidation, placing
these enzymes as potentially important in the
process for osmoregulation within the insect.
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This research highlights the utility of glycoside
hydrolase enzymes in the metabolism of B. tabaci
where further analysis into whitefly honeydew will
undoubtedly reveal what enzymes are responsible
for certain activities in the profile of this phloem
feeder.

Materials and Methods

Phylogenetic analysis

Amylosucrase protein sequences from
Bemisia tabaci (MEAMI1) were downloaded
from open database (www.whiteflygenomics.
org). Putative GH protein sequences were then
aligned using MUSCLE with default parameters.
Maximum likelihood tree inference was conducted
with PhyML with 1000 bootstrap as node support
values. Tree representation was performed in
Figtree version 1.4.3. Other alignment tasks were
performed using BioEdit using default MUSCLE
parameters.

Cloning and Expression in Drosophila S2 cells

Vectors, cells and cell media were obtained
from ThermoFisher Scientific (Waltham, MA,
USA). Full-length ORFs from candidate GH13
genes (SUCI, SUC6, and 7) were amplified using
using primer sets outlined in Supplemental Table S2
from Bemisia tabaci MEAM1 whole-body cDNA
synthesized using Superscript IV (Invitrogen) on
RNA extracted with TriZol; cloned into PCR4
Blunt TOPO and released using corresponding
restriction enzymes according to each primer.
The digested fragment was further ligated into
the pAc5.1/V5-His A vector for expression in
Drosophila S2 cells using Schneider’s medium.
Insect cells were co-transformed with pCOBLAST
vector for selection via blasticidin. Transformation
was achieved via CaCl, incubation following the
manufacturer’s standard protocols and selected
with 50 ug mL! blasticidin in 6 well plates. After
one week of selection, cells were maintained
in T-flasks at 27°C with 10 pg mL! blasticidin.

144

Cells were regularly maintained by splitting 1:20
when cells had achieved confluency of 90 %
(approximately every 4-5 days). Cells and media
were harvested for enzyme activity studies when
cells reached 90 % confluency.

Enzyme Assays

Drosophila S2 cells expressing candidate
GH13 enzymes as well as non-transfected
control cells were centrifuged at 100 xg for 5
min. The resulting supernatant was concentrated
using Amicon Ultra 0.5 mL Ultracel® -30 K
centrifugal filters a factor of 10x and then utilized
as the secreted protein fraction for enzyme
assays. For determination of sugar isomerization
and transglucosidation activity, 5 pL of each
supernatant containing an equivalent total protein
content (verified by Bradford assays) was mixed
with a 5 uL. 50 mM phosphate buffer at pH 7.0
containing 2 M sucrose concentration, and reacted
for 6 h at 25°C with no stirring. These assay
conditions were also repeated for other sugars,
trehalulose (BOC Sciences) and isomaltulose
(Roth), as well as various labeled sucrose
isotopomers (Supplementary table S3). Assay
conditions were chosen after screening a range of
substrate concentrations and pH values that reflect
previous work on glucohydrolases and phloem-
feeding insects. The reaction was then stopped
using 15 pL of methanol and immediately stored
at -20°C. Before analysis, enzyme assays were
centrifuged at 5200 xg for 5 min and the supernatant
obtained was analyzed by LC-MS API5S000. A
dilution of 1:1000 in water was used for analysis
via LC-MS. When testing for transglucosidation
of the secondary metabolite 4msob-GSL, assay
conditions were repeated identically as in (10),
with sucrose, as well as assays with trehalulose
or isomatlulose and 4msob-GSL. For analysis
on the Bruker TIMS-TOF, assay conditions were
repeated identically, however reactions were not
stopped with methanol, and instead 3 units of yeast
invertase (Sigma Aldrich) in 50mM phosphate
buffer pH 7.0 was added to the reaction for 30
minutes to invert sucrose to glucose and fructose
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in order to better visualize isomerized trehalulose
and other metabolites with similar retention
time. This sample was then filtered through a 30
kDa size exclusion filter (Amicon Ultracel®) to
remove protein before normal 1:1000 dilution and
injection.

LC-MS analysis of sugar hydrolysis, isomerization
and transglucosdiation activties

Analysis of sugar hydrolysis products from
the enzyme assays was perfromed on an HP 1260
coupledtoan AB Sciex API 5000 mass spectrometer
with an apHeraNH2 Polymer column (150 x 4.6
mm, Spm, Supelco Analytical, Munich, Germany)
with a chromatographic gradient of water (Solvent
A) and acetonitrile (Solvent B) at a flow rate of 1
mL min' at 20°C as follows: 80 % B (0.5 min), 80-
55 % B (12.5 min), 55-80 % B (1 min), hold at 80
% for 4 min. The mass spectrometer was operated
in the negative mode with collision gas value 2,
curtain gas pressure 35 psi, spray gas pressure
70 psi, ion spray voltage -4500 V, and turbogas
temperature 700°C. Compounds were detected
using scheduled multiple reaction monitoring
(MRM) detection with the parameters outlined in
Supplementary Table S4. Analyst 1.5 software was
used for data acquisition and processing.
Qualitative analysis of sugar hydrolysis products
from the enzyme assays was perfromed on an
Thermo Scientific UltiMate 3000 UHPLC coupled
to Bruker TIMS-TOF mass spectrometer with
an apHeraNH2 Polymer column (150 x 4.6 mm,
Sum, Supelco Analytical, Munich, Germany) with
a chromatographic gradient of water (Solvent A)
and acetonitrile (Solvent B) at a flow rate of 1 mL
min! (split 1:3 source: waste) at 20°C as follows:
80 % B (0.5 min), 80-55 % B (12.5 min), 55-80 %
B (1 min), hold at 80 % for 4 min. The MS (Bruker
Daltonics, Bremen, Germany) was operated
in negative mode with TIMS enabled with the
following sectional settings. TIMS Mode mass
scan range: m/z 50-1500, TIMS Detect range: 0.60-
1.40 V*s/cm?, ramp time: 228.6 ms, spectral rate:
4.28 Hz, duty cycle: lock to 100%, rolling average:
3x. Source End plate offset: 500 V, capillary: 4500
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V, Neubilizer: 1.8 bar, Dry gas: 8.0 /min, Dry
temperature 200 °C. Tune General Funnel 1RF:
150 Vpp, Funnel 2 RF: 300 Vpp, isCID energy: 0.0
eV, Multipole RF: 200 Vpp, Deflection Delta: -70
V, Quadrupole energy: 5.0 eV, Low mass: 100 m/z
Collision energy: 10 eV, Collision RF: 400 Vpp,
Transfer time: 62.5 ps, Pre-pulse storage: 5.0 ps.
Tune TIMS Al: 20.0 V, A2: 120.0 V, A3: -70.0 V,
A4:-60.0 V, A5: 0.0 V, A6: -70.0 V.
Ion mobility and m/z measurements were internally
calibrated using Agilent ESI-L Low Concentration
Tune Mix using a 20 pL injection loop with a
calibration segment at the beginning of each run.
Three calibration points m/z 302, 602 and 1034
were used for a linear TIMS calibration.
Quantification  of the  4msob-GSL
transglucosidation assays was accomplished
via an HP 1260 series HPLC coupled to an AB
Sciex API 5000 mass spectrometer (Applied
Biosystems, Darmstadt, Germany). The column
utilized was a Nucleodur Sphinx RP column (250
x 4.6 mm, Sum, Macherey-Nagel, Germany) using
a chromatographic gradient of 0.05 % aqueous
formic acid (Solvent A) and acetonitrile (Solvent
B) with a flow rate of ImL min! at 25°C as
follows: 1.5 % B (2 min), 1.5-10 % B (2.5 min),
10-40 % B (7.5 min), 40-70 % B (5 min), 70-100
% B (0.1 min), hold at 100 % B (2.4 min), 100-
1.5 % B (0.1 min), and hold at 1.5 % B (3.9 min).
The MS was operated in the negative mode with
collision gas value 2, curtain gas pressure 35 psi,
spray gas pressures 70 psi, ion spray voltage -4500
V, and turbogas temperature 700°C. Compounds
were detected using multiple reaction monitoring
(MRM) detection with the parameters outlined
in Supplementary Table S4. Analyst 1.5 software
(Applied Biosystems) was used for data acquisition
and processing.
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Supplementary Information

Whitefly Genome BLAST results for Trehalulose Synthase

Bta04306 307 2e-95
Bta03818 296 le-91
Bta01478 298 2e-91
Bta07453 295 6e-91
Bta03991 292 2e-90

Whitefly Genome BLAST results for Isomaltulose Synthase

Bta01478 300 3e-92
Btal4419 292 1e-89
Bta03818 289 8e-89
Bta08426 288 1le-88
Bta05397 289 2e-88

Supplemental Figure S1: BLAST search of B.tabaci genom using bacterial trehalulose and
isomaltulose synthases. Protein sequences for a trehalulose synthase from Pseudomonas mesoacidophila
and an isomlatulose synthase from Erwinia rhepontica were used in a blastp with default parameters on
www.whiteflygenomics.org resulting in the above gene candidates.
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Supplemental Figure S2: Expanded phylogenetic analysis of GH genes in B. tabaci. Depicted is the full
phylogenetic analysis from Figure 2 displaying all annotated genes in B. fabaci. Cloned candidates are
highlighted in red.
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Supplemental Figure S3: Sucrose modifying activity of all cloned gene candidates. All cloned
candidates were tested for activity in the modification of sucrose, being both hydrolysis to glucose and
fructose as well as isomerization to trehalulose. The only candidates which showed any activity were
Bta03818 (BtSUC1), Bta05397 (BtSUC6) and Bta07453 (BtSUC?7).
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Unlabeled Sucrose “C,,-Sucrose [Glucose]“C,-Sucrose [Fructose]*C,-Sucrose *Cy-Glucose Cy-Fructose
Unlabeled Sucrose Unlabeled Sucrose
[2M] [2M+24] [2M+12] [2M+12] [2M+6]
683.2242 707.3060 6952652 695.2651 - 689.2455
6832255 [2M+12]
[2M+6]
[2M+12]
[2M]
-— J_'_r WILI.M* T |I L |I
680 700 700 720 680 700 680 700 680 700 680 700
m/z m/z m/z m/z m/iz m/z

Supplemental Figure S4: MS patters for trehalulose (peak 2) BtSUCI1 incubations with various sugar
isotopomers. Depicted is the MS spectra for the dimer of trehalulose formed in incubations with sucrose
and candidate enzymes BtSUC1,6 and 7. Fully label incorporation is seen with fully labelled sucrose, and
half incorporation with glucose-labeled sucrose and fructose-labeled sucrose. Various label incorporation
was seen with free labeled glucose and fructose, specifically showing the binding of free glucose to
transglucosidate. Higher isopopic ratios were seen in free labeled fructose assays giving insight into the
migration of free fructose into the catalytic pocket.
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Unlabeled Sucrose C,,-Sucrose [Glucose]™C -Sucrose [Fructose]'*C,-Sucrose "*Cy-Glucese 1%Cy-Fructose
Unlabeled Sucrose Unlabeled Sucrose
M] [M+12] [M+12] M] [M+6] ™M
341.1105 353.1477 353.1517 341.1077 347.1296 341.1086
M
M
[M+12]
Lidhidigs L. whetibia s Wl LM

350 350 350 350 350 350
m/z m/iz m/z miz miz miz

Supplemental Figure S5: MS patterns for the unknown disaccharide (peak 3) formed by BtSUC7 in

incubations with sucrose and various sugar isotpomers. The unknown disaccharide formed by SUC?7 is

shown to be composed of only glucose units by label incorporation as seen by the absence of label C13

incorporation in fructose labeled sugar incubations.
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Unlabeled Sucrose C,,-Sucrose [Glucose]“C,-Sucrose [Fructose]“C -Sucrose Cy-Glucose Cy-Fructose
Unlabeled Sucrose Unlabeled Sucrose
[2M] [2M+24] [2M+12]
683.2237 707.3061 [2M+24] [2M] 605.2658 [2M]
683.2248
707.3059 683.2242
[2M+18]
[2M+24]
[2M+6] |

675 700 700 675 675 700 675 700

m/z m/z m/z m/z m/z m/z

Supplemental Figure S6: MS patterns for isomaltose formed in BtSUC1 incubations with sucrose and
various sugar isotopomers. Depicted is the MS pattern for the dimer of isomaltose showing no label
incorporation in any assays with fructose labeled saccharides. Various levels of incorporation in labeled free
glucose incubations shows the ability of this enzyme to bind free glucose in the catalytic pocket.

153



[somerization and oligomerization of dietary disaccharides by Bemisia
tabaci transglucosidases

Unlabeled Sucrose “C,,-Sucrose [Glucose]*C,-Sucrose [Fructose]“C,-Sucrose "*Cy-Glucose Cy-Fructose
Unlabeled Sucrose Unlabeled Sucrose
™M) .
503.1607 M+18] [M+12] [M+6]
521.2230 515.2023 500.1813 " 48]

509.1818
503.1604

[M+6]

/ M+12]

ﬂm Mm
500 500 500 500 500 500
m/z m/z m/z m/z m/z m/z

[M]

Supplemental Figure S7: MS patterns for an unknown trisaccharide (peak 6) formed by BtSUC1 in
incubations with sucrose and various sugar isotopomers. Depicted is the monomer of peak 6 formed by
BtSUCI1 in sucrose incubations showing mechanistic label incorporations of +18 Da for fully labeled, +12
for glucose labeled sucrose and +6 for fructose labeled sucrose, showing the composition of the molecule
being two glucose units and one fructose unit. This molecule can also be formed from the transglucosidation

of free fructose.
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Unlabeled Sucrose BC,,-Sucrose [Glucose]*C.-Sucrose [Fructose]|"*C -Sucrose 1%Cy-Glucose 3Cy-Fructose

Unlabeled Sucrose Unlabeled Sucrose
[M+18] M+18] M] [M+6] [2M]
521.2220 521.2219 503.1611 500.1819 503.1615
M]
503.1612
[M+12]
M+18]

500 525 500 525 500 525 500 525 500 525 500 525

m/iz m/z m/z m/z m/z m/z

Supplemental Figure S8: MS patterns for isomaltotriose (peak 10) formed by BtSUCT1 in incubations
with sucrose and various sugar isotompomers. Depicted is the MS pattern for the monomer of
isomaltotiose showing label incorporations patterns consistent with the molecule consisting of only glucose
units. Once again BtSUC1 shows the ability to bind free glucose in this reaction.
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Unlabeled Sucrose G ,-Sucrose [Glucose]'*C,-Sucrose [Fructose]“C,-Sucrose Cy-Glucose Cy-Fructose
Unlabeled Sucrose Unlabeled Sucrose
[™M] [M+18] [M+12] [M+6] ™M] ™M]
503.1619 521.2221 515.2019 509.1822 503.1616 503.1623
[M+6]
- B e o o -v—!—y—!—r‘ll'v—[ T —r -
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Supplemental Figure S9: MS patterns for an unknown trisaccharide (peak 5) formed by BtSUCG6 in
incubations with sucrose and various sugar isotopomers. Depicted is the MS pattern for the monomer of
peak 5 formed by BtSUC6 showing a label incorporation pattern consistent with a molecule composed of
two molecules of glucose and one fructose unit. By isotopic abundance, the binding efficiency of free
glucose is notably lower for BtSUC6 than for BtSUCI.
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Unlabeled Sucrose 3G, ,-Sucrose [Glucose]"*C,-Sucrose [Fructose]“C,-Sucrose "*Cy-Glucose "“Cy-Fructose
Unlabeled Sucrose Unlabeled Sucrose
M] [M+18] M] M]
503.1613 521.2223 503.1604 503.1611
[M+18]
521.2226
[M+86]
509.1798
[M+12]
M]
M+18]
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m/z m/z m/z m'z m/z m/z

Supplemental Figure S10: MS patterns for an unknown trisaccharide (peak 9) formed by BtSUC6 in
incubations with sucrose and various sugar isotopomers. Depicted is the MS pattern for the monomer of
peak 9 formed by BtSUC6 showing a label incorporation pattern consistent with a molecule composed

entirely glucose units.
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Supplemental Figure S11: Chromatograms of two tetrasacchrides (peaks 11 and 13) formed by

BtSUC6 with MS patterns for peak 11following sucrose and sugar isotopomer incubations. (A)
BtSUCG6 was an efficient transglucosdase with sucrose producing peaks for unknown tetrasaccharides (peak

11 and 13). (B) MS patterns were only available for peak 11 due to low abundance peak 13 in labeled
assays, showing a molecule composition of three units of glucose and 1 unit of fructose. Since it was not

detected in free glucose assays, it is perhaps an inhibitor for the formation of this compound.
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Supplemental Figure S12: Chromatograms and MS patterns for an unknown trisacchairide (peak 8)
produced by BtSUC?7 in incubations with various sucrose and sugar isotopomers. (A) Chromatogram of
peak 8 produced by BtSUC7 in incubations with sucrose. (B) This compound has an MS pattern consistent

with a compound composed of entirely glucose units.
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Supplemental Figure S13: Hydrolysis activity of candidate Gh13 enzymes with various disaccharides.
(A) Incubations with sucrose resulted in hydrolysis to glucose and fructose in all GH enzyme incubations;
however BtSUC7 was unable to hydrolyze trehalulose (B) and isomlatulose (C).
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Supplemental Figure S14: Incubations of BtSUC6 with sucrose, isomaltulose, and trehalulose resulted
in the same transglucosidation products. Depicted are the chromatograms of incubations of BtSUC6 with
sucrose, trehalulose and isomaltulose, showing the production of the same products, which is opposed to
BtSUC1 which formed different trisaccharide products.
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Supplemental Figure S15: Km determination by sucrose utilization. Kinetic parameters were estimated
for each enzyme based on the utilization of sucrose or difference between sucrose peak areas in control cells
and cells expressing trehalulose synthases BtSUC1 (A), BtSUC6 (B) and BtSUC7 (C).
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BtSUC7 ~KEKYRLVIRDPERTPFQWDTTLNSGFSASLKTWLPVNSNFWRLNLKAQVQSEGNSHYKY 491
BtSUC1 -PERYQRFTRDPARTPFQWNASTSAGFSTNPKTWLPVNPDYWSHNLVTEK -KKASSHFKN 476
BtSUCE -PERYLRFTRDPARTPFQWASCTSAGFSTNPKTWLPVNPNYWSHNLYTEK -KKNRSHLKN 501
> gl R I i e,
Trehalulose_synthase_Ac005018.1 YRNLISIRHETPALSTGSYRDIDPSNADVYAYTRS-QDGETYLVVVNFKAEPRSFT- 544
Isomaltulose_Synthase_HM461324.2 YRKLINTRHDIPALTYGSYIDLDPDNNSVYAYTRT-LGAEKYLVVINFKEEVMHYT- 559
BtSUC7 YKRLIDVRK-TDTMLYGAL ETHVL SK-WVFSFARRQNGSDTYVVVVNLGSETAPVDL SAF 549
BtSUC1 YRRLLTLKK-SPVIQFGSVNVYTLSD-WVLVITRTLKDHPTYIVILNLGTELEDTKGLRK 534
BtSUCE YQKLLALKE-SPVIQFGNLNVYTLSD-WVLVVTRALEGHPTYVVVLNIGSEIEYTTKLSA 559
Trehalulose_synthase_ac005018.1 ~LPDGMHIAETLIESSSPAAPAAGAASLELQPWQSGIYKVK~ 584
Isomaltulose_Synthase_HM461324.2 ~LPGDLSINKVITENNSHTIVNKNDRQLRLEPWQSGIYKLN=-~~P: 600
BtSUC7 MNDIPDTLTVHTSSINSQHQPGDKVAINEFMMRPKSSLLLTTASEVPPPSYKTITSSSSK 609
BtsUCl IANLPDQIRLHTCSINCGYSPGAQLRTDEIQLRPKAGFVCIARGGLKTS == 583
BLSUCE VANLPEQLKLHICSLNCGYTPGYQLHTEKIQLRPKAGMVLSTQKGVQASREADES -~SSE 617
Trehalulose_synthase_aco05018.1 584
Isomaltulose_synthase_HM461324.2 600
BLSUC7 LNVPIGTLILFLFCKYLYV 627
BtSUCL = 583
BtSUCE 621

Supplemental Figure S15: Multiple sequence alignment of B. tabaci and bacterial proteins. Default
MUSCLE parameters in BioEdit produced the above alignement showing divergence in sequence from B.
tabaci and query bacterial enzymes. The “RLDRD” motif is highlighted (black box) in the isomaltulose
synthase, however no identical sequence exists in any B. fabaci enzymes. A sequence of similar identity
exists in the trehalulose synthase (red box) which is closer to an upstream sequence in BtSUC1 and 6 and 7.
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Supplemental Table S1: List of analyzed sugar standards as well as peaks of unknown identity formed
in enzyme assays showing the mobility of diagnostic ions for di-, tri-, and tetrasaccharides

1.148 (234.5) &
1.162 (237.3) &
1.177 (240.5)

1.174 (239.5)

Metabolite Ret. Diagnostic Ion 1 Diagnostic Ion 2 | Diagnostic Ton 3 | Diagnostic Ion 4
Time Mobility [1/Ko] Mobility [1/Ko] | Mobility [1/Ko] | Mobility [1/Ko]
[V*s/cm?] [V*s/cm?] [V*s/cm?] [V*s/cm?]
(CCS)(AY (CCS)(AY (CCS)(AY (CCS)(A?)
Disaccharides m/z 683 m/z 705 m/z 721 m/z 773
Trehalulose (2) 7.5 min 1.136 (232.1) 1.137 (232.1) 1.157 (236.1) & 1.166 (237.8) &
1.179 (240.6) 1.204 (245.4)
Sucrose (1) 7.2 min 1.115(227.8) 1.136 (231.9) & 1.125 (229.6) 1.139 (232.4) &
1.163 (237.5) 1.179 (240.4)
Isomaltulose 7.9 min 1.162 (237.4) 1.114 (227.6) & 1.124 (229.5) 1.186 (241.1) &
1.154 235.7) & 1.211 (246.9)
1.223 (249.7)
Isomaltose (4) 8.2 min 1.131 (321.0) 1.131 (231.0) & 1.144 (233.6) & 1.163 (237.0) &
1.157 (236.2) 1.181 (241.1) & 1.194 (243.3) &
1.197 (244.3) 1.237 (252.1)
Lecurose 7.4 min 1.144 (233.7) 1.160 (236.8) & 1.089 (222.2) & 1.162 (236.8) &
1.201 (245.2) 1.155(235.8) & 1.194 (243.3)
1.187 (242.3) &
1.265 (258.1)
Maltulose 7.5 min 1.158 (236.6) 1.156 (236.1) & 1.155 (235.8) 1.195 (243.6)
1.196 (244.3)
Turanose 7.3 min 1.122 (229.1) 1.148 (234.5) 1.164 (237.5) 1.144 (233.2) &
1.170 (238.6) &
1.186 (241.7) &
1.213 (247.3)
Trehalose 7.9 min 1.126 (230.1) 1.159 (236.7) 1.142 (233.0) 1.154 (235.3)
Cellobiose 7.8 min 1.126 (230.0) 1.097 (224.0) & 1.111 (226.9) 1.143 (233.1) &
1.132 (231.0) & 1.164 (237.4)
1.185 (242.0)
Melibiose 8.4 min 1.146 (234.1) 1.134 (231.6) & 1.148 (234.3) & 1.190 (242.5) &
1.164 (237.6) & 1.177 (240.3) & 1.235 (251.7) &
1.186 (242.2) & 1.195 (243.9) & 1.269 (258.6)
1.211 (247.3) 1.225 (250.1)
Gentiobiose 8.4 min 1.163 (237.7) 1.214 (247.9) & 1.197 (244.3) & 1.230 (250.8) &
1.242 (253.5) 1.245 (254.0) 1.295 (263.9)
Peak 3 7.8 min 1.128 (230.4) & 1.154 (235.5) 1.142 (233.) & N/A
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Trisaccharides m/z 503 m/z 571 m/z 685 N/A
Raffinose 9.1 min 0.963 (198.2) 1.001 (205.2) & 1.081 (220.9) N/A
1.036 (212.4)
Kestose 8.8 min 0.984 (202.4) 1.017 (208.5) & 1.090 (222.8) N/A
1.043 (213.9)
Isomaltotriose 9.9 min 0.980 (201.5) & 1.012 (207.5) & 1.094 (223.4) & N/A
(10) 1.024 (210.6) 1.043 (213.9) & 1.107 (226.1)
1.057 (216.8)
Panose 9.6 min 0.965 (198.6) & 1.005 (206.1) & 1.078 (220.3) & N/A
1.017 (209.2) 1.032 211.7) & 1.100 (224.8) &
1.066 (218.7) 1.129 (230.6)
Peak 5 9.1 min 0.998 (205.4) 1.034 (212.0) 1.103 (225.4) N/A
Peak 6 9.3 min 0.972 (200.0) & 1.012 (207.5) & 1.064 (217.4) & N/A
1.014 (208.7) 1.053 (216.0) 1.092 (223.1)
Peak 7 9.3 min 0.978 (201.2) & 1.013 (207.7) & 1.097 (224.0) & N/A
1.041 (214.2) & 1.052 (215.8) 1.139 (232.7)
1.076 (221.3)&
1.126 (231.7)
Peak 8 9.3 min 0.968 (199.2) & 0.977 (204.5) & 1.060 (216.6) & N/A
1.033 (212.5) 1.013 (207.8) & 1.128 (230.4)
1.045 (2144) &
1.087 (223.0)
Peak 9 9.6 min 0.969 (199.3) & 1.028 (210.9) & 1.109 (226.5) N/A
1.033 (212.4) 1.066 (218.6)
Tetrasaccharides m/z 665 m/z 711 m/z 733 m/z 779
Peak 11 10.5 1.084 221.7) & 1.104 (225.4) & 1.170 (238.7) 1.153 (235.0) &
min 1.135(232.1) & 1.122 (229.0) & 1.167 (237.9)
1.160 (237.2) 1.140 (232.8) &
1.161 (237.0)
Peak 12 10.6 1.090 (222.8) & 1.114 (227.5) & 1.154 (235.5) & 1.185 (241.5)
min 1.123 (229.7) & 1.132 (231.2) 1.176 (240.0)
1.143 (233.6)
Peak 13 10.9 1.114 227.7) & 1.152 (2353) & 1.165 (237.8) 1.197 (244.0)
min 1.170 (239.2) 1.169 (238.7)
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Supplementary Table S2: Primers used for cloning of GH13 genes from B. tabaci

Primer name Sequence
Bta03818
Genome F GGCCGGAATTCACCATGAAAATAGCAGTGCTTTCATTTCTC
Kozak EcoRI
Bta03318 GTACGTCTAGAAGAGGTTTTTAGGCCACCCC
Genome R Xbal
Bta03991
Genome F GCTCAGCGGCCGCACCATGGCAAGCATAAGATATCCCATAAT
Kozak Notl
Bra03991 TAGCACTCGAGCGAGGGAATCTTTTGGTTCGTC
Genome R Xhol
Bta04306
Genome F GCGGTGAATTCACCATGAAGCTTATTTTTGTGGCAGCC
Kozak EcoRI
Bta04306 ATAATCTCGAGTAAGGGCCAGCGCGCCTG
Genome R Xhol
Bta05397
Genome F TGCATCTCGAGACCATGCATCAGCCAGAAATATGGTTG
Kozak Xhol
Bta05397
GCTGGTCTAGATTCCATTTGAAGTTCTGAACTTGACTC
Genome R Xbal
Bta07453
Genome F GGCCGCGGGTACCACCATGATTATATTAAATAATTTCATA
Kozak Kpnl AAGGAACTTTATTTCAAAAAC
Bta07453 GCGGCGCTCGAGTACTAAGTATTTACAAAAGAGGAATAA
Genome R Xhol AATGAGAGT
Bta08426
Genome F GCGGCGAATTCACCATGACACAAGTTTTTGGTTTITTTATT
Kozak EcoRI ATTCTC
Bta08426
Genome R Apal GTACTGGGCCCCCCGATATTGACTATGGAATTGGC
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Supplemental Table S3: Composition of assays used for enzyme mechanistic analysis

Isotopically-labeled Unlabeled constituents

Assay number compound (concentration) (concentration)

1 None Sucrose (1 M)

2 [°Cy5] sucrose (1 M) None

3 [glucose]"*C¢-sucrose (1 M) None

4 [fructose] ' Cg-sucrose (1 M) None

5 ['*Cg]-glucose (0.5 M) Sucrose (0.5 M)

6 [*Cg]-fructose (0.5 M) Sucrose (0.5 M)
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Supplemental Table S4: List of multiple reaction monitoring (MRM) parameters for individual
compounds analyzed by LC-MS.

Quadrupole 1 |Quadrupole 2 | Declustering| Entrance | Collision COHISIO_H
. . cell exit
Compound (precursor mass |(product mass | potential |potential | energy otential
Da) Da) ™ | ™| [Ty
Monosaccharide 178.8 89 -50 -9.5 -10 0
Disaccharide 340.9 59 -65 -10 -46 0
Trisaccahride 503.1 179 -95 -10 -28 -4
Tetrasaccharide 665.2 179 -100 -10 -48 -4
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Discussion

General

The manuscripts pertaining to this thesis sought to investigate several major
metabolic pathways of B. tabaci involved in the digestion of compounds from the phloem
of their host plants and characterized the genes and enzymes involved. Due to the wide host
range of B. tabaci, it serves as an excellent model for the exploration of metabolism
important for primary functions as well as processing host plant-specific compounds.
Highlighted throughout this thesis is the metabolism of plant defenses known as two-
component defenses, which were previously thought not to be effective against phloem
feeding insects. Not only do we provide evidence for the activation of these defenses by
whiteflies (Manuscripts I & IT), but we also describe various universal and explicit forms
of detoxification in B. tabaci for glucosinolates (Manuscript I) and cyanogenic glycosides
(Manuscript II), both of which are well-known examples of two-component defenses. The
catalysts are transglucosidases that are members of Glucohydrolase Family 13 (GH13). We
also characterized the previously elusive whitefly transglucosidase enzymes involved in
the iso-energetic conversion of dietary sugars to larger molecules for osmoregulatory
purposes (Manuscript IIT). Thus, transglucosidase-mediated metabolism in B. fabaci

serves multiple functions.

L. Two-component defense activation in the phloem feeder B. tabaci

Due to the inconspicuous mode of feeding that phloem feeders employ, two-
component defenses are thought to be ineffective (Walling, 2008), especially where tissue
disruption is a prerequisite for defense activation. Therefore, in Manuscript I & II, we
were surprised to report evidence to the contrary, showing evidence for the hydrolysis and
activation of two-component defenses, including glucosinolates and cyanogenic glycosides
respectively. In Manuscript I, we observed that honeydew contained minute amounts
(only visible following concentration of B. tabaci samples) of known hydrolysis products
of 4msob-GSL, including toxic isothiocyanate (ITC) and nitrile (CN) derivatives. Since
hydrolysis of these metabolites may have taken place after excretion from the whitefly due
to degradation by high temperature or other abiotic factors, it was therefore very exciting

to also detect known mercapturic acid pathway detoxification metabolites of 4msob-GSL
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in the honeydew of B. fabaci, which must have arisen from enzymatic processes.
Identification of these isothiocyanate conjugates indicated that hydrolysis within the insect
was followed by conjugation to the tripeptide GSH, which preceded excretion. Similar
mercapturic acid pathway metabolites were also seen in the honeydew of aphids feeding
on plants containing indolic glucosinolates. However, indolic glucosinolates are much less
stable than aliphatic glucosinolates such as 4msob-GSL, being subject to spontaneous
degradation (Kim et al., 2008). Taken together, the observation of glucosinolate hydrolysis
products and their detoxified derivatives in the honeydew of B. tabaci implies that a mixing

of glucosinolate and myrosinase took place during insect feeding.

Similarly, in the case of cyanogenic glycosides from cassava in Manuscript II, we
observed a significant accumulation of the cyanide detoxification metabolite beta-
cyanoalanine in the bodies of whiteflies feeding on cassava in comparison to those that fed
on eggplant. In contrast, beta-cyanoalanine accumulation in plants was similar in the
cassava and eggplant leaves analyzed. Here again implying the hydrolysis of a two-
component defense, this time cyanogenic glycosides, occurred during phloem feeding.
Similarly, the expression of the cyanide detoxification genes rhodanese and beta-
cyanoalanine synthase increased when whiteflies fed on cyanogenic cassava plants versus

non-cyanogenic sweet potato plants (Antony et al., 2006).

During phloem feeding, hydrolysis of two-component defenses can occur at
multiple stages, including initial probing, navigation of the stylet through the tissue, pre-
ingestion due to tissue disruption, and post-ingestion. During probing, when a phloem
feeder monitors host plant suitability for consumption, the sampling of multiple cells is
undertaken (Esch & Tjallingii, 1990). The glycosides and activating enzymes may then mix
in the stylet and gut of the insect depending on the sequence of cells sampled. This is
especially true for glucosinolate-containing plants where the two components may be in
adjacent “S” and “M” cells (Nintemann et al., 2018). In addition, navigation of the stylet
towards the phloem often involves sampling of individual cells along the apoplastic path,
perhaps all of them (Tjallingii & Esch, 1993). Therefore, it is possible that cell content may
leak into the path of the stylet and ultimately result in the assembly of the two-components
in the plant defense system. Finally, hydrolysis may be the result of non-specific
glucosidases in the insect gut that are normally involved in other processes such as starch

or saccharide hydrolysis. The promiscuity of a and B-glucosidases from insects has been
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noted (Ferreira, Torres, & Terra, 1998), and therefore may be responsible for the hydrolysis

of plant defenses glucosides and their resulting activation.

[I.  Metabolism and detoxification of glucosinolates in B. tabaci

In Manuscript I, we report the identification of trans-glucosidases as a means of
detoxification, representing an entirely new class of enzymes in phase II conjugation
detoxification. The utilization of sugars as a conjugation mechanism is well characterized
and known to be a major feature of phase II detoxification. However, the glucosylating
enzymes previously described in this context are the UDPGTs, which are dependent on an
activated form of glucose or in the case of mammals, glucuronidate for activity. The process
of glucose activation is energy intensive, requiring the input of chemical energy in the form
of adenosine triphosphate (ATP) for the production of the sugar cofactor. On the other
hand, transglucosidation is an iso-energetic process requiring no additional input of energy,
but instead using the chemical energy of donor sugar binding for glucose transfer (Unligil
& Rini, 2000). In Manuscript I, we explore transglucosidation as a novel form of pre-
emptive glucosinolate detoxification as well as the well-known avenues for detoxification

of glucosinolate hydrolysis products.

II.I  Pre-emptive detoxification of glucosinolates

The novel transglucosidation of 4msob-GSL in Manuscript I can be considered a
pre-emptive detoxification, by which the compound is modified so that it is no longer a
substrate for the activating enzyme (in this case myrosinase). So too do we observe that the
insect derived glycosides of 4msob-GSL are stable to enzymatic activation by myrosinase,
whereas native unmodified 4msob-GSL is readily hydrolyzed. It is important to note that
the linkage mode of the newly added sugar is a (both 16 and 14 linkage) instead of the
native B-linked glucose in plant glycosides, which may play an important role in making
these compounds inert to myrosinase. However, the simple fact that two sugars are present
instead of one may also block the activating thioglucosidase activity. Interestingly, though
the single transfer of one glucose moiety to 4msob-GSL is sufficient for stability towards

myrosinase, it is observed that 4msob-GSL is polyglucosylated by B. tabaci. The enzymes
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that perform this modification were shown through labeling studies to be sucrase-
transglucosidases, where the transferred glucose residue originates from sucrose itself.
Tentative sucrase-transglucosidases of the GH13 family of glycoside hydrolases have been
shown to have higher expression in B. tabaci guts in comparison to the whole body (X. W.
Wang et al., 2012), where they are hypothesized to have utility in the osmoregulation of
sugars. Indeed, this pattern of poly-glucosylation has been previously reported in B. tabaci
with regards to osmoregulation and the modification of saccharides ingested in the phloem,
but it was never hypothesized that these enzymes may also utilize other molecules as
acceptor substrates for detoxification (further discussed in section V of discussion).
Cloning of the candidate GH13 enzymes BtSUC2 and 5 resulted in the transglucosidation
of 4msob-GSL using sucrose as a sugar donor, with BtSUC5 being the more efficient of
the two enzymes. Both of these enzymes were only capable of transglucosidating 4msob-
GSL in an a-(1—4) fashion (although the a-(1—6) is most abundant in the honeydew) and
did not produce higher order additions to the glucosinolate. Furthermore, these recombinant
proteins functioned as poor sucrose hydrolases and were also not capable of producing
detectable transglucosidation products of sucrose alone, thus suggesting that they do not

participate in osmoregulation.

Interestingly, the transglucosidation of glucosinolates was not the first pre-emptive
detoxification of glucosinolates reported in B. tabaci. It was found that whiteflies feeding
on glucosinolate containing plants also excrete desulphoglucosinolates (Malka et al., 2016),
a well-known detoxification product (Ratzka et al., 2002). These two pathways of
detoxification seem to be dedicated to different classes of metabolites. In the honeydew,
the ratio of intact 4msob-GSL : desulpho 4msob-GSL : glycosylated 4msob-GSL is
approximately 1: 2 : 14, marking glucosylation as the dominant metabolic process.
However, for certain glucosinolates such as indole-derived compounds; the majority of
metabolism in B. tabaci is by means of desulphation, and only minute levels of glycosides
for these metabolites were detected. It is perhaps of further importance to recall that indolic
glucosinolates were previously shown to be a deterrent to aphid feeding (Kim et al., 2008),
and are even shown to accumulate following aphid infestation of Arabidopsis thaliana
(Kim & Jander, 2007). Thus, desulphation of indolic glucosinolates in whiteflies may be a

more effective detoxification mechanism than poly-glucosylation.
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ILIl  Post-hydrolysis detoxification of glucosinolates

In Manuscript I we additionally observed that despite these pre-emptive forms of
detoxification, some glucosinolate hydrolysis takes place during phloem feeding, and the
hydrolysis products are detoxified via glutathione conjugation and further metabolized via
the mercapturic acid pathway. These detoxification products, which include the glutathione
conjugate of 4msob-ITC and the N-acetyl cysteine product of the conjugate, were only able
to be detected after concentration of honeydew samples, perhaps showing the efficiency of
the pre-emptive detoxification processes. The detection of this mode of detoxification was
not unexpected as indolic glucosinolate hydrolysis metabolites are detoxified in an identical

manner in aphids (Kim et al., 2008).

[II. Metabolism and detoxification of cyanogenic glycosides and other

two-component defenses in B. tabaci

Following the discovery of a mechanism for pre-emptive glucosinolate
detoxification in Manuscript I and the detection of similar peaks in the analysis of
honeydew from whiteflies feeding on the cyanogenic plant cassava, the metabolism of
cyanogenic glycosides was further investigated. In Manuscript II we were able to confirm
that indeed, the related cyanogenic glycoside two-component defense linamarin is pre-
emptively detoxified in a similar manner, with an additional and unexpected pathway for
detoxification via the addition of phosphate. Furthermore, we also discovered evidence for
hydrolysis of cyanogenic glycosides via the accumulation of cyanide detoxification
products. Finally, in Manuscript II we also touch on the substrate breadth of characterized

enzymes for glucosylation, and their role in other plant-Bemisia tabaci interactions.

[I.I  Pre-emptive detoxification of cyanogenic glycosides

[ILLI Transglucosidation

Following the observations that the honeydew of whiteflies feeding on cassava
contains similar glycosides to those feeding on glucosinolate-containing plants, the

investigation of cyanogenic glycoside metabolism in B.tabaci was pursued to see if the
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patterns of glucose addition were similar to those already observed with glucosinolates.
Indeed, the glucosylation of cyanogenic glycosides occurs in B. fabaci, with the same
enzymatic mechanism as for glucosinolates as determined by labeling studies. These
glycosides are also inert to the activating enzyme linamarase, and thus represent the product
of a pre-emptive detoxification reaction. Interestingly, the glucosylated cyanogenic
glycosides are also stable in the presence of a disaccharidase known as linustatinase. This
disaccharidase is known to be capable of hydrolyzing the diglucoside of linamarin,
commonly referred to as linustatin, which is a diglucoside with a B-(1—6) linkage (D.
Selmar, R. Lieberei, & B. Biehl, 1988). Importantly, one of the insect diglucosides also has
a 16 linkage to linamarin, although this time being o, allowing us to say with further
confidence that one of the major factors for stability of these glycosides to breakdown by
cyanogenic glycoside hydrolases is the incorporation of an o-linkage with the

regiochemical differences being of less importance.

In the metabolism of the cyanogenic glycoside linamarin, B. fabaci is capable of
adding both an a-(1—6) and a-(1—>4) glucose to the originally B-linked glucose of the
molecule, in a similar fashion as to 4msob-GLS. However, in the case of the trisaccharide
formed after two glucose additions by transglucosidases, there appear to be multiple peaks
in the LC-MS chromatogram in comparison to the one peak observed after 4msob-GSL
glucosylation. The earliest eluting and most abundant trisaccharide from cassava honeydew
was purified in large enough quantities for NMR analysis and found to correspond to an a-
(1>6), a-(1—-6) modification, similar to that found for the 4msob-GLS trisaccharide.
However, two additional peaks of unknown linkage mode are also present. A multiplicity
of chromatographic peaks also occurs for the products of further glucose addition to
linamarin, and these are hypothesized to result from regiochemical variation in the addition
of glucose by the transglucosidases. That these isomers have different retention times was
already apparent from our work on the dissacharide derivative of linamarin and 4msob-
GSL. Here the product of BtSUCS that arises exclusively from a-(1—4)-glucosylation of
linamarin elutes later than the a-(1—6) linked compound. The trisaccharide produced by
BtSUCS was also the latest eluting of the triglucoside peaks in the honeydew. Assuming
that the specificity for a-(1—4) glucose addition is a fixed property of this enzyme, then
the last of the eluting triglucoside peaks for linamarin would also be a-(1—4), a-(1—4)-

substituted with the middle eluting peak possibly being a mixture of a-(1—6)- and a-
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(1—>4)-additions. The exact reason for the presence of multiple peaks for triglucosides of
linamarin and not for the triglycosides of 4msob-GSL metabolism is unknown. It may
depend on the non-sugar portion of these metabolites, with linamarin being a notably

smaller molecule than 4msob-GSL.

In Manuscript II we utilized the same two enzymes that displayed transglucosidase
activity with 4msob-GSL in enzyme assays with sucrose and linamarin. As mentioned
previously, BtSUCS was capable of producing the a-(1—-4) glucoside of this plant-
glycoside and was additionally able to produce a triglucoside peak, not previously observed
in 4msob-GSL incubations. BtSUC2 on the other hand did not utilize linamarin as a
substrate for glucosylation to the same extent as 4msob-GSL, with activity being barely

above control levels.

[ILLIT Phosphorylation

In Manuscript II, we describe the detection of an additional form of pre-emptive
detoxification for linamarin in B. tabaci: the addition of a phosphate moiety in a phase II
detoxification reaction. Phosphorylation of plant defense compounds has recently been
reported in the chewing insect Lymantria dispar and its close relative Orgyia antiqua
(Boeckler et al., 2016), where salicinoids including salicin and the breakdown product
catechol glucoside were O-phosphorylated at the 3 position of the original -linked glucose.
So too in B. tabaci do we observe the same positional phosphorylation of linamarin.
Addition to sugars at the C-3 position is rare in mammals (Szwergold, Kappler, & Brown,
1990; Szwergold, Kappler, Brown, Pfeffer, & Osman, 1989), and the use of
phosphorylation is not common in mammalian detoxification processes in general (Scanlan
et al., 2020). Instead mammals modify xenobiotic metabolites via the transfer of sulphate
which enhances their secretion in typical phase II detoxification fashion (Karl W Bock et
al., 2012). In insects however, phosphorylation has been reported since the early 1960s and
is especially described in the detoxification of insecticides (Olsen et al., 2014; Olsen et al.,

2016).

The conjugation of phosphate to linamarin in Manuscript I causes this metabolite
to become inert to the activating enzyme linamarase, and thus it is interesting that there is

sometimes an overlap between transglucosidation and phosphorylation of the same
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substrates. This may further enhance their excretion, and a similar reaction is observed for
the detoxification of the insecticide midazolam by S. gregaria. Here, S. gregaria first
hydroxylates the insecticide by phase I detoxification P450s, followed by the variable
addition of a phosphate alone, or a glucose catalyzed by a UDPGT, which can be further
phosphorylated (Olsen et al., 2016) parallel to the glucosylation-phosphorylation sequence
observed in B. tabaci. The transfer of multiple phosphate residues to a single metabolite
was not observed despite the possibility for multiple phosphorylations following multiple
transglucosidation reactions. Thus, it may be inferred that phosphorylation is restricted to
the terminal glucose residue. Confirmation requires the purification of these metabolites in
a large enough quantity for NMR analysis, which was not possible for the work described

in Manuscript IL

IILII Potential pre-emptive detoxification of other two-component defense
classes

The heterologously-expressed transglucosidases were tested with sucrose and
various other plant defense glycosides, including benzoxazinoid, phenolic, iridoid,
flavonoid and additional cyanogenic glycosides, as well as with additional glucosinolates.
Interestingly, virtually every class of these metabolites apart from the flavonoid glycoside
rutin was efficiently glucosylated by these enzymes, with BtSUCS showing the greatest
activity as a transglucosidase. The observed activities therefore suggest that B. tabaci
possesses the ability to avoid the toxic effects of a variety of plant defense compounds. It
may therefore be expected that these modified metabolites are present in the honeydew of
B. tabaci or perhaps other more specialized phloem feeders which regularly feed on plants

containing these defense metabolites.

[ILIII Post-hydrolysis detoxification of cyanogenic glycosides

One of the first lines of evidence of cyanogenic glycoside activation by B. tabaci
was the report of an increase of hydrogen cyanide detoxification enzyme activity in
whiteflies that had fed on cassava versus the non-cyanogenic plant sweet potato (Antony

et al.,, 2006). In a parallel experiment in Manuscript II, we observed the increased
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accumulation of beta-cyanoalanine (a cysteine conjugate of cyanide), catalyzed by beta-
cyanoalanine synthase, in the bodies of whiteflies feeding on cassava versus eggplant.
Although beta-cyanoalanine synthase is widespread in higher plants due to the universal
formation of hydrogen cyanide as a by-product in ethylene biosynthesis (Peiser et al.,
1984), this activity has been reported in only one other insect, Pieris rapae (van Ohlen et
al., 2016). With the evidence for this activity in B. tabaci and the existence of likely
homologs annotated as a cystathione-p-synthases in various whitefly biotypes (Btal2658
in B. tabaci MEAM1 or Ssa04689 in B. tabaci SSA1), this enzyme may represent a general

whitefly adaptation for feeding on cyanogenic plants.
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Figure 6: Overview of general and specific detoxification processes in B. tabaci for
glucosinolates and cyanogenic glycosides. (A) Pre-emptive detoxification of plant two-
component defenses may involve reactions specific for glucosinolates, such as
desulphation, or specific for cyanogenic glycosides, such as phosphorylation. The
utilization of GH13 transglucosidases for poly-glucosylation, however, is common to both
glucosinolates and cyanogenic glycosides. (B) Nevertheless, these insects also possess
post-hydrolysis detoxification strategies, including the mercapturic acid pathway for

isothiocyanates derived from glucosinolate hydrolysis and the synthesis of the nitrile-
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containing amino acid, beta-cyanoalanine, for detoxification of the HCN derived from

cyanogenic glycosides. Abbreviations: GH (Glycoside Hydrolase), ITC (IsoThioCyanate).

[V. Saccharide metabolism in B. tabaci

Besides plant defense compounds, when phloem feeders begin ingesting the phloem
contents at a high rate, sugars may become deadly as well due to the risk of dehydration.
Phloem feeders must be able to control water loss associated with feeding on such a
concentrated sugar source (Douglas, 2006). One of the best-known methods for
osmoregulation of sugars by these insects is the use of sucrase-transglucosidases that
employ glucose containing disaccharides for the formation of sugar oligomers, ultimately
reducing the overall concentration of osmolytes ingested (Cristofoletti et al., 2003;
Douglas, 2006). Sugar metabolism in B. tabaci is also distinguished by the activity of
sucrose isomerizing enzymes known as trehalulose synthases. In Manuscript III we
explored the possible genes encoding enzymes involved in osmoregulation of the same
GH13 family which have remained elusive since the first enzymatic description of

transglucosidase activity in aphid gut extracts (Cristofoletti et al., 2003).

[V.I Sucrose isomerases

Analysis of saccharide composition in general whitefly and specific B. tabaci
honeydew has been extensively investigated since the early 1990s with further description
obtained for individual unique saccharides formed by these insects bearing the associated
insect name such as bemisiose and isobemisiose (Hendrix & Salvucci, 2001; Hendrix &
Wei, 1994). One of the unique metabolisms observed in whiteflies as well as B. fabaci is
the production of the sucrose isomer trehalulose (Byrne et al., 2003; Byrne & Miller, 1990),
the former sugar being an a-(1<>2) glucose, fructose disaccharide, and the latter being an
a-(1—>1) glucose, fructose disaccharide. The value of this isomerization to whiteflies is not
clear, but since an a-(1—1) glycosidic arrangement of these monosaccharides seems to be
more stable than an a-(1<>2) arrangement towards hydrolytic enzymes (Salvucci et al.,
1997), trehalulose is less likely to be hydrolyzed, which would allow for more osmotic

stability in the insect gut.
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Enzymes that display sucrose to trehalulose isomerization are known from bacteria
(Rhimi et al., 2008), where they also have a side activity involving the formation of the a-
(1—>6) isomer of sucrose known as isomaltulose. Despite the obvious activity in whiteflies
and in part due to the fact that no gene encoding an enzyme with trehalulose synthase
activity had been characterized in insects until now, past investigations studied the
possibility that the activity was derived from microbial symbionts (Salvucci, 2003), but
found that it was indeed an insect activity. Three candidate enzymes (BtSUCI, 6 and 7)
were generated via a blast search of the B. tabaci MEAM 1 genome (whiteflygenomics.org)
using both a trehalulose synthase from Pseudomonas mesoacidophila and an isomaltulose
synthase from Erwinina rhepontica as queries. Interestingly, one of the candidate enzymes
(BtSUC1) was previously characterized in Manuscript I as being active in sucrose
hydrolysis. All three candidates were capable of trehalulose synthesis, which was
confirmed via mass spectrometric analysis on an ion mobility-qToF instrument with
authentic standards, marking the first entry of genes encoding enzymes capable of this
activity in insects. It was shown that these enzymes can produce trehalulose from the free
monosaccharides glucose and fructose in labeling studies, which may be useful in
osmoregulation if monosaccharide levels are high, perhaps due to hydrolytic activity.
Unexpectedly, BtSUC1 and 6, the enzymes with the greatest activity, were also capable of
hydrolyzing trehalulose, seemingly in direct opposition to the hypothesis of trehalulose
being a less hydrolysable disaccharide. However, it may be that this activity in binding
trehalulose is important for transglucosidase activity (further discussed below in I'V.II), or
at least serves to reduce hydrolysis in other hydrolases present in the whitefly gut. It is also
important to note that the enzymes characterized in Manuscript III had no detectable
isomaltulose synthesis activity. Thus, it would be interesting in future work to characterize
the mechanistic differences between insect GH13 enzymes catalyzing this conversion in
comparison to bacterial enzymes of the same type. Already sequence motifs have been
identified that may be responsible for trehalulose vs. isomaltulose synthesis. Mutational
studies in this regard may provide insight into the apparent specificity of B. tabaci
trehalulose synthases and the possible importance of larger dimers of these enzymes

(Salvucci, 2003).
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IV.II Sugar polymerization

Perhaps one the most important activities for phloem feeders is the ability to form
sugar oligomers, effectively reducing the threat of dehydration by polymerizing ingested
saccharides. Alike the enzymes which are responsible for trehalulose synthesis,
characterization of the genes encoding enzymes with activities for sugar transglucosidation
has been equally evasive in insects (Jing et al., 2016; Price et al., 2007). Interestingly, the
same enzymes that showed trehalulose synthesis activity in Manuscript III were also able
to synthesize sugar oligomers from sucrose and other disaccharides such as trehalulose.
These enzymes carried out various transglucosidation reactions such as the synthesis of
isomaltose in the case of BtSUCI1, which has not been reported in whitefly honeydew, as
well as numerous unknown trisaccharides, some of which may correspond to unique B.
tabaci sugars such as bemisiose and isobemisiose. In labeling experiments, BtSUC1, 6 and
7 were capable of incorporating free labeled-glucose in these transglucosidation reactions,
which has not been previously reported for sucrase-transglucosidases. However, some
evidence of reversible glucose binding to GH enzymes has been noted (Nikolov, Meagher,
& Reilly, 1989), which may affect the osmolarity of free monosaccharides. Additionally in
incubations with sucrose, these enzymes seemed to produce two saccharides for each
transglucosidation reaction, corresponding to one product composed entirely of glucose

units and another with a fructose and additional glucose units.

Since trehalulose represents the majority of all excreted carbohydrate in the
honeydew, enzyme assays with this disaccharide as substrate are of particular interest in
order to determine if trehalulose is used in such processes as transglucosidation. BtSUC7
did not utilize trehalulose as a substrate, similar to its specificity for hydrolysis, while
BtSUCI1 and 6 formed the same products as on incubations with sucrose, suggesting that
trehalulose could be the real substrate for these transglucosidation reactions instead of
sucrose. Incubations with the related a-(1—6) isomer isomaltulose produced identical
activity in BtSUC6 as from sucrose and trehalulose incubations, but different activity in
BtSUCI1, where a new trisaccharide was formed instead of the di-glucose metabolite
isomaltose (o-D-glucopyranosyl-(1—6)-D-glucose). Since this disaccharide is clearly
formed via transglucosidation (also confirmed by labeling studies), its absence in

isomaltulose assays with BtSUC1 where isomaltulose is also hydrolyzed is an unexpected
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observation that may offer us insight into the possibility that different catalytic residues are

used in these enzymes for the formation of various transglucosidation products.

V. The division between detoxification and osmoregulation through

GH13 enzyme recruitment

The mechanistic similarity between GH13 transglucosidases that can pre-emptively
detoxify plant secondary metabolite glycosides (Manuscripts I & II) and those which
isomerize and polymerize sugars (Manuscript III) is readily apparent. However, in B.
tabaci, these processes seem to be parallel rather than intersecting such that enzymes which
form saccharide polymers cannot modify secondary metabolites (Manuscript III), and
vice versa (Manuscript I & II). The specialization of enzymatic activity from a more
promiscuous ancestor is a phenomenon commonly observed in metabolic evolution, and
may also be true for the evolution of GH13 enzymes in B. tabaci. Considering the rather
large difference in metabolite concentrations when comparing sugars with secondary
metabolites in the phloem, it is logical to have enzymes that divide the labour and specialize
in the modification of one group or another rather than having a single enzyme that can “do
it all” (Jensen, 1976). In accordance with this line of thought, there has been a rather large
expansion in the number of GH13 enzymes in B. fabaci (Manuscript I) in comparison to
non-phloem feeders as well as other phloem feeders. One reason for this expansion could
be to accommodate the different metabolites of all the many plants that B. tabaci feeds on.

Therefore, the many GH13 enzymes may well explain their success as phloem feeders.

VI. Potential future control measures for B. tabaci

The characterization of specific enzymes in B. tabaci involved in detoxification and
osmoregulatory functions provides new targets for future control measures against this
insect such as plant delivered RNA interference (RNA1). The promise of RNAi with regards
to controlling phloem feeding pests has already been shown and phloem specific promotion
of double stranded RNA elements (Tzin et al., 2015) and gene stacking (Eakteiman et al.,
2018) have notable effects on whitefly fecundity. The silencing of detoxification enzymes

could negatively impact whitefly feeding on individual host plants, while the general
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silencing of osmoregulatory enzymes could serve as potent control measures against

whiteflies on all hosts.

VII. Conclusion

In this dissertation, I sought to investigate the metabolic fates of plant defense
compounds as well as common sugars in the polyphagous phloem feeder B. tabaci. Given
the vast number of plants that whiteflies can utilize, it would be interesting to learn if
detoxification of host defenses allows B. tabaci to feed with such impunity. The answer
would be relevant not only for research on whiteflies but also for understanding how
herbivore metabolism plays a role in in the host breadth of all herbivores. I have illustrated
some general and specific detoxification strategies employed by B. ftabaci for the
detoxification of activated plant defenses and characterized some important

osmoregulatory enzymes from which detoxification activities seem to have emerged.

In the first two manuscripts, I highlighted the interactions of two-component
defenses with the whitefly B. tabaci. A major finding was that whitefly feeding activated
these defenses, previously thought not to respond to the damage of phloem feeders.
Likewise, we also observed the well-known detoxification via the mercapturic acid
pathway for glucosinolate hydrolysis products formed after whitefly feeding on Brassica
plants and the detoxification via beta-cyanoalanine synthase for hydrogen cyanide formed
after whitefly feeding on cassava plants containing cyanogenic glycosides. The formation
of toxic hydrolysis products of these plant defense compounds upon whitefly feeding hints
about the advantages whiteflies might obtain if they were able to detoxify these plant

defenses in a pre-emptive manner.

Detailed analysis of whitefly honeydew allowed my colleagues and I to investigate
the metabolism of ingested phloem contents. We identified the presence of a unique glucose
conjugation mechanism utilized in the detoxification of both glucosinolates and cyanogenic
glycosides, with the latter compounds also being pre-emptively phosphorylated as a means
of detoxification. The glucosylation reaction is a phase II conjugation mechanism not
previously described in literature and is seemingly restricted to phloem-feeding herbivores,
being intimately related to saccharide modification and osmoregulation. We further

described enzymes involved in this modification from Family 13 of the Glucohydrolase
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(GH) class, which seem to be specific for the metabolism of secondary metabolites instead
of having osmoregulatory functions. In the final chapter, we characterized novel sugar
transglucosidating enzymes from B. tabaci that readily modify saccharides for
osmoregulatory purposes, but show no activity towards plant defense glycosides. All of
these activities are attributable to enzymes of the GH13 family, which have undergone a
large expansion within B. tabaci and might explain the success and radiation of hemipteran
pests. Taken together, the work of this thesis highlights the metabolism of host dietary
constituents in B. tabaci as a whole, and illustrates the importance of GH13 enzymes in the
detoxification of plant defense glycosides, and the metabolism of sugars associated with

osmoregulation in B. tabaci.
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General Summary

The evolutionary arms race between plants and their herbivores has been an area of
great interest to ecologists since even before this concept was clearly defined. Plants
typically exert selection pressures on insects through the production of toxic chemical
defenses and therefore insects have responded through specific detoxification strategies.
As a result of many cycles of these co-evolutionary processes, the number of chemical
defenses in plants has increased enormously. Yet, generalist insects such as the whitefly B.
tabaci are still capable of feeding on numerous plants that differ in their chemical
landscapes. The mechanisms which allow this phloem feeder to utilize so many host plants

with absolute impunity may be found within the metabolism of this insect.

In this dissertation, I investigated how a generalist phloem-feeding insect, the
tobacco whitefly Bemisia tabaci, metabolizes plant defense compounds and sugars via
transglucosidation reactions. Chemical analysis of honeydew coupled to gene identification
and biochemical characterization of heterologously expressed sugar modifying GH13
enzymes were employed to understand the mechanism, function and evolution of whitefly

metabolism.

One of the best examples of chemical defense evolution is the production of
activated chemical defenses, usually in the form of glycosides and their activating
hydrolases. These plant defenses are well studied with regards to chewing herbivores due
to the amount of tissue damage produced when feeding, but are thought to not be activated
by phloem feeding insects due to the minimal damage made upon piercing the phloem.
Within this thesis we investigated the metabolism of two major classes of activated
defenses, the glucosinolates (Manuscript I) and the cyanogenic glycosides (Manuscript

D).

Chemical analysis of honeydew from whitefly feeding on Arabidopsis thaliana
(Manuscript I), revealed the presence of glucosinolate hydrolysis products, as well as
mercapturic acid pathway conjugates of these activated toxins, showing the ingestion and
activation of glucosinolates when feeding. Further investigations into the honeydew also
revealed the presence of unique metabolic derivatives of the major glucosinolate present in
the plant, 4msob-GSL (as well as others). After purification and extensive spectral

measurements, it was found that these derivatives were products of multiple glucose
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additions in either a-(1—6) or a-(1—4) orientations to the originally B-linked glucose of
the plant toxin, with derivatives up to four glucose additions detected by LC-MS. These
insect derived glycosides were not hydrolyzed by the activating enzyme myrosinase, and
therefore constitute a completely novel phase I detoxification mechanism in B. fabaci.
Furthermore, glycosides were detected in the honeydew of other phloem feeding insects
feeding on brassica plants, but not in other herbivorous arthropods, showing the restriction

of this metabolism to the guild of phloem-feeders.

Classically, glucose conjugation in detoxification reactions is catalyzed by UDP
glucosyltransferases (UDPGTs). However, these enzymes usually only transfer a single
glucose moiety to a molecule and it is rarely observed that sugar residues are further
glucosylated. Therefore, isotopomers of sucrose were fed along with 4msob-GSL in
artificial diets in order to determine if other enzymes such as sucrase-transglucosidases
could be involved. Indeed the in vivo incorporation of label in the insect glycosides
provided direct mechanistic evidence for the activity of a glucose transferring sucrase-
transglucosidase, as the responsible enzyme(s). Typically, these enzymes of the GH13
family of glycoside hydrolases are associated with osmoregulatory processes within the
insect where incoming dehydrating sucrose concentrations must be reduced in osmolarity
by the action of these sugar polymerizing proteins. The number of GH13 enzymes in the
B. tabaci genome was shown to be far greater than that of other insects (~ 60 coding genes),
even in comparison to other phloem feeders, such as aphids (~ 30 coding genes). In an
effort to characterize enzymes that can perform transglucosidation of the secondary
metabolite 4msob-GSL, we cloned and characterized five genes coding enzymes which by
sequence homology to other insect GH13 enzymes and their expression profiles might be
responsible for this transformation in vivo. Two of the enzymes (named BtSUC2 and
BtSUCS5) which were cloned and expressed in insect cells were able to catalyze the transfer
of glucose to 4msob-GSL using only sucrose as a donor sugar while the three other enzymes

only performed sucrose hydrolysis.

Following this discovery of not only the hydrolysis of 4msob-GSL due to B. tabaci
feeding activities, but also a novel form of detoxification in this phloem feeding insect, we
also sought to understand the ubiquity of this detoxification strategy for other activated
defenses. In Manuscript II the cyanogenic glycoside linamarin and the important African
staple crop cassava came into focus as a new system to study a cryptic species of B. tabaci

(SSA1) feeding on this toxic plant. In a similar fashion to the patterns observed in
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Manuscript I, we found that whiteflies which feed on cassava (a cyanogenic plant) in
comparison to eggplant (a non-cyanogenic plant) had extremely elevated levels of a
cyanide detoxification metabolite, being beta-cyanoalanine accumulating in their bodies,
demonstrating a similar although indirect measurement of cyanogenesis during feeding by

this whitefly.

Further investigations into the honeydew of B. tabaci SSA1 feeding on cassava
revealed the same poly-glucose metabolism taking place for the cyanogenic glycoside
linamarin as seen previously with regards to 4msob-GSL, with varying regiochemical
additions for higher order glycosides. Unsurprisingly, these insect-produced glycosides
were also resistant to hydrolysis by the activating enzyme linamarase present in cassava
leaf enzyme extracts, demonstrating that poly-glucosylation of this cyanogenic glycoside
was a pre-emptive detoxification mechanism. Importantly, as some cyanogenic glycosides
also exist in disaccharide forms in some plants such as the p-(1—6)-linked diglucoside of
linamarin, linustatin, we tested the stability of the insect glycosides to these disaccharidases
which are capable of hydrolyzing linustatin. The observed stability of the insect derived a-
glycosides in comparison to the B-linked plant metabolites shows the detoxification
function of transglucosidation and may also demonstrate the importance of the anomeric
stereochemistry for stability to plant activating enzymes. The whitefly enzymes previously
characterized for transglucosidation were tested for activity with linamarin and glucose-
transfer from sucrose to linamarin was observed with low efficiency for BtSUC2. The
enzyme BtSUCS on the other hand demonstrated more rapid glucosylation of linamarin
and the ability to even produce higher order glycosides, with a metabolite corresponding to
two glucose units detected. These enzymes were also tested with various plant glycosides
and it was found that BtSUC2 and BtSUCS5 were able to transglucosidate all metabolites

tested, thus hinting that this metabolism may be utilized on many other defense compounds.

Manuscript II also describes the unexpected detection of other derivatives of
cyanogenic glycosides, not previously seen in the metabolism of 4msob-GSL, which upon
purification were determined to be the result of a transfer of a phosphate residue. This
addition was regiochemically determined to be at the 3-O position on the B-sugar of
linamarin, and was also seen to decorate the insect-derived glycosides. The phosphorylated
derivatives were also observed to be stable to activating enzymes in cassava and therefore
also constitute a pre-emptive detoxification strategy. While phosphorylation as a

detoxification strategy is uncommon in mammals, it has been reported in multiple instances
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in insects for the modification of insecticides and plant toxins. The presence of multiple
pre-emptive detoxification strategies for cyanogenic glycosides was surprising, and
illustrates the variability of metabolism in B. tabaci in terms of both general detoxification

in the form of transglucosidation and more specific detoxification such as phosphorylation.

Finally, Manuscript III we endeavoured to expand our knowledge on B. tabaci
metabolism of sugars that are frequently associated with osmoregulation. We investigated
the enzymes responsible for the isomerization of sucrose to trehalulose which is particularly
present in whitefly metabolism. Utilizing bacterial enzymes which show trehalulose
synthase activity as queries to search the whitefly genome, we were able to identify three
genes shown to encode enzymes that catalyze the isomerization of sucrose to trehalulose.
One enzyme originally characterized as a hydrolase in Manuscript I (BtSUC1) was now
determined to also perform isomerization reactions with sucrose. TIMS-ToF analysis
allowed the direct conformation of the sugar transformations performed by these enzymes
following invertase treatment of sucrose incubations, marking the first identification of

trehalulose synthase enzymes in insects.

Isomerization was interestingly not the only reaction that these enzymes were
capable of performing. The three active trehalulose synthases also catalyzed a plethora of
transglucosidation reactions with sucrose and other saccharides which has also not been
demonstrated before in previous literature. Interestingly, these enzymes were capable of
the transglucosidation of saccharides such as sucrose but were unable to utilize the
secondary metabolite 4msob-GSL as an acceptor substrate, further demonstrating a
division between osmoregulation and detoxification enzymes. TIMS-ToF analysis allowed
us to identify only a fraction of the metabolic products that these enzymes produced and
further investigations utilizing more sugar standards are necessary to identify the
remainder. The characterization of these enzyme activities gives us greater understanding
of sugar transformations important for B. tabaci host utilization, which may include the
formation of the unique Bemisia sugar products such as bemisiose and isobemisiose in

future studies.

Overall, the chemical analysis of whitefly honeydew provided deep insights into the
complex metabolism of B. tabaci with respect to the detoxification of plant metabolites.
Coupled with biochemical characterization of the responsible enzymes, the work

demonstrates how B. tabaci whiteflies are adapted to utilize their host plants.
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Zusammenfassung

Das evolutioniire Wettriisten zwischen Pflanzen und Herbivoren war fiir Okologen
schon immer von groBem Interesse. Es ist charakteristisch fiir Pflanzen durch toxisch-
chemische Abwehrmechanismen einen Selektionsdruck auf Insekten auszuiiben. Letztere
hingegen haben, um dem entgegenzuwirken, spezifische Entgiftungsstrategien ausgebildet.
Infolge dieses Wettbewerbs ist die Anzahl der chemischen Abwehrmechanismen in der
Pflanzenwelt enorm. Dennoch gelingt es generalistischen Herbivoren wie der Weilfliege
B. tabaci, sich von zahlreichen Pflanzen zu erndhren und damit auch unterschiedlichen
chemischen Verteidigungen zu widerstehen. Hinweise auf die Mechanismen, die es diesem
sogenannten Phloem-Fresser ermdglichen, so viele Wirtspflanzen zu befallen, kdnnen im

Metabolismus des Insekts gefunden werden.

Mit Hilfe von sowohl analytische Untersuchungen von Honigtau, als auch durch
biochemische Charakterisierung von zuckermodifizierenden GH13-Enzymen, trigt diese
Dissertation dazu bei unser Wissen iiber generelle und spezifische Metabolisierung von
pflanzlichen Verteidigungsmetaboliten und Zuckern, durch den generalistischen Phloem-

Fresser B. tabaci, zu erweitern.

Eines der besten Beispiele fiir die Evolution der chemischen Abwehr ist die
Erzeugung aktivierter chemischer Abwehrmechanismen, iiblicherweise in Form von
Glykosiden und ihren aktivierenden Hydrolasen. Klassischerweise werden diese
pflanzlichen Abwehrmechanismen bei kauenden Pflanzenfressern auf Grund der beim
Fressen verursachten Menge an Gewebeschidden untersucht. Bei Phloem-fressenden
Insekten werden diese hingegen als inert/unbeteiligt angenommen. Aufgrund aktuellerer
Forschungsergebnisse ist allerdings seit einigen Jahren ein Paradigmenwechsel auf diesem
Gebiet zu beobachten. Im Rahmen dieser Dissertation untersuchten wir den Metabolismus
von zwei Hauptklassen aktivierter ~Abwehrmechanismen, den Glucosinolaten

(Manuskript I)) und den cyanogenen Glykosiden (Manuskript IT).

Bei der chemischen Analyse des Honigtaus der Weillfliege, welche sich zeitgleich
von Arabidopsis thaliana erndhrte (Manuskript I), beobachteten wir die Produktion von
Glucosinolat-Hydrolyseprodukten, sowie von aus dem Mercaptursidure-Weg stammenden
Konjugaten, aus den aktivierten Toxinen, was die Aufnahme und Aktivierung von
Glucosinolaten nach dem FraB3 des Insekts beweist. Weitere Untersuchen des Honigtaus

zeigten zudem das Vorhandensein einzigartiger 4msob-GSL Derivate (neben anderen),

188



Zusammenfassung

dem Hauptglucosinolat in der Nahrung des Insekts. Nach der Aufreinigung und
Charakterisierung wurde festgestellt, dass sich diese Derivate durch mehrfache Addition
von Glucose mit entweder einer a-(1—6)- oder a-(1—4)-Orientierung zur urspriinglich -
verkniipften Glucose des Pflanzentoxins ableiten lieBen. Mittels LC-MS konnten hierfiir
bis zu vier Glucose Additionen nachvollzogen werden. Diese von Insekten abgeleiteten
Glykoside waren gegeniiber dem aktivierenden Enzym Myrosinase inaktiv und stellen
daher Produkte eines vollig neuen Phase-II-Entgiftungsmechanismus in B. tabaci dar.
Dartiiber hinaus wurden im Honigtau anderer Phloem-fressender Insekten, welche sich von
Brassica Pflanzen erndhren, Glykoside nachgewiesen, die in anderen pflanzenfressenden

Arthropoden nicht detektiert werden konnten.

Klassischerweise wird die Konjugation von Glucose bei der Entgiftung durch
UDPGTs katalysiert. Da diese Enzyme fiir gewohnlich nur ein einzelnes Glucose-Molekiil
iibertragen, ist die weitere Glucose Konjugation der Zucker-Einheit eine seltene
Beobachtung. Um zu bestimmen, ob andere Enzyme wie Sucrase-Transglucosidasen
beteiligt sein konnten wurden Isotopomere von Saccharose und 4msob-GSL in kiinstlichen
Didten verwendet. In der Tat lieferten die in vivo Markierungen, eingebaut in die
Insektenglykoside, einen direkten mechanistischen Beweis fiir die Aktivitdt einer Glucose-
iibertragenden Sucrase-Transglukosidase als verantwortliches Enzym. Typischerweise
werde die Enzyme der GH13-Familie von Glykosid-Hydrolasen mit osmo-regulatorischen
Prozessen innerhalb des Insekts assoziiert, wo groe Mengen dehydratisierender
Saccharose aufkommen und durch diese zuckerpolymerisierenden Proteine abgebaut
werden. Beim Vergleich mit der GH13-Familie von B. tabaci wurde festgestellt, dass die
Anzahl der Enzyme im Genom der WeiBfliege weitaus grofler war als bei anderen Insekten
(~ 60 kodierende Gene). Deutlich wird dies besonders im Vergleich zu anderen Vertretern

aus der Gilde der Phloem-Fresser, wie bspw. den Blattldusen (~ 30 kodierende Gene).

Um diese extrem grofe Enzymfamilie innerhalb von B. fabaci und um Enzyme
charakterisieren zu konnen, welche in der Lage sind diese Transglucosidierungsreaktionen
von Sekundirmetaboliten wie dem 4msob-GSL durchzufithren, klonierten und
charakterisierten wir fiinf Enzym kodierende Gene, die auf Grund ihrer Sequenzhomologie
zu anderen Insekten-GH13-Enzymen sowie ihrer Expressionsprofile fiir diese in vivo
Transformation verantwortlich sein konnten. Wéahrend zwei der Enzyme (BtSUC2 und
BtSUCS), die in den Insektenzellen kloniert und exprimiert wurden, in der Lage waren,

indem sie nur Saccharose als Zucker-Donor verwendeten, den Transfer von Glukose auf
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4msob-GSL zu katalysieren, fiihrten die anderen drei Enzyme nur eine Hydrolyse der

Saccharose durch.

Nach dieser einzigartigen Entdeckung von sowohl der Hydrolyse von 4msob-GSL
nach Fral Aktivitdt von B. fabaci, sowie ebenfalls einer neuartigen Form der Entgiftung
der Pflanzenverteidigung durch dieses Phloem-fressende Insekt, wollten wir die
Allgegenwirtigkeit dieser Entgiftungsstrategie fiir andere verwandte aktivierte
Abwehrmechanismen verstehen, welche bereits charakteristische Anzeichen einer
Modifikation gezeigt hatten (Manuskript I). In Manuskript II fokussierten wir uns
deshalb auf Maniok, einem wichtigen Grundnahrungsmittel in Afrika, sowie dem darin
enthaltenen cyanogenem Glykosid Linamarin, als neues System zur Untersuchung
kryptischer Arten von B. tabaci (SSA1), die sich von dieser toxischen Pflanze erndhren.
Wie bereits in Manuscript I auf dhnliche Weise beobachtet, stellten wir fest, dass
WeiBfliegen, die sich von Maniok (einer cyanogenen Pflanze) erndhrten, im Vergleich zu
Auberginen (einer nicht cyanogenen Pflanze), extrem hohe Mengen an Beta-cyanoalanin,
eines Entgiftungsmetaboliten der oben, welches sich in den Korpern der Tiere ansammelte
und zugleich ein — wenn auch indirektes — Mal3 der wahrend der Nahrungsaufnahme der

Weillfliege stattfindenden Cyanogenese darstellt.

Weitere Untersuchungen des Honigtaus von auf Maniok fressenden B. fabaci SSA1
ergaben den gleichen Poly-Glukosestoffwechsel, mit &hnlich variierender regio-
chemischer Dekoration der Zucker-Funktionen, fiir das cyanogene Glykosid Linamarin,
wie er zuvor bereits bei 4msob-GSL beobachtet wurde. Es war daher auch nicht
iiberraschend, dass diese vom Insekt produzierten Glykoside inert gegeniiber dem das
Linamarin aktivierenden Enzyms, gewonnen aus Maniokblédttern stammenden
Enzymextrakten, waren. Dies demonstrierte die praventive Detoxifizierung dieses
cyanogenen Glykosids durch denselben Mechanismus, was durch eine parallel
durchgefiihrte Isotopenmarkierungsstudie, unter Verwendung von

Saccharoseisotopomeren, weiter bestdtigt werden konnte wurde.

Einige cyanogene Glykoside, wie bspw. das B-(1—6)-verkniipfte Diglykosid des
Linamarins — Linustatin — liegen auch in Form eines Disaccharides vor. Es ist uns ebenfalls
gelungen, die Stabilitét dieser Glykoside gegeniiber von Disaccharidasen zu testen, welche
das oben erwihnte pflanzliche Diglykosid hydrolysieren wiirden. Die beobachtete Stabilitit

der vom Insekten abgeleiteten a-Glykoside im Vergleich zu den [-verkniipften
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Zusammenfassung

Pflanzenmetaboliten zeigt moglicherweise die Bedeutung der Stereochemie am anomeren
Kohlenstoff fiir deren Stabilitdt gegeniiber der aktivierenden Wirkung der pflanzlichen
Enzyme. In dhnlicher Weise wurden Enzyme auf Aktivitit mit Linamarin getestet, welche
zuvor als charakteristisch fiir die Transglukosidierung beschrieben wurden. Hierbei konnte,
wenn auch nur mit geringerer Effizienz, fiir BtSUC2 ein Glucose-Transfer von Saccharose
zum Linamarin beobachtet werden. Andererseits zeigte das Enzym BtSUCS5 die Féhigkeit,
sogar Linamarin-Glykoside hoéherer Ordnung zu erzeugen, wobei sogar ein Metabolit mit
zwei zusitzlichen Glucoseeinheiten nachgewiesen werden konnte. Dariiber hinaus wurden
die Aktivititen dieser Enzyme mit verschiedenen Pflanzenglykosiden mit dem Ergebnis
getestet, dass BtSUC2 und BtSUCS5 alle im Versuch verwendeten Metaboliten
transglukosidiert werden konnten. Dies impliziert, dass eine Ubertragbarkeit dieses
Metabolismus auf andere Abwehrstoffe moglich sein konnte, sofern diese Enzyme fiir die

Transformation in vivo verantwortlich sind.

Unerwarteter Weise konnten wir in Manuskript II auch andere Derivate
cyanogener Glykoside nachweisen, welche zuvor nicht im Metabolismus von 4msob-GSL
beobachtet und nach der Aufreinigung als Produkt aus der Ubertragung eines Phosphatrests
bestimmt wurden. Durch regio-chemische Untersuchungen zeigte sich schlieBlich, dass die
Addition dieser Phosphatgruppe an Position 3-O der B-Glucose-Einheit des Linamarins
stattfindet und es wurde auch gesehen, dass sie die von Insekten abgeleiteten Glykoside
weiter dekorieren. Die phosphorylierten Derivate erwiesen sich als stabil, gegeniiber der
aktivierenden Enzyme aus Maniok und stellen daher auch eine priventive
Entgiftungsstrategie dar. Phosphorylierung als Entgiftungsstrategie bei Sdugetieren ist
ungewohnlich. Jedoch wurde diese Art der Detoxifizierung in mehreren Féllen bei
Insektiziden und auch Pflanzentoxinen beobachtet, weshalb Phosphorylierung als bei
Insekten {iblicher Entgiftungsmechanismus angesehen wird. Das Vorhandensein mehrerer
praventiver Entgiftungsmechanismen fiir cyanogene Glykoside war iiberraschend und
veranschaulicht die metabolische Variabilitit in B. tabaci sowohl hinsichtlich der
allgemeinen Detoxifizierung in Form einer Transglukosidierung, als auch einer

spezifischeren Entgiftung wie der Phosphorylierung.

In Manuscript III bemiihten wir uns schlieBlich, unser Wissen iiber, besonders mit
Osmoregulation assozierte, Metabolisierung von Zuckern durch B. fabaci zu erweitern.
Dabei haben wir uns zu Beginn der Untersuchung auf Enzyme fokussiert, die fiir die

einzigartige, ausschlieBlich in WeiBfliegen beobachtete, [somerisierung von Saccharose zu
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Zusammenfassung

Trehalulose verantwortlich sind. Unter Verwendung bakterieller Enzyme, welche
Trehalulose-Synthaseaktivitidt innerhalb des Weillfliegengenoms abfragen und damit
sichtbar machen, konnten wir drei Gene charakterisieren, die Enzyme, verantwortlich fiir
die Isomerisierung von Saccharose zu Trehalulose, codieren. Fiir ein Enzym, welches
urspriinglich in Manuskript I (BtSUC1) als Hydrolase charakterisiert wurde, konnte nun
auch die Katalyse von Isomerisierungs-Reaktionen von Saccharose aufgezeigt werden. Die
TIMS-ToF-Analyse ermoglichte die direkte Konformation der von diesen Enzymen
durchgefiihrten Zuckertransformationen nach Invertase-Behandlung von Saccharose-
Inkubationen, was die erste Identifizierung von Trehalulosesynthase-Enzymen bei Insekten

markierte.

Die Isomerisierung erwies sich nicht als einzige Reaktion, die diese Enzyme
katalysieren. Die drei Kandidaten konnten neben Hydrolyse, eine Vielzahl von
Transglukosidierungs-Reaktionen mit Saccharose und anderen Sacchariden katalysieren,
was in der bisherigen Literatur noch nicht beschrieben wurde. Interessanterweise waren
diese Enzyme in der Lage Saccharide wie Saccharose zu transglukosidieren. Sie konnten
jedoch den Sekundédrmetaboliten 4msob-GSL nicht als Substrat verwenden, was dartiber
hinaus die Moglichkeit einer Separation zwischen Osmoregulations- und
Entgiftungsenzymen andeutet. Mit Hilfe von TIMS-ToF-Analyse waren wir in der Lage
einen Teil der Stoffwechselprodukte dieser Enzyme zu identifizieren. Weiterfiihrende
Untersuchungen machen jedoch die Verwendung zusitzlicher Zuckerstandards
unerldsslich. Die Charakterisierung dieser Enzymaktivititen gibt uns ein besseres
Verstindnis der Zuckertransformationen, die fiir die Verwendung des B. tabaci-Wirts
wichtig sind, einschlieBlich der Bildung der einzigartigen Bemisia-Zuckerprodukte wie

Bemisiose und Isobemisiose in zukiinftigen Studien.

Insgesamt lieferte die chemische Analyse des Honigtaus der Weillfliege tiefe
Einblicke in den variablen Metabolismus, hinblicklich der Detoxifizierung von
Pflanzenmetaboliten, von B. tabaci und sogar den anderer Phloem-fressender Insekten. In
Verbindung mit der biochemischen Enzymcharakterisierung von Proteinen, die fiir einen
einzigartigen und dominanten Metabolismus verantwortlich sind, heben diese Ergebnisse
die Niitzlichkeit von zuckermodifizierenden Enzymen fiir B. tabaci zur Etablierung auf

seinen vielféltigen Wirtspflanzen besonders hervor.
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