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A large set of recent experiments has been exploring topological transport in bosonic systems, e.g., of photons
or phonons. In the vast majority, time-reversal symmetry is preserved, and band structures are engineered by
a suitable choice of geometry to produce topologically nontrivial band gaps in the vicinity of high-symmetry
points. However, this leaves open the possibility of large-quasimomentum backscattering, destroying the topo-
logical protection. Up to now, it has been unclear what precisely the conditions are where this effect can be
sufficiently suppressed. In the present paper, we introduce a comprehensive semiclassical theory of tunneling
transitions in momentum space, describing backscattering for one of the most important system classes, based
on the valley Hall effect. We predict that even for a smooth domain wall, effective scattering centers develop
at locations determined by both the local slope of the wall and the energy. Moreover, our theory provides a
quantitative analysis of the exponential suppression of the overall reflection amplitude with increasing domain-

wall smoothness.
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I. INTRODUCTION

The quest for low-imprint high-frequency devices for the
robust transport of classical waves such as light and vibrations
has pushed research toward devices where the wavelength of
the relevant excitations is of the order of the lattice scale,
which itself is limited by the fabrication precision. In time-
symmetry broken topological phononic and photonic systems,
backscattering from defects and scatterers is completely sup-
pressed, however, it is challenging to break time-reversal
symmetry at the nanoscale [1-5].

Time-symmetric topological insulators support helical
edge states that are protected by Kramers degeneracy [6—8].
Kramers degeneracy prevents any coupling between these
counterpropagating states and, thus, any backscattering. It is
automatically realized in any time-symmetric fermionic sys-
tem because 72 = —1 for the time-reversal operator 7~ of
fermionic particles. On the other hand, 72 = 1l for bosons
and, thus, time-reversal-symmetric bosonic systems do not
naturally have Kramers degeneracy. Nevertheless, they can
mimic the physics of topological time-symmetric fermions
in the presence of an engineered antiunitary symmetry 7e,
with 72 = —1.. In practice, this is achieved by designing a
Hamiltonian that is identical to the Hamiltonian of a fermionic
topological insulator across the Brillouin zone (BZ) [9,10].
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The topological transport will then be protected against any
perturbation that commutes with 7, or, equivalently, the en-
gineered unitary symmetry U = 7T 7e,. This approach allows
us to implement edge states that are able to turn any arbitrary
sharp corners but it requires a high degree of control of the
Hamiltonian engineering. For this reason, it is not easily trans-
ferable to miniaturized devices.

An alternative approach for implementations of topolog-
ical transport in classical bosonic systems at the micro-
and nanoscale consists in reproducing the Hamiltonian of
a topological fermionic counterpart only in the vicinity of
one or more high-symmetry points in the BZ [11-32]. In
these approaches, the smooth envelope of each helical edge
state is described by a different Dirac Hamiltonian. The
two Dirac Hamiltonians are mapped onto each other via
the time-reversal symmetry 7, but are otherwise decoupled.
This approach is more suitable to the small scale because
it is based on robust symmetry-based principles (more on
this below). On the other hand, the topological protection
is only guaranteed within a smooth-envelope approxima-
tion. This approximation does not capture backscattering
induced by large quasimomentum transfer. Heuristically, one
should expect that these backscattering processes should be
suppressed as long as the envelope is smooth on the lat-
tice scale. Empirically, many experiments and numerical
studies of smooth-envelope topological systems have convinc-
ingly demonstrated good protection. However, most works
did not attempt to quantify the residual backscattering, see
Refs. [14,27] for two notable exceptions. Even these two
pioneering works did not pursue an analytical approach
and, thus, their findings are difficult to transfer to future
investigations. Thus, the nature and extent of the topolog-
ical protection for smooth-envelope topological insulators
remains unclear.
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In this paper, we present a theory of backscattering for
smooth-envelope topological insulators. We show that, in this
setting, backscattering can be interpreted as tunneling on the
surface of a torus, the BZ of the underlying bulk Hamiltonian.
This insight allows us to employ advanced WKB techniques
[48] to quantify this phenomenon. This, in turn, provides guid-
ance in improving future devices. Our results are most relevant
for the widely investigated so-called valley Hall effect, where
the topological edge states are localized in two different quasi-
momentum valleys [11-24]. However, the physical insight
that we provide, as well as some of our analytical results,
can also be transferred to other smooth-envelope topological
insulators where both helical edge states are localized around
the I' point [25-32]. Our paper ties to other investigations
that have adopted the WKB approximation to investigate the
electronic band structure or density of states in graphene and
other materials in the presence of smooth electromagnetic
fields [33-38].

II. REVIEW OF THE SMOOTH-ENVELOPE APPROACH

Each of the two edge states of a smooth-envelope topolog-
ical insulator is described by a Dirac equation in the form

iW(r)=HpY¥, Hp=mR)6,+ vp-6. )

Here, x = (x, y) is the position, p = —iV, 6, is the z-Pauli
matrix, and the 2D vector ¢ groups the x- and y-Pauli ma-
trices. Moreover, the components W;(x) and W,(x) of the
vector field W(x) are the smooth envelopes modulating two
rotationally symmetric Bloch waves. In other words, p is
the quasimomentum counted off from a rotationally symmet-
ric high-symmetry point. More specifically, this Hamiltonian
with mass parameter m(x) = 0 is relevant for any periodic
structure with an underlying hexagonal Bravais lattice that
supports a pair of Dirac cones at the rotationally invariant
high-symmetry points I’ (two-fold degenerate), or K and K'.
The gap-opening perturbation m is engineered by changing
the geometrical parameters to move away from an accidental
degeneracy [26,39,40] or by breaking a symmetry to split an
essential degeneracy. Examples of the latter include enlarging
the unit cell [25,27,29,31], breaking the twofold symmetry
in a structure with Cg symmetry [11-13,15-17,20-22,24],
and breaking the mirror symmetry in a structure with Cs,
symmetry [14,18,19]. This allows to tune the mass parameter
m(x). We assume that the mass m(x) defines two adjacent
bulk regions separated by a domain wall where m(x) = 0.
The mass can abruptly change across the domain walls or
smoothly vary to reach the asymptotic values m(x) & mypi
in the two adjacent bulk regions. The resulting Dirac cones’
bulk band structure E,(p) = (—1)",/m? +v2|p|> (n=1,2)
is identical in the two domains and has band gap 2my. The
two domains are, however, topologically distinct because they
have half-integer Chern numbers (here defined as the integral
of the Berry connection over the 2D plane) with opposite
signs, C, = (—1)"sign(mv)/2.

An exact solution of Eq. (1), originally derived by Jackiw
and Rebbi [41], shows that a translationally invariant domain
wall supports a chiral gapless edge state. If we choose a
Cartesian coordinate system with unit vectors e; = cos e, +

sin e, along the domain wall and e, = e; A e; normal to it,
and fix the origin and direction of e; such that with m > 0
(m < 0) for r < 0 (r > 0), the edge-state solution reads

E, =vp,, V¥, = C(e}w)eil73Sef(;dr’m(r/)/l)’ )

where C is a normalization constant. This is in agreement
with the bulk-boundary correspondence because Cy(mpy) —
Co(—mp) = 1.

In this paper, we will be eventually interested in situations
where waves traveling along an edge state are backscattered
because the domain wall is curved or possibly even has sharp
corners. This is obviously a practically very relevant scenario
for real applications of topological transport. One way to
characterize backscattering in such situations is to consider a
closed domain wall, which produces a topological cavity, i.e.,
the energy eigenstates become quantized according to the total
circumference of the domain-wall loop. In that case, backscat-
tering reveals itself in terms of a level splitting emerging from
ideally degenerate counterpropagating solutions [23,42].

More specifically, in a sufficiently smooth, closed domain
wall Eq. (1) will still apply, but now with s being the arc length
along the domain wall (from a reference point on the domain
wall), r the local coordinate transverse to the domain wall, and
with the angle ¢ being s dependent. The periodic boundary
conditions will then lead to the quantization condition,

2m

Pn = Tns (3)

where L is the arc length of the domain wall. As we discussed
above, each of these running wave approximate solutions
will have a time-reversed partner solution with the same
energy within the smooth-envelope approximation. Unlike
for Kramers doublets in fermionic systems, here the de-
generacy is not protected by an exact symmetry. Thus, one
should expect that large quasimomentum transfer beyond the
smooth-envelope approximation will induce a small coupling
A(E) between the two partner states. This will give rise to
a spectrum formed by equidistant quasidegenerate pairs of
standing-wave solutions with splitting A(E). In this setting,
the backscattering probability |r|> over one round trip for a
Gaussian wave packet with average energy E is connected to
the splitting, |r|> &~ |A(E)L/v|>.

Most experiments so far have used sharp domain walls,
where the mass has opposite signs in the two domains and
the domain wall has a polygonal shape. In this setting,
Eq. (2) is valid only away from the polygon corners. In this
case, one can still expect weak backscattering and, thus, a
spectrum formed by equidistant quasidegenerate pairs if the
Jackiw-Rebbi solutions for neighboring sides can be smoothly
connected in the region around the corners.

The simplest way to roughly estimate whether one should
expect weak backscattering is to require that the Jackiw-Rebbi
solution for a straight domain wall is consistent with the
smooth envelope assumption, i.e., it is smooth on the lattice
scale. In other words, the transverse localization length &
should be much larger than the lattice constant a, £ < 1/a
and the longitudinal quasimomentum p; much smaller than
the inverse lattice constant p; < a~!'. From Eq. (2), one can
calculate that for sharp domain walls W, o exp[—n|7|/v]
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and, thus, & = v/my. This leads to the condition
my <K v/a, (€]

which also ensures that p; remains small for energies E inside
the bulk band gap, —mpx < E < mypg. Since the bulk band
gap defines the bandwidth available for topological transport,
the smooth-envelope condition Eq. (4) can be interpreted as
imposing a fundamental limit on the bandwidth. We note that
the condition £ > a ensures that the momentum spread 1/&
of the Fourier transform \il(p) of the Jackiw-Rebbi solution
Eq. (2) is small. Even in this case, some residual backscat-
tering will be observed because the tails of W(p) penetrate
the large quasimomentum regions, inducing a coupling of the
counterpropagating edge states. For sharp boundaries, the tails
decay slowly, W(p) o m/(vp,). This implies that to strongly
suppress the residual backscattering, very small values of mypy
will be required.

III. SMOOTH DOMAIN WALLS AND EFFECTIVE
PLANCK’S CONSTANT

It has been suggested and demonstrated with numer-
ical experiments that an effective strategy to reduce the
backscattering without reducing the bulk mass mpx (and,
thus, the topological bandwidth) consists in implementing
smooth domain walls [27]. Here, we formalize this intuition
by introducing a WKB theory of backscattering for smooth
domain walls. The first step is to introduce a quantity that will
formally play the role of the Planck’s constant in quantum
mechanics. This can be achieved by introducing a rescal-
ing of the position dependence of the mass term, replacing
m(x) in Eq. (1) with m(ix). In this way, the domain wall
defined by m(Ax) = 0 maintains the original shape but its
length is rescaled by a factor of A~!, cf. Figs. 1(a) and 1(b).
We emphasize that this is not just a trivial rescaling because
in the underlying microscopic model the lattice constant re-
mains fixed. Thus, for decreasing A the domain wall becomes
smoother and we expect reduced backscattering. It is conve-
nient to introduce the rescaled coordinate Q = Ax and time
T = At. In terms of the rescaled variables, the Dirac equa-
tion takes the form iAW(Q, 7) = HpW(Q, 7), with Hp as in
Eq. (1) but now with the mass term m(Q)4, and [0, pil=
iAd;j. Thus, we can interpret A as an effective Planck’s con-
stant. We note that the speed v is not rescaled and that the
rescaled domain-wall length L, = AL becomes independent
of A. While our theory is general, for concreteness we will
consider a scenario where the mass varies as a smooth step
function in the direction e, perpendicular to the domain-wall
tangent,

m(Q) = —my tanh (%) )

where Q, is the rescaled local coordinate, Q, = Ar. We note
that the lattice constant has rescaled length Aa. Thus, A lis
the typical number of unit cells over which the mass is varied
before reaching the asymptotic value myy, cf. Fig. 1(b). In this
way, the sharp domain-wall scenario is included as the deep
quantum limit .~' < 1 of our theory.

(c) Spectrum (d)
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FIG. 1. (a), (b) Schematic of an arbitrarily shaped smooth closed
domain wall on a triangular lattice, for two different values of the
scale parameter A. The topological edge states (indicated with grey
arrows) travel along the domain wall in counterpropagating direc-
tions. The domain wall length scales as A~!. (c) Schematic of the
standing wave spectrum in the presence (absence) of backscatter-
ing |r| =0 (|r(E)| # 0). The degenerate doublets split for nonzero
backscattering. (d) Smooth domain wall transition (for A = 0.25),
extending over a/A sites.

IV. THE VALLEY HALL EFFECT ON THE
HONEYCOMB LATTICE

Next, we move to the central focus of this work, i.e., to
develop a description of the edge states that goes beyond
the smooth-envelope approximation and allows us to incorpo-
rate backscattering. For this purpose, we use as a case study
the simplest and most well-known implementation of valley
Hall physics, which is based on the graphene tight-binding
Hamiltonian. In this model, the gap-opening interaction is a
staggered on-site potential, assuming the values m and —m on
the sublattices A and B, respectively, cf. Fig. 2(a). For sim-
plicity, we consider only nearest-neighbor hopping transitions
with rate J.

Our ultimate goal is to describe the tunneling be-
tween counterpropagating Jackiw-Rebbi solutions localized
at different valleys. Since these semiclassical solutions are
localized in quasimomentum space, it is convenient to adopt
the quasimomentun representation

P(k) =Ag)" ) e R Ury(Q), (6)
{Q}

where ¥(Q) = (¥4(Q), ¥5(Q)) is the wave function in po-
sition space and {Q} indicates that the sum runs over all

rescaled lattice vectors Q. As usual, the quasimomentum is
defined modulus a reciprocal lattice vector and, thus, fﬁ(k)
can be viewed as being defined on a torus of surface area
Apz = 8723732 /4%, Thus, the wave functions ¥ (k) are pe-
riodic solutions of the Schrédinger equation,

Ayk) =Eyk), H=m@Q)¥, +hk) -6, (7

235431-3



SHAH, MARQUARDT, AND PEANO PHYSICAL REVIEW B 104, 235431 (2021)

(a)

(d)

On-site potential 0
I

-Mbk Mbk lag|

4r 0 I_C 107

1

lagl

FIG. 2. (a) Sketch of the implementation of the valley Hall effect on a honeycomb lattice. The color of the lattice sites represents the on-site
potential, cf. color bar in (d). Each thick arrow shows the edge-state propagation direction in a valley, K or K'. (b) Sketch of the Bloch sphere
for the sublattice pseudospin. In the WKB approximation, the angles 6, and ¢, are expanded in powers of the effective Planck’s constant A.
(c) Sketch showing the closed path k(k,) formed by the classical quasimomenta for the topological edge state band (red line). The path is formed
by the quasimomenta where the lines cos gk, + sin gk, = k (in blue in the zoom-in) are tangent to the contour lines of the graphene upper
band bulk energy [h(k)| (in grey). The contour line |h(k)| = J is formed by two equilateral triangles. Each triangle can be viewed as defining
a valley rim. Equivalent high-symmetry points are marked by dots of the same color. (d), (g) On-site potentials for two straight-domain-wall
configurations with the same effective Planck’s constant A = 1/4 but different domain-wall orientations ¢. For (d), ¢ = 7 /2, corresponding to
an armchair strip. (e), (h) The corresponding band structures for my, = 0.5J = v/(3a). The edge dispersion (blue line) is well approximated
by the semiclassical solutions. Its period 7' (¢) is N times the width 27 /|ag| of the strip BZ, with N = 2 and N = 5, in (e) and (h), respectively.
(f), (i) Underlying wave functions |<~ﬁ,;s (k,)|?. The probability density is approximately a Gaussian, peaked around the classical quasimomentum
k. We note that (i) represents a zoom-in because (};x (k,) is defined on a quasimomentum loop that traverses multiple times both valleys, cf.
Fig. 3(d).

with h = (A, hy): V. SEMICLASSICAL EDGE BAND

As a first step toward a full WKB calculation of the edge
state spectrum in the presence of a straight domain wall, we
find a semiclassical solution that is no longer restricted to
quasimomenta in the vicinity of the high-symmetry points K
and K’, but does not yet include tunneling. In other words, our
solution extends the Jackiw-Rebbi solution to the full BZ.

We consider an arbitrary domain wall with mass m(Q,)
depending on the coordinate Q, = Q, cos@ — Oy sin¢. For
concreteness, we restrict our discussion to ¢ in the interval

3k 3k
h, = —J —2J cos <\/_2xa) cos (Tya>,

—2J cos (ﬁkxa) sin <3k_ya> (8)

2 2

=
Il

As usual, in the quasimomentum representation the posi-
tion operator Q can be expressed in terms of the derivative
of the quasimomentum, Q = iAVy. We note that the Dirac
Hamiltonian Eq. (1) for the smooth envelopes ¥(Q) =
exp[—iK - Q/A]¥(Q) is obtained by expanding the tight-
binding Hamiltonian Eq. (7) about the high-symmetry point
K =2n(-3712, 1)/(3a). In this setting, v = 3Ja/2 and
p=k—-—K.

Before considering an arbitrary domain-wall shape, we go
back to the conceptually simpler special case of a straight do-
main wall. Below, we refer to such a translationally invariant
configuration as a strip.

/3 < ¢ < 2m /3 throughout this section. This does not im-
ply any real loss of generality because the honeycomb lattice
has sixfold rotational symmetry. We emphasize that while
the Hamiltonian does not depend on the coordinate Q, it
is only translationally invariant if the domain-wall orienta-
tion is aligned to a lattice vector, for rational values of o =
V3 cot g, see Appendix A 5. Thus, for irrational «, the edge
states cannot be expressed as Bloch waves with a conserved
quasimomentum. This intricate angle dependence of the dis-
crete translational symmetry is well-known in the framework
of carbon nanotubes [43] and graphene nanoribbons [44].
Delplace et al. [45] calculated the edge-state band structure
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at the physical boundary of the latter graphene-based struc-
tures for arbitrary rational angles. Recently, Schulz-Baldes
and Stoiber [46] have focused on the density of edge state,
generalizing Delpace results for any arbitrary 2D chiral Weyl
semimetal and considering also arbitrary (possibly irrational)
angles. Here, we introduce a simple and elegant approach
that allows us to define the edge band dispersion for arbitrary
angles, even for irrational angles corresponding to a Hamil-
tonian without translational symmetry. In our approach, we
view the edge-state energy as a function of the edge state clas-
sical quasimomentum (defined below) instead of a conserved
quasimomentum.

We can reduce the problem of calculating the strip eigen-
states to a 1D problem using the ansatz

Vi (k) = 8(k, — ko)z (k,). )

For an edge-state solution, the transverse wave function
qNS,;x (k,) is peaked about a radial quasimomentum k, but has
a nonvanishing width. The 2D quasimomentum l_(,gy = (k,, k,)
can be viewed as the classical quasimomentum of the edge-
state solution. We note that, strictly speaking, Eq. (9) is not
yet a valid solution because it is not a periodic function of the
quasimomentum k. However, one can use it to build such a
periodic solution, see Appendix A 1 for a formal definition.
Intuitively, it is enough to view the wave function I}EA k)
as having support on the path kg (k,) = (k, k,) defined on
the torus and parametrized by the radial quasimomentum k,.
When the quasimomentum K is taken within the first BZ in-
stead of on a single line, such a path traverses the BZ multiple
times, defining several parallel lines (for irrational « infinitely
many of them)—more on this below.

The Jackiw-Rebbi solution Eq. (2) is localized about a
high-symmetry point, K or K'. These points are the two global
minima of |h(k)|, the energy of the upper bulk band for the
massless case. In our generalized solution, each edge-state
wave function fﬁk (k) is localized about a quasimomentum
k; = (kj, k;) whose radial component k, is a local minimum
of |h(k)| for fixed k, k; = k,. In general, |h(k)| has more
than one local minimum for fixed k; (the number depends
on ¢). However, one can follow the same local minimum as
a function of k to define a continuous path k; = (k;, k,) in
the BZ. By inspecting the contour plot of |h(k)|, one can
easily verify that the path l_(,a is unique (apart from a trivial
reparametrization). For 7 /3 < ¢ < 2m /3, it is also closed,
as it connects the high-symmetry points K and K’ via the
M, and the M3 points, cf. Fig. 2(c). For the critical angle
¢ = /3 (corresponding to a so-called zigzag orientation),
l_(,;y asymptotically reaches the two midpoints between the M,
and M, points. (For even smaller angles, it passes through M
instead of M, see Appendices A 4 and F).

The wave functions fh,;y (k) are obtained by plugging the
ansatz Eq. (9) into Eq. (7) while also expanding h(k) up to
linear order about l_(,;s, see Appendix A 2. We find that the
wave function (}5,;( (k,) has a Gaussian profile, but otherwise
has the same pseudospin and energy as one of the two bulk
solutions for mass m = 0 and with quasimomentum k equal
to the classical quasimomentum l_(,;s:

Eg, = g(ky, ) (k)

., gk) =sign[(d,hAe)-h]. (10)

The edge spectrum Ej defines a periodic band, Et ,; = Ef.
with period T = 47 /(3a) sin ¢, cf. Fig. 2(a). For the special
case ¢ = m /2, corresponding to an armchair strip, the en-
ergy dispersion has a simple closed form Ef = J sin(3ksa/2)
(e; = e, in this case), see Figs. 2(d) and 2(e) and Appendix
A 4. For a generic angle ¢, the precise energy dispersion £
has to be evaluated numerically, solving an algebraic equation
for k., see Appendix A 3. However, its qualitative shape is
robust. It is positive (negative) in the segment that connects
the K and K’ points via the M, (M3) point. In addition, the
speed only vanishes at the M3 and M, points where the en-
ergy E; assumes its maximum and minimum values £ = +J,
respectively (for details see Appendix A 2). Thus, these points
divide Ey_into two counterpropagating branches that are local-
ized in different valleys, Figs. 2(e), 2(f), 2(h), and 2(i). In other
words, for any energy E in the interval —J < E < J, there
are exactly two counterpropagating edge state solutions (one
in each valley) mapped onto each other via the time-reversal
symmetry. We remark that, in contrast to the Jackiw-Rebbi
solution, here, the pseudospin depends on the classical quasi-
momentum Rl&- and completes a full revolution of the Bloch
sphere equator over the period 7' ().

Next we focus on domain-wall orientations for which the
domain wall is aligned to a lattice vector, giving rise to a trans-
lationally invariant Hamiltonian. This scenario is realized for
rational values of & = +/3 cot . In this case, the Hamiltonian
is diagonalized by Bloch waves whose quasimomentum k can
be chosen in the interval —n/|ay| < k < 7 /lag|, where ay
is the strip unit vector. The strip unit vector is a discontin-
uous function of ¢, |ay(¢)| = 3ga/{[1 + (pg mod 2)] sin ¢},
where p and g are relatively prime integers defined by o =
p/q, see [43] and Appendix A 5.

Our semiclassical edge state solutions fﬁ,;s(k) are Bloch
waves with strip quasimomentum k = ks mod (27 /|ag)).
This enables us to compare our semiclassical calculations
with exact numerical results (Appendix E 1). In Fig. 2, only
the numerical results are shown because the corresponding
analytical results would not be distinguishable with the bare
eyes. This indicates that tunneling is strongly suppressed for
the parameters considered (A = 1/4 and my = 0.5J). We
note that the period T (¢) = 47 /(3a) sin ¢ of the semiclassi-
cal edge band is an integer multiple of the width 27 /|ay| of
the strip BZ, T'(¢p)|ay|/27m = 2q/[1 + (pg mod 2)] = N(p).
Thus, when plotted inside the strip BZ, the semiclassical edge
band Er, is folded into N bands E, x, n=0,...,N — 1 [cf.
Figs. 2(e) and 2(h), where N = 2 and 5, respectively]. Just
like the strip unit vector, the number of edge bands N is also a
discontinuous function of ¢.

VI. TUNNELING-INDUCED GAPS IN THE EDGE
BAND STRUCTURE

The folded semiclassical edge band can be viewed as a
gapless band structure. Similar to the edge band structure of a
time-symmetric topological insulator, subsequent edge bands
cross at a time-reversal symmetric strip quasimomentum I" or
X, corresponding to k = 0 and k = 7 /|a|. Once tunneling is
taken into account, such crossings turn into avoided crossings.
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Interestingly, the number of edge-band gaps is a discontinuous
function of the domain-wall orientation ¢. In other words, a
tiny variation of the domain-wall orientation can substantially
change the number of band gaps. This physics is reminis-
cent of the (bulk) Hofstadter butterfly spectrum of lattice
electrons in a magnetic field [47], with ¢ playing the role
of the magnetic field flux. We will show that the edge-band
gaps are induced by tunneling transitions in quasimomentum
space and, thus, decay exponentially with the inverse effective
Planck’s constant A~!. Importantly, the different band gaps
are of very different magnitudes. Identifying the underlying
tunneling pathways in the quasimomentum space allows us
to calculate the edge-band gaps (up to logarithmic precision)
and to identify a dominant tunneling pathway, that will also
play an important role for the backscattering in closed domain
walls.

In the absence of tunneling, subsequent edge bands E,
and E,;; touch whenever two edge states with the same
energy Ep also have the same strip quasimomentum k = ks
mod 27 /|ag|. Since the semiclassical edge states with equal
energy are also time-reversed partners, the band crossings
occur only at the time-reversal-invariant quasimomenta I" and
X. At a crossing, two counterpropagating solutions are reso-
nantly coupled via tunneling. Hence, once tunneling is taken
into account, the exact crossings turn into avoided crossings,
leading to the opening of small edge-band gaps, cf. Figs. 3(a)
and 3(b). We note that (when neglecting tunneling) there are
N — 1 crossings. However, a crossing does not necessarily
give rise to a band gap because of the spectral overlap of
the edge and the bulk bands for J > myy, cf. Fig. 2(e) where
N = 5 but only two edge-band gaps are present.

At the I and X points, the Bloch waves can always be
chosen to be time-reversal invariant (because 72 = 1). In the
special case of an avoided crossing (between the nth and
n + 1th band), this implies that the Bloch waves are equal
superpositions of two time-reversal-partner semiclassical so-
lutions, cf. Figs. 3(g) and 3(h). This leads to the tunneling
band structure (see Appendix B 1),

2
Eypippa1p 046 = Ep, £ \/(A/Z)2 + (v, 8k)7, (11)
where v is the group velocity vy = dEp, Jdks, k =0 or
7 /|ag|, 8k is the distance from the relevant time-symmetric
quasimomentum and A is the tunneling rate that we set out to
calculate.

A. WKB formula for the tunneling exponent

Two semiclassical edge-state solutions localized near dis-
tant classical quasimomenta are coupled via their tails. The
solutions calculated so far by expanding the Hamiltonian
Eq. (7) about the relevant classical quasimomenta kj are
accurate only near these quasimomenta. Thus, an important
preliminary step toward calculating the tunneling rate A con-
sists in generalizing our solution to correctly evaluate the tails.
Such a solution can be found using the WKB ansatz:

- (e /2 i
&, (k) = C'( " g, 2 exp[—xSU;x(kr)]. (12)

<

(')A/(J\/Z) )]
ol & 2F 3/ 2
10 = g

I (]
10'6: 21 0 %
«Q
-101 (] <
- T T T T T c 0 T T T 71“,1
0 2 46 815 0 60 120 5

! = Strip orientation ¢

FIG. 3. (a), (b) Band structures for the same domain-wall orien-
tations as in Figs. 2(d) and 2(g), respectively. The mass parameter
mpx 1s also the same as in Figs. 2(e)-2(h) but, here, A = 2.5 (ten
times larger), corresponding to a sharper interface. We note that the
edge band structure is now visibly gapped. Similar band gaps are also
present in Figs. 2(d) and 2(g) but are not visible with the bare eye.
(¢), (d) Quasimomentum loops kg (-) for the time-symmetric strip
quasimomenta I' and X (k = k, mod (27 /ay) = 0, 7 /ay), red and
blue lines, respectively. (e), (f), Bloch waves of the band highlighted
in blue in (a) and (b), respectively. The color that can be inspected
by following a quasimomentum loop encodes the probability density
of the corresponding Bloch wave. (g), (h) Resonant tunneling Bloch
waves. The corresponding energies are marked by the dots of the
same color in (a) and (b), respectively. (i) The edge band gap decays
exponentially for increasing smoothness of the domain wall (com-
paring numerics versus analytical result for an armchair strip). (j)
Tunneling exponent R and tunneling energy E ™" for the dominant
tunneling pathway.

Here, ¢,z 1is the azimuthal Bloch sphere angle, see
Fig. 2(b), and §; 1, is the action. We expand these functions
in powers of A:

o0 o0
Gk = D ui s Sip =D S (13)
n=0 n=0

This expansion effectively divides the Schrédinger equation
into an infinite series of equations obtained by grouping the
terms with the same power-law dependence on X. This allows
us to calculate S, and ¢; recursively, starting from the leading
order which in the standard setting describes the classical
limit.
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For the purpose of estimating the tunneling rate, it is suf-
ficient to calculate the leading order S ; of the action. This
allows us to calculate the exponent —R/A of the tunneling
rate A:

R =-—IlimAlnA.
A—0

In the semiclassical limit A <« R, the exponent allows us to
determine the order of magnitude of A. We note in pass-
ing that to also calculate the prefactor is considerably more
elaborate and usually require to take advantage of additional
symmetries [48-50]. In Appendix C 2, we perform such a
calculation for an armchair strip, adapting to our problem a
trick invented by Landau. For arbitrary domain-wall angles,
we can show (see Appendix B) that the leading order of
the action Sz (k,) is equal to the action for a classical 1D
problem with the effective Hamiltonian:

Hi (Or, k) = g(k \/m(Qr)2 + [h(ks, ko). (14)

In practice, we find

kf
So (k) = f 0; (K. )dk., (15)
ky

where the (imaginary) position Qf (k;) is calculated by solv-
ing

H(Qz, ko, k) = Ey.. (16)
For the mass dependence m(Q,) in Eq. (5), we find

Q; = —iaarctan \/[|h(IES, k)2 — E,i]/mgk. (17)

Taking into account that Eq. (15) is equivalent to
O, So r, (kr) = Of,, we are calculating the action solving an
equation analogous to the Hamilton-Jacobi equation but, here,
exchanging the role of position and (quasi)momentum. From
Egs. (12), (15), and (17), we gain the powerful insight that the
massless bulk band structure |h(k;, k)| can be interpreted as
a (dimensionless) potential barrier seen by the edge excitation
while tunneling in quasimomentum space (with the bulk mass
parameter my playing the role of a rescaling of such barrier).
This intuition can also be transferred to the more complex
scenario in which the domain wall is not straight and the
tunneling induces backscattering between two counterpropa-
gating edge states. More on this below.

Taking into account that in the WKB approximation the
tunneling rate has the same exponent R as the overlap of the
two tunneling wave functions on the tunneling pathway, we
arrive at the formula

R = —l Qa(\tun) (kr)dkr, (18)

y (tun)

where Q,;Sun)(k,) is evaluated using Eq. (17) along the tunnel-

ing path y " connecting the semiclassical quasimomenta
j:kk of two semiclassical time-reversal-partner solutions.
Formula Eq. (18) reduces the problem of finding the edge-
band gaps and estimating their magnitude to the problem
of identifying the corresponding tunneling pathways y ™,
discussed in the next section.

B. Tunneling pathways

For rational values of «, corresponding to translationally
invariant domain-wall configurations, the number of band
gaps is finite, but it is a discontinuous function of the domain-
wall angle ¢, see discussion above. Because of this intricate
behavior, the task of systematically investigating the band
gaps for arbitrary ¢ looks daunting. Below we show that this
endeavour turns out to be surprisingly simple if one switches
the focus to the available pathways for resonant tunneling and
considers a generic irrational «.

The first step toward classifying the available tunneling
paths is to gain insight about the 2D quasimomentum paths
K(-);, on which a 1D semiclassical solution 'ﬁk (k) obtained
using the ansatz Eq. (9) has nonzero probability density. The
path K(-); with classical longitudinal quasimomentum ky is
equivalent to the straight line k, cos ¢ + k, sin g = k. Since
the quasimomentum k is defined up to a reciprocal lattice
vector, we can view K(-); as continuing as a parallel line
inside the first BZ after crossing the BZ hexagonal perimeter,
cf. Figs. 3(c) and 3(d). For rational o, the path k(- )z, is a closed
loop, crossing N times (N = 2q/[1 + (pq mod 2)]) the BZ
perimeter before returning to the initial quasimomentum, cf.
Figs. 3(c) and 3(d). Its length T.(¢) is set by the period
of h(k,, k) (as a function of k), T.(¢) = Apzlag|/2m =
41 q/{~/3a[l1 + (pg mod 2)] sin ¢}. Importantly, all semiclas-
sical quasimomenta k, corresponding to the same strip
quasimomentum k = k, mod 27 /|ay| give rise to the same
path (up to a reparametrization). Since the paths for different
k do not overlap, it is possible to represent the Bloch waves
for a full band as a single density plot, cf. Figs. 3(e) and
3(f). For irrational «, h(ky, k) is not a periodic function of
k;. In this scenario, the path k(-);, is infinitely long, crossing
the perimeter of the BZ infinitely many times. We expect that
along the way it will come arbitrarily close to any point in the
BZ. Moreover, the classical quasimomenta k, giving rise to
the same path form a countably infinite set [with one element
for each local minimum of h(k;, &,)].

As discussed above for rational o, a precondition for
resonant tunneling is that the strip quasimomentum £ is time-
reversal invariant, k = k, mod 27 /lag| = 0 or 7 /|ay|. This
precondition can be generalized to irrational « as a precon-
dition for the corresponding path K(-);: This path should
be time-reversal invariant (up to a reparametrization). Only
in this case, it can and will pass through both classical
quasimomenta :tkk of two time-reversal-partner semiclassi-
cal solutions. It turns out that this condition is fulfilled if and
only if K(-)z, passes through a time-symmetric high-symmetry
point k@™ kM =T, M;, M,, or Ms;, see Appendix C 1. Thus,
this precondition identifies four distinct paths. Each of these
four paths traverses infinitely many times each of the two
triangle-shaped valleys (cf. caption of Fig. 2) and, at each
passage, passes through a different local minimum of h(k,, k)
which in turn corresponds to a valid semiclassical solution, see
discussion in Sec. V. For each such a semiclassical solution,
there will also be a corresponding tunneling pathway connect-
ing it to the time-reversed quasimomentum via k™. Thus, we
can classify all possible tunneling pathways based on the time-
reversal-symmetric high-symmetry point k® they go through

and the number of times j they traverse each valley, yk(nTl)“) with
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J € N. For rational «, the path K(-); traverses only a finite
number of times each valley, setting a limit on the maximum
Jj-Inaddition, since k(- ), is a closed loop passing through two
time-symmetric high-symmetry points, two tunneling path-
ways connect the same pair of time-reversal-partner solutions,
cf. Figs. 3(c), 3(d), 3(g), and 3(h). In this case, the tunneling
occurs via the pathway with smaller tunneling exponent, cf.
Eq. (18).

Our classification of the tunneling pathways allows us
to easily calculate the corresponding tunneling exponents
Rym, ;. This only requires us to solve a simple algebraic

equation to calculate the classical quasimomentum l_(liﬁ’)‘)j asa

function of ¢, plug it in Eq. (10) to obtain the tunneling energy
El({:l;?)] and evaluate the integral in Eq. (18), see Appendix
C 1 for more details. We note that the exponent Rym ; will
be smaller for smaller j, corresponding to shorter tunneling

paths yéf#')")] Out of the four shortest tunneling paths (with
(tun)

Jj=1), only yy | directly connects the two valleys without
entering the region outside the triangular valley rims (where
the tunneling barrier is larger, |h(k)| > J). Thus, one should
expect Ry, 1 to be the smaller exponent, which is confirmed
by numerical calculations. We emphasize that different expo-
nents lead to tunneling rates Aym ; that can differ by orders
of magnitude in the semiclassical regime A < 1. Even for A =
2.5, our exact numerical simulations show that Ay, 1 3> Ar g,
see Fig. 3(b) where A1 and Ar; correspond, respectively,
to the lower and upper edge-band gaps (marked in grey).

In Fig. 3(i), we compare the exact numerical results for
the edge-band gap of an armchair strip (Ar ;) to the corre-
sponding semiclassical formula (including also the prefactor,
see Appendix C 2) as a function of the inverse Planck’s con-
stant A~!. As should be expected, analytical and numerical
results are in good agreement for Ar; < J (reflecting that
A < R). Remarkably, this condition is already fulfilled when
the transition between the two domains occurs over a very few
unit cells (corresponding to A~ ~ 1).

The angle dependence of the exponent Ry, 1 and the tun-
neling energy Eﬁ:"f for my, = 0.5J are shown in Fig. 3(j).
In the next section, we show that the dominant exponent is
able to capture the magnitude of the backscattering in a setup
featuring an arbitrarily-shaped smooth closed domain wall.

VII. TRANSPORT IN CLOSED DOMAIN WALLS

In this section, we show how our understanding of the strip
band structure for different orientations, developed above, can
be utilized to interpret numerical results for the transport of
edge states along curved domain walls similar to that of Fig. 1.
We consider scenarios where the domain wall has a radius of
curvature that is larger than the typical transverse transition
length a/X between the two domains. We will show that, even
then, some backscattering exists. This scattering is localized at
effective scattering centers whose position along the domain
wall is determined by the energy and the local slope of the
wall.

The central idea can be easily explained by revisiting
Fig. 3(j). There, we see that the band gap that is induced by
tunneling between counterpropagating edge states moves up
and down in energy, depending on the orientation of the strip.

Translating this to an smooth closed domain wall, this means
the following: When we inject a wave packet at some fixed
energy, there will be certain orientation angles ¢ at which
backscattering takes place. As the orientation of the domain
wall changes smoothly along the wall, this defines a condition
where certain locations (where the local angle ¢ is just right)
become effective scattering centers.

As the curved domain wall is interrupted not only by
one but by several scattering centers in this manner, we will
moreover obtain the typical behavior to be expected in such a
scenario: Interference between backscattered waves.

We will now employ direct numerical simulations to con-
firm this picture, i.e., the existence of effective scattering
centers that can be predicted from the shape of the domain
wall and interference effects arising on this basis.

The theory we develop here will give insights into com-
pletely arbitrarily shaped smooth domain walls. However, we
will start by describing the backscattering of edge states in the
simplest case of a circular domain wall [Fig. 4(a)]. This allows
us to visualize and discuss the results more easily.

Numerics in this context is not entirely trivial, since we
want to go to relatively large system sizes to be able to inves-
tigate smooth and long domain walls (extending over many
lattice sites) and get rid of finite-size effects, see Appendix
E 2. Using exact numerical diagonalization of the Schrédinger
equation (Lanczos diagonalization on sparse matrices) on a
tight-binding lattice (of approximately 2500/A? sites, leading
to a maximum size of 6 x 10* lattice sites), we obtain the en-
ergy eigenstates in a certain energy interval. Among these, we
are able to select the edge-state eigenfunctions inside the bulk
band gap. Due to the finite amount of backscattering, these are
automatically superpositions of the two counterpropagating
waves, with the formerly degenerate solutions being split into
doublets (as indicated already in Fig. 1). A closer inspection of
these wave functions in momentum space [Figs. 4(b) and 4(c)]
confirms the soundness of the semiclassical picture which we
have employed in our analysis up to now.

We are interested in backscattering and in how this effect
depends on the smoothness of the domain wall (as con-
trolled by the scale parameter A). In the numerics, it is most
convenient to work with eigenstates (and not wave pack-
ets or scattering solutions). Still, we are able to extract the
reflection coefficient |r(E)| by using its connection to the
splitting of ideally degenerate counterpropagating solutions.
The results are shown in Fig. 4(d). We witness two impor-
tant features: (i) an exponential suppression of reflection with
smoothness and (ii) an intricate interference pattern in energy
space.

The exponential suppression of the reflection coefficient
actually follows the suppression of the dominant band gap
Awm, 1, as can be seen from the numerical results in Fig. 4(e).
In that figure, we show the energy dependence for the two ex-
ponents, governing the decay of |r| and of Ay, 1, respectively.
This valuable link allows us to refer back to our detailed analy-
sis of the band gap that we have provided in previous sections
of this paper. In a more formal setting, we have calculated
a WKB edge-state solution for an arbitrary curved domain
wall and proved that the solution for a straight domain wall
(with a locally varying angular coordinate ¢) can be viewed as
the leading order approximation of our more general solution
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FIG. 4. Backscattering in arbitrarily shaped smooth domain walls. (a) Setup of the circular domain-wall interface. Mass parameter my,, = J,

radius R = Ry/A. (b) Fourier transform |¢(E)|> (maximum value normalized to 1) of the standing wave eigenmode at energy E = 0.6J. The
standing wave is formed by a superposition of two counterpropagating edge states that are localized near the K and K’ valleys. (c) Fourier
transform of the eigenmodes for three different energies in the vicinity of the K point. The densities are localized on the contour lines of
the graphene upper band bulk energy |h(k)|, shown in the first panel. (d) Reflection coefficient |+(E)| for the three equidistant values of A~!.
The envelope of the maxima are equidistant on the log scale of the y axis, demonstrating the exponential decay of |r| with A~!. The line
shape features a complicated interference pattern that arises because of the changing scatterer locations with energy. () Comparison of the
backscattering and tunneling exponent as a function of energy. The two exponents should converge to be identical for larger rescaled radius
(Ris/a — 00), see Appendix D. (f) Position of effective energy-dependent scatterers on the circular domain wall for the three energies in (c). A
local Fourier transform of the eigenmode at the different positions on the topological cavity, indicated by an orange box at angle ¢, is taken to
investigate the backscattering in the reciprocal space. Note that ¢ is also the domain-wall orientation. (g)—(i) Local Fourier transforms of wave
function at the different positions along the domain wall, for the zero-energy eigenmode. At the scatterer locations, i.e., at ¢ = 90°(150°),
the tunneling between the two counterpropagating edge states is through the time-symmetric M;(M3) point. On the other hand, tunneling
is negligible at ¢ = 105°. (j) Fourier transform of the eigenmode at the three M points as a function of position along the domain wall. As
expected, the probability density shoots up at the scatterer locations. (k) Position of effective scatterers for an arbitrary shape of the smooth
domain wall (here at zero energy; locations are energy dependent). [The Fourier transform plots in (b), (c), (g)—(j) correspond to A~! = 1.1

and R,;/a = 1500, while in (d), (e) Ris/a = 50.]

in the small parameter a/R;s (with Ry the rescaled radius of
curvature), see Appendix D.

The main features of the interference pattern observed in
Fig. 4(d) can be explained even quantitatively by taking into
account two effects. The first, more standard effect is the
change of the phases accumulated in the different segments
between effective scattering centers along the domain wall
as the energy and the wave number are varied. The second
effect is due to the displacement of the effective scattering
centers with energy [Fig. 4(f)] related to the shift of band gap
with orientation [as explained above; see Fig. 3(j)]. While the
location of the scattering centers can be obtained by refer-
encing Fig. 3(j) and tracking the slope of the domain wall,
we can also use our numerics to give a more detailed insight
into what exactly sets these locations apart. We can take a
local Fourier transform of the energy eigenstate, in a certain
finite region at any selected point along the domain wall. This
enables us to discuss the momentum space behavior at any
point, connecting back to our semiclassical arguments about

tunneling between different valleys. As can be observed in
Figs. 4(g)—4(), the effective scattering centers are exactly
those locations where the momentum space wave function
has a peculiar property: The tails of the two parts of the
wave function centered around K and K’ overlap at an M
point (halfway in-between). This opens an efficient tunneling
pathway, giving rise to backscattering. In Fig. 4(j), we show
the momentum space wave function of the zero energy mode
at the M point, as a function of orientation angle, visualizing
the locations of the effective scattering centers (see Appendix
G for a similar demonstration for nonzero energy modes).
Our choice of a circular domain wall was only for ease
of visualization. The general situation is shown in Fig. 4(k):
At a given fixed energy, the effective scattering centers are
located at certain spots along the domain wall, which can be
determined easily by applying the reasoning presented here.
In a more refined picture, we observe that due to the finite size
A of the edge-band gap, these scattering locations actually
turn into domain wall regions of finite length, each of them
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FIG. 5. Backscattering in edge states propagating along arbi-
trarily shaped smooth domain walls. (a) Dominant edge-band gap
(obtained numerically) as a function of the domain-wall orientation ¢
(my, = 1.5J, & = 0.25). Here, the band gap is shown ten times larger
for visualization. The grey regions on the x axis indicate the interval
of ¢ where there is a band gap at zero energy. Note that the true width
of the grey region will be 210 times smaller. (b)—(e) Finite scattering
regions (depicted in black) on a circular (b), (c) and an arbitrarily (d),
(e) shaped domain wall for two different values of energy. Note that
the true size of the scattering regions will be ~10 times smaller.

encompassing an interval where the strip orientation leads to
a band gap that includes the given wave packet energy, cf.
Fig. 5.

One straightforward but helpful consequence of this anal-
ysis is an understanding of what happens in a typical scenario
encountered in many topological transport experiments: In
such experiments, one often has straight segments connected
by corners. If we think of a smooth domain wall and corre-
spondingly smooth corners (to suppress backscattering), then
the remaining backscattering is typically located at the cor-
ners. In our picture, this is simply due to the fact that the
corner represents a segment where a whole interval of orien-
tation angles is assumed, such that it is likely we encounter an
effective backscattering center there.

VIII. CONCLUSION

In conclusion, we have introduced an analysis of the
backscattering of edge states in smooth-envelope topological
insulators, based on the insight that they can be understood as
tunneling in reciprocal space. We have exploited this insight
to derive a detailed semiclassical calculation of the tunneling
rate. We find that by increasing the domain-wall smoothness
even slightly, one can suppress the backscattering rate by a
huge amount due to its exponential scaling. In doing so, it
also allows to increase the available bandwidth eliminating a
trade-off between backscattering and bandwidth that affects
devices with sharp domain walls. Moreover, we have shown
that in an edge channel propagating along a smooth domain
wall, the backscattering actually occurs at specific scattering
locations which we can predict based on our analysis.

The theory of backscattering developed in this paper
can be used as a basis to engineer backscattering-reduced

wavelength-scale topological bosonic waveguides. For in-
stance, the design parameters my; and A can be carefully cho-
sen in a given experimental situation constrained by the max-
imum allowed device footprint. Within the smooth-envelope
approximation, the footprint scales as A ~ A~2, while the
backscattering rate scales as |r| ~ exp[—R(my;)/A]. Thus,
my and A can be optimized to minimize |r| subject to the
constraint of the maximum allowed footprint. Furthermore,
the theory can be utilized to engineer the domain-wall shape to
avoid as far as possible the appearance of effective scatterers.
These strategies can be implemented to build increasingly
robust future topological devices.
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APPENDIX A: DETAILS OF THE SEMICLASSICAL
CALCULATION OF EDGE STATE SPECTRUM
NEGLECTING TUNNELING

Here, we show how to calculate the topological edge state
spectrum Ep , neglecting tunneling. This is a generalization of
the Jackiw-Rebbi solution in that it applies to the whole strip
BZ and not only to the vicinity of the high-symmetry points.

1. Details of the 1D ansatz

Since the quasimomentum is defined up to a reciprocal lat-
tice vector, an appropriate solution ¥ (k) in quasimomentum
space should fulfill the periodic boundary conditions,

Vi (k) =Y (k+b) = ¥ (k+by),

where b; and b, are two primitive lattice vectors. Strictly
speaking, the simple ansatz Eq. (9) does not yield such a
periodic solution. However, a periodic solution can always be
built as a superposition of our solution and other solutions
obtained displacing it by a reciprocal lattice vector. For an
irrational «, the formal expression for such a periodic solution
is

(AD)

Vi (k) = > 8(ks + (b1 + joba) - &, — k)
J
X @, (kr + (ib1 + jab2) - ),

where the multi-index j = (ji, j») has integer components.
We note that each term in the sum describes the wave function
on an infinite line which is parallel to the line (k, cos¢ +
kysing = k) supporting the initial nonperiodic solution. For
rational «, the periodic solution corresponds to a Bloch wave
and can be formally written as

{ﬁl}x (k) = Z 8(ks + mby - €, — lzx)(il}v (k, + mby - €,), (A3)

(A2)
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where by, is a reciprocal lattice vector fulfilling ay - by, = 27,
and @ (k; + Lip(¢)) = ¢z (k). In this way, subsequent terms
in the sum describe the wave function on parallel quasimo-
mentum lines separated by the strip BZ width 27 /|ag]|.

2. Calculation of the edge-band dispersion as a function
of the classical quasimomentum

The first step to obtain the semiclassical solution is to ex-
pand Eq. (7) about the classical quasimomentum k = (k;, k,.).
Remember that k, is chosen to be a local extremum of
|h(ky, k,)| for fixed k. In other words, we require that

O, Ih(k)| = 0. (A4)
Taking into account that
h-9,h
o, |h| = —, (AS)
hj

we see that h(k) is orthogonal to 9 h(k). If we also define the
unit vectors

3 h
9%, h] g

and the rotated Pauli matrices 6, ,x = 6 - €, g, We can write
the subleading order expansion of Hamiltonian Eq. (7) about
k as

H ~ m(Q,)5: + g(K)Ih(E)|6, j + (k — k)3, h(K)|6, .

(A7)
where g(k) = sign(e, i - h(k)). We note that close to the high-
symmetry point K, we recover the Dirac equation, substituting
k, ~ 0, h(k) ~ vk,e,, and Bk,_h(ﬁ) = ve,. Our more general
expression Eq. (A7) is similar to the Dirac equation for a
straight domain wall in that the dependence on the radial
quasimomentum k, is linear and at the same time [6; g, 6,.k] =
i6; [but, here, the vector e (e, ) is not aligned with (per-
pendicular to) the domain wall]. The solution is most easily
found in position space. Substituting k, — k, = —iAd /dQ,
and looking for a solution whose pseudospin is aligned with
the vector e i, we find the energy

Ep, = g(k)|h(k)|

€ k= €k =€ A€, (A6)

(A8)

and envelope function

efiw,;/z [N dQ’ m(Q’)
v, =C[ . L= |,
b (e“"k” > P Uo % |9 h(K)]

where ¢ is the angular coordinate of the vector e, ;. The
corresponding edge-state wave function ¥ (Q) is obtained by
multiplying the envelope by a plane wave of quasimomentum
k:

(A9)

¥, (Q) = explik - Q/A1¥; (Q,). (A10)

We can also calculate the wave function in quasimomentum
space either by taking the Fourier transform and evaluating the
integral with the steepest descent method or directly in quasi-
momentum space by approximating m(Q,) as linear about the
domain wall. Either way, we obtain Eq. (9) with

B 1 e—i‘PZ/z (kr - lgr)2
op (k) = W( ¢i%i/2 ) P [_ 4r02 |

(Al1)

with 02 = my /(2|9 h(k)|a). This expression is accurate in
the region about the classical quasimomentum k but is not
valid for the tails.

Using Eq. (A8), one can also compute the speed:

dE}, _ _

v, = —= = g(K)oy, [h(k)|. (A12)
dks

From this equation and the definition Eq. (A4) of the classical

quasimomentum k, we see that the speed is zero if and only

if VIh(k)| = 0. This equality is satisfied only at the M points

and the T point.

3. Numerical calculation of the classical quasimomentum k,

We note that to evaluate the edge-band spectrum and the
underlying normal modes, we need to calculate the clas-
sical quasimomentum k,(k;). In general, this can be done
only numerically. In practice, we substitute the constraint
that the longitudinal quasimomentum &, is conserved, k, =
(ks — ky cos @)/ sin ¢ into

3
ks, k)| = 1{1 +4cos (%_ka)

foos (L) oon (S}

and look for a local minimum k,. (One can then calculate &,
from k, and k,.) We note that this function supports at least two
local minima (one for each valley) and can even support an
infinite number of minima if the periods of the two sinusoidal
functions in Eq. (A13) are incommensurate. This is the case if
a = +/3cot @ is an irrational number. (In this case, the domain
wall configuration is not translationally invariant.) Neverthe-
less, one can find a unique periodic solution Ej by following
the same minimum as a function of k;, see discussion in the
main text.

(A13)

4. Analytical solutions for armchair and zigzag domain walls

Here, we calculate analytically the semiclassical band
structure for armchair and zigzag domain-wall orientations.
We preliminarily note that since sixfold rotations leave the
underlying honeycomb lattice invariant, there are six such
configurations supporting the same edge band structure (when
expressed in terms of the longitudinal quasimomentum £k;).

The armchair orientations correspond to the angles ¢ =
/2 4+ nw /3, n € Z. Without loss of generality, we focus on
the case ¢ = 7 /2. In this case, ks =k, and k, = —k, and
|h(ky, ky)| has exactly two minima for fixed k, (one for each
valley). By deriving Eq. (A13) with respect to k, and imposing
Ok |h(ky, ky)| = 0, one finds

3 3.
2 cos (%_kxa) + cos <§kya) =0.

Substituting this into Egs. (A13) and (10), we arrive at the

edge band structure:
. (35
Ep = Jsin zkya .

(Al4)

(A15)
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Next, we consider the zigzag orientations ¢ = nm /3, n €
Z. For concreteness, we focus on ¢ =0 such that k. =k,
and k, = k.. In this case, Ey = 27 /(3a) independent of k. By
substituting into Eq. (10), we find

Ep, = —J +2Jcos (?km). (A16)
We note that this solution corresponds to a minimum of
\h(ky, ky)| only for — /(+/3a) < k, < 7 /(~/3a), correspond-
ing to half of its period. At k, = %7 /(v/3a) [corresponding
to k = w(x1/+/3,2/3)/a)], the quasimomentum localiza-
tion length Me diverges because |akvh(/2,(, Izy)| =0, cf.
Eq. (A11). This indicates a breakdown of the WKB approxi-
mation. We note that the zigzag strip BZ width is 277 /(v/3a).
Thus, our semiclassical solution describes well the topological
edge-state band across the whole BZ except for the immediate
vicinity of the X point.

S. Calculation of the period T, of the quasimomentum loop Kk(-)z,

Here, we calculate the length 7, of the quasimomentum
loops K(-);, for translationally invariant strips. This also al-
lows us to derive the length |ag| of the strip unit cell, the width
27 [|ag| of the strip BZ, and the number of edge bands N.

We start by finding a sufficient and necessary condition for
the vector h(k;, k), defined in Eq. (8), to be a periodic func-
tion of k.. We substitute in Eq. (8), k; = k; cos ¢ + k, sin ¢,
k. =k, cos ¢ — k, sinp. We note that h(k,, k,) is a function
of two distinct sinusoidal functions with periods

T 47 4
}’,1 = —_’
V3asin )

Thus, h(k,, k) is a periodic function of k, if and only if
the periods 7,; and 7, of the two sinusoidal functions are
commensurate,

= . (A1
3acos ¢

T,
T,

with p and g being two relatively prime integers. To calculate
the overall period L(¢) of the function h, one has to distin-
guish two scenarios. In the first scenario, both g and p are
odd. In this case, the period is

Tw T,  2ngq

2 P 2 \/ga sin ¢ '
This fulfills A(ks, k, + L) = h(ks, k. + L) because the argu-
ment of both sinusoidal functions increase by an odd integer
multiple of = and the resulting factors of —1 are multiplied
and, thus, drop out in Eq. (8). In the second scenario, g or p
are even. In this case, the sign cancellation does not take place

because one of the two sinusoidal functions increases by an
even multiple of . Thus, in this case one finds

o= (A18)

=\/§cot<p= B,
q

I, =gq (A19)

4rq
V3asin © '

Equations (A19) and (A20) can be combined in a single for-
mula:

Tr = qTr,l = pTr,Z = (A20)

4 g

T, = :
[1+ (pg mod 2)]+v/3asing

(A21)

The length |ay| of the strip unit cell and the width 277 /|ay| of
the strip BZ are directly related to 7,

2 . ABZ
|@s| T, 3aq

2

[1+ (pg mod 2)]sing, (A22)
where Apz = 872 /[a*3/?] is the area of the honeycomb lat-
tice BZ. Dividing the period of the semiclassical solution
T = 4m /(3a) sin ¢ by the width of the strip BZ, one finds the
number of edge bands N:
T,
N =
Apz

=2g/[1 + (pg mod 2)]. (A23)

APPENDIX B: DETAILS OF THE CALCULATION
OF THE WKB WAVE FUNCTION

After calculating the classical quasimomentum k and en-
ergy Ep in Appendix A2, here we evaluate the tail of the
semiclassical wave function far away from k. This can be
viewed as a preliminary step to calculate the tunneling rate.

We consider the quasimomentum-dependent pseudospin
direction e, ¢ ,, defined according to e i ) h(ks, k) =
g(k)|h(Kk)|. In other words, the pseudospin is rotated to main-
tain the projection of h(ky, k,) in its direction equal to Er, =
g(l_()|h(l_()|. It is then convenient to rewrite Hamiltonian Eq. (7)
in terms of the Pauli matrices 6, . 1) = €/, k,) - & Where
€, (t.k) = € A€ ¢ ). Inthis way, we generalize Eq. (A7) far
away from the classical quasimomentum k as

H ~ m(0)6, + E; 8, ¢ s, + /s, k)P = EZ 6, ¢ -

(BI)
We then apply the WKB ansatz Eq. (12) to the time-
independent Schrodinger equation choosing the leading order
azimuthal angle ¢,z (k;) to be the azimuthal angle of the
vector €, ;- This leads to a simple scalar equation for the
leading order S ; of the action:

m(dy,Soz,) — iy/ Mk, k)2 —E2 =0.  (B2)

We note in passing that this can also be rewritten in the form

g(l_()\/M(é)k,So,/zx )2 + Ih(ks, ko)I? = E, . (B3)

This is the Hamilton-Jacobi equation for the effective classical
Hamiltonian Eq. (14). Solving Eq. (B2), we arrive at the
classical action Eq. (15) with

Ik, k)P — E2
O, = —iaarctan —_—. (B4)
My

Here, one has to take the square-root branch that is positive
for k, — k, > 0.

We note that the pseudospin can rotate to keep the projec-
tion of h(k,, k.) constant only as long as |h(ks, k,)| remains
larger than |h(k;, k.)|. This is possible over the whole quasi-
momentum loop only if kisa global minimum of |h(l€s, k)|
(for fixed k;). Even in situations when this is not the case,
our solution might still apply to the wave function along the
tunneling path. In particular, it will always apply to the more
direct tunneling paths (leading to the largest tunneling rates)
which traverse each valley only once; cf. Fig. 3.
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1. The WKB wave function and band structure
at an avoided crossing

The approximate wave functions q~S,;S (k) calculated using
the WKB ansatz Eq. (12) are peaked around the classical
quasimomentum k that lies within one of the two valleys. Due
to tunneling, the Bloch edge waves (;Sn «(k,) for the nth edge
band are, in general, a superposition of two time-reversal-
partner semiclassical solutions with classical quasimomentum
ky fulfilling k = k; mod (27 /|ay|). In the semiclassical limit,
the admixture of the two semi-classical solutions can be large
and, thus, will modify the band structure only in a small
quasimomentum region about the strip high-symmetry points
I'and X.

Exactly at a strip time-symmetric quasimomentum I' of X
(corresponding to k = 0, or 7 /|ay|) the exact Bloch-waves
with transverse wave function (;Sn’ «(k,) can be chosen to be
eigenstates of the time-reversal symmetry 7 (because 72 =
1). In position space, 7 is just the complex conjugation while
in reciprocal space it also changes the sign of k. Thus, the
transverse wave function ¢, . (k,) of time-reversal symmetric
solutions fulfills the constraint

(k" + k) = 8, (K — k), (B3)

where k(T is the transverse component of k™ [one of the
two time-reversal symmetric quasimomenta that lies on the
path k(-); ]. We can construct two orthogonal time-reversal-
symmetric Bloch waves with transverse wave functions

(@1 (k7 + k) + ¢ (kP — &),

= k).

(B6)

$11+1,k(k£T) + k")

§|~

B (K7 + er) ~ (¢k (k" + k) = @, (K

3|~

starting from the transverse wave function Jb,;ﬁ (k) of a semi-
classical solution. We note that both approximate solutions
Vui124124(kr) can be viewed as an equal superposition

of the semiclassical solution 1~ﬁk (k) and its time-reversal-
partner solution (the second term of each Bloch wave). The
time-reversal symmetry does not fix the relative phase of the
superposition, nevertheless, one can always cast the Bloch
waves in the form Eq. (B6) by appropriately choosing the
complex phase of the normalization constant C’ in the WKB
ansatz Eq. (12). We note further that the energy difference
between the two Bloch waves is by definition the tunneling
rate A.

Using perturbation theory for quasi-degenerate levels one
can describe the doublet in the region of the avoided crossing
with an effective 2 x 2 Hamiltonian. Using as a basis the
two semi-classical time-reversal-partner solutions this effec-
tive Hamiltonian reads

. E,;A + v,;xék A/2
Hye = < A2 B —upsk) (B7)

where v = dEp /dks and 8k is the strip quasimomentum
counted off from the high-symmetry point k. We note that the
phase of the off-diagonal matrix element is fixed by Eq. (B6).
By diagonalizing this Hamiltonian, we obtain the energy
dispersion and Bloch waves in the region of the avoided

crossings:

2
Envipt1/2krsk = Ep, £ \/(A/Z)2 + (v 8k)",

~ ®)\ -~
¢n+1,k+8k(k§T) + kr) ~ COS (E)¢k3 (k’{T) =+ kr)
+ sin ( )¢k (k™ — k),
i Qi ®\ (T)
Gion (KD + k) ~ isin 5 o1 (k" + k)

—icos <%>&>,§ (k" — k).

© = arg (iA/2 — v 8ky). (B8)

APPENDIX C: DETAILS OF THE CALCULATION
OF THE TUNNELING RATE

1. Details of the calculation of the tunneling path
and the tunneling energy

First, we prove that the paths K(-); that are time-reversal
invariant pass at least through a time-reversal invariant
high-symmetry point k™. Preliminarily, we note that the
time-symmetric high-symmetry points M; are equal to half
of a primitive lattice vector b;, M; = b;/2. Moreover, half
of any reciprocal lattice vector b is either a lattice vector
and, thus, equivalent to the I' point or is equivalent to half
a primitive lattice vector and, thus, to an M point. Thus,
we need to prove that any time-symmetric path k(-); passes
through b/2 (half of a reciprocal lattice vector). By definition,
the path is time-reversal invariant if for every k on the path
K();,» —K(-);, also lies on the same path. Equivalently, if k
lies on the line k, cos ¢ + k, singp = k, (or in vector notation,
k -e, = k,), there is a b such that b — k lies on the same
line, (b —K) - e, = k,. By summing the two equations and
dividing by half, we find that b/2 also lies on the same line,
(b/2) - e, =k, as we wanted to prove. In the same way,
we can prove that if the path passes by a time-symmetric
high symmetry point it is time symmetric. In addition, we
note that if K(-); passes through two distinct time-symmetric
high-symmetry points, then it is a periodic path. Path k(-)z
can be periodic only if h(k, k) is a periodic function of k,
for rational «. Thus, for irrational « every periodic path can
be identified with a time-reversal-symmetric high-symmetry
point k™,

Next, we calculate the longitudinal quasimomentum k("™
for which the tunneling is resonant by requiring that the
loop k(" = k, cos ¢ + ky sing passes through the relevant
high-symmetry point k™. For the dominant tunneling tran-
sition [corresponding to k™ = M, = (0, 27 /(3a))], we find
k™™ = 27 /(3a) sin ¢. The x component k" (¢) of the clas-
sical quasimomentum k(m“) (¢) is, then, the local minimum
of |h(k,, 2m /(3a) — k; coth g0)| that is closer to k, = 0, which
we calculate numerically as discussed in Appendix A. From
the components k"™ and k(™" we find the classical quasi-

(kW 257 /3 — kWM cot @) and the
tunneling energy Eyy") (¢) = g(k™™)[h(k™)|. We note that

momentum k(“m)1 (@) =
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E&Tf(fp) varies monotonically between —J and J in the ¢-
interval of length 7 /3 between two subsequent zigzag domain
walls, cf. Fig. 3(j). Remarkably, the dependence in this in-
terval is very nearly (but not exactly) linear, with an average
slope of 6J{n ~ 1.91J and a slope for ¢ = 7 /2 [correspond-
ing to Eyg™ (7 /2) = 0] of Jmr /+/3 ~ 1.81J.

2. Calculation of the tunneling rate for the armchair strip

Here, we calculate the tunneling rate including the pref-
actor for an armchair domain-wall configuration ¢ = 7 /2 +
nm /3. For concreteness, we consider ¢ = 7 /2 (but the final
result applies to any armchair configuration). In this case, the
system is invariant under twofold rotations:

6XH(_QX7 _Qy’ _]gx’ _lgy)é\—x = H(Qxa Q_v, lgxa 12)) (Cl)

In addition, the Hamiltonian has a nonlocal chiral symmetry,
in

6.H(—0x, Oy, —ky, k)6, = —H(Ox, Oy, ki, ky).  (C2)

These additional symmetries make it possible to calculate the
tunneling rate Ay, 1, including the prefactor as shown below.

As one see from Fig. 3(j), for the armchair domain-wall
configuration there is a single edge band gap, which cor-
responds to the dominant tunneling pathway ym, ;1 (in the
remainder of this section, we drop out the indexes My, 1).
As one can read out from the analytical expression Eq. (A15)
of the band structure in the neglect of tunneling, the tunnel-
ing energy is E™V (7 /2) = 0 with classical quasimomentum
k™ = K = 27(—37"/2,1)/(3a). Thus, the resonant tunnel-
ing WKB wave function é(k,) is a solution of Eq. (7) with
k, = IE)(,‘““) =2n/Ba)and E = E™ = 0:

{m(Qx)éz - J&x[l —2cos (?m)] }(}(kx) =0. (C3)

We note that this equation is invariant under the unitary &,.
This symmetry is a consequence of the twofold symmetry,
the chiral symmetry, and the fact that we are looking for a
solution with zero energy. It has the important consequence
that the pseudospin and orbital degrees of freedom factorize.
This allows us to apply the simpler ansatz:

~ 1 /i71/2\ . - i

$iko) = E(’il/z )as(kX), $lk) = C'exp [ - xsukx)}.
(C4

In other words, we plug in Eq. (12) the Bloch wave angle

@, (k) = /2 independent of the radial coordinate k.. This

symmetry simplifies very much the calculation of the WKB

wave function. Up to subleading order, we find

kﬁ(
d;(kx) = C/(_m(l))—1/2 exp |: — l[ ) Qx(k;)dk;/)\,:l, (CS)
k,((m“

where m'" indicates the derivative of m and k" =
—27 /(3+/3a). For m(Q) as in Eq. (5), we find

() =~ een(2). (C6)
a a
QO = —iaarctan |:L (2 cos (ﬁkxa> — 1)], (C7)
Mpk 2

cf. Eq. (17) with E = E®@" =0 and h(k) as in Eq. (8)
with k, = 27 /3. We note that Q,(k"™) = 0 for the classical
quasimomentum k™™ = K. By expanding about the K point,
we recover the Gaussian in Eq. (A11), here with k, = k,, k=
IEJ(C‘”“) and |3 h(k)| = v = 3Ja/2. By comparing Eq. (A11)
and Eq. (C4), we also find

3] 1/4
|C/|=( mb“) . (C8)

27 A

We note that the exact Bloch waves ¢ /4 (ky) are eigenstates of
the twofold symmetry:

0. sa(—k) = £ (k). (C9)

where A and S label the symmetric and antisymmetric Bloch
waves, respectively. We denote the corresponding energies as
Es and Ey, respectively. We note that because of the chiral
symmetry,

Es=—Ey=A)2. (C10)

Below, we show that the antisymmetric state is the lowest
energy state and, thus, A is positive, consistent with its inter-
pretation as the tunneling rate (as in the main text). In addition,
one can fix the global phases of (}S(kx) and (;SA (k,) such that
they are invariant under the time-reversal symmetry

a;/A(_kx) = &S/A(kx)v (CI1)
and mapped one into the other via the chiral symmetry
By (ko) = 6.0, /5(—ks). (C12)

Next, we want to find an approximate expression for ¢ /a(ky)
in terms of the WKB wave function (i)(kx). We can enforce the
time-reversal symmetry Eq. (C11) using Eq. (B6), here with
kD = 0;

~ 1 - ~ %
kx N — kx _kx )
Ps(ky) ﬁ(fﬁ( )+ (—k)

~ l ~ ~ %
To also fulfill Egs. (C9) and (C11), we need to fix the global
phase of C', C' = |C'|.

Next, we adopt to our problem a strategy invented by Lan-
dau to calculate the tunneling rate for a double-well potential
[48]. We apply the Schrodinger equation to (;SS(kX), multiply
on the left-hand side by (;5* (ky), and integrate over half of the
strip BZ to obtain

(C13)

0
/ Ak (ko) Esds (k)

—L/2
O ~
- f dkx{¢*<kx>
—L/2
Ld )\, . V3 N
X [m(lkdkx)az — Jox<1 — 2cos <7kxa>>i|¢s(kx)}.

(C14)

We note that k, =0 (k, = —L/2) corresponds to the M;
point (I’ point). Taking into account Eq. (C13) and that the
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semiclassical solution is normalized, we find

0 . 1
dk.¢ (k, k)= ——.
/_ | (0s(h) =

Plugging this equation together with Egs. (C9) and (C12) into
Eq. (C14), we find

ES _ A _ 0 ~ % . d ot 7
V3

_J[l — 2cos <7kxa>}$*(kx)$s(—kx)}. (C16)

(C15)

Likewise, when we apply the Schrédinger equation to d(ky),
multiply on the left-hand side by (I); (ky), integrate and take the
complex conjugate, we obtain

0 - od \ax
0= f_ L/zdkx{m(—kx)m(—m dkx)(b (k)

_ 1[1 —2cos (?kxaﬂ%s(—kx)%*(kx)}. (C17)

By substracting the latter equation to Eq. (C16), we find

0
A =23 f dk, [«%*(mm (ixi)clA(—kx)
—L/2 dk,

- d -
— du(—kom( —ir— )" (ko) |. (C18)
dk,
Next, we plug the Taylor expansion m(Qy) =

Y oqam™(0)Q" /n! inside the integral. The sum is over
odd integers because m(Q,) is an odd function. Using also
m(—=Q) = —m(—Q), we find

™0
A = 232 Z m_‘()(,-k)n
n!
n=odd

0
x / AR [ (k)22 B () + B (—k)0 B (k)]
—L)2
(C19)

For each term in the sum, we get rid of the integral by inte-
grating n times by part,

m"0) _
A =237 Z T(Z)L) Z(_)l !
n=odd . =1

0

X (0 da (k0B K|, ), (C20)

Finally by plugging Egs. (C5) and (C13), calculating the

derivatives, and keeping only the exponentially larger bound-
ary terms at k, = 0, we find

_ m™(0) n—1 IC'? —R/A
A_M(Z n—n1% )m(“(Qx)e ’

n=odd
0
R =2i O, (K.)dK.. (C21)
B

272
& 33
€
(0]
[
o
o
X
(0]
c
5 o
[ 1 1 1 1 1
0 1 2

My, /J

FIG. 6. Tunneling exponent R as a function of the mass param-
eter my,; for an armchair domain wall. The full WKB result (black
line), obtained evaluating numerically the integral in Eq. (C21), is
compared to the closed form large mass limit (red-dashed line),
cf. Eq. (C24). For small mass my — 0, the full result tends to
R = 272/(3+/3), as predicted by Eq. (C25).

We note that m(">(0)Qﬁ’1/(n — D! =mM(Q,) and, thus, we
arrive at the simple expression

1/2
A = 2A|C'Pe R/ = <6"m—bk)‘> R,
T

(C22)

For the limit of large mass myx > J, we can approximate
the imaginary position Q, as

J 3
0, ~ i (2 cos <£ka> - 1>
Mpk 2

and evaluate the classical action along the tunneling path
analytically to find

4J
R~ —— <1 = L)
Mipk 3J3
For the limit of small mass, Q, can be approximated as a step

function with Q, = —iam /2 on the tunneling path. With this
approximation, we find

(C23)

(C24)

22

33
For intermediate values of myy/J, we can evaluate R nu-

merically. Figure 6 shows its full dependence on myy /J (black

solid line) together with the large-mass asymptotic limit (red
dashed line).

R~ malk™| = (C25)

APPENDIX D: WKB EDGE-STATE SOLUTION
FOR A CLOSED DOMAIN WALL

In this Appendix, we calculate the edge-state spectrum and
WKB wave function for a closed smooth domain wall (ne-
glecting tunneling). These results generalize the Jackiew and
Rebbi solution, also including the effects of a finite curvature
of the domain wall. We show that the classical trajectory of
an edge-state wave packet does not exactly follow the domain
wall but rather tends to overshoot it. Also, the wave packet
acquires a finite mass that modifies its propagation speed.

Here, we use the WKB ansatz in position space

—i0:(Q)/2 1
¥(Q) = c(cfi;(fgk//zz); 0,02 > exp [%SA(Q)], 1)
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with
$1Q) =) S.(QM", (D2)

n=0

and likewise for the Bloch sphere angles ¢, (Q) and 6, (Q).

As usual for the WKB approach, we seek to solve the
time-independent Schrédinger Eq. (7) order by order in A.
We note that only the terms where the derivative is applied
to the classical action Sp(Q) are independent of A. Thus, up
to leading order in A we arrive at the matrix Hamilton-Jacobi
equation:

. ) Op /2)e~i#0(Q)/2
[(m(Q)6. +h(VSy(Q)) - 8] (";;((go//;;w/z )

_ g (cos(@o/z)eWQ)/z)

sin(fy/2)e'w Q72 (D3)

We then identify VS,(Q) with the classical quasimomentum,
kz(Q) = VSy(Q) and formally write
cos(6/2)e " i0(Q)/2 i , ,
(D4)
where Cq is a line connecting a fixed reference point to Q.
Below, we show that one of the effects of a finite curvature
R is to slightly displace the edge-state position away from
the domain wall [as defined by the condition m(Q) = 0].
Preliminarily, we look for a solution of Eq. (D3) with a real
quasimomentum k at position Q away from the domain wall,
such that m(Q) # 0. The set of positions Q with real quasi-
momenta k will form a classically accessible closed path that
is to be determined in the course of our calculations. For large
radius of curvature and/or small energy |E|, it will remain
close to the domain wall. In general, we will only assume that
the tangent to the classical path is orthogonal to the gradient

of the mass function m(Q). From Eq. (D3) and the condition
that kg should be real on the classical path, we find

\/mz(Q) + [h(kz(Q))* = |E|, (D5)

with
6o = arg (sign(E)m(Q) + ilh(kg(Q))]),

and @9 — (1 — sign(E))/2 being the angular coordinates of
h. Inspired by the special solution for a straight domain wall
(that can be viewed as the limit of infinite curvature of a closed
domain wall) we also restrict our ansatz, requiring that the
quasimomentum K at a classical accessible position Q obeys
the additional constraints (see sketch in Fig. 7)

(D6)

Vi/h| . Vom
oA o =sign(E)e;, e.Qq=— .
Vil i, @) [Vom|
D7)

This is a natural generalization of Eq. (A5) with the radial
direction being determined by the direction of the gradi-
ent of the mass function. We note that for h(k) as given
by Eq. (8), a quasimomentum k on the contour |h(k)| =
VIE|? —m2(Q) < J is uniquely identified by the direction
of the gradient V|h|, cf. Fig. 7. Thus, Egs. (D5) and (D7)
uniquely identify kg for a fixed Q. To find a complete so-
lution, we need to find the classically accessible path and to

(b) V| h|

kx(Q)

[h(k)| = \/E*+m*(Q)

FIG. 7. (a) Sketch of the classically accessible path. In the
presence of a finite curvature, the classical trajectory (blue line)
overshoots the domain wall (grey dashed line). (b) Contour plot of
the function |h(k)| about the K point. Also shown is the classical
quasimomentum kg (Q) for E > 0 and the position Q marked with a
dot in (a).

calculate the quasimomentum Kz in the vicinity of this path.
The two problems are related because the wave functions has
to fall off going away from the classically accessible path.
We parameterize the classical path with the arc length Q;
counted off from a reference point on the path. We denote the
unit vector tangent to the classical path as e; o, = €, g(g,) A €:-
We also define the angle ¢ to be the azimuthal angle for the
vector €, o . This allows us to define the (rescaled) radius of
curvature of the classical path R (Qs) =1/ (j—&). Likewise,

we denote as R(Q,) the radius of curvature for the correspond-
ing path kg (Qy) in reciprocal space [which lies on the contour
|h(K)| = |E|?> — m2(Qy) < J]. Since we look for a classical
path that is orthogonal to the gradient of m(Q), from Eq. (D5),
it follows that

dkg
Vi/h| - =0. D8
k/hl 40, (D8)
From the above equation and Eq. (D7), it directly follows that
dkE K
=~ =0, kps=kg-ep. D9
40. E. E €50, (D9)

In addition, for Eq. (D7) to be valid along the whole classical
path Q(Qy), the change of azimuthal angle d¢ should be the
same for both Q(Qy) and kg (Q;) and, thus,

dke, R
dQS - RI’S .

Next we require that Eq. (D3) also holds away from the
contour. We introduce the coordinate Q, orthogonal to the
classically accessible path, O, = (Q — Q) - e, ., where Q is
the position of the classical path that is closest to Q. By
expanding Eq. (D7) about Q(Qy), we find

E cos(By/2)e #0/?
sin(6y/2)ei*0/?

(D10)

= [(M(Q) — [Vqm|Q,)6;

+6 [h+ 0 <dkE”a bt 3Kes h)}
o- A\ =%, ks
dQI’ er kE(Qx)

(SR o,

sin(6y/2)ei/? (D1D)

235431-16



TUNNELING IN THE BRILLOUIN ZONE: THEORY OF ...

PHYSICAL REVIEW B 104, 235431 (2021)

It is convenient to rewrite the psudospin vector in Eq. (D11)
in terms of the eigenstates

1 [e—i%0/?
Ve = 75{Gee)
of & - h(kg(Qy)),

—ipo/2 B B
(C:ifl(g)o//zz); wf/z ) = cos(§/2)V, — sin(@/2)V_,

(D12)

6 - h(kg(Qy)Vi = Esign(E)VE? — m?(Qy)Vx+.
(D13)

Here, 6 = 6y — /2 is the polar angle counted off from
the equator of the Bloch sphere. Grouping all the terms in
Eq. (D11) that are proportional to Q, into two separated
groups containing the terms proportional to either the vector
V. or V_ (the remaining terms drop out), and requiring that
the terms in each group add up to zero, we obtain two scalar
complex algebraic equations:

0 =si —~ | mI —~ i (E) ’Sa |h|
= SIn V 4+ cos s1gn
2 @ 2 ¢ er .
dkE r
s 8k,h)’

.. é . (E)(ez/\h) dkE,s8 h+
— 1S | — JS1€n .
2 )M Ih| a0, " do,

6 0
0 = cos (§>|VQm| + sin < )mgn(E) 40, 8k |h|

6 h) [dkg, dkg.,
+icos <§>sign(E)(eZ/\ ).< L o b —= ak,h).

h o, *  do,
(D14)
Taking into account Egs. (D1), (D4), and (D10), we find
dkg d*s dkg , R
Be o =0 _ T (D15)
do, d0,dQs; dQ; R
Substituting into Egs. (D14), we find
dkg , .Ah)-9.h R
Re| L | _ (A1) Ouh R (D16)
do, (e; Ah) -9 h R

and are left with two real equations of two independent vari-
ables:

0 = sin b |V om| + cos f sign(E) R o |h|
= — m — J—
) Q ) g 7. %

IS

0 h)-o.h kg,
+ sin (g)sign(E)(ez/\ ) - %, Im[d E]

|h| do,

6 6
0= —cos <§)|VQm| + sin (2>s1gn(E) ok, |h|

6 h) - h, [dke,
+cos<§)sign(E)(eZ/\ ) % Im [ £,

|h do,

For large radius of curvature Ry, this equation can be solved
approximating the radius of curvature Ry and the tangential
vector e, o of the classical path with the corresponding quan-
tities for the domain wall to calculate the quasimomentum
on the classical path kz and allowing us to calculate 6 and
dkg »/dQ,. Outside of the perturbative regime, the equation

] (D17)

can be solved iteratively using #(Q;) as calculated with the
perturbative procedure to calculate the displacement Q, of
the classical path from the domain wall, update the radius
of curvature R, and the tangential vector e, , taking into
account this displacement, and then start a new iterative step.
If we consider a small energy such that the Hamil-
tonian can be well approximated with the Dirac equa-
tion, the perturbative solution can be found in closed
form. In this case, h(Q;) = vke(Qy), kg(Q;) = E/vey,,
a,h =ve, o R~ |E|/v= 2|E1/(3Ja), O, |h| ~ v, (e; Ah) -
d,h/h| =~ v, |Vom| =~ my/a, sin(f/2) ~ 02, cos(6/2) ~
1,6 ~ my.Q,/(Ea) and obtain

mkar £ mkar vIm |:dkEr

=0, D18
2Ea’ Ry 2Ea do, i| (DI18)

, dk,
om0 [ ] g (prg)
a 2R sa B
This can be solved to obtain
dkg , E’d?
do, av 2R mbk
_ E%q?
= — . D20
0=~ (D20)

We note that in the limit of large radius, we recover the result
for a straight domain wall for the quasimomentum in the
vicinity of the classical path (which now coincides with the
domain wall, O = 0). The presence of a finite curvature tends
to broaden the wave packet and displaces the classical trajec-
tory to overshoot the domain wall, see sketch in Fig. 7.

By enforcing periodic boundary conditions, we find the
Bohr-Sommerfeld quantization condition

ka(Q’) -dQ = ArQ2mn —1)). (D21)

Here, I, is A independent and should be calculated by also in-
cluding the subleading contributions to the action. This allows
us to calculate the energy spacing between the subsequent
quasidegenerate doublet:

E E, =27\ dE _ld
n+l — Lp = 4T [% <dks> QA:|

For small energy and large radii of curvatures, one finds

— E, = 27/ Ly, (D23)

-1

(D22)

En+1

where L is the (rescaled) perimeter of the domain wall.

APPENDIX E: SETTING UP THE TIGHT
BINDING SIMULATION

In this Appendix, we describe the details of the tight-
binding numerical simulations of the translationally invariant
strip (Figs. 2 and 3 of the main text) and the circular closed
domain wall (Fig. 4 of the main text).

All the tight-binding numerical simulations in the main
text requires defining a Hamiltonian matrix of the consid-
ered geometry on the honeycomb lattice, and obtaining its
eigenvalues and eigenstates. A tight-binding model of N sites
on a honeycomb lattice can be described by the Hamiltonian
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(b)
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FIG. 8. (a) Setup of the tight-binding strip simulation. Green box is the strip unit cell. Domain wall is indicated with thick black dashed
line. The on-site potential depends on the sublattices A and B and the distance x from the domain wall. An example of a pair of sites that are

coupled via periodic boundary conditions is indicated in orange. (b) Typical standing wave mode intensity |y,

|? (maximum value normalized

to 1) of the circular domain wall with reduced imprint. The maximum length d,,,« is chosen such that the eigenmode intensity decays by a

factor greater than 1071,

matrix of dimension N. The on-site potential at the nth site
is given by the diagonal matrix element H, ,. The coupling
between site n and site m is given by the matrix element
H, , = H,, . Below, we show in detail the algorithm to define
the Hamiltonian matrix for the two geometries considered
in the main text: the translationally invariant strip and the
circular domain wall.

1. Tight-binding simulation of strips

Here, we outline the steps to define the Hamiltonian H; for
the conserved quasimomentum k € [—m /|ay|, 7 /|ay]|) (ay is
the strip unit vector) in the strip BZ. First, we assign the
nearest-neighbor couplings and the on-site potentials at all
sites of the honeycomb lattice within a fixed region. The
on-site potential at a site depends on sublattices A and B and
distance x [see Fig. 8(a)] of the site from the domain wall
H, , = £my tanh(Ax/a), where the positive (negative) sign
corresponds to sublattice A (B). Next, we define the strip
unit cell that will be a rectangular box [indicated in green
in Fig. 8(a)] with one edge parallel to ay. The domain wall
passes through the middle of the box, the longitudinal edge
length is |ay|, and the transverse edge length is set to be
sufficiently large such that the edge state decays considerably
within this length. We consider, for the evaluation, only those
sites that are located inside the strip unit cell. Thus, if N
sites are located in the strip unit cell, then the dimension of
the Hamiltonian matrix is N. The next step is to identify all
pairs of sites within the strip unit cell that are coupled via
periodic boundary conditions. An example of one such pair is
shown in Fig. 8(a). For site n and site m that are coupled with
periodic boundary conditions, such that (r, — r,,).ay > 0, the
coupling matrix element is given by H,, ,, = Je *lasl = H, .
The Hamiltonian H;, is diagonalized to obtain all eigenvalues
and eigenstates corresponding to quasimomentum k.

2. Tight-binding simulation of circular domain wall

Analogous to the case of the strip that contains a straight
domain wall, we can define the Hamiltonian of the geometry
that contains a circular domain wall of radius R. For the
setup shown in Fig. 4(a) of the main text, the dimension
N of the Hamiltonian matrix scales as N oc R? oc A2, This

scaling behavior prevents us to efficiently diagonalize H for
larger radii that are required to obtain the results of Fig. 4(d)
(N =5 x 10* for A~! = 1.1) and Fig. 4() (N = 7 x 10%). We
came up with two strategies to solve this problem:

(i) Reducing the imprint: We consider, for the evaluation,
only those sites whose distance from the domain wall is less
than a maximum distance dp,x < A~'. The maximum distance
dmax 18 set to be sufficiently large such that the edge state
decays considerably within this length (See the illustration in
Fig. 8b). With this solution, the dimension of the Hamiltonian
still scales in a similar manner N & Rdpax x A~2. However,
the proportionality factor is reduced.

(ii) Using sparse matrix diagonalization: The Hamiltonian
matrix has very few non-zero elements. Hence, it is not only
memory efficient to store it as a sparse matrix, but also time
efficient to diagonalize it. We use scipy.sparse package in
Python for the numerical simulations.

APPENDIX F: EDGE STATES FOR DIFFERENT
DOMAIN WALL ORIENTATIONS

In Fig. 2 of the main text, we show the band structures and
wave functions |<}),;Y (k,)|? for the two domain-wall orientations
=90 (p=0,g=1)and ¢ 2 96.7° (p=—1,g=>5). In
this Appendix, we investigate the same quantities for other
domain-wall orientations ¢, cf. Fig. 9. Note that due to the
120° rotation symmetry of the graphene tight-binding Hamil-
tonian with nonzero mass, the strip band structures for the
orientations ¢ and ¢ + 120° are identical.

The edge state traverses a periodic loop in both the strip
band structure and the wavefunction (see Fig. 9). The period
of the loop T (¢) = 4 /(3a) sin ¢ is a continuous function of
¢. At E = 0, this loop is at the valley K (K’) for positive
(negative) velocity of the edge state. At E = £J, the loop
is at either of the three time-symmetric points My, M,, M3.
For ¢ € (0°, 60°), the closed loop changes continuously and
connects the two valleys via the M; and M3 points. At ¢ =
60°, corresponding to the zigzag domain-wall orientation, the
localization length of the wave function diverges at £ = +J,
indicating the breakdown of the WKB approximation (see Ap-
pendix A 4). For ¢ € (60°, 120°), the closed path of the wave
function varies continuously and connects the two valleys via
the M, and M3 points.
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(a) p=0,p=14g=0 (b) ¢=~1911p=54g=1 (c) @=30,p=34=1 (d) @~4089°,p=24=1
J

(9

(h) ¢ ~ 10089, p=—1,4g=3

p=90,p=04g=1

FIG. 9. Strip band structures and edge-band wave functions |§(k)|? for few hand-picked and increasing values of ¢ from 0° to 120°. The
translationally invariant strip is defined for the condition ~/3 cot ¢ = p/q. The wave functions are plotted for the edge bands highlighted in
blue. Note the closed loop traversed by the edge band in the band structure (indicated in blue) as well as in the wave functions (red regions).
Labels of the high-symmetric points (K, K’, My, M, M3) beside the edge band maps the corresponding location of the band in the wave
functions.

APPENDIX G: POSITION OF SCATTERERS AT NONZERO the zero-energy eigenmode at the My, M,, M3 points shoot up
ENERGY ON THE CIRCULAR DOMAIN WALL at the scatterer locations. This can be understood from the fact
that the tunneling path in the reciprocal space between the two
valleys is through the time-symmetric M points. In Fig. 10, we
demonstrate this fact for the nonzero energy eigenmodes.

In Fig. 4(f) of the main text, we show the location of the
scatterers on the circular domain wall interface for three dif-
ferent energies. We also show that local fourier transforms of

(@) 108 =M, —M, —M, (b)

L2
g
14" "
< ¢ =279.42°
— ] ] ] ] ] ]
30 150 270

© (d)

10
N
~ 5
3
1 7
<€ ¢ = 288.56°

] ] ] ] ] ]
30 150 270
Strip orientation ¢

FIG. 10. (a) and (c), Local Fourier transform of the eigenmodes with energy E ~ 0.3/ and E =~ 0.6/, respectively, at the three M points
as a function of the angular coordinate along the domain wall. The probability density shoots up at the scatterer locations. (b) and (d), Local
Fourier transforms of the wave function for three scatterer locations. [The eigenmode energy is the same as in (a) and (c), respectively.] For
each scatterer, the tunneling path connecting the two valleys passes through a M point.
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