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Antibiotics are essential drugs used to treat pathogenic bacteria, but their prolonged use
contributes to the development and spread of drug-resistant microorganisms. Antibiotic
resistance is a serious challenge and has led to the need for new alternative molecules less
prone to bacterial resistance. Antimicrobial peptides (AMPs) have aroused great interest
as potential next-generation antibiotics, since they are bioactive small proteins, naturally
produced by all living organisms, and representing the first line of defense against fungi,
viruses and bacteria. AMPs are commonly classified according to their sources, which are
represented by microorganisms, plants and animals, as well as to their secondary
structure, their biosynthesis and their mechanism of action. They find application in
different fields such as agriculture, food industry and medicine, on which we focused our
attention in this review. Particularly, we examined AMP potential applicability in wound
healing, skin infections and metabolic syndrome, considering their ability to act as
potential Angiotensin-Converting Enzyme I and pancreatic lipase inhibitory peptides as
well as antioxidant peptides. Moreover, we argued about the pharmacokinetic and
pharmacodynamic approaches to develop new antibiotics, the drug development
strategies and the formulation approaches which need to be taken into account in
developing clinically suitable AMP applications.

Keywords: drug-resistant microorganisms, antimicrobial peptides, biomedical and pharmacological applications,
pharmacokinetics and pharmacodynamics, drug delivery
Abbreviations: ACE, Angiotensin-Converting Enzyme I; AMP, Antimicrobial Peptide; APD, Antimicrobial Peptide Database;
API, Active pharmaceutical ingredient; DDS, Drug Delivery System; Di-Phe, di-phenylalanine; EGFR, Epidermal Growth
Factor Receptor; EPL, ϵ-poly-L-lysine; GMO, Glyceryl Monooleate; HBBD, HG-Based Burn Dressings; hBD, Human b
defensin; HG, Hydrogel; IPTG, Isopropyl b- D-1-Thiogalactopyranoside; LPS, Lipopolysaccharides; MRSA, Methicillin-
resistant Staphylococcus aureus; PD, Pharmacodynamics; PK, Pharmacokinetics; SARS-CoV-2, Severe Acute Respiratory
Syndrome Coronavirus 2; SCID, Severe Combined Immunodeficiency; TLR, Toll-like receptor; WHO, World Health
Organization; BPS, block polymeric structure; CB, cubosome; CMC, Critical Micelle Concentration; PA, peptide
amphiphiles; SPPS, Solid Phase Peptide Synthesis.
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INTRODUCTION

A wide variety of antimicrobial agents are available today and
they are broadly applied to treat different types of human
infections. Specifically, antibiotics are powerful drugs used for
treatments of pathogenic bacteria (Lei et al., 2019). However,
their indiscriminate and prolonged use, especially in developing
countries, in both human and veterinary medicine, as well as in
agriculture have contributed to the development and spread of
drug-resistant microorganisms (Huan et al., 2020). As the World
Health Organization (WHO) has extensively announced, the
alarming rise globally in resistance towards conventional
antimicrobials represents a potential and serious risk to public
health (Luong et al., 2020). Therefore, the antibiotic resistance
issue has made it urgent to search for alternatives to conventional
antibiotics, with novel modes of action and less predisposed to
bacterial resistance. In the quest of new antibiotics, the
antimicrobial peptides (AMPs), also known as host defense
peptides, have recently raised great interest (Haney et al., 2019;
Bhattacharjya and Straus, 2020; Mahlapuu et al., 2020). Current
research is focused on these natural compounds as innovative
anti-infective drugs and novel immunomodulatory candidates
(Luong et al., 2020; Mahlapuu et al., 2020).

AMPs are bioactive small proteins, naturally produced by all
living organisms as important and indispensable components of
their innate immune system, becoming the first-line defense
against microbial attacks in Eukaryotes, or produced as a
competition strategy in Prokaryotes, to limit the growth of
other microorganisms (Lei et al., 2019; Magana et al., 2020).
Natural AMPs have potent and broad-spectrum activity against
multiple classes of bacteria, yeasts, fungi, viruses and parasites
(Huan et al., 2020; Luong et al., 2020), displaying bacteriostatic,
microbicidal and cytolytic properties (Pasupuleti et al., 2012).
Moreover, the interest in AMPs has recently increased during the
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-
2) pandemic in the search of new antiviral molecules to
counteract COVID-19 disease (Kurpe et al., 2020).

AMPs were discovered in 1939, when the microbiologist René
Dubos isolated from a soil Bacillus strain, an antimicrobial agent,
named gramicidin, which was demonstrated to protect mice
from pneumococcal infection (Van Epps, 2006). Afterwards,
several AMPs have been discovered from both the prokaryotic
and eukaryotic kingdom (Boparai and Sharma, 2020), including
the tyrocidine, produced by the bacteria Bacillus brevis, with
activity against bacteria, and the purothionin, identified in the
plant Triticum aestivum, active against fungi and bacteria
(Ohtani et al., 1977). The first described animal-originated
AMP is defensin, which was isolated from rabbit leukocytes
(Hirsch, 1956); subsequently lactoferrin was identified in cow
milk (Groves et al., 1965) and it was demonstrated that
lysosomes of human leukocytes (Zeya and Spitznagel, 1966)
and human female reproductive tract contain low molecular
weight AMPs (Sharma et al., 2011). To date, more than 3,000
AMPs have been discovered, characterized and annotated in the
AMP database (APD3) (Huan et al., 2020), just considering that
frog skin alone is a reservoir of more than 300 different AMPs
(Boparai and Sharma, 2020).
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
AMP Properties and Biosynthesis
Natural AMPs are evolutionary conserved gene-encoded
molecules with structural and functional diversity, which is
responsible for their wide range of activities against different
pathogens in various organisms (Zhang and Gallo, 2016).
However, although displaying considerable diversity in their
physio-chemical and structural properties, origins and
mechanisms of action, AMPs share some common features
(Moravej et al., 2018). Indeed, they are mostly short molecules
(<100 amino acids) (Pasupuleti et al., 2012), typically with a
positive net charge (generally ranging from +2 to +11) and a
notable proportion of hydrophobic residues (typically 50%)
(Haney et al., 2017). They display an amphipathic structure, as
they contain both hydrophobic and hydrophilic regions, that
enable them to be soluble in aqueous environments (Boparai and
Sharma, 2020). A less common class of AMPs is represented by
the anionic AMPs, which have a negative net charge ranging
from -1 to -7 and have been identified in vertebrates,
invertebrates and plants (Harris et al., 2009). They include
many negatively charged aspartic and glutamic acid residues,
and in animals are found in various vital organs, including the
brain, the epidermis, the respiratory and gastrointestinal tracts
(Lakshmaiah Narayana and Chen, 2015). They show a different
mechanism of action than the cationic ones. In order to facilitate
their interaction with the target organism, some anionic AMPs
use metal ions to form cationic salt bridges with negatively
charged constituents of microbial membranes, allowing their
penetration into the cell. When they reach the cytoplasm, they
may attach to ribosomes or inhibit ribonuclease activity
(Jeżowska-Bojczuk and Stokowa-Sołtys, 2018). Some anionic
AMPs, such as theromyzin from Theromyzon tessulatum
(Tasiemski et al., 2004), require zinc as a functional cofactor
and it was found that the complex with zinc has stronger
antimicrobial activity (Jiang et al., 2014).

Despite their relative similarity in biophysical characteristics,
AMP sequences are rarely similar among closely related or
distinct species/organisms (Pasupuleti et al., 2012). However,
for some AMPs, a certain degree of identity is found either in the
pro-region (the inactive sequence that is deleted by post-
translational modifications) or in the amino acid patterns. This
event could be due to species adaptation to the unique microbial
environment that characterize the niche occupied by specific
species (Pasupuleti et al., 2012).

The amphiphilic nature of the majority of AMPs is
responsible for their structural flexibility. AMPs are commonly
classified into four categories based on their secondary structure,
including linear a-helical peptides, b-sheet peptides with the
presence of 2 or more disulfide bonds, b-hairpin or loop peptides
with the presence of a single disulfide bond and/or cyclization of
peptide chain, and, finally, extended structures (Boparai and
Sharma, 2020). Most AMPs belong to the first two categories. a-
helical peptides display an unstructured conformation in
aqueous solution but adopt an amphipathic helical structure in
contact with biological membranes. However, a relevant feature
is linked to the possible interactions with bacterial structures,
such as lipopolysaccharides (LPS), that provoke conformational
changes, influencing membrane permeabilization and the correct
June 2021 | Volume 11 | Article 668632
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passage into the cytosol. Indeed, this interaction could change
AMP tertiary structure, and AMP molecules could assume
different conformations, such as monomeric helical or helix-
loop-helix structures (Figure 1) (Bhunia et al., 2011).

For example, the contact with LPS induces oligomerization of
specific AMPs, such as temporines, through the interaction among
hydrophobic N and C terminal residues, preventing the correct
movement throughout themembraneand thecorrect antimicrobial
action (Bhunia et al., 2011). A particular amino acids composition
could prevent this oligomerization, enhancing temporin activity.
This is the case of temporin-1Tl, which is rich in aromatic residues
with two positively charged amino acids (Bhunia et al., 2011). The
synergy of temporin-1Tl with other temporins (Temporin A and
Temporin B), prevent their oligomerization and facilitate the
correct crossing of the bacterial membrane (Bhunia et al., 2011).
Exceptions are related to some AMPs with particular structural
characteristics, including the peptide MSI-594 (an analogue of
magainin), that is unstructured in free solution, but have a folded
helical hairpin structure when interact with LPS (Bhattacharjya,
2016). The interactions between two helical segments, facilitated by
the fifth phenylalanine residue, allows the acquisition of the hairpin
structure, implicating its very high activity against bacteria, fungi,
and viruses (Domadia et al., 2010; Bhattacharjya, 2016). Another
exampleof change in conformation after the interactionwithLPS, is
the b-hairpin structures of Tachyplesin I, that becomes more
ordered and compact when interacting with LPS (Saravanan et
al., 2012; Kushibiki et al., 2014). Another interesting example is
linked to the humanLL-37AMP, one of the best studiedpeptides of
this group, present in neutrophils and epithelial cells (Mahlapuu et
al., 2016). It has been demonstrated that aromatic-aromatic
interactions stabilize protein structure in correlation with lipids
(Li et al., 2006) and that LL-37 could undergo a re-orientation
depending on the concentration, suggesting also in this case an
oligomerizationprocess (Dinget al., 2013).On the contrary,b-sheet
peptides aremore ordered in aqueous solutionbecause of their rigid
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
structure and do not undergo radical conformational changes as
helical peptides upon membrane interaction (Mahlapuu et al.,
2016). It is not easy to clarify the structural conformations of b-
sheet AMPs in membranes, because of the potential micelle
aggregations; indeed, a recent report on thanatin peptide,
isolated from insect Podisus maculiventris, showed dimerization
of b-sheet structures (Sinha et al., 2017). These dimeric structures
could facilitate the bondwith LPSmolecules, also at the distal ends,
fostering bacterial cell associations and agglutination (Sinha et al.,
2017). Defensins, a large group of AMPs, which are produced in
macrophages, neutrophils and epithelial cells belong to this class
(Mahlapuu et al., 2016). It was observed that the right combination
of hydrophobicity, charge density and peptide length influence the
antimicrobial activity ofAMPs.Changing the amino acids position
in the peptide chain or increasing the number of positively charged
residues affect the secondary structure of AMPs, and consequently
their biological activity against pathogens (Wu Q. et al., 2018).
Besides the principle that the amino acid sequence determines the
functionof a peptide, it was found that the amino acid composition
(in terms of abundance of residues with specific phyco-chemical
properties) also affects AMP activity as clearly documented for a
novel class of cationic AMPs known as “cationic intrinsically
disordered antimicrobial peptides’’ or “CIDAMPs” since they are
characterized by an intrinsically disordered structure. CIDAMPs
havebeendetected inhumanskin andotherbarrier organs (Gerstel
et al., 2018; Latendorf et al., 2019) and, carrying a positive net
charge, have a low percentage of order-promoting amino acids
(mostly hydrophobic residues commonly located within the
hydrophobic core of foldable proteins) and a high percentage of
disorder-promoting amino acids (mostly charged and polar
residues, typically found at the surface of foldable proteins). They
show microbicidal activity against several microbes, including
Candida albicans, Staphylococcus aureus and Pseudomonas
aeruginosa (Gerstel et al., 2018). The protein hornerin, expressed
in the cornified epithelium, seems to be the main source of
A B

FIGURE 1 | (A) in aqueous solution, the AMPs are unstructured while after the interaction with biological membrane, particularly with the LPS component, they
assume the right conformation, which can be (B) a-helical, b-sheet, mixed a-helical/b-sheet, and loop. Figure created with Biorender.com and UCSF CHIMERA
software (Pettersen et al., 2004).
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CIDAMPs,whichact asdisinfectants, helping tokeep the surfaceof
healthy skin free of infections (Gerstel et al., 2018).

AMP biosynthesis can occur in three different ways: classical
ribosomal synthesis, non-ribosomal synthesis and proteolytic
digestion of proteins (Buda De Cesare et al., 2020).
Ribosomally synthesized AMPs, such as histatins and human
b-defensins, are produced by ribosomal translation of specific
mRNAs into the biologically active amino acid sequences in
vertebrates, insects, plants, and bacteria. Non-ribosomally
synthesized peptides are produced by large enzymes referred to
as non-ribosomal peptide synthases, which incorporate non-
proteinogenic amino acids into the sequence, and are found in
filamentous fungi and bacteria (Actinomycetes and Bacilli).
Finally, some AMPs, called cryptic peptides, are generated by
proteolytic cleavage of bigger proteins with other functions. For
example, the histone H2A of the Asian toad (Duttaphrynus
melanostictus) is processed by the enzymatic activity of pepsin
C producing buforin I, which in turn is processed by an
endopeptidase to generate buforin II (Buda De Cesare et al.,
2020). Interestingly, many AMPs are produced as inactive
precursors and are active after proteolytic cleavage. Therefore,
their activity is not only dependent on their own expression but
also on the presence of appropriate proteases (Mahlapuu et al.,
2016). The expression of AMPs can be constitutive or inducible
by specific external factors (Mahlapuu et al., 2016; Lei et al.,
2019). Some AMPs are expressed during the whole cellular
lifetime but are stored at high concentration as precursors in
granules and are released upon infection in the site of infection or
inflammation (Mahlapuu et al., 2016). P9A and P9B are
examples of inducible peptides, whose expression can be
induced in silkmoth (Bombyx mori) hemolymph by
vaccination with Enterobacter cloacae, as demonstrated by
Hultmark and colleagues (Hultmark et al., 1980). In addition,
Bals et al. (1999) reported that defensin production from
epithelial cells of multiple mouse organs increases upon
infection with P. aeruginosa PAO1.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
Insights Into the Mechanisms of Action
of AMPs
The prerequisite to develop efficient AMPs as novel candidate
drugs is the understanding of their mode of action. AMPs exert
their activity by interaction with microbial cell membranes and
this interaction is strongly affected by the lipid composition of
biological membranes (Wu Q. et al., 2018). Since microbial
membranes are the primary targets of AMPs, it is difficult for
bacteria to develop resistance to AMPs as easily as to
conventional antibiotics (Boparai and Sharma, 2020).
Membrane interactions are mediated by electrostatic forces
between positively charged AMPs and negatively charged
microbial surfaces. The teichoic acids in the cell wall of Gram-
positive bacteria and the LPS in the outer membrane of Gram-
negative bacteria supply electronegative charge to the microbial
surfaces, strengthening the interaction with AMPs (Boparai and
Sharma, 2020). On the contrary, the outer layer of eukaryotic
membranes is composed by zwitterionic phosphatidylcholine
and sphingomyelin, which do not favor AMP interaction
because of their neutral charge at physiological pH. Based on
their mode of action, AMPs are divided into “membrane acting
peptides”, which destabilize bacterial membranes causing their
disruption, and “non-membrane acting peptides”, which are able
to translocate across the membranes without damaging them but
destabilizing normal cell functions (Boparai and Sharma, 2020)
(Figure 2).

Three models have been proposed to explain the
permeabilization of bacterial membranes by AMPs: barrel-
stave model, toroidal-pore model and carpet model (Raheem
and Straus, 2019). Thanks to their positive net charge, AMPs are
able to interact with components of bacterial membranes,
resulting in the disruption of the lipidic bilayer with cell death.
AMP insertion can be perpendicular, as in the barrel-stave
model, or perpendicular with the interaction with the head
groups of lipids that provokes a deflection in the membrane
(toroidal model) (Brogden, 2005). AMPs can also dispose
A B C

FIGURE 2 | Antimicrobial peptides can act through a membranolytic and non-membranolytic mechanism. In the membranolytic mechanism AMPs can lead to
(A) pore formation on the cell membrane or (B) micelle formation on the cell membrane. In the non-membranolytic mechanism, (C) AMPs can penetrate cell
membranes and interact with intracellular targets, such as DNA and proteins. Figure created with Biorender.com and UCSF CHIMERA software (Pettersen et al., 2004).
June 2021 | Volume 11 | Article 668632
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parallel to the membrane, covering it completely, and forming, at
the same time, micelles with the starting broken membranes
(carpet model), as proposed by Gazit and colleagues in 1996
(Gazit et al., 1996). Moreover, defensins interact with LPS in
Gram-negative bacteria and peptidoglycan in Gram-positive
bacteria (Pachón-Ibáñez et al., 2017). Defensins have LPS-
neutralizing activity in different bacteria (Lee et al., 2010)
despite the chemical structure of LPS varies among them. LPS
can self-aggregate forming oligomers above a Critical Micelle
Concentration (CMC) because of its amphiphilic nature, a
concentration of LPS, or any surfactant, above which it
aggregates in micelles. It has been demonstrated that the
association of defensin analogues and other peptides, such as
gramicidin A, melittin, LL-37 and polymyxin B, with LPS leads
to the disintegration of LPS aggregates. Moreover, it was
observed that defensins amino acids (such as Arg, Trp, and
Tyr) are involved in the stabilization of the peptide-pathogen
surface complexes (Zhang et al., 2016).

The interaction with LPS has been demonstrated to be
essential for AMPs like gramicidin S and polymyxin B to exert
their mechanism of action for bacterial killing (Zhang et al.,
2000). Bhunia and colleagues studied the structure of MSI-594
peptide in LPS micelles. They observed that the peptide is
unstructured in solution, while it adopts a helix-loop-helix
structure in complex with LPS, suggesting how AMPs could
overcome the LPS barrier (Bhunia et al., 2009). A mutant form of
MSI-594 peptide, substituting Phe5 with Ala amino acid,
displays a limited permeabilization through the LPS layer
suggesting that peptide conformation is essential to disrupt
LPS (Domadia et al., 2010).

Other examples of AMPs acting by perturbation of microbial
membrane structure are the fungal peptide alamethicin, the
amphibian AMP aurein 1.2, and several defensins (Machado
and Ottolini, 2015; Shahmiri et al., 2017; Su et al., 2018) AMPs
acting through a non-membranolytic mechanism, thus displaying
intracellular activities (such as inhibition of nucleic acids, proteins
or cell wall synthesis), include buforin II and indolicidin that bind
to DNA (Scocchi et al., 2016), teixobactin that binds to
peptidoglycan precursor lipid II (Chiorean et al., 2020), Bac5
that interacts with ribosomes (Mardirossian et al., 2018) and
Temporin-L, which binds FtsZ protein inhibiting Escherichia coli
cell division (Di Somma et al., 2020). A recent study performed by
Moura et al. demonstrated that the AMP thanatin interacts with
LptC-LptA proteins, which belong to the Lpt complex, involved
in the LPS transport, exploiting an inhibitory activity (Moura et
al., 2020). Thanatin interaction with Lpt complex prevents LPS
translocation to the outer membrane, modifying its stability and
permeability and favoring the cell agglutination process (Dash
and Bhattacharjya, 2021).

Sources of AMPs and Their Potential
Applications in Clinical Practice
The survival of organisms in an environment where pathogens are
widely distributed, solely depends on their defense mechanisms.
The inborn immunity of organisms involves endogenic peptides
which supply a quick and viable method for safeguard against
microbial attacks (Borah et al., 2020) AMPs are universal and
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
essential components of the defense systems of all life forms, from
bacteria to plants and invertebrate and vertebrate species,
including mammals (Jenssen et al., 2006; Borah et al., 2020).

They are naturally produced in the body of both lower and
higher organisms and their production is cell specific and may be
constitutive or inducible in response to pathogenic challenges
(Borah et al., 2020). In multicellular organisms, AMPs are mostly
localized to specific sites that are normally more exposed to
microbes, such as the skin and mucosa epithelia (Jenssen et al.,
2006). The primary role of these defense peptides is the killing of
invading pathogens; however, in higher organisms they act also
as modulators of the innate immune response (Jenssen et al.,
2006). AMPs are commonly classified according to their sources,
which are represented by microorganisms, plants, and animals.

Below, we give an overview of various naturally occurring
AMPs and the potential clinical application of some of them.

Microorganisms as Source of AMPs
Bacteria and fungi are reservoirs of AMPs (Huan et al., 2020).
Among the numerous AMPs, the first isolated and characterized
were those produced by bacteria (Jenssen et al., 2006). AMPs
from bacteria are not produced for the purpose to protect against
infections, but rather as a competition strategy (Jenssen et al.,
2006). With their activity they kill other microbes competing for
nutrients in the same niches, ensuring the survival of individual
bacterial cells (Jenssen et al., 2006). Bacterial AMPs, also called
bacteriocins, are represented by a heterogeneous family of small
ribosomally synthesized molecules with strong antimicrobial
activity at specific concentrations (Soltani et al., 2021). These
molecules, produced by Gram-positive and Gram-negative
bacteria, are effective against many pathogenic bacteria and are
extraordinarily active compared to their eukaryotic counterparts
(Jenssen et al., 2006; Soltani et al., 2021). For example, AMPs
isolated from Pseudomonas spp display activity against several
bacterial species, such as S. aureus, E. coli, Salmonella, Shigella,
showing both general antibacterial and specific antibiofilm
activity (Fontoura et al., 2008; Mohammadi-Barzelighi et al.,
2019). Mersacidin, isolated by Bacillus spp, shows in vivo
bactericidal activity against Methicillin-resistant S. aureus
(MRSA) equivalent to that of vancomycin (Jenssen et al., 2006).

AMPs are also produced by human microbiota. Host-
microbiota crosstalk is based on AMPs secretion by phagocytic
and epithelial cells and microbiota of the human gut, skin, and
oral cavity; these peptides contribute to microbial and ecological
balance (Magana et al., 2020). An example of these human
microbiota AMPs is the thiopeptide lactocillin produced by the
vaginal commensal Lactobacillus gasseri and acting against
Gram-positive bacteria, including S. aureus and Gardnerella
vaginalis (He et al., 2020).

Several filamentous fungi produce AMPs which are similar to
plant and animal defensins. Examples of cysteine-rich defensin-
like AMPs in ascomycetes are AFP from Aspergillus giganteus,
PAF from Penicillium chrysogenum, ANAFP from Aspergillus
niger , AcAFP and AcAMP from Aspergillus clavatus
(Montesinos, 2007; Hegedüs and Marx, 2013). All these fungal
peptides have antifungal activity against filamentous
ascomycetes, including animal and plant opportunistic and
June 2021 | Volume 11 | Article 668632
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pathogens, such as Aspergillus fumigatus, Fusarium sp., and
Botrytis sp. (Hegedüs and Marx, 2013).

On the basis of their antimicrobial properties and their safety
and tolerability, some of these natural AMPs have potential
therapeutic applications. The bacteriocin nisin, produced by
Lactococcus lactis, has been extensively studied being used as
food preservative (Soltani et al., 2021). Nisin is the only
bacteriocin legally approved as biopreservative and is used in
the dairy industry to control contamination from Listeria strains
(Soltani et al., 2021). Because of its broad-spectrum activity
against both Gram-positive and Gram-negative pathogens,
nisin is approved for clinical use as an alternative to antibiotics
(Dijksteel et al., 2021). Several studies have reported the
suitability of nisin in the treatment of several infection
diseases, such as mastitis (Cao et al., 2007; Fernández et al.,
2008), oral (Shin et al., 2015; Mitra et al., 2019), respiratory (De
Kwaadsteniet et al., 2009) and skin (Heunis et al., 2013)
infections. Johnson et al. (1978) have been the first to
demonstrate that there were fewer numbers of streptococci in
the dental plaque of monkeys that received nisin in their foods.
Moreover, more recent studies support the antimicrobial abilities
of nisin against oral pathogenic bacteria relevant to periodontal
diseases and caries. Indeed, Tong et al. (2010) showed that nisin
A is able to inhibit the growth of cariogenic bacteria. Cao et al.
(2007) demonstrated that a nisin‐based formulation was effective
in the treatment of clinical mastitis in lactating dairy cows caused
by different mastitis pathogens. Mastitis is a common
inflammatory disease in lactating women, which causes
breastfeeding cessation (Foxman et al., 2002). S. aureus and
Staphylococcus epidermidis are two common agents that cause
mastitis‐associated infections (Foxman et al., 2002). Nisin
peptide causes bacterial growth inhibition by membrane pores
formation and by interrupting the cell wall biosynthesis through
specific lipid II interaction (Prince et al., 2016).

Another example of bacterially derived AMPs used in clinics
as alternative to antibiotics is gramicidin, which is a mix of
gramicidin A, B and C. They are AMPs naturally produced by
Bacillus brevis, with activity against several Gram-positive
bacteria, inducing membrane depolarization and consequently
cell lysis (David and Rajasekaran, 2015; Yang and Yourself,
2018). Gramicidin is a constituent of Neosporin®, a triple
antibiotic used in ophthalmic and topical preparations (Hallett
et al., 1956). Gramicidin S is used in the treatment of wound
infection and of the root canal of teeth due to the tetracycline
resistant Enterococcus faecalis biofilms formation (Berditsch et
al., 2016). The bacterium Streptomyces roseosporus is a rich
source of the anionic AMP daptomycin, which shows
bactericidal activity against Gram-positive pathogens (Ball et
al., 2004). Daptomycin exerts its bactericidal action by formation
of membrane pores, membrane depolarization and inhibition of
cell wall synthesis (Taylor and Palmer, 2016). This peptide has
been approved and marketed as anionic AMP for the treatment
of skin infections caused by Gram-positive bacteria (Wang et
al., 2014).

Considering the great variety of AMPs existing in nature, it has to
be expected that other novel nature-inspired peptides,
pharmacological active, might find clinical applications in the future.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
Plants as Source of AMPs
Bioactive peptides are essential components of plants defense
mechanisms, with extraordinary physiological importance,
providing fast protection against bacterial and fungal infections
(Jenssen et al., 2006; López-Meza et al., 2011; Salas et al., 2015).
Plant AMPs not only display microbicide activities but are also
involved in cellular signaling (Salas et al., 2015). Several active
peptides have been extracted and isolated from roots, flowers,
seeds, stems and leaves and are classified based on their amino
acids sequence, position and number of cysteine residues
involved in the disulfide bridge formation (López-Meza et al.,
2011). Ten families of plant AMPs have been described (López-
Meza et al., 2011) and the best-studied groups are defensins,
thionins and snakins (Jenssen et al., 2006; López-Meza et al.,
2011; Huan et al., 2020). The first plant-derived AMP is
purothionin, which displays activity against Corynebacterium
fascians, Pseudomonas solanacearum, Corynebacterium
poinsettia (de Caleya et al., 1972). Plant defensins are cysteine-
rich AMPs, with four disulphide bridges and a globular structure
(Salas et al., 2015); they are basic peptides, composed by 45 to 54
amino acid residues, ubiquitous in the plant kingdom, displaying
activities against bacteria and fungi. The PvD1 peptide is a
defensin from Phaseolus vulgaris, which inhibits growth of
yeasts, such as Candida albicans, Candida tropicalis and
Saccharomyces cerevisiae (Mello et al., 2011). Thionins,
composed by 45 to 47 amino acids, are basic peptides found in
several plant tissues, which are toxic to bacteria and
phytopathogenic fungi (López-Meza et al., 2011). Snakins are
small peptides with 12 cysteine residues forming six disulphide
bridges, essential for their biological activity (Meneguetti et al.,
2017). Snakin-Z from Ziziphus jujuba, composed by 31 amino
acids, is more toxic for fungi than bacteria (Meneguetti et al.,
2017). Finally, different AMPs have been identified in avocado
fruit and in fruits of Capsicum, which for their antimicrobial
properties could be used in the treatment of infections caused by
S. aureus and E. coli strains (Liu et al., 2006; Guzmán-Rodrıǵuez
et al., 2013; Taveira et al., 2014).

Considering their efficiency and broad-spectrum activity,
plant AMPs may represent a promising alternative to
conventional antibiotics for counteracting infections (da Silva
and Machado, 2012).

Animals as Source of AMPs
Animal AMPs are produced at the sites that are constantly
exposed to microbes, such as skin and mucosal barriers
(López-Meza et al., 2011). Various AMPs have been isolated
from invertebrates and many vertebrate species (including fish,
amphibians, and mammals).

In invertebrates the innate immune system is extremely
efficient since they lack an adaptive immune system, and in
this regard, AMPs play a key role in protection against foreign
microbial attacks (Jenssen et al., 2006). Invertebrates can
produce a wide range of proteins and peptides which are
found in phagocytes, in epithelial cells and in hemolymph
(plasma and hemocytes) (Jenssen et al., 2006). The b-hairpin-
like peptides tachyplesin (Nakamura et al., 1988) and
polyphemusin (Miyata et al., 1989) (from horseshoe crab), and
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melittin (from bee venom) (Raghuraman and Chattopadhyay,
2007) are examples of invertebrate AMPs.

A recent study has demonstrated that a pretreatment with
Tachyplesin III on mice protects them against P. aeruginosa and
Acinetobacter baumannii infection, reduces the production of
pro-inflammatory cytokines (IL-1b, IL-6, and TNF-a) and
induces the macrophage phagocytosis, fundamental to exert
bacterial clearance, in a dose-dependent manner (Qi et al.,
2019). All these findings must be confirmed in human
clinical trials.

More than 200 AMPs have been isolated in insects (Li et al.,
2012). The number of these bioactive molecules varies between
species. Hermetia illucens and Harmonia axyridis produce up to
50 AMPs, while they are not found in other species, such as
Acyrthosiphon pisum (Huan et al., 2020; Moretta et al., 2020).
AMPs are produced mainly in the fat body and blood cells
(hemocytes) of insects and then are secreted into the hemolymph
(Jenssen et al., 2006; Huan et al., 2020). Based on their amino
acid sequences and antimicrobial activities, insect AMPs are
divided into several groups: cecropins, defensins, proline-rich
and glycine-rich peptides (Manniello et al., 2021). Cecropin was
the first insect AMP discovered in the hemolymph of the pupae
of Hyalophora cecropia (Steiner et al., 1981). Cecropins, which
are described only in the order Diptera and Lepidoptera, are
linear peptides with a-helix and without cysteines, composed by
around 35 amino acid residues and displaying activity against
Gram-positive and Gram-negative bacteria (Wu Q. et al., 2018).
Insect defensins are inducible peptides which display strong
activity against Gram-positive bacteria and less against Gram-
negative bacteria. They are composed by 29-34 amino acid
residues and have been isolated from several insect orders, such
as Coleoptera, Hemiptera Diptera, Trichoptera, Hymenoptera
and Odonata (Bulet et al., 1999). Attacins are an example of
glycine-rich AMPs, which show activity against Gram-negative
bacteria, including E. coli (Carlsson et al., 1991). This group of
peptides is heterologous in size, but their common feature is the
high content of glycine-residues (10-22%) (Wu Q. et al., 2018),
which affect the tertiary structure and consequently their mode of
action (Li et al., 2012). Diptericin, Coleoptericin, Sarcotoxin IIA
are other glycine-rich AMPs isolated from insects (Ando and
Natori, 1988; Dimarcq et al., 1988; Sagisaka et al., 2001). Although
insect AMPs could be a good alternative to conventional
antibiotics, their clinical use is still limited and most of them
are just in vitro tested (Manniello et al., 2021).

Among them, the melittin peptide is, currently, in clinical use
for its antimicrobial potency. Composed by 26 amino acids,
melittin is the principal component of venom from the
honeybee Apis mellifera. Melittin has broad spectrum activity,
and its ability to protect in vivo against MRSA infections has been
demonstrated (Choi et al., 2015). It acts by induction of pore
formation following interaction with membrane surfaces (van
den Bogaart et al., 2008). Since it also shows anti-inflammatory
properties (Lee and Bae, 2016), the Food and Drug
Administration (FDA) approved its usage in clinical practice
(Dijksteel et al., 2021), for relieving pain associated to
tendinitis, arthritis, sclerosis multiple (Park et al., 2004; Son et
al., 2007; Yang et al., 2011).
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Amphibians, especially frogs, are a rich source of AMPs. Most
of the amphibian AMPs have been isolated from the frog skin.
These biologically active molecules are released from cutaneous
glands and excreted towards the skin surface following pathogen
stimulations (Patockaa et al., 2018). The prototypic and the most
famous AMP from frogs is the a-helical magainin (Zasloff,
1987), which is active against yeasts, fungi, bacteria, and
viruses (Borah et al., 2020). Esculentins, nigrocins, brevinins,
temporins are some of the best characterized peptides produced
by frogs of the genus Rana (Patockaa et al., 2018). The basic
esculentin-1 peptide, composed by 46 amino acid residues and a
disulphide bridge, exhibits strong activity against several human
pathogens, such as C. albicans, P. aeruginosa, E. coli and S.
aureus (Patockaa et al., 2018).

Esculentin was in vitro tested on human lung epithelium to
determine the toxicity, finding a good tolerability in terms of
inflammatory effects. Then, it was studied in a mouse model, in
which a lung-infection was induced with P. aeruginosa:
promising results showed a strong reduction in bacterial load
not only in lungs but also in spleen, indicating a decrease in
systemic spread of bacteria (Chen C. et al., 2017).

Brevinin-2Ta was tested on mice infected with Klebsiella
pneumoniae. In this study, it was demonstrated that the peptide
decreases the bacterial load, altering the microorganism structures
in infection sites and it also showed the ability to faster angiogenesis
and granulation tissue maturing process, obtaining comparable
results to classical antibiotics. For this reason, this peptide is a good
candidate for pre-clinical studies, even if some modifications are
needed in order to decrease its hemolytic power (Liu et al., 2017).
Liu et al. (2017), hypothesized that amino acid substitutions in the
primary structure couldbe the right strategy to reduce thehemolytic
activity, improving, at the same time, the antimicrobial one.

Regarding anionic AMPs, the temporin-1Ja, carrying a net
charge of -1, has been isolated from the skin secretions of the
Japanese frog Rana japonica (Isaacson et al., 2002). This anionic
peptide revealed moderate activity against E. coli and S. aureus
strains. However, it was found that this peptide synergizes with
other temporins, contributing to endotoxin neutralization
(Rosenfeld et al., 2006). AMPs can also protect amphibians
from ingested pathogens since they are produced in the
mucosa of the stomach. The Asian toad peptide buforin and
buforin II are the best characterized examples in this regard
(Jenssen et al., 2006). Some of these natural AMPs have been
used for the production of synthetic peptides, such as the
Pexiganan, also known as MSI-78. It is a synthetic 22-amino-
acid analogue of magainin–2, which has been tested as a topical
cream for treatment of bacterial infections related to diabetic foot
ulcers. It showed promising in vitro broad-spectrum activity (Ge
et al., 1999), but it was rejected by FDA because there was no
advantage compared to conventional antibiotics (Koo and
Seo, 2019).

Mammalian AMPs have been identified in humans, cattle,
sheep and other vertebrates (Huan et al., 2020). Some AMPs
from mammalians have a second major function inducing
chemoattraction and activation of host cells to engage in
innate host defense (Yang et al., 2001). AMPs can be stored in
phagocytes and epithelial cells and can be released extracellularly
June 2021 | Volume 11 | Article 668632
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by degranulation in response to different stimuli, becoming
available at the site of infection (Yang et al., 2001). For
example, cathelicidins are stored within granules of circulating
immune cells as inactive propeptides (Jenssen et al., 2006).
Cathelicidins and defensins are the main AMPs found in
mammalians, such as humans, horses, rabbits, sheep and mice.
Cathelicidin family comprises heterogeneous peptides which
share the N-terminal pro-region but show a variable
antibacterial peptide in the C-terminal region, displaying
different structures, including b-hairpin, a-helical, and arginine
and proline-rich peptides (Kościuczuk et al., 2012). This
structural diversity reflets cathelicidin different functions and
their diverse spectrum of antimicrobial and immunomodulatory
activities (Jenssen et al., 2006). The a-helical BMAP-28 is a
bovine AMP of the cathelicidin family which is able to
permeabilize the membranes of several bacteria and fungi at a
moderate concentration in vitro (Risso et al., 2002; Benincasa et
al., 2006). Only one cathelicidin, the hCAP18 (better known as
LL-37), is produced in humans and has been isolated from
specific granules of neutrophil granulocytes. A second group of
mammalian AMPs are the defensins, which require proteolytic
processing to acquire their active form (Selsted and Ouellette,
2005). More than 50 defensins have been identified in
mammalian species; some of them are stored in granules of
macrophages, neutrophils and Paneth cells, while others are
produced by mucosal epithelial cells and keratinocytes (Yang
et al., 2001). Defensins production can be constitutive, such as
for human b-defensin-1 (hBD1), or inducible, such as for hBD2,
whose expression is induced by exposure to bacteria or microbial
components, as LPS (Jenssen et al., 2006). Maiti et al. (2014)
studied mice mortality after the infection with Salmonella
typhimurium, demonstrating that the administration of hBD1,
hBD2, or a combination of both, lead to an increased mice
mortality and a decreased S. typhimurium load in peritoneal
fluid, liver and spleen.

The anionic peptide Dermcidin, discovered in epithelial and
neutrophil granules of humans, is one of the most studied human
anionic AMPs. This peptide is proteolytically processed in sweat
producing several truncated peptides which display a good
spectrum of antimicrobial activity (Schittek et al., 2001).

There are several examples of mammalian AMPs proposed for
clinical applications. The acid-pepsin digestion of bovine
lactoferrin results in the release of the peptide lactoferricin,
which shows the strongest antimicrobial activity among
mammalian lactoferricins (Vorland et al., 1998) and has potent
immunological and antitumor properties (Gifford et al., 2005; Yin
et al., 2013; Arias et al., 2017). It exerts its bactericidal activity on
Gram-positive and Gram-negative bacteria inducing
depolarization of the cell membrane, with fusion of negatively
charged liposomes and formation of blebs on the cell surface
(Ulvatne et al., 2001; Bruni et al., 2016). The bovine lactoferricin
displays useful properties for potential applications in human
medicine. It has been successfully utilized for treatment of
enterohemorrhagic E. coli infections (Kühnle et al., 2019).
Because of its antimicrobial and anti-inflammatory properties,
the bovine lactoferricin can be used for treatment of ocular
infections, since it potentiates the effect of conventional
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
antibiotics against clinical ocular isolates of P. aeruginosa and S.
aureus (Oo et al., 2010). Moreover, it improves diabetic wound
healing (Mouritzen et al., 2021) and finds applications in the
treatment of osteo-articular diseases (Yan et al., 2013). The saliva
of humans and other primates contains various forms of AMPs,
among them the histatins, which are small histidine-rich cationic
peptides with antifungal properties. Histatin 5, that is the product
of histatin 3 proteolytic cleavage, is the most active histatin against
several yeasts, such as Cryptococcus neoformans, Candida
dubliniensis and Candida albicans (da Costa et al., 2015).
Histatins exert their activity by targeting the mitochondria,
affecting cell respiration (Kavanagh and Dowd, 2004) and,
because of their safety and tolerance, have been successfully
tested in topical gels to treat oral fungal infections (Paquette et
al., 2002). Several efforts have been made to identify fragments of
histatin 5 with pharmaceutical application and have yielded
promising results. An example in this regard is the 12-amino
acid peptide P113, which was evaluated in phase I and phase II
clinical studies as pharmaceutical agent to fight oral candidiasis
(Woong et al., 2008; Cheng et al., 2018; Browne et al., 2020).

Tables 1 and 2 summarize, respectively, naturally occurring
AMPs from different sources and those used in clinical practice.
AMPs: INNATE WEAPONS AGAINST
DISEASES

Given the broad spectrum of action of the AMPs, their diversity in
sequences and considering the physico-chemical characteristics
related to their several sources, they can find application in
different fields. Specifically, below we addressed the suitability of
AMPs in the biomedical and pharmacological fields, also taking
into account the pharmacokinetic and pharmacodynamic
approaches to develop new molecules with antimicrobial activity.

The excessive use of antibiotics in clinical treatment has
increased pathogens resistance to these compounds (Aminov,
2010). The pharmaceutical industry is trying to solve this
problem by looking for new molecules with antibiotic activity
or by modifying/improving the existing ones. Nevertheless,
pathogens can develop resistance mechanisms that
compromise this strategy. Thus, the need to find new active
molecules with different mechanisms of action represents one of
the most urgent challenges in medicine (Parisien et al., 2008).
AMPs are among the most promising alternatives to modern
antibiotics and they have already found clinical applications in
this field, as previously mentioned, alone or in synergy with
existing antibiotics. AMPs are susceptible to proteolysis due to
their chemical characteristics and their activity is affected by salts
concentration and pH. For this reason, the most promising
applications for AMPs in clinical evaluations are those
involving topical applications (Hancock and Sahl, 2006). The
endogenous production of AMPs is also relevant and worth
further studies. For example, sodium butyrate administration has
been shown to induce the production of intestinal AMPs,
beneficial for the treatment of infectious or inflammatory
diseases (Guanı-́Guerra et al., 2010).
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TABLE 2 | List of natural AMPs in clinical practice.

Peptide Name Origin Mechanism of action Indication Reference

Nisin Bacteria
(Lactococcus lactis)

Membrane depolarization Bacterial infections Cao et al., 2007
Mitra et al., 2019

Gramicidin Bacteria
(Brevibacillus brevis)

Membrane depolarization/Lysis Bacterial conjunctivitis David and Rajasekaran, 2015

Melittin Insect
(Apis mellifera)

Membrane disruption Anti-inflammatory applications Lee and Bae, 2016

Daptomycin Bacteria
(Streptomyces roseosporus)

Membrane depolarization/Lysis Skin infections Taylor and Palmer, 2016

Lactoferricin Mammalians Membrane depolarization Anti-inflammatory applications Oo et al., 2010
Yan et al., 2013

Histatin Humans Inhibition of respiration Fungal infections Paquette et al., 2002
Frontiers in Cellular and
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TABLE 1 | Overview of AMPs from different sources in nature and the current status of research.

AMPs from Microorganism
Class Source Peptide Name Biological activity Studies Reference

Bacteriocin Bacteria
Bacillus spp.

Mersacidin Antibacterial In vivo Jenssen et al., 2006
Kruszewska et al., 2004

Bacteriocin Bacteria
Lactobacillus gasseri

Lactocillin Antibacterial In vitro Magana et al., 2020
Donia et al., 2014

Bacteriocin Bacteria
Lactococcus lactis

Nisin Antibacterial Clinical practice Dijksteel et al., 2021

Bacteriocin Bacteria
Bacillus subtilis

Ericin Antibacterial In vitro Sharma et al., 2018

Defensin Fungi
Penicillium chrysogenum

PAF Antifungal In vivo Kaiserer et al., 2003
Barna et al., 2008

Marx, 2004
Palicz et al., 2016

Defensin Fungi
Aspergillus giganteus

AFP Antifungal In vitro Hegedüs and Marx, 2013
Krishnamurthy et al., 2020

AMPs from Plants
Defensin Phaseolus vulgaris PvD1 Antifungal In vitro Mello et al., 2011

do Nascimento et al., 2015
Defensin Persea americana PaDef Antibacterial In vitro Guzmán-Rodrıǵuez et al., 2013
Thionin Triticum aestivum a1-purothionin Antibacterial In vitro de Caleya et al., 1972

Oard et al., 2012
Snakin Ziziphus jujuba Snakin-Z Antifungal In vitro Daneshmand et al., 2013

Meneguetti et al., 2017
AMPs from Insects
Cecropin Hyalophora cecropia CecA Antibacterial In vitro Wu Q. et al., 2018

Wang et al., 2017
Cecropin Spodoptera litura Spodopsin Ia Antibacterial Discovery Choi et al., 1997
Defensin Drosophila melanogaster Drosomycin Antifungal In vitro Landon et al., 1997

Fehlbaum et al., 1994
Proline-rich AMPs Apis mellifera Abaecin Antibacterial In vitro Casteels et al., 1990

Luiz et al., 2017
Attacin Hyphantria cunea Attacin-B Antibacterial In vitro Kwon et al., 2008
Glycine-rich AMPs Drosophila melanogaster Diptericin Antibacterial In vitro Verma and Tapadia, 2012

Wicker et al., 1990
AMPs from Animals
Cathelicidin Bovine BMAP-28 Antibacterial In vivo Risso et al., 2002

Benincasa et al., 2003
Brevinin Rana boylii Brevinin-1BYa Antifungal In vivo Conlon et al., 2003

Liu et al., 2017
Cathelicidin Pig Protegrin-1 Antibacterial In vitro Soundrarajan et al., 2019

Huynh et al., 2018
AMPs from Humans
Cathelicidin Human granulocytes hCAP18/LL-37 Antibacterial Clinical trial Leszczynska et al., 2013
Defensin Human monocytes hBD1

hBD2
hBD3

Antibacterial In vivo Levón et al., 2015
Maiti et al., 2014

Histatin Human saliva Histatin-1 Antibacterial
Antifungal

Clinical practice Khurshid et al., 2017
| Volume 11 | Article 668632

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Moretta et al. AMPs: Biomedical and Pharmacological Applications
However, AMPs broad spectrum of biological activities
suggests other potential clinical benefits such as for the
treatment of cancer and viral infections as well as in the
immune system modulation (Schweizer, 2009).

Involvement of AMPs in Respiratory
Diseases
Infections in the lower respiratory tract are involved in chronic
inflammatory lung disorders such as cystic fibrosis and chronic
obstructive pulmonary disease. In cystic fibrosis patients with a
P. aeruginosa infection, this organism produces AMPs, such as
pyocins, which inhibit the growth of its closest competitors.
Thus, the same AMPs could be used as a therapeutic agent to
minimize the effects of the infection, besides rooting out other
susceptible pathogens. Pyocins derived from P. aeruginosa
strains also have toxic effects on Haemophilus, Neisseria and
Campylobacter strains and have been successfully used for the
treatment of peritonitis in mice (Scholl and Martin, 2008; Waite
and Curtis, 2009).

It is of interest that neutrophils and airway epithelial cells
produce AMPs to prevent infection of the respiratory system by
pathogens. In cystic fibrosis patients, P. aeruginosa induces the
secretion of sPLA2-IIA by airways epithelial cells via a Krüppel-
like transcription factor (KLF)-2-dependent pathway, that lead
to the selective death of S. aureus (Rahnamaeian, 2011).

Moreover, the serum level of the human LL-37 peptide is
higher in patients with lower respiratory tract infections than in
healthy people (Majewski et al., 2018). Recently, it has been
reported that the Esculentin peptide (1−21), active on both P.
aeruginosa planktonic and biofilm forms, has the ability to
prolong the survival of mouse models with pulmonary
infection. The main AMPs detected in lung tissues and
secretions of cystic fibrosis patients are sPLA2-IIA, neutrophil
a-defensins/HNPs, hBDs and LL-37 (Hiemstra et al., 2016).

Similar phenomena have been described in periodontal
diseases caused by Porphyromonas gingivalis in which the
sPLA2-IIA peptide is produced by oral epithelial cells via
activation of the Notch-1 receptor and kills oral bacteria
(Balestrieri et al., 2009).

AMPs in Wound Healing and Skin
Infections
Skin and soft tissue infections are one the most common
microbial infections in humans and AMPs can be a new
therapeutic option thanks to their broad-spectrum of biological
activities, since skin pathogens include bacteria but also
protozoa, fungi and viruses (Sunderkötter and Becker, 2015).
Moreover, AMP preparations have the advantage of high
concentration at the target site for topical administration
because of their low ability to penetrate into the bloodstream.
Moreover, AMPs can promote wound healing by modulating cell
migration, angiogenesis, chemotaxis, and cytokine release
(Ramos et al., 2011).

For example, the hBD2 is induced by the Epidermal Growth
Factor Receptor (EGFR) activation and it can increase keratinocyte
migration and cytokines production (Sørensen, 2016). Another
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 10
peptide highly expressed by keratinocytes at wound sites is
represented by hBD3 defensin. It promotes cytokine secretion,
cell migration and proliferation by phosphorylating EGFR and
STAT proteins (Sørensen et al., 2005). It also speeds up the wound
closure when topically applied in a porcine model of infected skin
wounds (Hirsch et al., 2009). Moreover, it has been demonstrated
that hBD3 exhibits anti-inflammatory activity through the
inhibition of TLR (Toll-like receptor) signaling pathways in
immune cells leading to a transcriptional repression of the pro-
inflammatory genes (Semple et al., 2011).

The expression of skin LL-37 peptide is also increased after
wounding (Heilborn et al., 2003), and it seems to be involved in
the modulation of angiogenesis. Indeed, LL-37 peptide stimulates
endothelial cells proliferation and neovascularization by
activating the formyl peptide receptor-like 1 (FPR2/ALX)
(Koczulla et al., 2003).

Psoriasis vulgaris is an inflammatory skin disease
characterized by abnormal epidermal proliferation and a
cellular infiltrate including neutrophils and T cells (Davidovici
et al., 2010). Due to the enhanced proliferation rate of psoriatic
keratinocytes associated with a reduction of the cell cycle
duration, psoriasis has been thought to be an epidermal
disease. However, experiments performed with severe
combined immunodeficiency (SCID) mice indicated that
psoriatic eruptions are induced by CD4+ cells and T cells are
believed to play a key role in the pathogenesis of psoriasis (Ellis et
al., 1986; Wrone-Smith and Nickoloff, 1996).

The keratinocytes within the epidermis of psoriatic plaques
are abnormal and among the abnormalities there is the excessive
production of AMPs which, in vertebrates, are believed to modify
host inflammatory responses through different mechanisms
including regulation of cell proliferation, chemotactic and
angiogenic activities (Lai and Gallo, 2009).

HNP1, HNP2, HNP3, hBD2 and hBD3 are defensins
identified from lesional psoriatic scale extracts and their
presence could help to explain why a hyperproliferative and
noninfectious skin disease, such as psoriasis, undergoes less
cutaneous infections than it would be expected (Harder et al.,
2001; Harder and Schröder, 2005). Studies performed on LL-37
peptide demonstrated that it has both pro-inflammatory and
anti-inflammatory activity, can promote chemotaxis,
angiogenesis and enhance wound repair (Yang et al., 2000;
Koczulla et al., 2003; Braff et al., 2005; Tokumaru et al., 2005;
Mookherjee et al., 2006). Frohm et al. were the first to report that
cathelicidin/LL-37 expression is upregulated in psoriatic
epidermis and suggested that this induction increases the
antimicrobial defense ability of the disrupted barrier in the
lesions (Frohm et al., 1997). Later, it has been hypothesized
that LL-37 could drive inflammation in psoriasis by allowing
plasmacytoid dendritic cells (pDCs) to recognize self-DNA
through TLR9 (Lande et al., 2007).

Angiotensin-Converting Enzyme I (ACE)
Inhibitory Peptides
The angiotensin-converting enzyme I (ACE) is produced by lung
or kidney tissue and the luminal membrane of vascular endothelial
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cells. ACE converts inactive decapeptide angiotensin I (ANG I)
into vasoconstrictor octapeptide angiotensin II (ANG II). ANG II
is involved in several physiological and pathophysiological
cardiovascular conditions such as atherosclerosis and
hypertension (Wu C. H. et al., 2018). ACE inhibitors are used in
hypertension treatment, but they may cause serious side effects,
such as cough, rush and edema (Wu C. H. et al., 2018). Hence, it
derives the need to identify new and nontoxic ACE inhibitors,
whose activity depends on the amount and type of amino
acid composition.

It has been observed that the binding to ACE is influenced by
hydrophobic amino acids at the peptide C-terminus (Salampessy
et al., 2017). Moreover, amino acids like alanine, valine,
isoleucine, isoleucine and glycine – which are hydrophobic
residues with aliphatic side chains – at the C-terminus have
been associated with an increase in the ACE inhibitory activity
(Toopcham et al., 2017). SAGGYIW and APATPSFW are two
AMPs able to act as ACE inhibitors potentially suitable as
antihypertensive peptides. They are produced in wheat gluten
hydrolysate by the P. aeruginosa protease and contain
tryptophan at the C-terminus (Zhang et al., 2020). This
observation led to the idea that the presence of a tryptophan at
the C-terminus of a peptide could influence the ACE inhibitory
activity by blocking the enzyme active site via weak interactions,
such as electrostatic, hydrophobic and Van Der Waals
interactions and hydrogen bonds.

Another example is the VEGY peptide, which was isolated
from the marine Chlorella ellipsoidea and has been demonstrated
to exhibit ACE inhibitory activity and to be stable against
gastrointestinal enzymes (Ko et al., 2012). This potential use of
AMPs certainly represents a fruitful avenue of pursuit and will
likely find clinical applications in the future.

Pancreatic Lipase Inhibitory Peptides
Obesity and fatty acid metabolism disorders are widespread
epidemic. One of the pharmacological strategies to counteract
these issues is the dietary lipid inhibition. The pancreatic lipase
enzyme hydrolyzes 50–70% of food-derived fat in the human
organism and its inhibition is exploited by the Orlistat drug used
in obesity treatment. However, in long-term treatment, this
strategy can cause side effects, such as pancreatic damage and
gastrointestinal toxicity (Cheung et al., 2013). For this reason, the
search of new compounds able to inhibit pancreatic lipase,
without exerting side effects, represents a still alive need to
fight these disorders. Several AMPs have been identified so far
that are able to show this activity, which depends on the structure
and amino acid composition of the peptide (Hüttl et al., 2013).
CQPHPGQTC, EITPEKNPQLR and RKQEEDEDEEQQRE are
three peptides from purified soybean b‐conglycinin that have
been demonstrated to inhibit the pancreatic lipase (Lunder et al.,
2005; Martinez-Villaluenga et al., 2010), and are under
investigation for potential clinical applications (Złotek et
al., 2020).

Peptides With Antioxidant Activity
Oxidative stress, caused by an imbalance between production
and removal of reactive oxygen species (ROS) in cells and tissues,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 11
can promote diseases like obesity, diabetes, and heart disease
(Pizzino et al., 2017). Environmental stressors like pollutants,
heavy metals, xenobiotics, high-fat diet and the progression of
aging can contribute to an increase in ROS production. Oxidative
stress is also involved in several neurological disorders such as
Alzheimer’s and Parkinson’s diseases (Singh et al., 2019).

A growing number of antioxidant AMPs have been identified
from different sources, including animals, plants and insects
(Balti et al., 2010; Villadóniga and Cantera, 2019; Liang et al.,
2020). Peptide antioxidant activity is related to their sequence
and amino acid composition. Indeed, it has been suggested that
isoleucine, leucine and histidine residues could contribute to the
antioxidant activity of fermented anchovy fish extracts (Najafian
and Babji, 2019). A study carried out by Wu et al. on the
QMDDQ peptide, from a shrimp protein hydrolysate, showed
that the antioxidant potency could be related to the high number
of active hydrogen sites (Wu et al., 2019). Peptide antioxidant
properties are usually expressed as free radical scavenging, metal
ion chelation activity and inhibition of lipid peroxidation (Jiang
et al., 2020). For example, Zhang et al. showed that the VYLPR
peptide has a protective effect on H2O2-induced cell damage
(HEK-293 cells) (Zhang et al., 2019). Moreover, Liang et al.
investigated antioxidant peptides deriving from a protein
hydrolysate of Moringa oleifera seeds and demonstrated their
protective effects on Chang liver cells exposed to H2O2 oxidative
damage (Liang et al., 2020). Jiang et al. identified four peptides
AYI(L) and DREI(L) from Jiuzao protein hydrolysates able to
decrease ROS production in HepG2 cells (Jiang et al., 2020).
AMPs in Intestine Infection
and Inflammation
The bacterial microflora is essential for human health and the
development of the mucosal immune system. In the small
intestine, Paneth cells secrete a-defensins in response to
bacterial antigens including LPS and muramyl dipeptide
(Ayabe et al., 2000). Petnicki-Ocweija et al. showed that the
bactericidal activity of crypt secretions of the terminal ileum was
compromised by NOD2 gene deletion (Petnicki-Ocwieja et al.,
2009). The human NOD2 protein is a cytoplasmic receptor for
bacterial molecules principally expressed in Paneth cells (Lala
et al., 2003) and it was identified as a susceptibility gene for
Crohn’s disease (Hugot et al., 2001). Deficient expression of
Paneth cell a-defensins (HD5 and HD6) may contribute to the
pathophysiology of Crohn’s disease (Bevins, 2006). It has been
demonstrated that mice lacking NOD2, fail to express cryptidins,
equivalents of human a-defensins (Kobayashi et al., 2005).
Moreover, human a-defensin expression is reduced in Crohn’s
disease patients, particularly in those with NOD2 mutations
(Wehkamp et al., 2005).

hBD1 was the first defensin identified in the human large
intestine and in the not-inflamed colon. It was observed a
reduction of hBD1 expression in inflamed mucosa in patients
with inflammatory bowel diseases (Wehkamp et al., 2003).
hBD1, hBD2, hBD3 and hBD4 expression has been
demonstrated to be upregulated in colonic enterocytes in
patients with ulcerative colitis (Fahlgren et al., 2004).
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Moreover, a lot of interest has been given to the role of AMPs in
the stomach, which is easily colonized by Helicobacter pylori.
Infection by this bacterium leads to the induction of hBD2
(Wehkamp et al., 2003). It has been demonstrated that gastric
epithelial cells are induced by Helicobacter pylori to upregulate
hBD2 production (Grubman et al., 2010).

These observations make defensins very attractive from a
pharmacological point of view and can offer a good starting point
for future AMP clinical applications.
PHARMACOKINETIC AND
PHARMACODYNAMIC (PK/PD)
APPROACH IN THE EVALUATION OF AMP
CLINICAL APPLICATIONS

PK/PD Approach to Determine AMP
Antibacterial Efficacy
PK and PD principles that determine response to antimicrobial
AMPs can provide clinicians with useful information on the correct
dose regimens.

Dosler and colleagues have investigated the in vitro activities
of AMPs (indolicidin, cecropin [1–7]-melittin A [2–9] amide
[CAMA], and nisin), alone and in combination with antibiotics
(daptomycin, linezolid, teicoplanin, ciprofloxacin, and
azithromycin) against standard and clinical MRSA biofilms,
showing that AMPs improve the in vitro PK efficacy of
traditional antibiotics (Dosler and Mataraci, 2013).

Schmidt and colleagues showed that AMPs (Onc72 and
Onc112) reach several organs within 10 min after intravenous
and intraperitoneal administration and the PK experiments
explain the high in vivo efficacies of AMPs indicating their
potential use for the treatment of urinary tract infections
(Schmidt et al., 2016). However, these data are not sufficient to
predict the exact relationship between dose, exposure, and response
and translational PK/PD modeling and simulation are used to
identify the most suitable dosing regimen in patients. PK/PD
modeling can provide useful clues concerning the multifaceted
correlation between the selected kind of AMP, the bacterium
characteristics, and the reaction of the host organism.
Furthermore, complicating factors can also be incorporated into
the in silico approach thus allowing to carefully predict the right
balance between bacterial killing, adverse effects, and appearance of
resistance. This practice may, therefore, help to identify and to
optimize the dose for novel and established antibacterial agents
(Rathi et al., 2016). As previously mentioned, AMPs affect growing
bacterial populations differently from antibiotics (ampicillin,
ciprofloxacin, gentamicin, kanamycin, neomycin, rifabutin,
spectinomycin, and tetracycline), particularly from a PD point of
view (Yu et al., 2016). Moreover, Yu and colleagues, analyzing the
resistance evolution by predictive model, found that differences in
PD and in the mutagenic properties between AMPs and antibiotics
produce a much lower probability that resistance will evolve against
AMPs (Yu et al., 2018). More experiments with a variety of AMPs
are needed to determine if PK/PD characteristics of AMPs can be
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generalized and if these characteristics are significantly different
from antibiotics. However, all the available data suggest that AMPs
are significantly different from antibiotics in terms of PD and
mutagenic properties and are good candidates for slowing the
evolution of resistance.

PK/PD Approach to Determine AMP
Efficacy in Non-Bacterial Disease
The “right” use of AMPs is imperative, not only in treating bacterial
disease but also in other diseases to avoid toxicity and to limit the
development of resistance. Few studies have analyzed AMP PK/PD
properties in relation to no-bacterial disease. AGPSIVH, FLLPH,
and LLCVAV antioxidant peptides were obtained from duck breast
protein hydrolysates by Li et al. and beside the nontoxic effects
exhibited digestive resistance (Li et al., 2020). Xu and colleagues
used in vitro and in vivo models to study the absorption and
potential antioxidant activity and the in vivo metabolism,
respectively, of WDHHAPQLR derived from rapeseed protein
(Xu et al., 2018). Koeninger and colleagues showed that hBD2
displays a good tolerability and rapidly enters the bloodstream in a
model of experimental colitis after its subcutaneous administration.
Thus, besides being well tolerated in vivo, it might not only act
locally but could also have systemic effects (Koeninger et al., 2020).
Several other bioactive peptides have been discovered in recent
years, but their PK/PD properties are still unknown. It is therefore
necessary to increase the studies to determine the PK/PD efficacy of
AMPs also in non-bacterial disease.
DRUG DEVELOPMENT AND
FORMULATION APPROACHES FOR AMP
APPLICATIONS

Production and Costs - Pilot Study vs.
Small Industrial Scale
The development of AMPs as APIs (Active pharmaceutical
ingredients) has been greatly limited by their high
manufacturing costs. Although the chemical synthesis of
peptides has high efficiency, it is also complex and expensive.
Hence, advanced natural approaches should be considered with
the aim to increase the production of alternative molecules.
Genetic engineering can be considered one of the most
important strategies to obtain higher yields or higher quality
of AMPs.

To obtain AMPs, biotechnological approaches involving
competent bacteria and yeasts, as well as transgenic plants or
animals, should be considered (Sinha and Shukla, 2018). Gaglione
and co-workers focused on how to optimize the bacterial culturing
usinganewcompositionof culturebroth.Theybasically considered
inexpensiveaswell as readilyavailable components containingwell-
defined amounts of each nutrient. They also substituted IPTG
(isopropyl b- d-1-thiogalactopyranoside) with cheaper and more
harmless sugars, such as lactose. Indeed, IPTG use might result in
high-cost accumulation for industrial purposes. Altogether, the
optimized bacterial culture strategy can contribute to further
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development to enhance the manufacturing scalability of AMPs
(Gaglione et al., 2019).

However, although bacteria can produce some cyclic peptides,
they do not produce disulfide-rich peptides, so that recombinant
expression of cyclic peptides might be best performed in yeast- or
plant-based recombinant expression systems (Thorstholm and
Craik, 2012; Moridi et al., 2020).

The manufacturing cost of AMPs is estimated to be around
$50‐400 per gram of amino acid produced by SPPS (Solid Phase
Peptide Synthesis), thus biotechnological engineering or
fermentation should give cheaper alternatives. Moreover, the
identification, characterization and production of new AMPs
also with biotechnology improvement is expensive from many
points of view, therefore, it could be useful to perform
preliminary in vitro screening, to evaluate physio-chemical
characteristics, putative modifications in the secondary
structure and putative antimicrobial activity (Moretta et
al., 2020).

About the peptide drug market in 2018, more than 50 peptide
drugs have been commercialized. The annual sales of peptide
drugs, including the AMPs, is around 25 billion USD (Koo and
Seo, 2019).

AMP Dosage Forms
Compared to the possible sequence modifications to enhance the
molecular stability, the drug delivery platform development has
reported a minor attention so far. As described in literature, the
dosage forms in ongoing clinical trials encompass topical gel and
hydrogel, topical cream, polyvinyl alcohol-based solution for
administration in the wound bed, hyaluronic acid-based
hydrogel for the administration at the surgical site, oral
solutions, and mouth rinse (Mahlapuu et al., 2016).

Concerning dermal administration, burn and chronic
wounds can exhibit difficult control, especially in the case of
upsurges caused by ESKAPE pathogens (Enterococcus faecium,
S. aureus, K. pneumoniae, A. baumannii, P. aeruginosa, and
Enterobacter spp). Topical administration of antimicrobials onto
the skin provides many advantages since it offers a high local load
of the antimicrobial. Moreover, due to the pleiotropic
mechanisms of action, AMPs can contribute to fight ESKAPE
infections as well as to regulate various mechanisms including
the host processes of inflammation and wound healing (Kang et
al., 2014; Vassallo et al., 2020). However, AMPs intended to treat
chronic skin and soft tissue infections should not (i) be absorbed
from the wound or infection site into the systemic circulation;
(ii) rouse allergic sensitization. Topical administrations of AMPs
have demonstrated to be not free of systemic side effects since the
drug transport may also occur via skin layers and through hair
follicles. Besides, the stability enhancement against enzymatic
degradation needs to be assessed when peptides are developed
for clinical purposes. Moreover, the membrane border of the
epithelial cells includes several peptidases to be considered (e.g.,
leukocyte elastase, cathepsins B and D, zinc-dependent
endopeptidases, interstitial collagenase), since they are
characterized by a broad specificity to degrade exogen peptides
(Vlieghe et al., 2010; Lam et al., 2018; Pfalzgraff et al., 2018).
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Delivery System
In the context of Drug Delivery System (DDS), peptides are
playing an important role as APIs vehicles, due to the intrinsic
biodegradability and biocompatibility (Giri et al., 2021). Novel
DDS can also help (i) to reduce adverse side-effects, and (ii) to
obtain a controlled release of the AMP (Nordström and
Malmsten, 2017; Martin-Serrano et al., 2019).

Hydrogels – Overview and Platform Development for
the AMP Dermal and Subdermal Delivery
Hydrogels (HGs) comprise materials constituted by hydrophilic
as well as polymeric vehicles to entangle large amounts of water
within their three-dimensional (3D) networks (Liu and Hsu,
2018). As reported in the Eur. Pharm 8th, gels consist of gelled
liquids with suitable gelling agents. Specifically, HGs (i.e.,
hydrophilic gels) consist of water, glycerol, or propylene
glycol-based preparations. These compounds are gelled with
starch, cellulose derivatives, poloxamers, carbomers, and
magnesium-aluminum silicates (European Pharmacopeia,
2016). HGs exhibit improved bioavailability for applications
onto the impaired skin. Moreover, HG-based burn dressings
(HBBD) appear appropriate as they provide a suitable wound
covering. Thanks to a cooling sensation that occurs via
convection and evaporation of the solvent from the wound,
HBBD can also contribute to dissipating the heat that occurs
from the concomitant inflammation (Fichman and Gazit, 2014;
Goodwin et al., 2016). HGs have also been extensively studied
since they exhibit different applicability potentials covering the
cell culturing (Caliari and Burdick, 2016), the regenerative
medicine (Catoira et al., 2019), and DDS developments.

After chemical interactions, such as the Michael’s addition,
the Diels–Alder or Schiff base reactions, chemically-crosslinked
HGs form the matrix structure (Overstreet et al., 2012)
(Figure 3). To obtain a HG that supports the wound closure,
Bian and co-workers used modified chitosan with maleic
anhydride and a polyethylene glycol derivative, that was
modified with benzaldehyde at both ends. Via a Schiff-base
reaction, the obtained HG showed a shear-thinning behavior.
Accordingly, it was intended to be injected/applied into/onto
wounds, as it was suitable to adopt the contour as well as to seal
the defects of the impaired tissue. Afterwards, the in situ HG
solidification was promptly realized by using ultraviolet light
(Bian et al., 2019).

HG can also be prepared by multiple non-covalent
interactions, by which the monomeric building blocks can self-
associate in ordered fibrous structures. Also, they are suitable to
interact with each other forming the 3D network (Fichman and
Gazit, 2014). Moreover, thanks to a self-assembly skill of
polymers e.g., via changing pH and temperature, the physical
cross-linking method favors the formation of weaker and
stimuli-responsive HG. Hence, HG can temporarily modify the
structure due to the solicitation of external mechanical forces and
the shear-thinning behavior (Yan et al., 2010).

Since a substantial change in volume is usually not observed,
HGs are also suitable as injectable vehicles (Manna et al., 2019).
Moreover, HG can also polymerize in situ becoming a shear-
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thinning material after injection, allowing, therefore, AMP
delivery. The in situ forming HG was demonstrated useful for
ophthalmic applications, as well as to support the wound-healing
after surgical operations (Travkova et al., 2017). The widely used
materials and techniques for surgical closure purposes may
contribute to providing some drawbacks. Hence, contaminations
by impurities from air or from a fluid leakage can contribute to
microbial infection harm (Rajabi et al., 2020).Moreover,medicated
HG can release AMPs at the site of action after disruption of the
innermatrix by erosion, swelling, or via enzyme interactions (Chen
M. H. et al., 2017).

Li and co-workers formulated a thermosensitive HG constituted
of biodegradable poly (l-lactic acid)-Pluronic L35-poly (l-lactic acid)
for cutaneous wound-healing treatment, to investigate whether
AMPs encapsulated in this HG formulation demonstrated efficient
candidates in wound healing management. They used a type of
multifunctional human-derived AMP (i.e., AP-57), with a broad-
spectrum antimicrobial activity as well as an immune regulation
ability. The AP-57 peptide was enclosed first in biocompatible
nanoparticles, named AP-57-NPs. Subsequently, to facilitate their
application in cutaneouswound repair, theAP-57-NPswere further
encapsulated in a HG matrix (AP-57-NPs-H). As reported, the in
situ gel-forming system exhibited in vitro a low cytotoxicity and a
sustained drug release behavior. After applied to the wound, the
formulated peptide achieved additional characteristics, such as a
non-flowinggel that consequentlybecomea sustaineddrugdepot. Li
and co-workers also demonstrated wound-dressing properties of
this formulation. The effect of the formulated AMP was then
investigated on full-thickness excision wound using the Sprague-
Dawley®male and albino rat models. At last, the obtainedDDSwas
effective on the wound, and rat models reported a complete wound
closure (Li et al., 2015).

A different method to obtain HG in the aqueous phase is the
mussel-inspired polydopamine chemistry. A study of Khan and
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colleagues reported the use of catechol, instead of dopamine, as a
cross-linker with amine-rich polymers to prepare thin films.
Catechol is less expensive than dopamine; hence, it was used with
ϵ-poly-L-lysine (EPL), a natural AMP produced by Streptomyces
albulus, to fabricate HG with antimicrobial properties. EPL-
catechol HG showed in vitro antimicrobial and antibiofilm
properties against multidrug-resistant A. baumannii associated
with a good biocompatibility with a mouse myoblast cell line and
in vivo reduced the bacterial load and improved wound healing
when topically applied on the skin of a mouse with a second-
degree burn wound also infected with multidrug-resistant A.
baumannii (Khan et al., 2019). Lee and colleagues engineered
nanoparticle-HG corneal implants containing the human AMP
LL-37: although in vivo studies have not already been carried out,
this device could inhibit in vitroHSV-1 attack to ocular cells (Lee
et al., 2014). An example of insect AMP formulated as HG was
recorded from Lucilia sericata, in both wound bandages and
cosmetics to hinder dermatological pathogens (Mylonakis et
al., 2016).

Cubosome Delivery System
Cubosome represents alternative drug delivery scaffold systems
consisting of a curved continuous lipid bilayer that can be realized
with amphiphilic molecules. The most common amphiphilic lipid
systems can comprise water and glyceryl monooleate (GMO) (2,3-
Dihydroxypropyl (9Z)-9-octadecenoate) (1-Oleoyl-rac-glycerol
| C21H40O4 | ChemSpider). Similar dispersions show several self-
assembly dispositions, amongwhich the bicontinuous cubic phases
(Figure 4).

Practically, bicontinuous cubic phases can be obtained by
dispersing the amphiphilic lipid system into the aqueous phase
using e.g., ultrasonication or homogenization. Subsequently, a
dispersed gel is obtained, known as cubosome (CB) (Karami and
Hamidi, 2016). As a result of the hydrophobic effect,
FIGURE 3 | Chemical and physical bonds to obtain hydrogels. Hydrogels can also be prepared by a hybrid interaction consisting of physical interactions and/or
covalent bond formation, exhibiting at the same time reversible mechanical properties and long-term stability.
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thermodynamically stable structures with a well-defined
disposition of each component (i.e., the cubic liquid crystalline
gel) are realized (Figure 3). These nanostructures have
demonstrated suitable for loading hydrophilic, hydrophobic, as
well as amphiphilic cargos.

More importantly, CB can include bioactive compounds, as
the structure provides a significantly higher membrane surface
area to loading proteins (Barriga et al., 2019).

Anatomically, the stratum corneum represents a strong
barrier for the transdermal drug delivery of topically applied
drugs, due to the presence of the external and highly organized
skin layer. The ability of CB to adhere to the stratum corneum
makes CB effectively useful in topical drug delivery for mucosal
tissues (Gaballa et al., 2020). The structure and properties of CBs
provide a promising vehicle for transdermal drug delivery
especially for skin infections (Zeng et al., 2012; Meikle et
al., 2019).

AMPs can be adsorbed onto the CB structure that usually
shows a slightly negative charge. For instance, Boge and co-
workers demonstrated that the GMO based-CB structure
contributes to protecting the AMPs from proteolytic
degradation, improving their bioavailability after topical
administration. Furthermore, they found that AMPs loaded
onto CB are highly released in the milieu whether P.
aeruginosa or human neutrophil elastases are present.

The authors also reported a study investigating CB interaction
with both a bacterial membrane model and E. coli’s membrane,
to further understand how the interaction between AMPs and
the membranes can be accomplished. The authors suggested that
the bactericidal effect was due to physical interaction between the
product and the bacterial membrane and not solely to the release
of the peptide. Moreover, they noted that the presence of LL-37,
the chosen AMP, constituted of a secondary structure of a linear
a-helix increased the affinity of CB to bacterial membranes (Boge
et al., 2017; Boge et al., 2019a; Boge et al., 2019b).

Many papers have reported that the composition of GMO-
based CB generally involves the use of stabilizer molecules. The
stabilizer avoids the aggregation of hydrophobic portions with the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 15
external aqueous media and consequently helps to reach a
thermodynamically stable form (Gaballa et al., 2020). Pluronics,
especially poloxamer 407 (F127), represent the most used
stabilizing agents. This nonionic copolymer vehicle comprises a
central hydrophobic chain of polypropylene oxide with a molecular
weight of approximately 12.6 kDa and lateral hydrophilic chains of
polyethylene glycol (Barriga et al., 2019). The clinical application of
GMO-based CB stabilized by F127 may be limited due to
concentration-dependent cytotoxicity. Moreover, F127 may also
show hemolytic effect, as well as a poor biodegradability. A novel
stabilizer-free antimicrobial nanocarrier was developed by Zabara
and co-workers, by dispersing GMO in water using ultrasonication
and combining the AMP LL-37 by spontaneous integration in the
internal nanostructure. Comparing the new system to the GMO-
based CBs stabilized with F127, they found that the stabilizer-free
nanocarrier showed cytocompatibility and a higher antimicrobial
effect, especially against the tested Gram-negative pathogens,
among which P. aeruginosa CIP A22 DSMZ 25123 strain
(Zabara et al., 2019).

Other Drug Delivery Systems
Some negative aspects are related to the lipid-based nanocarriers:
beside the poor stability, they are also susceptible to aggregation in
vitro and to esterase activity. This last aspect might also affect the
relationship between the in vitro and the in vivo controlled release
of the cargo. Subsequently, materials alternative to lipids have been
explored including self-assembled polymeric nanocarriers for
preparing both vesicular and bicontinuous systems. Compared
to lipids, the block polymeric structures (BPS) can be synthesized
from an expansive pool of amphiphilic monomers. Therefore,
BPSs, called also polymersomes, have demonstrated high
flexibility to functionalization, along with well-defined structures
that can be distinguished in both hydrophobic and hydrophilic
sections. Hence, the BPS can exhibit substantial rewards involving
both mechanical and chemical stability (Allen et al., 2019).

Most AMP formulations in ongoing clinical trials belong to
semi-solid preparations for external use (Koehbach and Craik,
2019; Koo and Seo, 2019; Sheard et al., 2019). Hence, among the
FIGURE 4 | Cubosomes comprise curved lipid bilayers with a well-defined disposition and divided into two internal aqueous channels that can be exploited by
antimicrobial peptides. Figure created with Biorender.com.
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topical formulations, topical gel formulations are often
mentioned in several research works to treat e.g., chronic skin
and soft tissue infections. Moreover, proteins but also longer
peptides ranging between 20 to 30 amino acids can also self-
assemble naturally to achieve a-helices or b-sheets motifs.
Likewise, two antiparallel b-strands can fold in b-hairpin
motif, which contributes to creating higher-ordered fibers and
pH-responsive active pharmaceutical ingredient vehicles.
Recently, specific functional peptides have been synthesized
and utilized as useful nanomaterials. Particularly, important
properties have characterized a special group of synthetic
peptides called peptide amphiphiles (PAs). They essentially
consist of four sequences: (i) a hydrophobic tail (e.g., palmitic
acid residue); an internal portion able to form b-sheets, which
comprises (ii) an amino acid sequence to promote through
hydrogen bond the formation of fibril-like structures; (iii) a
spacer containing charged amino acids to allow solubility and
cross-linking (Cui et al., 2010); at the opposite end of the
structure, (iv) the hydrophilic head can be found that triggers
the signaling for the biological response. Due to the molecular
organization and the chemical characteristics, PAs can organize
spontaneously in a nanostructure using a folding-like behavior to
form specific nanostructures, including micelles and microtubes
(Figure 5).

Hence, to stabilize the system in a lower energy state, PA
molecules can organize the alkyl chains away from the aqueous
environment, exposing externally the hydrophilic portion. PAs
have attracted special interest as drug carriers due to their (i)
advantage of a unique structure of assemblies, (ii) abundant
molecular structures, and (iii) ability to give biological functions
(Song et al., 2017). Additionally, the self-assembly aptitude of di-
phenylalanine (Di-Phe) building-blocks can be used to obtain
diverse supramolecular nanostructures, such as nanofibrils,
or nanowires.
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These structures have demonstrated large applicability due to
their biocompatibility, high loading capacity and simplicity to
obtain the self-assembled nanostructures. Furthermore, as
reported by Schnaider and co-workers, nano-assemblies
formed by Di-Phe exhibited an intrinsic antibacterial activity
(Schnaider et al., 2017).

Such nanostructures can considerably enhance the active
pharmaceutical ingredient stability since they become less
sensitive towards enzymatic degradation. Likewise, most AMPs
forming a-helices or b-sheets could be inserted into
supramolecular nanostructures. This strategy might contribute,
therefore, to a suitable delivery of AMPs without using additional
vehicles and their molecular stability. Upon contact with the
pathogen, the peptide nanostructure is disrupted, especially from
peptidases, and releases the AMP.

Also inorganic nanomaterials (metal and metal oxide
nanoparticles, silica, nanoclays, and carbon-based nanomaterials)
have investigated as AMP delivery systems, because they shield the
molecules from degradation and avoid peptide aggregation or
conformational changes that could inactivate them (Nordström
andMalmsten, 2017). Furthermore, they have the ability to control
the drug release (thanks to well-defined pore sizes and forms
(Vivero-Escoto et al., 2010)) increasing bioavailability and
reducing toxicity (Nordström and Malmsten, 2017). In addition,
several nanoparticles have been shown to have antimicrobial
properties against both Gram-negative and -positive bacteria,
suggesting that the complex AMP-nanoparticle may have a
synergistic impact (Hajipour et al., 2012). Another synergistic
effect could be achieved by a close interaction between AMP and
antibiotics, which can be carried together in mesoporous silica
nanoparticles with good chemical stability and biocompatibility,
even though it is always important to consider the chemical nature
of these nanoparticles, the dosage, and the administration route
(Nordström and Malmsten, 2017).
FIGURE 5 | Arrangement of peptide amphiphiles in self-assembling nanostructures (e.g., micelles and microtubes), which can contain and release APIs. Adapted
from Song et al. (2017). Figure created with UCSF CHIMERA software (Pettersen et al., 2004).
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ADMINISTRATION ROUTES

Compared to other routes of administration, the intramuscular, or
the subcutaneous routes may not require too much stability of the
peptide. Indeed, AMP physicochemical and biological
characteristics could be taken into less account in these routes of
administration, while size, permeation through gastrointestinal
membrane, poor stability to gastric pH and susceptibility to
proteolytic enzymes make the oral administration much difficult
(Schiffter, 2011).

Hence, injection represents the best route of administration
for most of the AMPs (Di, 2015). However, the intravenous
administration certainly exposes the peptides to the esterase and
peptidase activity present in serum (Vlieghe et al., 2010; Fosgerau
and Hoffmann, 2015).

The oral route remains a patient-friendly option, due to the
non-invasive and painless administration. However, considering
few exceptions, the oral pharmaceutical technologies have not
shown radical improvements regarding the AMP formulation to
increase their bioavailability. The principal efforts concern the
peptide stability due to the presence of pancreatic peptidases, e.g.
a-chymotrypsin, trypsin and pancreatic elastase secreted from
the pancreas into the gastrointestinal tract (Vlieghe et al., 2010;
Aguirre et al., 2016; Malhaire et al., 2016).

Furthermore, high dosage and low systemic exposure allow
minimizing systemic side effects when a drug is formulated for
the lung administration. Inhaled medications of peptides have
demonstrated superior in terms of rapid onset (Larijani et al.,
2005). Peptide macrocycles with antimicrobial effect working as
protein epitope mimetics can also be formulated for inhalation,
due to appropriate chemical stability. The POL6014, a neutrophil
elastase inhibitor (i.e., Murepavadin®), can be administered via
eFlow® nebulizer system to treat cystic fibrosis lung infections
and it is currently in Phases I/II (NCT03748199, 2018).

In conclusion, as reported above, topical applications
involving AMPs loading in nanoparticles, hydrogels, creams,
gels and ointments represent the most used and best developed
AMP applications and further studies are needed to exploit new
suitable administration routes.
AMPs IN ONGOING CLINICAL TRIALS

Wehavedescribed severalAMPs approved for clinical applications.
However, many others, both natural and synthetic, are still under
clinical trials (Table 3). Preliminary results suggested that many
AMPs could be useful alone or in synergywith common antibiotics
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to prevent or treat several diseases, but most of the studies are still
ongoing or were stopped because of issues that can be solved,
including unfavorable pharmacokinetic profile or unexpected side
effects (Browne et al., 2020; Dijksteel et al., 2021).

Below we reported some recent clinical trials, focusing the
attention on studies still in progress.

Bacitracin, a natural cyclic AMP from Bacillus subtilis, is
currently reported in several ongoing studies of phase IV to treat
Gram-positive bacterial infections (Bacitracin - ClinicalTrials.gov).
These studies are evaluating bacitracin (i) in subjects with minor,
second-degree burns, for topical use and in combination with a
second ointment of collagenase; (ii) as an ointment to treat skin
infections in combination with medical-grade honey; (iii) as an
ointment for topical antibiotic therapy after eyelid surgery and to
evaluate the use of antibiotic prophylaxis in presence of antibiotic
side effects and antibiotic allergy; (iv) as topical antibiotic irrigation
to reduce surgical site infections and in combinationwithneomycin
and polymyxin (Neomycin®) for postoperative urinary tract
infections and to extend the antimicrobial effect to Gram-negative
bacteria; (viii) to evaluate the efficacy of preoperative oral antibiotic
prophylaxis for preventing surgical site infections in elective
colorectal surgery (combination of Bacitracin and the antibiotic
Neomycin). Another clinical trial was ongoing to evaluate the
topical use of bacitracin to reduce surgical site infections in
midfacial fracture surgery, but in April 2020 this trial was closed
because of bacitracin toxicity. Other phase IV studies involving
bacitracin are aimed to the treatment of (v) facial burns, (vi) in
combination with topical tranexamic acid (i.e., 5%, and 25%), and
(vii)withpolymyxinB (Polysporin®) to evaluate the use ofBiofine®

creamonwounds due to cryotherapy for removing actinic keratosis
lesions (Bacitracin - ClinicalTrials.gov).

Pexiganan, a linear AMP, is under investigation in four phase
III studies for the treatment of diabetic foot ulcers using topical
cream formulations (Gottler and Ramamoorthy, 2009).

Omiganan, an indolicidin derivative (Sader et al., 2004), has
been tested in a total of sixteen studies and thirteen of them have
been completed. Looking at the completed ones, three phase III
studies have been reported, among which two were aimed to
evaluate the efficacy of AMPs as topical gel formulation to treat
rosacea. The third phase III study concerned the treatment of
catheter colonization, and prevention of bloodstream infections
if applied to the skin surrounding the insertion.

The innate immunity of mammals comprises also the
cathelicidins as a distinct class of proteins. Like defensins,
although their structural features clearly distinguish them from
defensins, cathelicidins act as precursor molecules that can release
an AMP after proteolytic cleavage (Dürr et al., 2006).
TABLE 3 | List of the AMPs in ongoing clinical trials.

AMP Peptide structural characteristic Ongoing Clinical Trials

Bacitracin Natural cyclic peptide Phase IV
Pexiganan Natural linear peptide Phase III
Omiganan Indolicidin derivative peptide Phase III
LL-37 Natural a-helical peptide Phase II
LTX-109 Synthetic Antimicrobial Peptidomimetic Phase II
Brilacidin Synthetic peptide Phase II
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The human cathelicidin-derived AMP, named LL-37, belongs
to the class of a-helical AMPs. Currently it can be found on a
Phase II clinical trial by Promore Pharma (Promore Pharma AB,
Sweden) evaluating LL-37 safety and tolerability in patients with
venous leg ulcers (Grönberg et al., 2014; Sierra et al., 2017; Koo
and Seo, 2019). It is also under investigation in patients with
diabetic foot ulcers (LL-37 - ClinicalTrials.gov).

The synthetic AMP LTX-109 represents a novel class of very
short AMPs. It has been described as a synthetic antimicrobial
peptidomimetic and has entered the phase II clinical studies
(Isaksson et al., 2011) with the aims (i) to assess the clinical and
microbiological response of two LTX-109 dosages (i.e., 1%, and 2%)
formulated as a topical gel (Lytixar™) for the treatment of non-
bullous impetigo; (ii) to evaluate the safety, local tolerability, and
efficacy of 1%, 2% and3%LTX-109 gel formulations for the anterior
nare delivery in patients who are carriers of MRSA/MSSA
(methicillin-susceptible S. aureus); (iii) defining the magnitude of
systemic absorption when LTX -109 is applied to the anterior nares
as a topical gel; (iv) to evaluate the safety and tolerability of topical
Lytixar™ formulation ontouncomplicated skin infections, aswell as
to investigate both the clinical andmicrobiological effect of Lytixar™

in patients with uncomplicated skin infection byGram-positive and
to determine the degree of systemic absorption of LTX-109. A
further trial in recruiting phase is aimed to demonstrate the safety
of a percutaneous application of a 3% gel cream of LTX-109 in
Hidradenitis suppurativa, to identify the clinical responses and the
influences of specific parameters, including age, disease duration,
and body mass index (LTX-109 - ClinicalTrials.gov).

Brilacidin is a synthetic AMP, successfully tested in Phase II
clinical trials for treatment of acute bacterial skin and skin structure
infections. A recent work demonstrated that Brilacidin displays an
antiviral activity, inhibiting SARS-CoV2virus inVeroAfrican green
monkey kidney cells and Calu-3 human lung epithelial cells and
showing a synergistic inhibitory activity in combination with the
antiviral Remdesivir (Bakovic et al., 2021). A Phase II clinical trial is
going to start to assess the efficacy and safety of Brilacidin onpatients
with moderate or severe SARS-CoV-2 infection, hospitalized with
respiratorydifficultybutnot requiringhigh-level respiratory support
(Brilacidin - ClinicalTrials.gov).
CONCLUSIONS

AMPs can be considered unconventional therapeutic small
molecules which have attracted great interest in recent years
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because of their promising potential, as they can be used as
alternative or complement approaches for treatment of
microbial infections. Due to their potency, broad-spectrum
activity, different sources available in nature, lack of rapid
development of resistance, low accumulation in tissue and rapid
killing activity, these peptides show several advantages over
conventionally used antibiotics. Moreover, AMPs also display
immunomodulatory, antioxidant and anti-inflammatory
activities and, for this reason, researchers are devoting
considerable efforts to implement the use of AMPs as
commercially available drugs. This review examined the features
of AMPs, their mechanisms of action and their sources,
highlighting their antimicrobial activity against several
pathogens involved in human infections. Thus, the efficacy and
potentially applicability of AMPs in human diseases has been
analyzed. Particularly, we examined the beneficial role of several
AMPs in the treatment of skin infections, but we also reviewed
their potential use in respiratory diseases and oxidative-stress
disorders, such as obesity, diabetes and chronic inflammatory
intestinal disorders. Indeed, AMPs display several potential
applications in medicine, since they can regulate pro-
inflammatory reactions, stimulate cell proliferation, promote
wound healing by modulating the cell migration, angiogenesis,
chemotaxis and cytokine release. On these bases, pharmaceutical
companies are performing great efforts to develop AMPs as
therapeutic agents, improving their chemical and metabolic
stability, setting up smart and novel formulation strategies, with
the aim to improve AMP delivery and, consequently, their activity.
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