An Efficient Particle Tracking Algorithm for Large-Scale Parallel Pseudo-Spectral
Simulations of Turbulence

Cristian C. Lalescu®®!, Bérenger Bramas®™{, Markus Rampp®, Michael Wilczek?

“Max Planck Institute for Dynamics and Self-Organization, Goettingen, Germany
b Max Planck Computing and Data Facility, Garching, Germany
¢Inria Nancy — Grand-Est, CAMUS Team, France
4ICube, ICPS Team, France

— Abstract

N Particle tracking in large-scale numerical simulations of turbulent flows presents one of the major bottlenecks in parallel perfor-
mance and scaling efficiency. Here, we describe a particle tracking algorithm for large-scale parallel pseudo-spectral simulations of

___ turbulence which scales well up to billions of tracer particles on modern high-performance computing architectures. We summarize
— the standard parallel methods used to solve the fluid equations in our hybrid MPI/OpenMP implementation. As the main focus,
™ we describe the implementation of the particle tracking algorithm and document its computational performance. To address the
(\l extensive inter-process communication required by particle tracking, we introduce a task-based approach to overlap point-to-point
communications with computations, thereby enabling improved resource utilization. We characterize the computational cost as a

C function of the number of particles tracked and compare it with the flow field computation, showing that the cost of particle tracking

—
—>=is very small for typical applications.
Keywords: Particle tracking; MPI; OpenMP

flu-d

1. Introduction

Understanding particle transport in turbulent flows is funda-
mental to the problem of turbulent mixing [1} 2, 13} 4} 1S} 6]
()_and relevant for a wide range of applications such as disper-
—ision of particles in the environment [7, [8, 9l [10], the growth
of cloud droplets through collisions [[11} [12} [13| [14} [15], and
phytoplankton swimming in the ocean [[16, (17, [18]. Direct nu-
merical simulations (DNS) of turbulence are nowadays an es-
tablished tool for investigating such phenomena and have a long
history in scientific computing [19, 20} 21} 22, 23]]. DNS have
become a major application and technology driver in high per-
. formance computing, since the scale separation between the
largest and the smallest scales increases drastically with the
Reynolds number R,, which characterizes the degree of small-
scale turbulence [24]]. Dimensional estimates of the required
computational resources scale at least as Rj [24]. Recent lit-
erature [25]], however, shows that, due the occurrence of ex-
tremely small-scale structures, resolution requirements increase
even faster than simple dimensional arguments suggest. Until
today DNS have reached values of up to R, =~ 2300 [26} 27, 22]],
still smaller than the latest experiments, which have reached
R, > 5000 [28]], or natural settings such as cumulus clouds,
which show Reynolds numbers on the order of 10* [29]]. Hence
DNS of turbulence will continue to be computationally de-
manding for the foreseeable future.

hysics

01104v1

Xiv:2107

*Corresponding author.
E-mail address: Cristian.Lalescu@mpcdf.mpg.de

Preprint submitted to Computer Physics Communications

Due to the large grid sizes, practical implementations of
DNS typically employ one- or two-dimensional domain de-
compositions within a distributed memory parallel program-
ming paradigm. While the numerical solution of the field
equations is typically achieved with well-established methods,
the efficient implementation of particle tracking within such
parallel approaches still poses major algorithmic challenges.
In particular, particle tracking requires an accurate interpola-
tion of the flow fields on distributed domains and particles
traversing the domain need to be passed on from one sub-
domain/process to another. As the Reynolds number increases,
the number of particles required to adequately sample the tur-
bulent fields needs to grow with the increasing numerical res-
olution, since this is a measure of the degrees of freedom of
the flow. In addition higher-order statistics might be needed
to address specific research questions, and thus the number
of particles required for converged statistics increases as well
[4), 130l 311, 32] 33| 34, 135, 136]. Overall, this requires an ap-
proach which handles the parallel implementation in an effi-
cient manner for arbitrarily accurate methods. One option ex-
plored in the literature is the use of the high-level program-
ming concept of coarrays, in practice shifting responsibility
for some of the communication operations to the compiler, see
[23]. The general solution that we describe makes use of MPI
and OpenMP for explicit management of hardware resources.
The combination of MPI [37] and OpenMP [38] has become a
de facto standard in the development of large-scale applications
[39] 40l 411 1421 143], [44]]. MPI [45] is used for communication
between processes and OpenMP to manage multiple execution

July 5, 2021

threads over multicore CPUs using shared memory. Separately,
large datasets must be processed with specific data-access pat-
terns to make optimal use of modern hardware, as explained for
example in [46].

To address the challenges outlined above, we have developed
the numerical framework “Turbulence Tools: Lagrangian and
Eulerian” (TurTLE), a flexible pseudo-spectral solver for fluid
and turbulence problems implemented in C++ with a hybrid
MPI/OpenMP approach [47]. TurTLE allows for an efficient
tracking of a large class of particles. In particular, TurTLE
showcases a parallel programming pattern for particle track-
ing that is easy to adapt and implement, and which allows ef-
ficient executions at both small and large problem sizes. Our
event-driven approach is especially suited for the case where
individual processes require data exchanges with several other
processes while also being responsible for local work. For this,
asynchronous inter-process communication and tasks are used,
based on a combined MPI/OpenMP implementation. As we
will show in the following, TurTLE permits numerical parti-
cle tracking at relatively small costs, while retaining flexibility
with respect to number of particles and numerical accuracy. We
show that TurTLE scales well up to O(10*) computing cores,
with the flow field solver approximately retaining the perfor-
mance of the used Fourier transform libraries for DNS with
3 x 2048 and 3 x 4096° degrees of freedom. We also mea-
sure the relative cost of tracking up to 2.2 x 10° particles as
approximately only 10% of the total wall-time for the 40963
case, demonstrating the efficiency of the new algorithm even
for very demanding particle-based studies.

In the following, we introduce TurTLE and particularly fo-
cus on the efficient implementation of particle tracking. Sec-
tion [2| introduces the evolution equations for the fluid and par-
ticle models, as well as the corresponding numerical methods.
Section 3| provides an overview of our implementation, includ-
ing a more detailed presentation of the parallel programming
pattern used for particle tracking. Finally, Section 4| summa-
rizes a performance evaluation using up to 512 computational
nodes.

2. Evolution equations and numerical method

2.1. Fluid equations

While TurTLE is developed as a general framework for a
larger class of fluid equations, we focus on the Navier-Stokes
equations as prototypical example in the following. The incom-
pressible Navier-Stokes equations take the form

Ou+u-Vu=-Vp+vAu + f,

V-u=0. M
Here, u denotes the three-dimensional velocity field, p is the
kinematic pressure, v is the kinematic viscosity, and F denotes
an external forcing that drives the flow. We consider periodic
boundary conditions, which allows for the use of a Fourier
pseudo-spectral scheme. Within this scheme, a finite Fourier
representation is used for the fields, and the non-linear term

of the Navier-Stokes equations is computed in real space —
an approach pioneered by Orszag and Patterson [19]. For the
concrete implementation in TurTLE, we use the vorticity for-
mulation of the Navier-Stokes equation, which takes the form

dw(x,1) =V x (u(x,) X w(x, 1) + vAw(x,) + F(x,1), (2)

where w = V Xu is the vorticity field and F = V X f denotes the
curl of the Navier-Stokes forcing. The Fourier representation of
this equation takes the form [48] 49]

A0k, 1) = ik X Flu(x,t) X w(x,)] — vk*o(k,) + F(k, 1), (3)

where ¥ is the direct Fourier transform operator. In Fourier
space, the velocity can be conveniently computed from the vor-
ticity using Biot-Savart’s law,

ik x &k, 1)

ak,t) = 2

“
Equation (@) is integrated with a third-order Runge-Kutta

method [50], which is an explicit Runge-Kutta method with the
Butcher tableau ()

0
1]
12 1/4 1/4)
| 1/6 1/6 2/3

In addition to the stability properties described in [50], this
method has the advantage that it is memory-efficient, requir-
ing only two additional field allocations, as can be seen from

Wi (k) = ok, e " + hNTok, D]e™ ",
ak) = J0k, e+ L1 (k) + AN (R)De™ ",

Z
a1+ h) = Lok, e + 20y (k) + IN R (k)])e"E 2,
(6)
where h is the time step, limited in practice by the
Courant-Friedrichs-Lewy (CFL) condition [51]. The nonlin-
ear term

NG = ik x F [F7' 220 1]| (7)

is computed by switching between Fourier space and real space.
If the forcing term is nonlinear, it can be included in the right-
hand side of . To treat the diffusion term, we use the standard
integrating factor technique [52] in (6).

Equation (3) contains the Fourier transform of a quadratic
nonlinearity. Since numerical simulations are based on finite
Fourier representations, the real-space product of the two fields
will in general contain unresolved high-frequency harmonics,
leading to aliasing effects [52]. In TurTLE, de-aliasing is
achieved through the use of a smooth Fourier filter, an approach
that has been shown in [53]] to lead to good convergence to the
true solution of a PDE, even though it does not completely re-
move aliasing effects.

The Fourier transforms in TurTLE are evaluated using the
FFTW library [54]. Within the implementation of the pseudo-
spectral scheme, the fields have two equivalent representations:
an array of Fourier mode amplitudes, or an array of vectorial
values on the real-space grid. For the simple case of 3D pe-
riodic cubic domains of size [0,27]%, the real space grid is a
rectangular grid of N X N X N points, equally spaced at dis-
tances of 6 = 2n/N. Exploiting the Hermitian symmetry of
real fields, the Fourier-space grid consists of N X N X (N/2 + 1)
modes. Therefore, the field data consists of arrays of floating
point numbers, logically shaped as the real-space grid or arrays
of floating point number pairs (e.g. fftw_complex) logically
shaped as the Fourier-space grid. Extensions to non-cubic do-
mains or non-isotropic grids are straightforward.

The direct numerical simulation algorithm then has two fun-
damental constructions: loops traversing the fields, with an as-
sociated cost of O(N?) operations, and direct/inverse Fourier
transforms, with a cost of O(N?3 log N) operations.

2.2. Farticle equations

A major feature of TurTLE is the capability to track different
particle types, including Lagrangian tracer particles, ellipsoids,
self-propelled particles and inertial particles. To illustrate the
implementation, we focus on tracer particles in the following.

Lagrangian tracer particles are virtual markers of the flow
field starting from the initial position x. Their position X
evolves according to

X (x,1) = u(X(x,1),1), X(x,0) = x. ®)

The essential characteristic of such particle equations is that
they require as input the values of various flow fields at arbitrary
positions in space.

TurTLE combines multi-step Adams-Bashforth integration
schemes (see, e.g., §6.7 in [55]) with a class of spline inter-
polations [56] in order to integrate the ODEs. Simple Lagrange
interpolation schemes (see, e.g., §3.1 in [S3]) are also imple-
mented in TurTLE for testing purposes. There is ample litera-
ture on interpolation method accuracy, efficiency, and adequacy
for particle tracking, e.g. [20}157,158,159,160]. The common fea-
ture of all interpolation schemes is that they can be represented
as a weighted real-space-grid average of a field, with weights
given by the particle’s position. For all practical interpolation
schemes, the weights are zero outside of a relatively small ker-
nel of grid points surrounding the particle, i.e. the formulas are
“local”. For some spline interpolations, a non-local expression
is used, but it can be rewritten as a local expression where the
values on the grid are precomputed through a distinct global
operation [20] — this approach, for example, is used in [23]].

Thus an interpolation algorithm can be summed up as fol-
lows:

1. compute X = X mod 27 (because the domain is peri-
odic).

2. find the closest grid cell to the particle position X, indexed
by ¢ = (c1, ¢2,¢3).

3. compute ¥ = X — ¢6.

4. compute a sum of the field over 7 grid points in each of the
3 directions, weighted by some polynomials:

1/2

S a8 Euesn o

i1,0,i3=1-1/2

uX)~

The cost of the sum itself grows as I°, the cube of the size of the
interpolation kernel. The polynomials §;; are determined by the
interpolation scheme (see [S6]).

In general accuracy improves with increasing /. In TurTLE,
interpolation is efficiently implemented even at large /. As dis-
cussed below in this is achieved by organizing particle
data such that only O(I*) MPI messages are required to com-
plete the triple sum, rather than O(N,,).

3. Implementation

3.1. Overview

The solver relies on two types of objects. Firstly, an ab-
stract class encapsulates three elements: generic initialization,
do work and finalization functionality. Secondly, essential data
structures (i.e. fields, sets of particles) and associated function-
ality (e.g. HDF5-based I/O) are provided by “building block™-
classes. The solver then consists of a specific “arrangement” of
the building blocks.

The parallelization of TurTLE is based on a standard, MPI-
based, one-dimensional domain-decomposition approach: The
three-dimensional fields are decomposed along one of the di-
mensions into a number of slabs, with each MPI process hold-
ing one such slab. In order to efficiently perform the costly
FFT operations with the help of a high-performance numeri-
cal library such as FFTW, process-local, two-dimensional FFTs
are interleaved with a global transposition of the data in order
to perform the FFTs along the remaining dimension. A well-
known drawback of the slab decomposition strategy offered by
FFTW is its limited parallel scalability, because at most N MPI
processes can be used for N* data. We compensate for this by
utilizing the hybrid MPI/OpenMP capability of FFTW (or func-
tionally equivalent libraries such as Intel MKL), which allows
to push the limits of scalability by at least an order of magni-
tude, corresponding to the number of cores of a modern multi-
core CPU or NUMA domain, respectively. All other relevant
operations in the field solver can be straightforwardly paral-
lelized with the help of OpenMP. Our newly developed parallel
particle tracking algorithm has been implemented on top of this
slab-type data decomposition using MPI and OpenMP, as shall
be detailed below. Slab decompositions are beneficial for parti-
cle tracking since MPI communication overhead is minimized
compared to, e.g., two-dimensional decompositions.

3.2. Fluid solver

The fluid solver consists of operations with field data, which
TurTLE distributes among a total of P MPI processes with a
standard slab decomposition, see Fig. [T} Thus the logical field

X3
. Process #P —1

Ps slices
Process #0)

Py, particles

.
.
Sp partic.les Sp particles Sp pa?ticles

Figure 1: Distribution of real-space data between MPI processes in TurTLE.
Fields are split into slabs and distributed between P MPI processes along the x3
direction. The N, particles are also distributed, with each MPI process storing
P, particles on average. Within each MPI process the particle data is sorted
according to its x3 location. This leads to a direct association between each of
the P; field slices to contiguous regions of the particle data arrays — in turn
simplifying the interpolation procedure (see text for details). On average, S,
particles are held within each such contiguous region.

layouts consist of (N/P)x N x N points for the real-space repre-
sentation, and (N/P)xX N x(N/2+1) points for the Fourier space
representation. This allows the use of FFTW [54] to perform
costly FFT operations, as outlined above. We use the conven-
tion that fields are distributed along the real-space x; direction,
and along the k, direction in the Fourier space representation
(directions 2 and 3 are transposed between the two represen-
tations). Consequently, a problem on an N> grid can be par-
allelized on a maximum of N computational nodes using one
MPI process per node and, possibly, OpenMP threads inside
the nodes, see Fig. [T}

In the interest of simplifying code development, TurTLE
uses functional programming for the costly traversal operation.
Functional programming techniques allow to encapsulate field
data in objects, while providing methods for traversing the data
and computing specified arithmetic expressions — i.e. the class
becomes a building block. While C++ allows for overloading
arithmetic operators as a mechanism for generalizing them to
arrays, our approach permits to combine several operations in
a single data traversal, and it applies directly to operations be-
tween arrays of different shapes. In particular operations such
as the combination of taking the curl and the Laplacian of a field
(see (3)) are in practice implemented as a single field traversal
operation.

3.3. Particle tracking

‘We now turn to a major feature of TurTLE: the efficient track-
ing of particles. The novelty of our approach warrants a more
in-depth presentation of the data structure and the parallel al-
gorithms, for which we introduce the following notations (see

also Fig. [T):

e P : the number of MPI processes (should be a divisor of
the field grid size N);

e P, = N/P : the number of field slices in each slab;
e N, : the number of particles in the system;

e P,: the number of particles contained in a given slab (i.e.
hosted by the corresponding process) — on average equal
to N,/P;

e §,: the number of particles per slice, i.e. number of par-
ticles found between two slices — on average equal to
N,/N;

e [: the width of the interpolation kernel, i.e. the number of
slices needed to perform the interpolation.

The triple sum (9) is effectively split into / double sums over
the x; and x, directions, the results of which then need to be dis-
tributed/gathered among the MPI processes such that the sum
along the x3 direction can be finalized. Independently of P and
N, there will be N, sums of I 3 terms that have to be performed.
However, the amount of information to exchange depends on
the DNS parameters N, N, and I, and on the job parameter P.

Whenever more than one MPI process is used, i.e. P > 1, we
distinguish between two cases:

1. I < Py, i.e. each MPI domain extends over at least as many
slices as required for the interpolation kernel. In this case
particles are shared between at most two MPI processes,
therefore each process needs to exchange information with
two other processes. In this case, the average number of
shared particles is § ,(1 — 2).

2. I > Py, i.e. the interpolation kernel always extends outside
of the local MPI domain. The average number of shared
particles is S ,P,. Each given particle is shared among
a maximum of [//P] processes, therefore each process
must in principle communicate with 2[1/P]— 1 other pro-
cesses.

The second scenario is the more relevant for scaling studies.
Our expectation is that the communication costs will outweigh
the computation costs, therefore the interpolation step should
scale like N,I/P; oc N,IP/N. In the worst case scenario, when
the 2D sum has a significant cost as well, we expect scaling like
N,PPP/N.

3.3.1. Particle data structure

The field grid is partitioned in one dimension over the pro-
cesses, as described in Section@ such that each process owns
a field slab. For each process, we use two arrays to store the data
for particles included inside the corresponding slab. The first ar-
ray contains state information, including the particle locations
— required to perform the interpolation of the field. The sec-
ond array, called rhs, contains the value of the right-hand-side
of (B[), as computed at the most recent few iterations (as re-
quired for the Adams-Bashforth integration); updating this sec-
ond array requires interpolation. The two arrays use an array
of structures pattern, in the sense that data associated to one
particle is contiguous in memory. While this may lead to per-
formance penalties, as pointed out in [46], there are significant

benefits for our MPI parallel approach, as explained below. We
summarize in the following the main operations that are applied
to the arrays.

Ordering the particles locally. When N > P, processes are in
charge of more than one field slice, and the particles in the
slab are distributed across different slices. In this case, we
store the particles that belong to the same slice contiguously in
the arrays, one slice after the other in increasing x3-axis order.
This can be achieved by partitioning the arrays into P differ-
ent groups and can be implemented as an incomplete Quicksort
with a complexity of O(P, log P,) on average. After this oper-
ation, we build an array offset of size P, + 1, where offset[idx]
returns the starting index of the first particle for the partition idx
and offset[idx+1]-offset[idx] the number of particles in group
idx. As aresult, we have offset/P;]= P,. This allows direct ac-
cess to the contiguous data regions corresponding to each field
slice, in turn relevant for MPI exchanges (see below).

Exchanging the particles for computation. With our data struc-
tures, we are able to send the state information of all the par-
ticles located in a single group with only one communication,
which reduces communication overhead. Moreover, sending
the particles from several contiguous levels can also be done
in a single operation because the groups are stored sequentially
inside the arrays.

Farticles displacement/update. The positions of the particles
are updated at the end of each iteration, and so the arrays must
be rearranged accordingly. The changes in the x; direction
might move some particles in a different slice and even on a
slice owned by a different process. Therefore, we first partition
the first and last groups (the groups of the first and last slices
of the process’s slab) to move the particles that are now outside
of the process’s grid interval at the extremities of the arrays.
We only act on the particles located at the lower and higher
groups because we assume that the particles cannot move with
distance greater than 27/N. For regular tracers (8)) this is in fact
required by the CFL stability condition of the fluid solver. This
partitioning is done with a complexity O(P,/P;). Then, every
process exchanges those particles with its direct neighbors, en-
suring that the particles are correctly distributed. Finally, each
process sorts its particles to take into account the changes in the
positions and the newly received particles as described previ-
ously.

3.3.2. Parallelization

The interpolation of the field at the particle locations concen-
trates most of the workload of the numerical particle tracking.
For each particle, the interpolation uses the I* surrounding field
nodes. However, because we do not mirror the particle or the
field information on multiple processes, we must actively ex-
change either field or particle information to perform a com-
plete interpolation. Assuming that the number of particles in
the simulation is much less than the number of field nodes, i.e.
the relation P, < IN 2 holds, less data needs to be transferred on
average when particle locations are exchanged rather than field

[Insert task for computation on local data
] Compute a task on local data

. Compute a task on received data

—
—_
..S
3

Post initial sends/receives

Wait any communication to be completed

g m—
4
oo oo

b

P

Send completed, nothing to do, wait again

b
b
oo

Wait any communication to be completed

feened |
oo b
oo

Other’s data received
Insert task for computation on received data

Post the send for the result

Wait any communication to be completed

b
co D

Other’s data received
Insert task for computation on received data

Post the send for the result
Wait any communication to be completed

Result related to local data received, do nothing
Wait two last send to be done

All communication completed
End of parallel section

Merge

o = @-0-0— 0= mm@—@ wmm@——@——mmmo
. -
-

Figure 2: Execution example for one process with four threads, from top to
bottom. The threads compute local operations by default, but switch to the re-
mote operations when the master thread creates the corresponding new higher-
priority tasks. With the use of priorities, the execution pattern allows for quicker
communication of results to different processes.

values at required grid nodes. Consequently, in our implemen-
tation we exchange the particle information only.

A straightforward implementation, where the communica-
tion and computation are dissociated, consists in the following
operations:

(a) each process computes the interpolation of its particles on
its field;

(b) all the processes exchange particles positions with their
neighbors (each process sends and receives arrays of po-
sitions);

(c) each process computes the interpolation using its field on
the particle positions it received from other processes in

(b);

(d) all the processes exchange the results of the interpolations
from (c) with the corresponding neighbors;

(e) each process merges the results it received in (d) and the
results from its own computation from (a).

In our implementation, we interleave these five operations to
overlap communication with computation. As we detail in the

following, the master thread of each MPI process creates com-
putation work packages, then performs communications while
the other threads are already busy with the work packages. This
is achieved with the use of non-blocking MPI communications
and OpenMP tasks, as illustrated in Fig. 2| In a first stage, the
master thread splits the local interpolation from (a) into tasks
and submits them immediately but with a low priority. Then, it
posts all the sends/receives related to (b) and all the receives re-
lated to (d), and stores the corresponding MPI requests in a list
R. In the core part of the algorithm, the master thread performs
a wait-any on R. This MPI function is blocking and returns
as soon as one of the communications in the list is completed.
Hence, when a communication is completed, the master thread
acts accordingly to the type of event e it represents. If e is the
completion of a send of local particle positions, from (b), there
is nothing to do and the master thread directly goes back to the
wait-any on R. In this case, it means that a send is completed
and that there is nothing new to do locally. If e is the com-
pletion of a receive of remote particle positions, from (b), then
the master thread creates tasks to perform the interpolation of
these positions, from (c), and submits them with high priority.
Setting a high priority ensures that all the threads will work on
these tasks even if the tasks inserted earlier to interpolate the
local positions, from (a), are not completed. When these tasks
are completed, the master thread posts a non-blocking send to
communicate the results to the process that owns the particles
and stores the corresponding MPI request in R. Then, the mas-
ter thread goes back to the wait-any on R. If e is the com-
pletion of a send of interpolation on received positions, as just
described, the master thread has nothing to do and goes back to
the wait-any. In fact, this event simply means that the results
were correctly sent. If e is the completion of a receive, from
(d), of interpolation performed by another process, done in (c),
the master thread keeps the buffer for merging at the end, and it
goes back to the wait-any on R. When R is empty, it means that
all communications (b,d) but also computations on other posi-
tions (c) are done. If some local work still remains from (a),
the master thread can join it and compute some tasks. Finally,
when all computation and communication are over, the threads
can merge the interpolation results, operation (e).

The described strategy is a parallel programming pattern that
could be applied in many other contexts when there are local
and remote works to perform and where remote work means
first to exchange information and second to apply computation
on 1t.

3.4. In-Order Parallel Particle /O

Saving the states of the particles on disk is a crucial operation
to support checkpoint/restart and for post-processing. We focus
on output because TurTLE typically performs many more out-
put than input operations (the latter only happen during initial-
ization). The order in which the particles are saved is important
because it influences the writing pattern and the data accesses
during later post-processing of the files. As the particles move
across the processes during the simulation, a naive output of the
particles as they are distributed will lead to inconsistency from

PO P1 P2 P3
[11]3]7]5] [10]6]12] [2]4]o]13]8]9] [1]14]

Sort
PO P1 P2 P3
[3]5]7]11] [e]10]12] [o]2]4]8]o]13] [1]4]

Split
PO P1 P2 P3
[3]5]7111] [e]10]12] [o]2]4]8]o]13] [1]14]

=
P1 Recv

[3]s5]7]6]o]2]4]1] [11]10]12] 8] 9]13]14]

PO P1
[o]1]2]3]4][5]e]7] [8]o9]10]11]12]13]14]

\ '/ Write to file

0/1/2|3/4/5/6/7 8|9/10/11/12/13|14

Figure 3: The different stages to perform a parallel saving of the particles in
order. Here, we consider that the particle data (illustrated by the global particle
index) is distributed among 4 processes, but that only 2 of them are used in the
write operation.

one output to the other. Such a structure would require reorder-
ing the particles during the post-processing or would result in
complex file accesses. That is why we save the particles in or-
der, i.e. in the original order given as input to the application.

The algorithm that we use to perform the write operation
is shown in Fig. There are four main steps to the proce-
dure: pre-sort ("Sort” and ”Split” in the figure), followed by
exchange ("Send/Recv” in Fig. [3), with a final post-sort before
the actual HDFS write.

Each process first sorts its local particles using the global
indices, which is done with a O(P, log P,) complexity. This
sort can be done in parallel using multiple threads. Then, each
process counts the number of particles it has to send to each
of the processes that are involved in the file writing. These
numbers are exchanged between the processes allowing each
process to allocate the reception buffer. If we consider that Py
processes are involved in the output operation, each of them
should receive N,/ Po particles in total, and a process of rank r
should receive the particles from index » X N,/Pgp to (r + 1) X
Np/Po—1.

In the exchange step, the particles can be sent either with
multiple non-blocking send/receive or with a single all-to-all
operation, with the total number of communications bounded
by P X Py. Finally, the received particles are sorted with a
complexity of O(N,/P¢ log N,/Po), and written in order into
the output file.

The number Py of processes involved in the writing should
be carefully chosen because as Py increases, the amount of
data output per process decreases and might become so small
that the write operation becomes inefficient. At the same time,
the preceding exchange stage becomes more and more simi-
lar to a complete all-to-all communication with Ni relatively

a Execution times on SuperMUC-NG

b N = 4096, 8 ppn, N, = 108

| —e— N=2048, 16 ppn
| N = 2048, 8 ppn
—e— N = 4096, 8 ppn

Execution time [s]
SA
1

32 64 128 512

Number of nodes

256

PDE_FFT
PDE_misc
IFT for PT
PT

N
(&)}
1

N
o
1

Execution time[s]

512

128 256

Number of nodes

Figure 4: Computational performance of TurTLE. Strong scaling behavior of the total runtime (a) for grid size of N = 2048 and N = 4096, respectively, and using
8 or 16 MPI processes per node (ppn) on up to 512 fully populated nodes (24576 cores) of SuperMUC-NG (I = 8, N, = 10%). For N = 4096 and 8 ppn panel
(b) shows a breakdown of the total runtime into the main algorithmic parts, namely solving the system of Navier Stokes partial differential equations ("PDE_misc”
and "PDE_FFT”) which is largely dominated by the fast Fourier transforms ("PDE_FFT”). The cost of particle tracking for 10® particles (with I = 8) is determined
by an additional inverse Fourier transform ("IFT for PT”), whereas the runtime for our novel particle tracking algorithm ("PT”) is still negligible for 108 particles.

Hatched regions represent the fraction of MPI communication times.

small messages. On the other hand, as Py decreases, the size of
the messages exchanged will increase, and the write operation
can eventually become too expensive for only a few processes,
which could also run out of memory. This is why we heuris-
tically fix Po using three parameters: the minimum amount of
data a process should write, the maximum number of processes
involved in the write operation, and a chunk size. As N, in-
creases, Po increases up to the given maximum. If N, is large
enough, the code simply ensures that Pp — 1 processes output
the same amount of data (being a multiple of the chunk size),
and the last process writes the remaining data. In our imple-
mentation, the parameters are chosen empirically (based on our
experience with several HPC clusters running the IBM GPF-
S/SpectrumScale parallel file system), and they can be tuned
for specific hardware configurations if necessary.

We use a similar procedure for reading the particle state: Po
processes read the data, they sort it according to spatial location,
then they redistribute it to all MPI processes accordingly.

4. Computational performance

4.1. Hardware and software environment

To evaluate the computational performance of our ap-
proach, we perform benchmark simulations on the HPC clus-
ter SuperMUC-NG from the Leibniz Supercomputing Centre
(LRZ): we use up to 512 nodes containing two Intel Xeon Plat-
inum 8174 (Skylake) processors with 24 cores each and a base
clock frequency of 3.1 GHz, providing 96 GB of main mem-
ory. The network interconnect is an Intel OmniPath (100 Gbit/s)
with a pruned fat-tree topology that enables non-blocking com-
munications within islands of up to 788 nodes. We use the In-
tel compiler 19.0, Intel MPI 2019.4, HDF5 1.8.21 and FFTW
3.3.8. For our benchmarks, we always fully populate the
nodes, i.e. the combination of MPI processes per node (ppn)

and OpenMP threads per MPI process is chosen such that their
product equals 48, and that the threads spawned by an MPI rank
are confined within the NUMA domain defined by a single pro-
CESSOr.

4.2. Overall performance

Figure [] provides an overview of the overall parallel scaling
behavior of the code for a few typical large-scale setups (panel
a) together with a breakdown into the main algorithmic steps
(panel b). We use the execution time for a single time step (av-
eraged over a few steps) as the primary performance metric and
all data and computations are handled in double precision. The
left panel shows, for two different setups (N = 2048,4096),
that the code exhibits excellent strong-scaling efficiency (the
dashed line represents ideal scaling) from the minimum num-
ber of nodes required to fit the code into memory up to the upper
limit which is given by the maximum number of MPI processes
that can be utilized with our one-dimensional domain decom-
position. Comparing the blue and the orange curve, i.e. the
same problem computed with a different combination MPI pro-
cesses per node (8, 16) and a corresponding number of OpenMP
threads per process (6, 3), a good OpenMP efficiency (which is
mostly determined by the properties of the FFT library used,
see below) can be noted for the case of 64 nodes. While the
breakdown of OpenMP efficiency from 3 (blue dot) to 6 (or-
ange dot) at 128 nodes is likely caused by a peculiarity of the
MPI/OpenMP implementation of the FFTW library (see the dis-
cussion below), we find that the OpenMP efficiency of FFTW
(and hence TurTLE) in general is currently limited to a maxi-
mum of 6 to 8 threads per MPI process for the problem sizes
considered here.

For the example of the large setup (N = 4096) with § pro-
cesses per node and using 512 nodes (corresponding to the

PT execution times on SuperMUC-NG

10° Np =108
Np =108
Np =108
Np =108
Np =108
Np =108
Np =2.2x10°
, Np=22%x10°
,Np =22%10°

Lol

P

Lol

-2

Elapsed time [s]
)

Lol

10

1l

128
Number of nodes

Elapsed time [s]

b I1=41=61=8 I=4 I=6 I=8 I=4 I=6 I=8
0.15 -
f1 % I redistribute
/ interpolate
0.10 2
68% / =
s
0.05 - 64%// 67% | =
/ 65% 64V
(Fs /
0.00 A/
128 256 512
Number of nodes
¢ 75% 75% 72% 65% 64% 67% 78% 75% 58%
1.00 ’ 7 .
// / /y // 7z "
o
c
0.50 / / o~
7 o
0.25 /
0.00 -

108
Number of particles

106

2.2x10°

Figure 5: Computational performance of the particle tracking code using 8 MPI processes per node and a DNS of size N = 4096, for different sizes of the
interpolation kernel /. Panel (a): strong scaling for different numbers of particles N, and sizes of the interpolation kernel (memory requirements limit the N, =
2.2 x 10° case to 512 nodes). The dashed line corresponds to ideal strong scaling. Panel (b): contributions of interpolation and redistribution operations to the total
execution time, for a fixed number of particles, N, = 108, and for different sizes of the interpolation kernel (the corresponding vertical bars are distinguished by
hatch style, see labels on top) as a function of the number of compute nodes. Panel (c): relative contributions of interpolation and redistribution as a function of N),.

Percentages represent the fraction of time spent in MPI calls.

rightmost green dot in the left panel), Fig. @b shows that the to-
tal runtime is largely dominated by the fast Fourier transforms
for solving the system of Navier Stokes partial differential equa-
tions (labeled "PDE_FFT”, entire blue area). With increasing
node count, the latter in turn gets increasingly dominated by an
all-to-all type of MPI communication pattern which is arising
from the global transpositions (blue-hatched area) of the slab-
decomposed data. The plot also shows that the deviation from
ideal scaling at 256 nodes that is apparent from the left panel is
caused by a lack of scaling of the process-local (i.e. non MPI)
operations of the FFTs (blue, non-hatched area). Our analysis
suggests that this is caused by a particular OpenMP inefficiency
of FFTW which occurs for certain dimensions of the local data
slabs: In the case of 256 nodes, FFTW cannot efficiently use
more than 3 OpenMP threads for parallelizing over the local
slabs of dimension 2 x 4096 x 2049, whereas good scaling up
to the desired maximum of 6 threads is observed for a dimen-
sion of 8 X 4096 x 2049 (128 nodes) and also 1 x 4096 x 2049
(512 nodes). The same arguments applies for the smaller setup
(N =2048) on 128 nodes. We plan for TurTLE to support FFTs
also from the Intel Math Kernel Library (MKL) which are ex-
pected to deliver improved threading efficiency.

For practical applications, a user needs to perform a few
exploratory benchmarks for a given setup of the DNS on the
particular computational platform, and available node counts
in order to find an optimal combination of MPI processes
and OpenMP threads. Since the runtime per timestep is con-
stant for our implementation of the Navier-Stokes solver, a few
timesteps are sufficient for tuning a long-running DNS.

Thanks to our efficient and highly scalable implementation
of the particle tracking, its contribution to the total runtime is

barely noticeable in the figure ("PT”, purple colour in Fig.[@p).
This holds even for significantly larger numbers of particles
than the value of N, 108 which was used here (see below
for an in-depth analysis). The only noticeable additional cost
for particle tracking, amounting to roughly 10% of the total
runtime, comes from an additional inverse FFT (”IFT for PT”,
green colour) which is required to compute the advecting vector
field, which is independent of N, and scales very well.

Finally, Fig. i also suggests good weak scaling behavior of
TurTLE: When increasing the problem size from N = 2048 to
N = 4096 and at the same time increasing the number of nodes
from 64 to 512, the runtime increases from 10.35s to 11.45s,
which is consistent with a O(N? log N) scaling of the runtime,
given the dominance of the FFTs.

4.3. Particle tracking performance

Fig. [5] provides an overview and some details of the perfor-
mance of our particle tracking algorithm, extending the assess-
ment of the previous subsection to particle numbers beyond the
current state of the art [23]]. We use the same setup of a DNS
with N = 4096 and 8 MPI processes per node on SuperMUC-
NG, as presented in the previous subsection.

Fig. [bh summarizes the strong-scaling behavior on 128, 256
or 512 nodes of SuperMUC-NG for different numbers of parti-
cles (10°, 108 and 2.2 x 10%) and for different sizes of the inter-
polation kernel 7 (4, 6, 8). Most importantly, the absolute run
times are small compared to the fluid solver: Even when using
the most accurate interpolation kernel, a number of 2.2 x 10°
particles can be handled within less than a second (per time
step), i.e. less than 10% to the total computational cost of Tur-
TLE on 512 nodes per time step (cf. Fig.[d).

The case of N, = 10% is shown only for reference here. This
number of particles is too small to expect good scalability in
the regime of 128 compute nodes and more. Still, the absolute
runtimes are minuscule compared to a DNS of typical size. For
N, = 10® we observe good but not perfect strong scaling, in
particular for the largest interpolation kernel (/ = 8), suggesting
that we observe the N,/P/N regime, as discussed previously. It
is worth mentioning that we observe a sub-linear scaling of the
total runtime with the total number of particles (Fig. Eh).

Fig.[5p shows a breakdown of the total runtime of the particle
tracking algorithm into its main parts, interpolation (operations
detailed in Fig. [2] shown in orange) and redistribution (local
sorting of particles together with particle exchange, blue), to-
gether with the percentage of time spent in MPI calls. The lat-
ter takes between half and two thirds of the total runtime for
N, = 10® particles (cf. upper panel b) and reaches almost 80%
for N, = 2.2x 10° particles on 512 nodes (lower panel c). Over-
all, the interpolation cost always dominates over redistribution,
and increases with the size of the interpolation kernel roughly
as I?, i.e. the interpolation cost is proportional to the number of
MPI messages required by the algorithm (as detailed above).

4.4. Particle output

a Np =108 b 512 nodes
7 25
I pre-sort I post-sort
exchange I write
20
N @
[0] Q -
Eas ™
© o
@ @
g3 210 -
< ©
w w
2
5 -
“ -
0 1 1 1 O 1 1 1
128 256 512 10° 108 2.2 x 10°

Number of nodes Number of particles

Figure 6: Performance of particle output, as distributed between the four differ-
ent operations: pre-sort (particles are sorted by each process), MPI exchange
(particle data is transferred to processes actually participating in 1/O), post-
sort (particles are sorted on each 1/O process), and write (HDFS write call).
Panel (a): elapsed times as a function of the total number of nodes, for a fixed
N, = 108 (see also Fig.). Panel (b): elapsed time as a function of the number
of particles, in the case of 512 nodes (see also Fig. EF).

Figure [6] provides an overview of the computational costs of
the main parts of the output algorithm, namely sorting particles
according to their initial order (pre-sort and post-sort stages,
cf. Sect[34), communicating the data between processes (ex-
change stage), and writing data to disk using parallel HDF5
(write stage). Here, the same setup is used as in Fig. 5] pan-
els b and c, respectively, noting that the output algorithm does
not depend on the size of the interpolation kernel. The figure
shows that the total time is largely dominated by the write and
exchange stages, with the sorting stages not being significant.
Of the latter, the post-sort operation is relatively more expen-
sive than the pre-sort stage, because only a comparably small

subset of Pp < P processes is used in the post-sort stage (in
the present setup Py = 1 for 10° particles, Pp = 72 for 10}
particles, and Pp = 126 for 2.2 x 10° particles were used). This
indicates that our strategy of dumping the particle data in order
adds only a small overhead, which is mostly spent in the com-
munication stage (unsorted output could be done with a more
simple communication pattern) but not for the actual (process-
local) reordering of the particles. For a given number of par-
ticles N,, the number of processes Po involved in the write
operation is fixed, independent of the total number P of pro-
cesses used for the simulation. Consequently, the time spent in
the write stage does not depend on the number of nodes (and
hence P), as shown in Fig. @a However, Py may increase with
increasing N, (and fixed P).

Fig. @) shows that the cost of writing 10® particles with a
single process is negligible, whereas writing 10® particles with
72 processes becomes significant, even though a similar num-
ber of particles per output process (1.4 x 10° particles) is used.
This reflects the influence of the (synchronization) overhead of
the parallel HDFS layer and the underlying parallel 10 system.
On the other hand, it takes about the same amount of time for
126 processes to write 1.7 x 107 particles each, compared with
72 processes writing 1.4 x 10° particles each, which motivates
our strategy of controlling the number of processes Py that are
involved in the interaction with the IO system. However, the
choice of Py also influences the communication time spent in
the exchange stage. When looking at the exchange stage in Fig-
ure @a, we recall that 72 processes write the data for all three
node counts. As P increases, the 72 processes receive less data
per message but communicate with more processes. From these
results it appears that this is beneficial: reducing the size of the
messages but increasing the number of processes that commu-
nicate reduces the overall duration of this operation (that we
do not control explicitly since we rely on the MPI_Alltoallv
collective routine). For a fixed number of processes and an in-
creasing number of particles (see Figure [6b), the total amount
of data exchanged increases and the size of the messages varies.
The number Py (i.e., 1, 72 and 126) is not increased propor-
tionally with the number of particles N, (i.e., 10° 10® and
2.2 x 10%), which means that the messages get larger and, more
importantly, each process needs to send data to more output
processes. Therefore, increasing Py also increases the cost of
the exchange stage but allows to control the cost of wrife stage.
Specifically, it takes about 4s to output 10® particles (1s for ex-
change and 3s for write). It takes only 6 times longer, about 23s
(15s for exchange, 4s for write, and 3s post-sort) to output 22
times more, 2.2 x 107, particles.

Overall, our strategy of choosing the number of processes
Py participating in the IO operations independent of the total
number P of processes allows us to avoid performance-critical
situations where too many processes would access the IO sys-
tem, or too many processes would write small pieces of data.
The coefficients used to set Py can be adapted to the specific
properties (hardware and software stack) of an HPC system.

5. Summary and conclusions

In the context of numerical studies of turbulence, we
have presented a novel particle tracking algorithm using an
MPI/OpenMP hybrid programming paradigm. The implemen-
tation is part of TurTLE, which uses a standard pseudo-spectral
approach for the direct numerical simulation of turbulence in a
3D periodic domain. TurTLE succeeds at tracking billions of
particles with a negligible cost relatively to solving the fluid
equations. MPI communications are overlapped with com-
putation thanks to a parallel programming pattern that mixes
OpenMP tasks and MPI non-blocking communications. At the
same time, the use of a contiguous and slice-ordered particle
data storage allows to minimize the number of required MPI
messages for any size of the interpolation kernel. This way, our
approach combines both numerical accuracy and computational
performance to address open questions regarding particle-laden
flows by performing highly resolved numerical simulations on
large supercomputers. Indeed, TurTLE shows very good par-
allel efficiency on modern high-performance computers using
many thousands of CPU cores.

We expect that due to our task-based parallelization and
the asynchronous communication scheme the particle-tracking
algorithm is also well suited for offloading to the accelera-
tors (e.g. GPUs) of a heterogeneous HPC node architecture.
Whether the fluid solver can be accelerated as well on such
systems remains to be investigated. At least for medium-sized
grids which can be accommodated within the GPUs of a single
node, this appears feasible, as demonstrated by similar pseudo-
spectral Navier-Stokes codes (e.g. [61}162]163}164]).

6. Acknowledgments

The authors gratefully acknowledge the Gauss Centre for
Supercomputing e.V. (www.gauss-centre.eu) for funding this
project by providing computing time on the GCS Super-
computer Super-MUC at Leibniz Supercomputing Centre
(www.Irz.de). Some computations were also performed at the
Max-Planck Computing and Data Facility. This work was sup-
ported by the Max Planck Society.

References

[1] G. I Taylor. Diffusion by continuous movements. Proceedings of the
London Mathematical Society, s2-20(1):196-212, 1922.

A. N. Kolmogorov. The local structure of turbulence in incompressible
viscous fluid for very large Reynolds numbers. Proc. R. Soc. London, Ser.
A, 434(1890):9-13, 1991.

P. K. Yeung and S. B. Pope. Lagrangian statistics from direct numerical
simulations of isotropic turbulence. J. Fluid Mech., 207:531, 1989.

P. K. Yeung. Lagrangian investigations of turbulence. Annu. Rev. Fluid
Mech., 34(1):115-142, 2002.

F. Toschi and E. Bodenschatz. Lagrangian Properties of Particles in Tur-
bulence. Annu. Rev. Fluid Mech., 41(1):375-404, 2009.

H. Homann, J. Bec, H. Fichtner, and R. Grauer. Clustering of pas-
sive impurities in magnetohydrodynamic turbulence. Phys. Plasmas,
16(8):082308, 2009.

Andreas Stohl, Sabine Eckhardt, Caroline Forster, Paul James, Nicole
Spichtinger, and Petra Seibert. A replacement for simple back trajectory
calculations in the interpretation of atmospheric trace substance measure-
ments. Atmospheric Environment, 36(29):4635 — 4648, 2002.

[2]

[3]
[4]
[3]
[6]

[7]

10

[8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]
[25]

[26]

[27]

[28]
[29]

[30]

[31]

[32]

A. Stohl. Characteristics of atmospheric transport into the arctic tropo-
sphere. Journal of Geophysical Research: Atmospheres, 111(D11), 2006.
E. Behrens, F. U. Schwarzkopf, J. F. Liibbecke, and C. W. Boning. Model
simulations on the long-term dispersal of 137 Cs released into the Pacific
Ocean off Fukushima. Environ. Res. Lett., 7(3):034004, 2012.

T. Haszpra, I. Lagzi, and T. Tél. Dispersion of aerosol particles in
the free atmosphere using ensemble forecasts. Nonlinear Proc. Geoph.,
20(5):759-1770, 2013.

R. A. Shaw. Particle-turbulence interactions in atmospheric clouds. Annu.
Rev. Fluid Mech., 35:183-227, 2003.

E. Bodenschatz, S. P. Malinowski, R. A. Shaw, and F. Stratmann. Can
we understand clouds without turbulence? Science, 327(5968):970-971,
2010.

B. J. Devenish, P. Bartello, J.-L. Brenguier, L. R. Collins, W. W.
Grabowski, R. H. A. IJzermans, S. P. Malinowski, M. W. Reeks, J. C.
Vassilicos, L.-P. Wang, and Z. Warhaft. Droplet growth in warm tur-
bulent clouds. Quarterly Journal of the Royal Meteorological Society,
138(667):1401-1429, 2012.

Wojciech W. Grabowski and Lian-Ping Wang. Growth of cloud droplets
in a turbulent environment. Annual Review of Fluid Mechanics,
45(1):293-324, 2013.

A. Pumir and M. Wilkinson. Collisional aggregation due to turbulence.
Annu. Rev. Condens. Matter Phys., 7(1):141-170, 2016.

William M. Durham, Eric Climent, Michael Barry, Filippo de Lillo,
Guido Boffetta, Massimo Cencini, and Roman Stocker. Turbulence drives
microscale patches of motile phytoplankton. Nature Communications,
4:2148, July 2013.

R. E. Breier, C. C. Lalescu, D. Waas, M. Wilczek, and M. G. Mazza.
Emergence of phytoplankton patchiness at small scales in mild turbu-
lence. Proc. Natl. Acad. Sci. U.S.A., 115(48):12112-12117, 2018.

N. Pujara, M. A. R. Koehl, and E. A. Variano. Rotations and accumulation
of ellipsoidal microswimmers in isotropic turbulence. Journal of Fluid
Mechanics, 838:356-368, March 2018.

S. A. Orszag and G. S. Patterson. Numerical simulation of three-
dimensional homogeneous isotropic turbulence. Phys. Rev. Lett., 28:76—
79, Jan 1972.

PK. Yeung and S.B. Pope. An algorithm for tracking fluid particles in
numerical simulations of homogeneous turbulence. J. Comput. Phys.,
79(2):373 — 416, 1988.

M. Yokokawa, K. Itakura, A. Uno, T. Ishihara, and Y. Kaneda. 16.4-tflops
direct numerical simulation of turbulence by a Fourier spectral method
on the earth simulator. In Supercomputing, ACM/IEEE 2002 Conference,
page 50-50, 2002.

T. Ishihara, K. Morishita, M. Yokokawa, A. Uno, and Y. Kaneda. Energy
spectrum in high-resolution direct numerical simulations of turbulence.
Phys. Rev. Fluids, 1:082403, Dec 2016.

D. Buaria and PK. Yeung. A highly scalable particle tracking algo-
rithm using partitioned global address space (PGAS) programming for
extreme-scale turbulence simulations. Computer Physics Communica-
tions, 221:246-258, 2017.

S. B. Pope. Turbulent Flows. Cambridge University Press, 2000.

P. K. Yeung, K. R. Sreenivasan, and S. B. Pope. Effects of finite spatial
and temporal resolution in direct numerical simulations of incompressible
isotropic turbulence. Phys. Rev. Fluids, 3:064603, Jun 2018.

T. Ishihara, Y. Kaneda, M. Yokokawa, K. Itakura, and A. Uno. Small-
scale statistics in high-resolution direct numerical simulation of turbu-
lence: Reynolds number dependence of one-point velocity gradient statis-
tics. J. Fluid Mech., 592:335-366, 2007.

P. K. Yeung, X. M. Zhai, and Katepalli R. Sreenivasan. Extreme events in
computational turbulence. Proc. Natl. Acad. Sci. U.S.A., 112(41):12633—
12638, 2015.

C. Kiichler, G. Bewley, and E. Bodenschatz. Experimental study of the
bottleneck in fully developed turbulence. J. Stat. Phys., 2019.

Z. Warhaft. Turbulence in nature and in the laboratory. Proc. Natl. Acad.
Sci. U.S.A., 99(suppl 1):2481-2486, 2002.

L. Biferale, G. Boffetta, A. Celani, B. J. Devenish, A. Lanotte, and
F. Toschi. Multifractal statistics of Lagrangian velocity and acceleration
in turbulence. Phys. Rev. Lett., 93:064502, Aug 2004.

Gregory L. Eyink. Stochastic flux freezing and magnetic dynamo. Phys.
Rev. E, 83:056405, May 2011.

G. Eyink, E. Vishniac, C. Lalescu, H. Aluie, K. Kanov, K. Biirger,

(33]

(34]

[35]
[36]

(37]

(38]

(39]

(40]

[41]

(42]
[43]

[44]

[45]

[46]

(47]
(48]

[49]

(50]

[51]

[52]

(53]

[54]

[55]

[56]

(571

R. Burns, C. Meneveau, and A. Szalay. Flux-freezing breakdown in high-
conductivity magnetohydrodynamic turbulence. Nature, 497(7450):466—
469, May 2013.

L. Biferale, A. S. Lanotte, R. Scatamacchia, and F. Toschi. Intermittency
in the relative separations of tracers and of heavy particles in turbulent
flows. J. Fluid Mech., 757:550-572, 2014.

Perry L. Johnson and Charles Meneveau. Large-deviation joint statistics
of the finite-time Lyapunov spectrum in isotropic turbulence. Phys. Flu-
ids, 27(8):085110, 2015.

C. C. Lalescu and M. Wilczek. Acceleration statistics of tracer particles
in filtered turbulent fields. J. Fluid Mech., 847:R2, 2018.

C. C. Lalescu and M. Wilczek. How tracer particles sample the complex-
ity of turbulence. New J. Phys., 20(1):013001, 2018.

William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI:
Portable Parallel Programming with the Message Passing Interface. Sci-
entific And Engineering Computation Series. MIT Press, 2nd edition,
1999.

OpenMP Architecture Review Board. OpenMP application program in-
terface version 4.5, 2015.

F. Jenko, W. Dorland, M. Kotshcenreuther, and B. N. Rogers. Electron
temperature gradient driven turbulence. Phys. Plasmas, 7(5):1904, 2000.
Pablo D. Mininni, Duane Rosenberg, Raghu Reddy, and Annick Pou-
quet. A hybrid MPI-OpenMP scheme for scalable parallel pseudospectral
computations for fluid turbulence. Parallel Computing, 37(6):316 — 326,
2011.

D. Pekurovsky. P3DFFT: a framework for parallel computations of
Fourier transforms in three dimensions. SIAM Journal on Scientific Com-
puting, 34(4):C192-C209, 2012.

D. Pekurovsky. P3dfft v. 2.7.9, 2019.

M.P. Clay, D. Buaria, T. Gotoh, and P.K. Yeung. A dual communicator
and dual grid-resolution algorithm for petascale simulations of turbulent
mixing at high Schmidt number. Computer Physics Communications,
219:313-328, 2017.

Anando G. Chatterjee, Mahendra K. Verma, Abhishek Kumar, Ravi Sam-
taney, Bilel Hadri, and Rooh Khurram. Scaling of a Fast Fourier Trans-

form and a Pseudo-spectral Fluid Solver up to 196608 cores. Journal of

Farallel and Distributed Computing, 113:77-91, May 2018.

D. W. Walker and J. J. Dongarra. MPI: A standard message passing inter-
face. Supercomputer, 12(1):56-68, 1996.

Holger Homann and Francois Laenen. SoAx: A generic C++ Structure
of Arrays for handling particles in HPC codes. Computer Physics Com-
munications, 224:325 — 332, 2018.

TurTLE source code. https://gitlab.mpcdf.mpg.de/clalescu/
turtlel

Holger Homann. Lagrangian Statistics of Turbulent Flows in Fluids and
Plasmas. PhD thesis, Ruhr-Universitaet Bochum, 2006.

Michael Wilczek. Statistical and Numerical Investigatins of Fluid Tur-
bulence. PhD thesis, Westfaelische Wilhelms-Universitact Muenster,
November 2010.

C.-W. Shu and S. Osher. Efficient implementation of essentially non-
oscillatory shock-capturing schemes. J. Comput. Phys., 77(2):439—471,
1988.

R. Courant, K. Friedrichs, and H. Lewy. On the Partial Difference Equa-
tions of Mathematical Physics. IBM Journal of Research and Develop-
ment, 11:215-234, March 1967.

Claudio Canuto, M. Yousuff Hussaini, Alfio Quarteroni, and Thomas A.
Zang. Spectral Methods in Fluid Dynamics. Springer-Verlag Berlin Hei-
delberg, corrected third printing edition, 1988.

T. Y. Hou and R. Li. Computing nearly singular solutions using pseudo-
spectral methods. J. Comput. Phys., 226:379-397, 2007.

Matteo Frigo and Steven G. Johnson. The design and implementation of
FFTW3. Proceedings of the IEEE, 93(2):216-231, 2005. Special issue
on “Program Generation, Optimization, and Platform Adaptation”.

K. E. Atkinson. An Introduction to Numerical Analysis. John Wiley &
Sons, Inc., 2nd edition, 1989.

C. C. Lalescu, B. Teaca, and D. Carati. Implementation of high order
spline interpolations for tracking test particles in discretized fields. J.
Comput. Phys., 229(17):5862 — 5869, 2010.

F. Lekien and J. Marsden. Tricubic interpolation in three dimensions.
International Journal for Numerical Methods in Engineering, 63(3):455—
471, 2005.

11

[58]

[59]

[60]

[61]

[62]

[63]

[64]

Holger Homann, Jiirgen Dreher, and Rainer Grauer. Impact of the
floating-point precision and interpolation scheme on the results of DNS
of turbulence by pseudo-spectral codes. Computer Physics Communica-
tions, 177(7):560 — 565, 2007.

M. van Hinsberg, J. Thije Boonkkamp, F. Toschi, and H. Clercx. On the
efficiency and accuracy of interpolation methods for spectral codes. SIAM
Journal on Scientific Computing, 34(4):B479-B498, 2012.

M. A. T. van Hinsberg, J. H. M. ten Thije Boonkkamp, F. Toschi, and
H. J. H. Clercx. Optimal interpolation schemes for particle tracking in
turbulence. Phys. Rev. E, 87:043307, Apr 2013.

Rupak Mukherjee, R Ganesh, Vinod Saini, Udaya Maurya, Nagavi-
jayalakshmi Vydyanathan, and B Sharma. Three dimensional pseudo-
spectral compressible magnetohydrodynamic GPU code for astrophysical
plasma simulation. In 2018 IEEE 25th International Conference on High
Performance Computing Workshops (HiPCW), pages 46-55, 2018.

K. Ravikumar, D. Appelhans, and P. Yeung. GPU acceleration of extreme
scale pseudo-spectral simulations of turbulence using asynchronism. Pro-
ceedings of the International Conference for High Performance Comput-
ing, Networking, Storage and Analysis, 2019.

Jose Manuel Lépez, Daniel Feldmann, Markus Rampp, Alberto Vela-
Martin, Liang Shi, and Marc Avila. nsCouette — A high-performance
code for direct numerical simulations of turbulent Taylor—Couette flow.
SoftwareX, 11:100395, 2020.

Duane Rosenberg, Pablo D. Mininni, Raghu Reddy, and Annick Pouquet.
GPU parallelization of a hybrid pseudospectral geophysical turbulence
framework using CUDA. Atmosphere, 11(2), 2020.

https://gitlab.mpcdf.mpg.de/clalescu/turtle
https://gitlab.mpcdf.mpg.de/clalescu/turtle

	1 Introduction
	2 Evolution equations and numerical method
	2.1 Fluid equations
	2.2 Particle equations

	3 Implementation
	3.1 Overview
	3.2 Fluid solver
	3.3 Particle tracking
	3.3.1 Particle data structure
	3.3.2 Parallelization

	3.4 In-Order Parallel Particle I/O

	4 Computational performance
	4.1 Hardware and software environment
	4.2 Overall performance
	4.3 Particle tracking performance
	4.4 Particle output

	5 Summary and conclusions
	6 Acknowledgments

