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Abstract

A promising new method of attosecond spectroscopy, the attoclock, offers attosecond
resolution without requiring attosecond laser pulses. However, it requires knowledge
of the ionization time, opening up a long standing conceptual problem in physics (“how
much time does tunnelling take?”). In this work, the time delay in the tunnel ionization
process is considered. It is shown that a delay of the peak of the tunnelling wavefunc-
tion exists as a matter of principle, and is caused by the interference of transmitted and
reflected components of the wavefunction. If sub-barrier reflections are neglected from
the wavefunction, the delay in the peak vanishes and tunnelling is seen to be instanta-
neous. This is shown by considering a series of models of increasing complexity: the
square barrier, an adiabatically tunnelling electron, and a wavefunction based on the
Strong Field Approximation. This work has implications on the interpretation of atto-
clock experiments: treatments based on instantaneous tunnelling should be adjusted in
order to achieve appropriate calibration of the attoclock.

Zusammenfassung

Eine vielversprechendeMethode ist die sogenannteAttouhr, dieAttosekunden-Auflösung
bietet, dabei aber auf die Verwendung von schwierig herzustellenden Attosekunden-
Laserpulsen verzichtet. Hierzu ist allerdings die Kenntnis über den Zeitpunkt der Io-
nisation erforderlich. Ist dieser bekannt, erhält man Zugang zu einem seit langem be-
stehendenProblemderQuantenphysik:Wie viel Zeit benötigt das Tunneln. In dieserAr-
beitwird die Zeitverzögerung, die das Elektronwährenddes Tunnel-Ionisationsprozesses
erfährt, untersucht. Es wird gezeigt, dass diese Zeitverzögerung, eine durch die Poten-
tialbarriere verursachte Verzögerung des Wellenpacketsmaximum, prinzipiell existiert.
Dies wird anhand einer Reihe von einfachen Modellen mit zunehmender Komplexität
diskutiert: eine konstante Barriere, ein adiabatisch tunnelndes Elektron und eine Wel-
lenfunktion, die auf der Strong Field Approximation basiert. Weiterhin wird bewiesen,
dass eine Vernachlässigung der Reflexionen an der Potentialbarriere dazu führt, dass
die obengenannte Verzögerung verschwindet und das Tunneln instantan abläuft. Die-
se Erkenntnis hat Auswirkungen auf die Interpretation der Attouhr. Beschreibungen,
die auf instantanem Tunneln basieren müssen verbessert werden um eine korrekte Ka-
librierung der Attouhr zu ermöglichen.





Contents

1 Introduction 1

2 Time Delay 7
2.1 Tunnelling Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Scattering of a Wavepacket by a Box Potential . . . . . . . . . . . . . . . . 11

2.2.1 Wigner Time Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.2 Reflections and Time Delay . . . . . . . . . . . . . . . . . . . . . . 14

3 Strong Field Ionization Theory 17
3.1 Electromagnetic Interaction Theory . . . . . . . . . . . . . . . . . . . . . . 17
3.2 The Strong Field Approximation . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.1 The Interaction Picture . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 The Zero Range Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Ionization in a Static Laser Field 27
4.1 Adiabatic Ionization in Constant Field . . . . . . . . . . . . . . . . . . . . 28

4.1.1 Contour Integral Solutions . . . . . . . . . . . . . . . . . . . . . . 29
4.1.2 Reflection, Transmission and Saddle Points . . . . . . . . . . . . . 31

4.2 The Strong Field Approximation in the Constant Field . . . . . . . . . . . 33
4.2.1 Integration to saddle point . . . . . . . . . . . . . . . . . . . . . . 34
4.2.2 Integration to observation time . . . . . . . . . . . . . . . . . . . . 36

5 Ionization in a Time Dependent Laser Field 39
5.1 Ionization in the Zero Range Potential . . . . . . . . . . . . . . . . . . . . 40
5.2 Time Delay Near Tunnel Exit . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.3 The Role of Reflections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.3.1 Analytic Continuation . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.4 Tunnel Exit from Saddle Points . . . . . . . . . . . . . . . . . . . . . . . . 49
5.5 Asymptotic Time Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6 Ionization with Rescattering Processes 55
6.1 The Low Frequency Approximation . . . . . . . . . . . . . . . . . . . . . 56
6.2 Under the barrier recollisions . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.3 The Recollision Amplitude . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

i



ii CONTENTS

6.4 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

7 Conclusions 63
7.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
7.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

A Atomic Units 65

B The Dyson Equations 67

C The Saddle Point Method 71

Bibliography 73



Chapter 1

Introduction

“Everything starts somewhere,
although many physicists disagree.”

T. Pratchett in Hogfather

The study of material properties is a millennia old endeavour. In current times, this
is done almost entirely through the study of the interaction of matter with electro-

magnetic (EM) radiation, predicated on the emission and absorption of light by atoms.
Planck’s seminal paper on the blackbody radiation spectrum introduced the revolu-
tionary concept of discretizing the energy exchange between the blackbody and the EM
field. This resolved not only the problem at hand but eventually led the way to Bohr’s
solution of the hydrogen spectrum and Einstein’s theory of the photoelectric effect. The
subsequent paradigm shift was later formalised in the 20th century into what is termed
Quantum Mechanics.

One of the implications of the new theory was first grasped by Einstein as early
as 1916 [1, 2], when he theorised the possibility of stimulated emission of coherent EM
radiation via the newly discovered process of electronic energy level transitions. It was
to take several decades and substantial theoretical and experimental effort [3] before
Maiman and collaborators [4] finally constructed the first working laser in 1960. In the
span of these few decades, lasers have become ubiquitous and are produced in a wide
range of frequencies and intensities and having found countless applications.

One of themost desirable properties of lasers is their ability to focus nearmonochro-
matic light on very small areas, leading to large intensities. Following the invention of
chirped pulse amplification by Strickland andMourou [5], laser intensities have become
so large that it is possible for laser light incident on a target to generate EM forces on
orbiting electrons that are comparable to, or even greater than, their attraction to the
nucleus, inducing controlled ionization of the atoms.

By way of example, the electric field experienced by an electron (of fundamental
charge e and mass me) in the first energy level of the Bohr atom (with orbit radius

1



2 CHAPTER 1. INTRODUCTION

aB = ℏ2/(mee
2)) is given by Ea = e/a2B ≈ 5.1 × 109 V/cm, corresponding to an av-

erage intensity Ia ≈ 3.5 × 1016 W/cm2 [6]. By contrast, the world’s current strongest
laser (ELI-NP, in Romania [7]) is scheduled to reach intensities of the order 1023 W/cm2,
many orders of magnitude greater than the characteristic atomic intensity, and more
than capable of ionizing all known elements.

However, such immense intensities are not needed for ionization to take place.
Were that to be the case, lightning would never strike as the field strengths1 involved
(of the order 103 W/cm2 ) are far lower than those required for the electron to directly
overcome the atomic barrier, a process known as over-the-barrier ionization (OTBI). In
fact, at field strengths E0 below the OTBI threshold,

E0
Eth

≪ 1, (1.1)

onization can still occur through one of two mechanisms. That is, via the absorption of
multiple photons, thus granting sufficient energy for escape, or via tunnelling through
the potential barrier generated by the combined atomic and electric potentials, a purely
quantum mechanical process.

In a landmark paper [9], Keldysh was the first to identify these two mechanisms as
limiting cases of the same non-linear theory of ionization. He established a parameter,
eponymously known as the Keldysh adiabaticity parameter,

γK =

√
Ip
2Up

=
ℏωκ
e E0

, (1.2)

which defines the boundary between these two physical descriptions of ionization. It
depends not only on the properties of the laser, such as the electric field strength E0,
and frequency ω but also of the atom, namely the binding energy Ip = ℏ2κ2/(2me) and
electron massme. Its significance can be understood as follows.

When γK ≫ 1, the energy imparted on an electron by the laser field (measured by
the ponderomotive energyUp = e2E2

0/(4meω
2)) ismuch smaller than the binding energy

Ip, and so the ionization process is perturbative with respect to the field. If ℏω ≪ Ip the
atom may be ionised through electronic absorption of multiple photons of energy ℏω.
The probability of ionization then scales as w ∝ E2n

0 , where n is the number of absorbed
photons. On the other hand, γK ≪ 1 implies a slowly varying field, i.e. comparatively
small ω and large E0, such that the electron experiences an essentially static strong field
distorting the atomic potential and enabling the electron to quantum tunnel into the
continuum. Consequently, the field effects are so large that ionization is seen to be a
highly non-perturbative process, and the ionization rate scales as

w ∝ exp

(
−2κ3

3E0

)
. (1.3)

1Using data from [8], measurements of the electric field strength of lightning show it to be of the order
E0 ∝ 100 kV/m, implying an intensity I ∝ ε0c|E0|2 ≈ 103 W/cm2.
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(a) Multiphoton Ionization
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(b) Tunnel Ionization
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(c) Over-the-barrier Ionization

Figure 1.1: Schematic of ionization mechanisms, for the confinement of an electron
wavepacket (orange) by a potential field (blue). For field strengths, E0, much smaller
than the threshold filed strength, Eth, the atom may be ionized by (a) absorbing multi-
ple photons (γK ≫ 1) or (b) tunnelling through the combined atomic and laser potential
barrier (γK ≪ 1). The coordinate xe marks the continuum point of entry of the electron,
where classically xe ≈ Ip/(eE0). In the case E0 > Eth, the barrier is lowered beyond the
binding energy of the electron, allowing its escape (c) over the barrier (OTBI). Figure
adapted from [10].

These are known as the multiphoton and tunnelling regimes, respectively, as pictured in
Fig. 1.1. The Keldysh parameter may also be understood as a statement on the relative
timescales between tunnelling and changes in the field, γK = ω τK . Here ω is the laser
frequency and

τK =
ℏκ
eE0

, (1.4)

known as the Keldysh time, is the time taken for a classical electron to traverse the
typical barrier distance d ∼ Ip/(eE0)with velocity of the order v ∼

√
Ip/me. Thus when

γK ≫ 1, the field oscillates at time scales much smaller than the typical time taken for
tunnelling and vice-versa for γK ≪ 1.

This simple description is able to explain many of the phenomena of strong field
ionization. After ionisation through one of these mechanisms, the ionized electron will
propagate in the electric field with limited influence from its parent ion. Depending on
the properties of the laser field, the electron can either be carried off to a detector or be
accelerated back toward the parent ion. In the latter case, it may either scatter from the
ion, or recombine with the ion and in the process emit its laser acquired energy as a
highly energetic photon (High Harmonic Generation, HHG [11,12]), or even “kick out”
other orbiting electrons from the ion (multiple ionisation, [13, 14]).

Phenomena such as HHG and multiple ionisation are not only interesting in their
own right but can be used to characterise laser pulses and image atoms and molecules
to very fine length and time scales. The orbital period of a ground state Bohr electron
is of the order [15] of 150 attoseconds (1 as = 10−18 s), so to study electron dynamics
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in the time domain, attosecond resolution is required. However, the generation of such
short pulses is experimentally challenging (although not impossible [16, 17]).

To overcome the need to generate such short pulses, a new attosecond spectroscopy
method was developed which requires only femtosecond (1 fs= 10−15 s) pulses, and
uses nearly circular elliptic polarization to imprint a finer time signature on the ionised
electron. The rapidly changing ellipticity provides fine detail much like the seconds dial
of a conventional clock, while the femtosecond pulse tracks longer time cycles like the
minute or hour dial. This analogous working principle lends the technique the name of
the attoclock [18–20].

Experimentally, the fs-laser pulse induces tunnel ionization and when the electron
appears in the continuum, at the tunnel exit xe at time t0, its canonical momentum is
given by

Π = p(t0) + eA(t0), (1.5)

where A(t) =
∫∞
t dt′ E(t′) is the EM vector potential of the electric field E(t). The

ionised electron and parent ion have opposite electric charges and so with an applied
magnetic field around the reaction chamber they will be driven in opposite directions,
where detectors may measure their individual momenta in coincidence, using a set-
up known as “COLd Target Recoil Ion Momentum Spectroscopy” (COLTRIMS, [21]).
The barrier through which an electron must tunnel is shortest at the peak of the electric
field, meaning the probability of ionization is strongly peaked around the direction of
the electric field peak, as given by the Keldysh ionisation probability, Eq. (1.3).

Since canonical momentum is a conserved quantity, and assuming no further effect
from the parent ion on the ionized electron, the final electronmomentumwhen detected
at time tf is given by Π = p(tf ) = p(t0) + eA(t0). This follows from the observation
that the vector potential is vanishing after the pulse has elapsed, A(tf ) ≈ 0. The final
momentum, p(tf ), is experimentally determined and moreover the temporal profile of
the vector potential A(t) is also known, so it is in principle possible to directly map
electron momentum at the detector to electron dynamics near the atom. Since E(t), and
hence A(t), are elliptically rotating fields, the preferred emission direction of the tun-
nelled electron also rotates, so electrons ionised at different times show up at different
angles in the detector, as shown in Fig. 1.2.

The only inputs to this method are then the ionisation time, t0, and momentum
p(t0), which must be physically estimated. Indeed, one of the first applications of the
attoclock was exactly to experimentally determine the time taken in the tunnel ioniza-
tion process. This would not only be of use to the attoclock method but also answer the
fundamental question

“how much time does the tunnelling process take?”

While this simple question is tenable classically, it requires careful consideration when
studying inherently non-deterministic quantum processes.

With classical energy conservation considerations, one expects the electron to ap-
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(a) (b)

Figure 1.2: The attoclock (a) schematically and (b) experimentally. Panel (a) shows
an end-on view of the elliptically rotating laser field (blue, arrows indicate increasing
time) ionizing an atom (red). The tunnelled electron appears in the continuum and
experiences a force perpendicular to the field. Electrons tunnelling at different times
will be accelerated in different directions and be measured at different angles (adapted
from [22]). Panel (b) is the experimental photoelectron momentum distribution (PMD),
obtained by measuring the momentum of ionized electrons over several runs (repro-
duced from [23]). Without Coulomb or time delay effects the PMD is expected to be
peaked at θ = 0 w.r.t. the laser field, as this corresponds to the laser peak when the
barrier is shortest and hence tunnelling is least suppressed. In reality, the experimental
distribution is rotated by some angle which must be theoretically interpreted.

pear in the continuum with zero velocity, so that p(tf ) = eA(t0). However, if the tun-
nelling process is to take some time τ , one would expect the electron to arrive at a de-
tector with momentum p(tf ) = eA(t0 + τ). This would manifest itself experimentally
as a rotation by some angle θ of the momentum angular distribution, as in Fig. 1.2, due
to the time-to-angle mapping of the attoclock.

This theoretical analysis is based on the negligence of the effects of the long range
ionic Coulomb field on the ionised electron. This effect, while small, is by no means
negligible and consistently acts against the laser field, i.e. perpendicular to the final
momentum eA(t0), inducing a negative rotation of the momentum distribution.

Be that as it may, the classical premise of the above discussion is certainly not ap-
plicable to describe events surrounding the tunnelling process, which takes places at
quintessentially quantum scales. These hurdles have led to a large [20, 22–35], and of-
ten contradictory, body of literature aiming to extract, or model, the relevant physical
information from the attoclock. In particular, the debate is ongoing as to the existence
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of this tunnelling time and what its meaningful definition may be. Direct experimental
measurements are out of the reach with current technology but time delay and mo-
mentum around the tunnel exit have been investigated using virtual detector meth-
ods [36, 37].

The aim of this work is to clarify time delay concepts in ionization by analysing the
process near the atomic core. This is done by constructing the wavefunction of the elec-
tron around the atomic core for physical parameters corresponding to tunnelling and
observing the temporal delay of the peak in a series of models of increasing complexity.
These range from simple textbook models of ionization to a fully quantum mechani-
cal approach based on the Strong Field Approximation. The latter is applied first to a
time independent laser field, with time dependence introduced later. It is shown that
time delay, as defined by studying the peak of a tunnelling wavepacket, is generated
by the interference of transmitted waves with waves being reflected from the edge of
tunnelling barrier.

Emphasis is primarily placed on understanding the underlying physical concepts
rather than accurately reproducing experimental results. These results, however, should
influence future analysis of attoclock experiments as they show a clear need for quan-
tummechanical descriptions near the classically expected tunnel exit. Additionally, the
methods employed in this work provide a new quantum mechanical estimate for the
tunnel exit, based solely on properties of the wavefunction. This work thus opens po-
tentially new ways to calibrate attoclock experiments other than the ill-suited classical
picture outlined above.

This document is laid out as follows: Chapter 2 deals with the aspects of time mea-
surement in quantummechanics and introduces theWigner time delay concept, applied
extensively in later chapters. The origin of such a time delay is explained by the inter-
ference of transmitted and reflected components under the potential barrier. In Chap-
ter 3 tunnelling ionisation is reviewed and the main theoretical concepts are introduced
with a view to motivate this work. Chapter 4 presents the first model of ionisation,
namely that of a constant laser field. By applying techniques of complex analysis to the
wavefunction integral, theWigner time delay in this case is shown to originate from the
same interference principles. The techniques developed in doing so are then applied
to a more realistic time dependent field in Chapter 5, where a pseudo wavefunction is
constructed containing only transmitted components. This pseudowavefunction shows
no time delay, establishing the principle that under the barrier reflections are causally
linked to the Wigner time delay. This chapter is based, and borrows heavily from, the
article [38]. Lastly, in Chapter 6, a model is considered where the tunnelling electron
is allowed to rescatter from the atomic core and its influence on the Wigner time delay
is tentatively analysed. In line with standards in atomic physics, atomic units, where
e = ℏ = me = 1 are used exclusively hereafter. Conversion tables are available for
reference in Appendix A.



Chapter 2

Time Delay

The passage of time is a familiar concept, permeating our experience and description
of physical processes. At a most basic level, time is the measure of change between

consecutive events or states. Seen through this lens, time is seen to always be linked
to some dynamical variable, for example a coordinate or energy change. Time itself,
however, is no dynamical variable. To paraphrase Peres [39], it makes no sense to talk of
a particle with a well defined time, t. Time is merely a book keeping device. In classical
mechanics, time assumes this role as a mere parameter evolving the relevant physical
fields via the equations of motion. Even relativistic and gravitational mechanics, which
formalised the link between time and dynamical variables by elevating time to a fourth
coordinate, treat time as parametric1.

The guise of time in quantum theory however, is not at first obvious. In his semi-
nal papers on a quantal wave theory, Schrödinger first derived [40] a time independent
equation for stationary states and only later was a time dependent formulation intro-
duced (arguably [41, 42] using semi-classical principles). In the new theory, since the
dynamical variables became non-deterministic, quantummechanical definitions of time
(and measurements thereof) turned themselves inherently non-deterministic. Despite
the conceptual difficulties involved, techniques to measure time quantummechanically
have been developed, albeit each with its nuances (see e.g. [43] for a complete and his-
torical survey).

Of particular interest is the question: “how much time elapses during a state tran-
sition?” In other words, are “quantum jumps” instantaneous, and if not, how long do
they last? Closely related to this question, and forming one of the central ideas of this
thesis, is the question “is quantum tunnelling an instantaneous process?” As will be
shown, these questions are somewhat of a red herring but nonetheless, strongfield ion-
ization is well suited to shine light2 on them. The purpose of this chapter is to provide a

1All these theories stand in stark contrast to classical thermodynamics, where the Second Law estab-
lishes a fundamental link between the arrow of time and increases in entropy. Ironically, it was exactly
the failure of thermodynamics in accurately describing the blackbody radiation spectrum that ushered in
quantum mechanics, where the arrow of time assumes relevance in the study of open quantum systems.

2No pun intended.

7
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flavour of tunnelling time procedures and to introduce a measure which is extensively
used in studies of strong field tunnelling ionisation, viz. the Wigner time.

To provide a simple framework the case of tunnelling through a box potential is
presented. Within this context, the emergence of a Wigner tunnelling time is shown to
be caused by the interference of waves reflected by the boundaries of the box potential
with those of the transmitted waves. This principle is a fundamental to this work and
will be applied to more sophisticated models of ionisation in later chapters.

2.1 Tunnelling Times
Theoretical measures of tunnelling time can be broadly divided into types: time-of-
passagemethods and dwell times. As the names imply, while passage times aim tomea-
sure the time associated with passage of wavepacket as it traverses the barrier, dwell
times aim to quantify howmuch time on average a particle spends in the barrier region.
However, all measures utilise features from the transmission wavefunction ψ and po-
tential V . In what follows, four related concepts of tunnelling time are presented along
with their relative limitations. For interesting discussions of tunnelling times within the
context of strong field ionisation see e.g. [27, 32, 34]

The Larmor Clock
The Larmor clock, introduced by Baz [44] and Rybachenko [45] in the 1960s, leverages
the fact that an electron spin precesses in the presence of a magnetic field,B. By prepar-
ing an electron in a given spin state and applying a weak magnetic field across the bar-
rier region, say in the vertical z direction, the electron spin will rotate in the x− y plane
by the angle

θ = ωL τL (2.1)

where ωL = −B/2 is the Larmor frequency (in atomic units) and τL, the Larmor
time, is the time of the spin-magnetic-field interaction. Therefore, one canmap the angle
of precession directly to the duration of the interaction (.i.e. the time of passage through
the barrier).

Büttiker [46], however, noted that such a barrier was asymmetric with regards to
spin up and down states. Spin polarization along the x axis can be represented as an
equiprobable mixture of spin up and down polarizations in z and so spins aligned with
the magnetic field have lower energy and experience a lower potential barrier and are
thus preferentially transmitted. This causes a small spin rotation in the direction of the
magnetic field with a new associated measure of time to this rotation, τz , determinable
by the fact that

⟨sz⟩ =
1

2
ωLτz (2.2)
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where ⟨sz⟩ = 1
2 ⟨ψ|σz|ψ⟩ is the spin expectation value for the transmitted compo-

nent. Recently, the Larmor clock principle found its first experimental application [47]:
using a pseudo-magnetic field (a two-level system in a resonant laser field where en-
ergy states act as spin states) the tunneling of rubidium atoms through an optical barrier
was investigated, finding a Larmor traversal time in the order of miliseconds. Unfor-
tunately, the need for the preparation of a magnetic field across the barrier limits its
application to ionization problems.

Büttiker-Landauer Time
In order to study material properties where tunnelling was a relevant physical process,
Büttiker and Landauer [48] considered tunnelling through a time dependent barrier
with a small perturbation V (x, t) = V0(x)+V1(x, t), where V0 ≫ V1. In their framework,
they deduced a measure of the time for tunnelling to be

τBL =

∫ x2

x1

dx

√
m

2(V0(x)− E)
, (2.3)

where x1, x2 are the classical turning points for a particle with massm and energy E in
the potential V0(x). Of particular interest is the fact that this measure can be used as a
parameter to identify two limiting cases of tunnelling, depending on the frequency ω of
the time dependent perturbation V1. They note that for high frequencies, tunnelling is
enhanced by absoprtion of photons of energy ℏω and for low frequencies, the potential
is essentially static with respect to the tunnelling timescale.

This is in exact equivalence to the Keldysh parameter, τK , introduced in Eq. (1.4),
which serves the same purpose in the study of ionization. The two can be understood as
a measure of the formation time of a tunnelled wavepacket, i.e. the minimum interval
in time necessary to describe the creation of a wavepacket outside the barrier. While
related, this is a different concept from that of the time delay, which describes the relative
hindrance of the wavepacket due to the barrier.

The Feynman Path Integral
The Feynman Path Integral (FPI) formalism [49] can also be used to understand how
much time, on average, a particle spends inside the barrier. The wavefunction in FPI
formalism is defined by

Ψ(x, T ) =

∫
dxi

∫ x(T )

xi(0)
Dx ei S(x(t)) ψ(xi, 0) (2.4)

where themeasureDx runs over all trajectories x(t) starting from xi at time 0 and ending
at position x at time T . The FPI can be seen as a weighted sum over all paths x(t), where
the weighting factor is the classical action under a potential V :

S(x(t)) =

∫ T

0

(
mẋ2/2− V (x)

)
dt. (2.5)
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The tunnelling time in the FPI framework can be understood by analysing the por-
tion Φ of paths that spend some time inside the barrier, and so is the FPI is well suited
to study the dwell time. Given a time τ , the subset of paths spending exactly τ units of
time inside the barrier region, Ω, is given by

Φ(x, T |τ) =
∫

dxi

∫ x(T )

xi(0)
Dx δ (tΩ(x(t))− τ) ei S(x(t)) ψ(xi, 0) (2.6)

where tΩ(x) =
∫ T
0 Θ(x(t)) is a clock measuring the time spent by the particle inside

the barrier (ΘΩ is a Heaviside step function with value unity whenever x(t) ∈ Ω and
zero otherwise). While the formalism casts the tunnelling time problem in very natural
language, it suffers from a significant malady. Yamada [50] pointed out that no proba-
bility distribution for the times τ using the FPI can be meaningfully defined. In his own
words, the failure to satisfy this condition means

“different τ ’s represent interfering alternatives to a particle, just as the two alter-
natives do in the two-slit experiment. Because of temporal interference, we cannot
consider that a particle spends a certain amount of time in the barrier with some
probability, just as we cannot consider, due to spatial interference, that it passes
through either slit with some probability.”

The work around this complication is to consider ranges of values of τ and deter-
mine the probability distribution of the different ranges, a technique known as “coarse
graining”. Like the other techniques described here the FPI is not perfect but its appli-
cations to ionisation times may also be found in [27, 34].

The Eisenbud-Wigner-Smith Time
One other very common method used to study time in quantum mechanics was pro-
posed by Eisenbud [51] and his supervisor Wigner [52,53] in the context of s-wave scat-
tering. A decade later, Smith [54] used similar reasoning to define the concept of colli-
sion lifetime. The central tenet of their method is that the scattering centre disturbs the
wavefunction ψ, having an effect on the group velocity of the scattered wavepacket,
which affects the peak of the distribution. Mathematically, this effect can be measured
by tracking the changes of the wavefunction phase φwith respect to the energyE

τW (x) = −i ∂φ
∂ E

= −i ∂

∂ E
ln

ψ(x)

|ψ(x)|
. (2.7)

Physically, the EWS time (Wigner time for short) can be understood as the tracking
of the peak of the wavefunction as it crosses the potential. Since the momentum space
electron wavepacket in a typical attoclock experiment is well defined, as seen in Fig. 1.2
(b) of Chapter 1, it is an oft used tool in the strong field laser community for the study
the electron time delay. It is, however, not without its drawbacks. Crucially, the Wigner
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Figure 2.1: Schematic of the scattering of wavepacket by a square barrier potential (not
to scale). The dynamics of the wavepacket are governed by the piecewise solution of
the Schrödinger equation for the three regions shown, given by Equations (2.9)-(2.10),
for each frequency.

timemeasures the delay awavefunction experiences due to the influence of the potential,
compared to its unimpededmotion. For polychromatic wavepackets, a potential barrier
will preferentially transmit higher energy components, potentially leading to negative
time delays (undesirable for a measure of interaction time). Thus, it is suitable for use
with sharply peaked wavepackets, where meaningful conclusions can be drawn, as is
the case for tunnelling ionization [19, 20, 24].

2.2 Scattering of a Wavepacket by a Box Potential
Having introduced some aspects of the time delay problem, this section deals with de-
riving the measure most commonly used in studies of strong field ionization, namely
the Wigner time. As discussed in Chapter 1, one of the pieces of information necessary
for the analysis of attoclock data is information on the appearance of the electron in
the continuum. By following the phase of the transmitted wavefunction, the Wigner
time can provide information on the appearance in the continuum of the peak of the
wavefunction, which can be used to untangle the contributions to the attoclock rotation
angle. This is of particular importance as Coulomb field effects manifest themselves in
the photoelectron momentum distributions in a similar way to time delay effects.

The Wigner time is derived here for the special case of a constant potential barrier,
following in the style of Bohm’s classic textbook [55], which highlights the necessary
concepts for later chapters. In addition to this, the emergence of this Wigner time delay
as a consequence of interference effects is shown for this case. This will be a recurring
theme throughout later chapters, culminating in its application the strong field ioniza-
tion problem.
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Begin by considering a wave packet

Ψ(x, t) =

∫
dp f(p− p0) ψ(p) e

−i E(p) t (2.8)

with energy E(p) = p2/2, incident on a potential barrier V (x) = V0 for 0 ≤ x ≤ a and 0
elsewhere, where f(p−p0) is somedistribution peaked at p0 (e.g. aGaussian). This setup
is sketched in Fig. 2.1. Each p-component wavefunction obeys the time-independent
Schrödinger equation with the piecewise solution

ψI(x) = eip x +Re−ip x, (2.9)
ψII(x) = C1e

qx + C2e
−qx, (2.10)

ψIII(x) = Teipx, (2.11)
with momenta p =

√
2E and q =

√
2(V0 − E). The amplitude of the incoming wave

has been set to unity, without loss of generality, and the co-efficients C1 and C2 are the
typical reflection and transmission coefficients under the barrier, respectively.

Matching the above solutions and their derivatives at the boundaries yields the
coefficients

C1 =
(−2iχ)(1 + iχ)e−ξ

(1− iχ)2 eξ − (1 + iχ)2 e−ξ
, (2.12)

C2 =
(−2iχ)(1− iχ)e+ξ

(1− iχ)2 eξ − (1 + iχ)2 e−ξ
, (2.13)

R = (1 + χ2)
e−ξ − eξ

(1− iχ)2 eξ − (1 + iχ)2 e−ξ
, (2.14)

and

T =
(−4iχ)e−ipa

(1− iχ)2 eξ − (1 + iχ)2 e−ξ
. (2.15)

The dimensionless parameters χ = p/q and ξ = q a have been introduced, whose
role, loosely speaking, determines the relative length and height of the barrier respec-
tively.3 The problem is thus solved for any choice of barrier height χ, length ξ and
frequency p. In what follows, we aim to determine the effect of the tunnelling on the
wavepacket motion.

3When χ → ∞ then q ≪ p from which it follows E ≫ V0/2. This corresponds to a barrier where the
energy is on the order of the potential height, that is a low barrier. Conversely, χ → 0 implies p ≪ q,
specifying a high barrier. When ξ = qa → ∞ either q → ∞ or a → ∞; the former is only consistent with
χ → 0, so in the limit of χ → ∞ the latter implies a long-range barrier. On the other hand, ξ → 0, is only
consistent with a → 0, corresponding to a short-range barrier. Note that counterintuitively, the no barrier
configuration corresponds to χ = −i and not χ = 0. While it is true that a = 0 implies ξ = 0, this does not
necessarily imply no scattering (c.f. delta-function barrier).
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2.2.1 Wigner Time Delay
Consider the wavepacket after transmission,

ΨIII =

∫
dp |T (p)| exp [i (φ(p) + p x− E(p)t)], (2.16)

where T = |T |eiφ. Note that the change of the transmission phase φwith respect to the
momentum determines how the scattering affects the wavepacket since the latter is a
superposition of waves of varying frequency. The maximum of this amplitude occurs
when all p-component waves add constructively. This occurs at a stationary point of the
phase in Eq. (2.16), that is when

x = p0 t−
[
∂φ

∂p

]
p=p0

. (2.17)

In the absence of a potential barrier, the peak travels at the classical velocity p0
(in atomic units). Equation (2.17) shows that the barrier causes a delay of the peak in
reaching a given position x, a delay which is given the by the energy derivative of the
transmission phase. This measure of the delay experienced by the peak forms the ba-
sis of the Wigner time concept. For the box potential, the time delay of the peak after
crossing a barrier of length a is given by

τ =
1

p0

[
∂φ

∂p

]
p=p0

+
a

p0
. (2.18)

Explicitly, the time delay for a barrier of height χ and length ξ is given by the ex-
pression:

τ =
ξ χ

p0

1
2ξ

(
χ+ 1

χ

)2
tanh(ξ) + (1−χ2)

2 sech2(ξ)

1 + 1
4

(
χ− 1

χ

)2
tanh2(ξ)

. (2.19)

This distribution is shown in Fig. 2.2. For longer barriers, ξ ≫ 1, the tunnelling
time τ becomes independent of the barrier length a and dependent only on the barrier
height V0,

lim
ξ≫1

τ ≈ a

p0

2

ξ
=

2χ

p0
=

2

p0

1√
2(V0 − E)

. (2.20)

Interestingly, and perhaps counterintuitively, as ξ goes to infinity, τ vanishes: the
longer the barrier, the less time it takes the peak to cross it. This is known as theHartman
effect [56,57]; this effect is not so pathological as it seems, and is merely an interference
effect. An interesting discussion of the relativistic implications of any superluminal
information transmission may be found in [58].

What causes this delay of the peak? To answer “the barrier” merely shifts the ques-
tion to “what happens at the barrier?” Wave mechanics tells us that when a wave is
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Figure 2.2: (a) Wigner time τ(χ, ξ) for the box potential, as given by Eq. (2.19), for a
given wave component p0 = 1/3 a.u.. Note that for large ξ, i.e. long barriers, this time
is constant for all barrier heights χ. Hence, the dominant parameter in tunnelling time
is the barrier length ξ. (b) Normalized difference of time delay at each barrier, δτ =
(τexit − τentry)/(τexit + τentry), showing that for long barriers (ξ ≫ 1), the contribution
to the total time delay is equally caused by both reflection across both barriers.

incident on a potential some portion is reflected and the rest is transmitted. This hap-
pens at every potential boundary; it follows that the transmitted waves interfere with
the reflections from the boundaries and their superposition ultimately shapes the wave,
shifting the peak.

The longer the barrier, the more suppressed reflected wave components become
and hence less interference with transmitted wave components. This also explains why
for very long barriers, the Wigner time becomes essentially independent of the length
of the barrier. While this may seem unreasonable, it is important to note that theWigner
time measures changes in phase and so amplitudes, which determine the probabilities
of tunnelling, play no direct role in this measure.

While this principle underlies much of the results of this section, one can go further
and investigate what happen to the Wigner time if reflections from the boundary are
suppressed.

2.2.2 Reflections and Time Delay
In the above problem there are two reflections: the reflection of the incoming wave
from the barrier surface at x = 0, of the form e−i p x, and the reflection of the tunnelled
wavepacket from the barrier edge at x = a, of the form e+q x. As can be deduced from
Eq. (2.12) the reflection co-efficient C1 in, the reflection at x = a will decrease with
increasing barrier length, ξ ≫ 1, since limξ→∞C1 ∝ e−ξ. As shown above, for ξ → ∞
the time delay τ vanishes, suggesting the origin of the tunnelling time is related to the
reflection of the tunnelling wavepacket.

Equations (2.19) and (2.20) yield the total time delay after tunnelling i.e. after re-



2.2. SCATTERING OF AWAVEPACKET BY A BOX POTENTIAL 15

flection from both barrier boundaries. One can deduce the time delay caused by re-
flection at the entry by applying the Wigner delay formula at x = 0. For ξ ≫ 1,
R ≈ −(1 + iχ)/(1− iχ) and

τentry =
−i
p0

∂

∂p
ln

(
ψI(x)

|ψI(x)|

)∣∣∣∣
x=0

(2.21)

≈ a

p 0

1

ξ
=

1

2
lim
ξ≫1

τ. (2.22)

This is half of the totalWigner tunnelling time. The other half of the tunnelling time
for large barriers is ostensibly due to the time delay from the interface when leaving the
barrier. The Wigner delay at the exit can then defined as the difference between these
two times:

τexit = τ − τentry. (2.23)

It is relatively easy to calculate the normalised time delay difference,

δτ =
τexit − τentry
τexit + τentry

=
τexit − τentry

τ
, (2.24)

which is plotted in Fig. 2.2(b). It shows that in the regime where the barrier is long
(ξ ≫ 1), the tunnelling time is made up in equal parts by reflections from the entry and
interfaces4. This forms a central point in this thesis: the reflections of waves incident on
a scattering centre or potential work to slow down the peak of the wavefunction. This
can also be applied to pure tunnelling phenomena, rather than just scattering. These are
explored in the following chapters, where the principles developed here are applied to
increasingly more sophisticated models of ionisation whilst at the same maintaining an
analytic understanding of the underlying physics.

4It should be noted that in regions where that is not the case e.g. χ → ∞ or ξ → 0, it is unlikely the
Wigner time can provide a good measure of time delay as the distortion of the travelling wavepacket is
likely significant
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Chapter 3

Strong Field Ionization Theory

Having discussed the concepts associated with time delay in quantum mechanics, it
is now possible to apply these to ionization problems. In this chapter, the relevant

aspects of strong field ionization theory are laid out, which will pave the way for the
results of the following chapters. The Hamiltonian for an electron-nucleus-laser system
may be written as

H = H atom(r) +H laser(r, t). (3.1)

For the eigenstate of the atomic Hamiltonian, |ψa⟩, the probabilities of ionization of the
bound state are dependent on the overlap ⟨ψ(t) |ψa(t)⟩, where |ψ(t)⟩ is the full solu-
tion to the above Hamiltonian. In time evolution, or Green’s function, language, the
amplitude of ionization as measured at a detector is then

m =
t→ ∞
lim

ti→−∞
⟨ψ(t) | U(t, ti) | ψa(ti)⟩ , (3.2)

where U(t, ti) is the time evolution operator for the full Hamiltonian (3.1). One of the
main aims of this chapter is to find an expression for U(t, t′) that accurately describes
ionization, simple enough to be tractable butwhose physical properties can be discussed
without ambiguity. As with most three body problems, it is not possible to write down
a general solution. To this end judicious approximations must be introduced which are
standard in strong field studies.

3.1 Electromagnetic Interaction Theory
The first approximation is a conceptual one: it is assumed that in an atom only the
outermost least energetically bound electron is susceptible to ionization. This is known
as the single active electron approximation. In this study, it is trivially satisfied since for
simplicity only atomic hydrogen is considered.

17
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Secondly, only interactions with the most intense high-energy lasers require a rel-
ativistic treatment since in these cases the ionized electron is accelerated to relativistic
speeds. Thus, onemay begin by considering the non-relativistic Hamiltonian of an elec-
tron in an electromagnetic field,

HEM =
−∇2

2
− i

2
(A · ∇+∇ ·A) +

A2

2
− φ (3.3)

for a laser with electric field E(r, t) = −∇φ− ∂tA and magnetic field B(r, t) = ∇×A.
Here, φ and A are the respective electromagnetic scalar and vector potentials and r,
t denote the radial vector pointing from the origin to the electron and time, respec-
tively.

The Dipole Approximation
For the cases where the wavelength λ of an electric field E(r, t) is large compared to the
lengthscale of the atomic system system in question, as is the case throughout this work,
spatial variations in the electric field can be neglected. That is, the electric field can be
approximated

E(r, t) ≈ E(t) = −dA(t)

dt
. (3.4)

It follows that the magnetic field B = ∇ × A(t) = 0 also vanishes. This is termed the
dipole approximation. The dipole approximation is valid in non-relativistic systems such
as the one considered here.

The Length Gauge
The Schrödinger equation is invariant under gauge transformations of the type

ψ(r, t) → ψ̄ = ei f(r,t) ψ(r, t), (3.5)
provided the EM potentials in Equation (3.3) transform accordingly1. A common choice
is f(r, t) = −A(t) · r. With this transformation, the Schrödinger equation reads sim-
ply

i
∂

∂t
ψ(r, t) =

(
−∇2

2
+ E · r

)
ψ(r, t), (3.6)

where the interaction Hamiltonian Hf = E(t) · r couples the electric field E(t) to the
radial vector, hence the name length gauge. Another commonly used gauge in strong
field physics is the velocity gauge, but as will be reasoned later this latter gauge poses
some disadvantages. The curious reader is referred [59] for an overview of EM gauge
theory in strong fields.

1For a gauge transformation of this typeA(r, t) → Ā(r, t) = A(r, t) +∇f(r, t) and φ(r, t) → φ̄(r, t) =
φ(r, t)− ∂

∂t
f(r, t). In the length gauge, Ā = 0 and φ̄ =

(
∂A
∂t

)
· r = −E(t) · r.
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The Volkov States
The Schrödinger equation (3.6) can surprisingly be solved exactly for any electric field
E(t) [60]. Its solutions are known as the Gordon-Volkov states [61]:

|Ψp(t)⟩ = |P(t)⟩ e−i S(t), (3.7)

where |P(t)⟩ = |p+A(t)⟩ is a d-dimensional plane wave state, ⟨r|p⟩ = eip·r (2π)
−d
2 ,

modulated by the phase

S(t) = 1

2

∫ t

dτ P(τ)2 =
1

2

∫ t

dτ (p+A(τ))2. (3.8)

The lower limit is usually unspecified since it contributes only a trivial phase to wave-
functions. These solutions describe the propagation of an electron in the electric field
E(t). The relativistic generalisation was carried out by Volkov [62] so often, and here-
after, they are simply described asVolkov states. Since these are eigenstates of the Hamil-
tonian H = −∇2/2 + Hf , the time evolution operator for an electron in the laser field
can be expressed

Uf (t, ti) =

∫ ∞

−∞
dp |Ψp(t)⟩ ⟨Ψp(ti)| , (3.9)

which will be of use later.

3.2 The Strong Field Approximation
Weaving all these concepts together, the length gauge Hamiltonian for an electron in
the combined atomic and laser field in the dipole limit, reads simply

H = −∇2

2
+ E · r+ V (r) (3.10)

where V (r) is the atomic potential. So far, no choice has been made for either the laser
field or the atomic potential. The dynamics of the electron in the combined fields are de-
scribed by the application of the Hamiltonian (3.10) to the time-dependent Schrödinger
equation (TDSE):

i
∂ψ

∂t
=

(
−∇2

2
+ E · r+ V (r)

)
ψ. (3.11)

With modern computational tools, this equation can be numerically integrated for
a range of atomic and laser potentials in an essentially exact manner. This allows for
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accurate analysis and prediction of experimental results. However, the downside to
such numerical integration is that the competing physical effects are not readily identi-
fiable and only the resultant physical observables (via the solution ψ(t)) are accessible.
In what follows, a standard approximation technique, known as the Strong Field Ap-
proximation [9, 63], is introduced with the aid of time evolution operators in order to
produce a solution that is amenable to physical interpretation.

3.2.1 The Interaction Picture
Consider the Schrödinger equation for a general state |ψ⟩ in the Schrödinger picture:

i
∂

∂t
|ψ(t)⟩ = H(t) |ψ(t)⟩ . (3.12)

For a class of problems, the full Hamiltonian can be split into an explicitly time indepen-
dent “free” part that is readily solveable and a time dependent interacting part whose
solution is sought:

H(r,p, t) = H0(r,p) +Hint(r,p, t). (3.13)
The idea is to split all operators and states in the Schrödinger picture into free and inter-
acting states, with the time dependence (usually) being present in only the interacting
states, in what is known as the interaction picture. The formal solution to Equation (3.12)
is given by

|ψ(t)⟩ = U(t, ti) |ψ(ti)⟩ (3.14)
where U(t, ti) is the time evolution operator, which unitarily evolves the wavefunction
|ψ⟩ from some initial time ti to some later time t. In the interaction picture the time
evolution operator can be expressed as

U(t, ti) = U0(t, ti)− i

∫ t

ti

dt1 U(t, t1)Hint(t1)U0(t1, ti), (3.15)

whereU0(t, ti) is the time evolution operator for the unperturbedHamiltonianH0. Equa-
tion (3.15) is known as theDyson equation2 and it is a transcendental equation inU(t, ti).
Successive iterations of the Dyson equation yield the formal solution as an infinite sum,
known as a Dyson series:

U(t, ti) =

∞∑
n=0

Ū (n)(t, ti), (3.16)

with each term given by

Ū (n)(t, ti) = (−i)n
(

n∏
k=1

∫ tk−1

ti

dtk U0(tk−1, tk) Hint(tk)

)
U0(tn, ti), (3.17)

2An intuitive derivation of the Dyson equation may be found Appendix B.
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where the integrals are understood to be time ordered (t > t1 > ... > tn) and t0 ≡ t.
It should be pointed out that the Dyson series is analogous to the Born approximation
method of usual scattering theory (see e.g. [55, 60, 64]).

Weak Field Perturbation Theory
It is instructive to consider a simple example. Taking the free Hamiltonian to describe
the atom

H0 −→ Ha = −∇2

2
+ V (r) (3.18)

and the interaction Hamiltonian to describe the interaction with the laser field

Hint −→ Hl = E(t) · r, (3.19)

with respective evolution operators Ua(t, ti) and Uf (t, ti), defines the evolution opera-
tor

U(t, ti) = Ua(t, ti)− i

∫ t

ti

dt1 U(t, t1)Hl(t1)Ua(t1, ti). (3.20)

With these operators, Eq. (3.17) can be interpreted as follows (from right to left):
initially at time ti the electron is in a bound state |ψ(ti)⟩ and evolves according to the
atomic evolution operator Ua(tn, ti) up to time tn where it interacts with the laser field
via Hint(tn) = Hl(tn). After this interaction, the electron again evolves under the dy-
namics of an atomic evolution operator Ua(tn−1, tn) until time tn−1, when another in-
teraction takes place. If the infinite series (3.16) is truncated at n = N , this cascade
continues until k = N meaning the electron has experienced N interactions with the
laser field. That is, this expression can be understood as an N -photon process of emis-
sion and/or absorption.

Notwithstanding the formal solution, Eq. (3.17), the Dyson series are typically
asymptotic series, with dependence on some smallness parameter and they must be
truncated. This type of truncated perturbation series in the interactionHamiltonianHint
converges when free evolution operator U0(t, ti) is similar to the full evolution operator
U(t, ti), i.e. for weak fields [60].

The Strong Field Approximation
However, when the the laser field strength is comparable with the atomic potential such
a truncated series is no longer a suitable description of the underlying physics. In par-
ticular, there is a strong likelihood of the electron escaping the atom and hence no longer
obeying the unitary evolution given by the free-field operator U0. In this case, the ion-
ized electron is propagated in the laser field away from the atomic core; this propagation
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is described by an evolution operator of the form (3.15) but nowwith the interaction be-
ing the atomic potential

H0 −→ Hf = −∇2

2
+ E(t) · r, (3.21)

and the “free field” being the evolution in the field,

Hint −→ HV = V (r). (3.22)

Recall that the Hamiltonian (3.21) has an evolution operatorUf (t, t′) =
∫
|ψp(t)⟩ ⟨ψp(t

′)|
expressible in terms of the Volkov states. The evolution operator for this new interaction
will then obey the Dyson equation

USFA(t, ti) = Uf (t, ti)− i

∫ t

ti

dt1 USFA(t, t1)V (r)Uf (t1, ti). (3.23)

The Strong Field Approximation (SFA) assumes that after ionization, the laser field
carries the electron far away from the nucleus and thus dominates the electron dynam-
ics succh that any further interactions with the nucleus can be treated perturbatively.
Formally, this corresponds to substituting the full time evolution operator U(t, ti) −→
USFA(t, ti) in the right-hand side. of Eq. (3.20),

U(t, ti) = Ua(t, ti)− i

∫ t

ti

dt1 USFA(t, t1)Hl(t1)Ua(t1, ti), (3.24)

and moreover, replacing the final state |ψ(t)⟩ in Eq. (3.2) with the Volkov state |ψp(t)⟩
(i.e. the solution of the electron propagating in the laser). As before, a formal solution
to this time evolution operator is given by

U(t, ti) =

∞∑
n=0

Ũ (n)(t, ti), (3.25)

with each term

Ũ (n)(t, ti) = (−i)n
(

n∏
k=1

∫ tk−1

ti

dtk V (r) Uf (tk−1, tk)

)
Hn(tn) Ua(tn, ti), (3.26)

where Hn(tn) = Hl(tn) for n ≥ 1, and unity otherwise. More explicitly, the first few
orders are
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Ũ (0)(t, ti) = Ua(t, ti), (3.27)

Ũ (1)(t, ti) = −i
∫ t

ti

dt1 Uf (t, t1) Hl(t1) Ua(t1, ti), (3.28)

Ũ (2)(t, ti) = −
∫ t

ti

dt1

∫ t

t1

dt2 Uf (t, t1) V Uf (t1, t2) Hl(t2) Ua(t2, ti), (3.29)

and so forth to higher orders. Analogously to Eq (3.17), Eq. (3.26) may be inter-
preted as the evolution of a bound state at initial time ti, which interacts with the laser
field at time tn through Hl(tn) and is ionized and subsequently propagated in the laser
field by Uf (tn−1, tn) until a re-scattering with the atomic potential V (r) occurs. For a
given n, the wavefunction |ψ̃(n)(t)⟩ = Ũ (n)(t, ti) |ψa(ti)⟩ describes the ionization of an
electron with n − 1 re-scattering events with the atomic potential before being carried
off by the laser field.

The SFA Wavefunction and Amplitudes
The complete wavefunction for the electron is then given by applying the unitary evo-
lution operator in the SFA to the initial atomic state, |ψ(t)⟩ = U(t, ti) |ψa(ti)⟩. This can
be expressed as |ψ(t)⟩ = |ψa(t)⟩+ |ψi(t)⟩+ |ψr(t)⟩+O(V 2), where

|ψi(t)⟩ = Ũ (1)(t, ti) |ψa(ti)⟩ = −i
∫ t

ti

dt1

∫ ∞

−∞
dp |Ψp(t)⟩ ⟨Ψp(t1)|Hl(t1)|ψa(t1)⟩ (3.30)

is the wavefunction describing direct ionization, and |ψr(t)⟩ = Ũ (2)(t, ti) |ψa(ti)⟩ de-
scribes an ionization with one scattering event with the atomic core. Higher orders in
V describe ionization with the corresponding number of rescattering events. Equation
(3.30), corresponding to direct ionization, forms the basis of this study since it is the
dominant term in the series, although rescattering is eventually considered in Chap-
ter 6.

In the SFA, the asymptotic amplitude for ionization with n−1 recollision processes
is

mn(p) = lim
t→ ∞

⟨ψp(t) |ψ(t)⟩ = lim
t→ ∞

⟨ψp(t) | Ũ (n)(t, ti) | ψa(ti)⟩ (3.31)

where the SFA dictates the replacement of the final wavefunction with the Volkov state
|ψp(t)⟩. The amplitudes m1, m2 , ... , can then be interpreted as the amplitudes of ioni-
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sation with no recollision, probability of ionisation after one recollision, et cetera 3, and
their coherent superposition and integration over momentum would yield the exper-
imentally measurable photoelectron momentum distributions. Unlike most studies of
time delay, this work will mostly concern the the wavefunction at intermediate times,
|ψi(t)⟩, as opposed to thewell understoodprobability for the sameprocess at large times,
|m1(p)|2, since the aim here is to deconstruct electron dynamics during the tunnelling
process.

The SFA is a staple of strong field ionization studies partly because it lends itself
to the simple series interpretation outlined above, in contrast to other numerical tech-
niques. It is not, however, without its flaws. In particular, it is not a priori gauge invari-
ant, since the choice of division of the Hamiltonian into free and interacting parts may
lead to inconsistencies. It has been reported [65] that for Coulomb potentials, the length
gauge (with the dipole approximation) is able to reproduce TDSE results to exponen-
tial accuracy, unlike the velocity gauge. Faisal [66] showed the equivalency of the two
gauges for a given choice of the division of the Hamiltonian. It has also been shown for
short-range potentials, the SFA takes the same form in the length and velocity gauges.
Exactly to bypass these (and other) difficulties, the choice was made in this work to use
the standard representation of the SFA in the length gauge and moreover to work with
the delta function potential.

3.3 The Zero Range Potential
The potential of choice for this study is the the Dirac delta-function, known also as the
zero range potential (ZRP), reads in one dimension

V (x) = λ δ(x), (3.32)

where λ < 0 for an attractive potential. Much like the divergent Coulomb potential, this
is a pathological potential, used to model an underlying ignorance of the physics at the
atomic core.

The ZRP is used for two good reasons. Firstly, it is short range, so the interaction
is not present over all space; mathematically, this simplifies a lot of integrals and keeps
calculations tractable. Secondly, since the Coulomb potential stretches over all space,
it becomes difficult to isolate contributions from e.g. the laser field. With the ZRP, the
interaction is not drawn out so one can in principle separate the laser and atom contri-
butions to the dynamics.

The time independent Schrödinger equation for this potential is given by(
−1

2

d2

dx2
+ λ δ(x)

)
ψ(x) = E ψ(x) (3.33)

3Note that while the true final state |ψ(t)⟩ is orthogonal to the bound state |ψa⟩, this is not the case for
the Volkov states so m0 ̸= 0. This is a consequence of the non-linear perturbation theory employed but
has no bearing on the interpretation of the solutions since on is usually interested only in probabilities of
ionization (i.e. orders n ≥ 1).
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For a given energyE = k2/2, the potential permits exactly one bound state (E < 0) and a
continuous range of free, or scattering, states (E > 0). The wavefunction is in both cases
separated piecewise into x > 0 and x < 0 components, with the coefficients dictated by
wavefunction continuity across the singularity at the origin (see e.g. [67]).

The Bound State
For the bound state E < 0, with k =

√
−2|E| ≡ iκ, the wavefunction is given by

ψ0(x) =
√
κ e−κ |x|, (3.34)

with the condition that λ = −κ (i.e. an attractive potential). This wavefunction is con-
tinuous everywhere but its derivative is discontinuous at the origin. For strong field
ionization, the energy E is taken to be the binding energy Ip of the atom, such that
Ip = κ2/2.

The Scattering States
For energies E > 0, with k =

√
2E, the scattering wavefunction takes the form

ψsc(x) =


ei k x +Be−i k x x < 0

Cei k x x > 0.

(3.35)

where

B =
i/k

1− i/k
, and C =

1

1− i/k
. (3.36)

To model scattering by the potential it should be noted that in definition (3.35) the
incomingwave amplitude has been set to unity and only outgoingwave are considered,
without loss of generality.

In this work, the bound state wavefunction will be used extensively throughout
as the model for the single active electron. However, the scattering states will come in
useful for calculations involving higher order rescattering events, such as in the Low
Frequency Approximation of Chapter 6.

With the theoretical toolbox developed, one may now proceed in applying the SFA
with the zero-range potential to the study of ionization. The first case considered is an
adiabatic laser field which allows for the connection with the Wigner time delay to be
made fully analytically.
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Chapter 4

Ionization in a Static Laser Field

“Il apparut que, entre deux vérités du
domaine réel, le chemin le plus facile
et le plus court passe bien souvent
par le domaine complexe.”

“It came to appear that, between two truths of
the real domain, the easiest and shortest path
quite often passes through the complex
domain.”

Paul Painlevé

Having developed some notion of time delay and of ionization in the previous chap-
ters, applications to physical models may be explored. The analysis of theWigner

time delay in Chapter 2 concerned a type of scattering event which is, at a closer look,
a different process to that of ionization: the ionization process begins from within the
barrier in the first place. Thus, a wavefunction is not incident on a potential but rather
a bound state continually “leaks out” of the potential barrier.

Nonetheless, the two processes are not wholly distinct. The wavefunction dynam-
ics are still dictated by the characteristics of the potential barrier. In both cases if one
observes a time delay for the scattering scenario, one would expect an analogous phe-
nomenon for the ionization. In a realistic description of ionization, the barrier varies
significantly in space and time. As a consequence, the ionised electron wavefunction
will longer be simply separable into transmitted or reflected components, as it was in
Chapter 2. In order to explore more realistic models of ionization, time dependence of
the electric field is eschewed in this chapter.

Ionization by a static field is considered for two simple models: the time indepen-
dent Schrödinger equation (TISE) and an SFA time evolved wavefunction as described
in Chapter 3. From the analysis of the former, a method of separating transmission and
reflection components for the latter can be derived. This clears the path for applying

27
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Figure 4.1: The solution to the electron in a constant field problem is given by a superpo-
sition of Airy functions of the first and second kind, Ai(x̃) and Bi(x̃), plotted in blue and
orange respectively. These functions have very accurate asympotic expansions, shown
dashed, which can be derived by considering the saddle points of the Airy integrals
(4.13)-(4.14). Under the barrier, x < 10 (shaded blue), these expansions show that the
wavefunction components Ai(x̃) and Bi(x̃) respectively correspond to the reflected and
transmitted components of the wavefunction.

this method to a fully time dependent field in later chapters.

4.1 Adiabatic Ionization in Constant Field
Begin by considering a bound electron of energy −Ip in a one dimensionsl zero range
potential, ionized by a constant electric field E(t) ≈ −E0 (i.e. a field which varies only
adiabatically). The continuum eigenstate of the electron in this field is given by the
solution to the time-independent Schrödinger equation:

− 1

2

d2ψ

dx2
+ (Ip − E0 x)ψ(x) = 0. (4.1)

By performing a change of variables

x̃ = 2
1/3 E−2/3

0 (Ip − E0 x) , (4.2)

this equation can be cast into a more recognisable form, namely ψ′′(x̃) − x̃ ψ(x̃) = 0.
This is the Airy equation. A general solution is a superposition of the Airy functions of
the first and second kind ψ(x) = c1Ai(x̃) + c2Bi(x̃). These solutions are sketched out in
Fig. 4.1.

The wavefunction is required to be a travelling wave to the right in the continuum
after ionization1, forcing c1 = −i c2. The general solution is then

1The phase difference between the two coefficients must be such the probability current, j =
i/2 (ψ(x)ψ′(x)∗ − ψ(x)∗ψ′(x)), is maximal.
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ψ(x) = T [Ai(x̃)− iBi(x̃)] , (4.3)
where T is a prefactor determined by matching the wavefunction to the bound-state
solution of the atom, ψ0(x). The Wigner time is dependent only on derivatives of the
phase, is unaffected by T , so we do not concern ourselves with this term. It can be
calculated straightforwardly

τW (x) = i
∂

∂Ip
ln

ψ

|ψ|
=

2
1
3

πE
2
3
0

1

Ai(x̃)2 + Bi(x̃)2 . (4.4)

This is interpreted as the trajectory of the peak of a tunnelled electronwavepacket under
a constant electric field, and may be used as a benchmark for results in later chapters.
Likewise, it is simple to estimate the scaling of the Wigner time delay at the tunnel exit
xe = Ip/E0

τW (xe) =
34/3 Γ

(
2
3

)2
25/3π

E−2/3
0 . (4.5)

Additionally, the concept of the Wigner electron group velocity vW (x) =
(
∂τW (x)
∂x

)−1
is

defined, which plays an analogue role to momentum for the peak of the wavefunction.
At the classical tunnel exit, xe = Ip/E0, it is found to be

vW (xe) =
2
(
2
3

)2/3√
π Γ
(
7
6

)
Γ
(
2
3

)2 E1/3
0 . (4.6)

These will be useful yardsticks for the time dependent case in Chapter 5, where we find
good agreement. The above results are found to be consistent with the estimate of the
scaling of the electron momentum pe ∼ E0 τW in Ref. [68].

4.1.1 Contour Integral Solutions
Having obtained a solution for the electron in an adiabatic field and calculated its tun-
nelling time delay, it remains to analyse the origin of the latter. As discussed in Chap-
ter 2, the cause is ostensibly the interference of transmitted (exponentially decaying)
and reflected (exponentially growing) components of the wavefunction under the bar-
rier.

How can these components be identified in the wavefunction? In order to identify
these components, practical expressions for the two Airy functions are sought. Since
the Airy equation is a Laplace linear equation, solutions may be expressed as complex
contour integrals (see e.g. [69, §5.3]),

ψ(x) =

∫
γ
ex sP (s) ds, (4.7)
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(a) (b) (c)

Figure 4.2: The Airy integral ∫γ ds exp(x̃ s − s3/3) is defined on the complex s plane;
it converges when the endpoints of its infinite contour, γ, lie in the shaded areas. The
canonical contours defining the Airy function of the first (γ1) and second (γ2 − γ3) kind
are shown in (a). Contributions to the Airy integral arise principally from portions of
the contour near the saddle-points of the integrand function exp(x̃ s−s3/3). The config-
uration of the saddles s± = ±

√
x̃ (red dots) in the complex plane is shown for positions

(b) inside the barrier (x̃ < 0), and (c) outside the barrier (x̃ > 0). Deforming the defining
contours in (a) through the steepest descents contours (solid blue) in (b) and (c) provides
asymptotic expansions for the Airy function, as in Eqs. (4.17) and (4.18). Dashed grey
lines indicate the contours of steepest ascents.

where γ is a contour in the complex plane. The problem is then reduced to finding the
function P (s) and the contour γ which solve the differential equation. It follows from
the Airy equation, ψ′′(x̃)− x̃ ψ(x̃) = 0, that∫

γ
(s2 − x) ex s P (s) ds = 0. (4.8)

Let Q(s) be a function such that
d

ds
(ex sQ(s)) = (s2 − x) ex s P (s) (4.9)

Comparing co-efficients in x one finds −P (s) = Q(s) and s2 P (s) = Q′(s). This im-
plies

Q(s) = e−
s3

3 . (4.10)
Having obtained P (s), only the contour γ remains to be determined. The Airy equation
is satisfied provided γ obeys∫

γ
(s2 − x) ex s P (s) ds =

∫
γ
ds

d

ds
(ex sQ(s)) = [ex sQ(s)]γ =

[
ex s−

s3

3

]
γ

= 0. (4.11)
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That is, the equation is satisfied provided exp(x s− s3

3 ) takes the same value at the end-
points of the contour γ. There is no finite contour satisfying this requirement and a
closed contour yields only the trivial solution. However, a suitable infinite path may be
found by examining under which conditions exp(x s− s3

3 ) vanishes.
In polar form, s = r eiθ, one has |exp(−s3/3 + x s)| = exp (− r3/3 cos(3θ)) |exp(x s)|

and so as r → ∞ the integral vanishes wherever cos(3θ) > 0. This occurs when the end
points lie at infinity in the regions

−π
6
< θ <

π

6
,

π

2
< θ <

5π

6
, and 7π

6
< θ <

3π

2
. (4.12)

These regions are presented as shaded areas in Fig. 4.2 (a). Note also that non-trivial
contour solutions must have start and endpoints in different regions since contributions
in opposite directions from the same sector would cancel.

A variety of infinite contours satisfy these requirements but a second order ODE
such as theAiry equation has only two linearly independent solutions. Let γ1 be the con-
tour originating at ∞ei4π/3 and ending at ∞ei

2π
3 , as indicated in Fig. 4.2 (a). Two other

similar contours between the shaded areas can be chosen: γ2 (starting from∞ei2π/3 and
ending at +∞) and γ3 (starting at +∞ and ending at ∞ei4π/3). The canonical solutions
to the Airy equation are then the Airy function of the first kind,

Ai(x) = 1

2πi

∫
γ1

ds ex s−
s3

3 , (4.13)

and the Airy function of the second kind, known affectionately as the “Bairy” func-
tion,

Bi(x) = 1

2π

∫
γ2 −γ3

dt ex s−
s3

3 . (4.14)

The purpose of explicitly deriving the solutions to the Airy equation is to enlighten
how one may identify which component of the wavefunction corresponds to transmis-
sions andwhich to reflection. Merely by observation of Fig. 4.1, the Bi-component of the
wavefunction decays exponentially as it approaches the tunnel exit, x = xe, from the
atomic core at x = 0, and hence can be seen to correspond to the transmission compo-
nent; likewise, the exponentially growing Ai-component corresponds to wavefunction
reflection.

4.1.2 Reflection, Transmission and Saddle Points
The above interpretation can be formally established by considering the integral rep-
resentation of the Airy functions, Eqs (4.13) and (4.14), with the aid of Fig. 4.2 (a). The
solution to the Schrödinger equation (4.1) may be considered as a contour integral

ψ(x) ∝
∫
ζ
ds exp (x̃ s− s3/3) (4.15)
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where ζ is some combination of the defining paths γi of the Airy functions. Exam-
ining the integrand, one may notice it is a superposition of multiple frequency waves
which for the most part cancel out, just as in the derivation of the Wigner time delay of
Chapter 2. As before, the exception to this occurs when the phase difference between
each s component wave is minimal (i.e. at an extremum of the phase x̃ s − s3/3 ). The
majority of the contributions to the Airy integrals thus come from around the saddle
points of the argument of integrand

s± = ±
√
x̃. (4.16)

This idea forms the basis of a powerful technique, known as the saddle-point or
steepest-descents method [69, 70] , used to accurately approximate highly oscillating
integrals. The method is outlined in Appendix C and is grounded in the fact that the
integration contours may be deformed, in this case the Airy contours γi, into contours
that to go through these saddle-points and a mere expansion the integral around these
saddle points is sufficient to achieve excellent approximations to such functions.

The saddle-points, and the respective paths of steepest descents, are illustrated in
Figs. 4.2 (b) and (c); since these are dependent on x̃ the application of the saddle point
method is different for the two cases of inside (x̃ < 0) and outside (x̃ > 0) the potential
barrier. As shown in Fig. 4.2 (b), for x̃ < 0 the contour γ1 may be smoothly deformed
into the path of steepest descents for the saddle point s−, obtaining the asymptotic ap-
proximation

Ai(x̃) =
exp

(
−2

3 x̃
3
2

)
2
√
π x̃

1
4

+O(x̃−
3
2 ). (4.17)

Likewise, the contours γ2 and −γ3 may be deformed in both cases to go through
the steepest descent path of the saddle point s+ yielding the asymptotic form of the
Bi(x)-function under the potential barrier

Bi(x̃) =
exp

(
+2

3 x̃
3
2

)
√
π x̃

1
4

+O(x̃−
3
2 ). (4.18)

Thus, from a tunnelling particle’s perspective, one may identify the Airy function
and its saddle-point s− with the reflected part of thewavefunction, and the saddle-point
s+, or the Bairy functionwith the transmitted part of thewavefunction. The transmitted
wave decays as it moves to the tunnel exit, while the reflectedwave propagates from the
exit decaying exponentially toward the atomic core, as shown in Fig. 4.1. Thus, using
the contour ζ in equation (4.15) it is easy to identify and separate the transmitted and
reflected wave components of the wavefunction by dividing the contour ζ into sections
crossing each saddle point. This is equivalent to performing the saddle point approxi-
mation around each saddle.
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This insightmight seem trivial given the original solution (4.3) was already a super-
position of two functions. One function is the reflected part and the other the transmit-
ted part and the total wavefunction is naturally a superposition of these. This observa-
tion, however, presupposes that the wavefunction is separable into a sum of known
functions; this is only really true when the spatial and temporal components of the
wavefunction are themselves separable. This has been the case so far, but for the time
evolution wavefunction introduced in Chapter 3 this is in general not the case. Tem-
poral and spatial components are intermingled and the separation of the wavefunction
into reflected and transmitted components is not straightforward.

Fortunately, the analysis of this Chapter has provided a clue on how to do exactly
that: the key is to identify and analyse the saddle points of the wavefunction integral.
In what follows, this proposition is applied to the SFA wavefunctin in a constant field.
There, one is able to show analytically this correspondence of the saddle points to the
under the barrier properties of the wavefunction. The concepts developed in the re-
mainder of this chapter are then subsequently applied to the time-dependent field case,
a physically more relevant scenario.

4.2 The Strong Field Approximation in the Constant Field
Consider the SFA wavefunction derived in Chapter 3, for the same electron in a zero
range potential of binding energy Ip = κ2/2 ,

ψi(x, t) =

∫ ∞

−∞
dx′
∫ ∞

−∞
dp

∫ t

ti

dt′ ⟨x |ψp(t)⟩
〈
ψp(t

′)
∣∣Hi

∣∣ψ0(t
′)
〉
, (4.19)

ionized by constant laser field E(t) = −E0. Due to the simplicity of the field, the corre-
sponding vector potential A(t) = −

∫ t
dτ E(τ) = E0t and Volkov phase

S(t) =
1

2

(
p2t+ pE0t2 + E2

0

t3

3

)
(4.20)

are simple polynomials in time. Letting P(t) ≡ p + A(t) = p + E0 t, the wavefunction
takes on the explicit form

ψi(x, t) = −i
√
κ E0
2π

∫ ∞

−∞
dp

∫ ∞

−∞
dq

∫ t

−∞
dt′q ei (P(t)x−P(t′) q+S(t′)−S(t)+iκ|q|+Ipt′) (4.21)

Since S(t′) is a cubic in t′, one can already identify an Airy-type function in the t′
integral by comparison to the integral definitions (4.13) and (4.14). However, to make
this relation explicit and to cast the integral in a more tractable form, we may perform
the following coordinate transforms:
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t′′ = t′ +
p

E0
and p = P + E0 t. (4.22)

In these variables the wavefunction integral takes the form

ψI(x, t) ∝
∫ ∞

−∞
dP e

− i
2E0

(P3/3+Π(x)P)
∫ ∞

−∞
dq q e−κ |q|

∫ P/E0

−∞
dt′′ e

i
E2
0
2

(
t′′3/3+Π(q) t′′

)
(4.23)

where Π(y) ≡ 2(E0 y − Ip). How may one calculate such an integral?
In the new variables, there are Airy-like arguments in the P and t′′ integrals, in-

dicating the wavefunction behaves roughly like a product of Airy functions. The only
distinction is in the finitiness of the limits of the integrals; these types of functions rise
in wave phenomena and are known as incomplete Airy functions [71]. The main issue
in our case is that the P dependence of the limit (arising from the time dependence of
the limit of the Dyson integral) prevents the separation of these integrals.

Recall the determining role of saddle points in the calculation of contour integrals.
The saddle points of the two Airy arguments are given by t′′± = ±1/E0

√
Π(q) and P± =

±
√

Π(x) and, by examining the integration contours, the relevant saddle points for
the steepest descents method applied to integral (4.23) are found to be P0 = −

√
Π(x)

and

t′′0 =

√
Π(q)

E0
. (4.24)

In order to be able to approximate the integral, consider the integration contour
in t′′ and divide it into two sections, as shown in Fig. 4.3: from negative infinity to the
saddle point t′′0 and from this saddle point to the observation time t = P/E0,

∫ P/E0

−∞
dt′′ −→

∫ t′′0

−∞
dt′′ +

∫ P/E0

t′′0

dt′′. (4.25)

Each term in the integral is analysed as follows.

4.2.1 Integration up to saddle point
Consider the first portion of the integral,

∫ ∞

−∞
dP e

− i
2E0

(
P3

3
+Π(x)P

) ∫ ∞

−∞
dq q e−κ |q|

∫ t′′0

−∞
dt′′ e

i
E2
0
2

(
t′′3/3+Π(q) t′′

)
. (4.26)
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Figure 4.3: Overview of the integration in the complex t′′ plane. The complete result for
the full wavefunction is in green along the horizontal axis. The integration is split up
into the path γpre up to the saddle point (orange) and the path γpost down to the time
t (blue). Dashed lines correspond to the approximations performed on these integrals,
namely the steepest descent and Laplace methods.

Immediately it can be noted that these integrals are now tractable: the P integral is
separable and moreover, the limit of the t′′ integral is independent of q so the last two
integrals can be performed sequentially. These last two integrals are independent of x
and t and so amount to a mere prefactor2, call it Q. The first integral does depend on
the observable coordinate and is but a definition of the Airy function in the reals,

∫ ∞

−∞
dP e

− i
2E0

(
P3

3
+Π(x)P

)
= 2π(2 E0)

1/3 Ai
(

Π(x)

(2 E0)2/3

)
= 2π(2 E0)

1/3 Ai(x̃). (4.28)

Recall that the component of the adiabatic wavefunction, Eq. (4.3), correspond-
ing to reflections under the potential barrier was determined to be exactly the function
Ai(x̃). This could be justified by the functional dependence of the Airy functions and
proved by the asymptotic expansions of the Airy function for large coordinates x.

2Note that Q is an incomplete Airy function with its saddle point as a limit. By symmetry arguments,
this integral is exactly one half of the full Airy function,

Q(E0) =

∫ ∞

−∞
dq q e−κ |q|

∫ t′′0

−∞
dt′′ ei

E2
0
2 (t′′3/3+Π(q) t′′) = π(2 E0)

1/3

∫ ∞

−∞
dq q e−κ |q| Ai(q̃). (4.27)

The remaining integral has analytic solutions but since prefactors are not relevant to this study, this is
not explored further.
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The exact same conclusion can be drawn here, with the distinction that this identi-
fication arises from the definition of a partial contour rather than from a simple super-
position of functions. That is, the part of the contour up to the saddle point in P can be
directly identified with the part of the wavefunction corresponding under the barrier
reflections.

One should take a moment to appreciate how powerful this statement is. It tells
us that the physical behaviour of the wavefunction can be understood by analysing
the saddle points and corresponding integration contours of the wavefunction integral,
even when all different contributions are amalgamated in the resultant wavefunction
distributions.

4.2.2 Integration from saddle point to observation time
After having observed the connection between the contour to the saddle point and sub-
barrier reflections, one can conjecture that the remaining path to the observation time
corresponds to transmission. However, since the pathologies introduced by the depen-
dence of the limit on t have been isolated to this contour, one can expect this is somewhat
harder to show. Consider the integral

∫ ∞

−∞
dP e

− i
2E0

(
P3

3
+Π(x)P

) ∫ ∞

−∞
dq q e−κ |q|

∫ P/E0

t′′0

dt′′ e
i
E2
0
2

(
t′′3/3+Π(q) t′′

)
. (4.29)

One may approximate the integral in t′′ by noting that the observation time t =
P/E0 lies on the real line of the complex t′′ plane. The saddle point t′′0 has the steep-
est descent contours running approximately horizontally parallel to the complex plane.
Conversely the steepest ascent path lies perpendicular to this and so one may conclude
that the point t = P/E0 always lies above the saddle point t′′0 , meaning one may apply
the method of Laplace [70] to estimate this integral.

This method relies on the maximum of the integrand lying in between or, as in this
case, at one of the end points. This point will be the majour contribution to the integral,
thus allowing a simple expansion of the integrand to first order around this maximal
point to act as a good approximation. Formally,

∫ t

t′′0

dt′′ e
i
E2
0
2

(
t′′3/3+Π(q) t′′

)
≈ ei

E2
0
2 (t

3/3+Π(q) t)
∫ t

t−ε
dt′′ ei

E2
0
2 (t2+Π(q)) (t′′−t), (4.30)

for some ε. Note the spurious cubic order terms in P , stemming from the coordinate
transformation, will be cancelled by those in t = P/E0, as expected. The last integral in
Eq. (4.30) can be handled straightforwardly:

∫ t

t−ε
dt′′ ei

E2
0
2 (t2+Π(q)) (t′′−t) =

 ei
E2
0
2 (t2+Π(q))u

i
E2
0
2 (t2 +Π(q))

u=0

u=ε

=
2− ei ε

E2
0
2 (t2+Π(q))

i
E2
0
2 (t2 +Π(q))

. (4.31)
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It is observed that if the limit ε → i∞ is chosen then the error of the estimate is
suppressed, as inferred by the Laplace method. With this choice of approximation, and
assuming wemay interchange the order of integration, the integral wavefunction (4.29)
becomes proportional to

∫ ∞

−∞
dq q e−κ |q|

∫ ∞

−∞
dP

e
i

2E0
(Π(q)−Π(x))P

P 2 + E2
0 Π(q)

(4.32)

=

∫ ∞

−∞
dq q e−κ |q|

∫ ∞

−∞
dP

ei(q−x)P

P 2 + E2
0 Π(q)

(4.33)

= π

∫ ∞

−∞
dq q e−κ |q|

e−|q−x|
√

Π(q)√
Π(q)

. (4.34)

This expression is not further separable and must be calculated numerically. It is
however evident, that the x dependence of the wavefunction is of the type exp(−k x)
by virtue of the −|q − x| term in the integrand. Thus, one can safely identify this as the
transmitted component of the wavefunction.

While the constant field SFA is not a very realistic model, it provides one with a
prescription to physically interpret the wavefunction via its defining integral. The main
points of this chapter naturally also apply to time dependent fields, although the cost of
introducing more complexity translates into a reduced ability to have analytic expres-
sions throughout. In the chapter that follows, the principles derived here are applied
to a time dependent electric field to produce a more realistic model. With this model,
the causal connection between reflections and the time delay in strong field ionization
is then explicitly laid out.
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Chapter 5

Ionization in a Time Dependent
Laser Field

In the previous chapters, the Wigner time delay was introduced and its appearance
was explained as an interference effect between the transmitted and reflected com-

ponents of the wavefunction under the barrier. This analysis culminated in a method
to identify these components by partitioning the wavefunction integral. In this chapter,
these principle are applied to the time dependent SFA wavefunction where the same
conclusions can be observed for a more realistic ionization scheme.

This chapter is set out as follows: the ionization model within the first order SFA
is introduced and the time dependent electron wavefunction calculated. The main fea-
tures of the wavefunction distribution are explored, in particular those relating to the
time delay near the tunnel exit. The emergence of this time delay is again explained by
interference effects. To substantiate this, an analytic continuation of the wavefunction
integral is performed; the saddle points of this integral allow us to identify transmis-
sion and reflection components as paths in the complex plane, as in Chapter 4. When
reflection components are extracted from the wavefunction, the wavefunction is shown
to have no time delay around the tunnel exit. Lastly, attosecond streaking experiments
are discussed, where the distinction between a measurable time delay at a detector and
time delay around the tunnel exit is emphasised.

Themodel considered is similar to those of previous chapters: an electron of energy
Ip = κ2/2, in the bound state

ψ0(x, t) =
√
κ exp (−κ|x|+ iIpt) . (5.1)

of a one dimensional short-range potential,

V (x) = −κ δ(x). (5.2)

In this case, the electron is ionized by a time-dependent half-cycle laser pulse,

E(t) = −E0 cos2(ωt), (5.3)

39
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switched on at ωt0 = −π/2.
Since ionization can also happen over-the-barrier (OTBI), a set of parameters is cho-

sen that ensures the physical picture is one of tunnelling. In particular, the Keldysh pa-
rameter γK =

√
Ip/(2Up) ≪ 1 is kept constant. Thus, when varying the field strength

E0, the frequency ω = γK E0/κ is varied accordingly. We work in the deep tunnel-
ing regime, where the OTBI threshold1 is much greater than the electric field strength,
E0 ≪ Eth.

This model takes into account all the necessary features of tunnelling ionization.
Firstly, ionization occurs mainly in the direction of the electric field so a one dimen-
sional treatment treatment suffices. Likewise, by considering a half-cycle sinusoid laser
pulse, electronic recollisions with the atomic core are avoided, simplifying the physical
interpretation of the problem. Lastly, the use of a short range potential allows many
expressions to be rendered analytically which would otherwise be unfeasible for a pure
Coulomb potential.

5.1 Ionization in the Zero Range Potential
As outlined in Chapter 3, the ionization dynamics are described by the Schrödinger
equation i ∂tΨ(x, t) = (H0 + Hi)Ψ(x, t), with the atomic Hamiltonian H0 = −∇2/2 +
V (x) and the interaction Hamiltonian with the laser field

Hi = x E(t). (5.4)

The first order SFA wavefunction in 1D is

|ψi(t)⟩ = −i
∫ ∞

−∞
dp

∫ t

t0

dt′ |Ψp(t)⟩ ⟨Ψp(t
′)|Hi(t

′)|ψ0(t
′)⟩ . (5.5)

The electronic kinetic momentum has been denoted as P(t) ≡ p+A(t), where |Ψp(t)⟩ =
|P(t)⟩ e−i S(t) are the familiar Gordon-Volkov states in one dimension, with a planewave
component ⟨x | p⟩ = (2π)−

1
2 exp(i p x) and Volkov-phase S(t) = 1/2

∫ t
dτ P(τ)2.

The dipole term takes the form

⟨Ψp(t
′)|Hi(t

′)|ψ0(t
′)⟩ = ei(Ipt

′−S(t′))
√
2π

E(t′)
∫ ∞

−∞
dx′ x′ eiP(t′)x′−κ|x′| (5.6)

which for the moment is kept unevaluated. Instead, consider the representation of the
wavefunction in real space

1This threshold can be estimated as the field strength where the coordinate-saddle point of the SFA-
matrix element, i.e. the starting point xs ≈

√
κ/E0 of the quantum orbit, becomes comparable to the

tunnel exit xe, which for the short range potential corresponds to the condition Eth ≈ κ3/4 [72].
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ψi(x, t) = −i
√
κ

2π

∫ t

t0

dt′
∫ ∞

−∞
dx′
∫ ∞

−∞
dp x′ E(t′)

exp
[
−κ|x′|+ i (P(t)x− P(t′)x′ + S(t′)− S(t) + Ip t

′)
]
. (5.7)

Fubini’s theorem has been assumed to hold so that the order of integration may be ex-
changed. The p integration is performed first, yielding

ψi(x, t) =

∫ t

t0

dt′
∫ ∞

−∞
dx′

x′
√
κ E(t′)√

2π i(t− t′)
e
i

(
Ipt′+iκ|x′|+x(A(t)−A(t′))+

i((x−x′)−∆f1(t,t
′))2

2(t−t′) −∆f2(t,t
′)

2
)

)

(5.8)
where ∆fn(t, t′) = fn(t)− fn(t

′) is the difference of integrals of the type

fn(t) =

∫ t

dt′A(t′)n. (5.9)

Following x′ integration the final analytic expression for the wavefunction is obtained.
Defining z = −i (A(t′) + (x−∆f1(t, t

′))/(t− t′)), z± ≡
√

i
2(t− t′)(z±κ) and ζ = Ipt

′+

xA(t)+(t−t′)((x−∆f1(t, t
′)2/(2(t−t′)2)+κ2+z2)−∆f2(t, t

′)/2 the full time dependent
wavefunction takes the form of an integral over t′,

ψi(x, t) =

∫ t

t0

dt′
√
κ E(t′) eiζ

(
z2−(1 + Erf(z−))e

−z2+

z − κ
+
z2+(1− Erf(z+))e

−z2−

z + κ

)
(5.10)

≡
∫ t

t0

dt′ exp(iΦ(x, t, t′)). (5.11)

This is the time integral of the wavefunction which is of interest to this study. It has
no analytic solution for finite t and so must be carried out numerically. Traditionally,
the saddle point method is employed for large enough observation times t, when the
electron is measured at the detector. This method, however, would prevent the study of
those times nearest to ionization. The remainder of this chapter will concern the study
of this wavefunction integral: firstly, by studying the result of the integration and what
it says about ionization time delay and secondly, by analysing the saddle points of the
integrand in order to identify, and later extract, the components of this wavefunction
corresponding to transmission and reflection.

5.2 Time Delay Near Tunnel Exit
The wavefunction integral (5.10) was integrated numerically using the standardMath-
ematica 12 numerical integration routine (NDSolve) to an accuracy of approximately 30



42 CHAPTER 5. IONIZATION IN A TIME DEPENDENT LASER FIELD

0 5 10 15 20 25 30

-100

-50

0

50

100

-22

-20

-18

-16

-14

-12

-10

-8

Figure 5.1: Ionization amplitude |ψi(x, t)|2 as defined in Eq. (5.10). At every cross-
section in x, the temporal peak of the wavefunction was determined (plotted in blue)
which can be interpreted as the trajectory of the peak.

-60 -40 -20 0 20 40 60

2.×10-6

3.×10-6

4.×10-6

5.×10-6

Figure 5.2: Probability distribution |ψ(xe, t)|2 vs time at the classical tunnel exit xe =
Ip/E0. This distribution is peaked at a greater time, tm ≈ 7.6 a.u. ≈ 183 as, than the
peak of the laser pulse.
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digits. A field strength E0 = 0.05 a.u. and Keldysh parameter γK = 0.1 were chosen, to
ensure deep tunnelling is considered. Hydrogen, for which Ip = κ2/2 = 1/2 a. u., was
the chosen atomic species with an OTBI threshold field Eth ≈ 0.25 a.u.

The resultant space-time probability distribution, |ψi(x, t)|2, is plotted in Fig. 5.1.
Superimposed is the trajectory of themaximum of thewavefunction, whichwe term the
Wigner trajectory, which is calculated as follows: the temporal probability distribution
at each coordinate x is determined (see e.g. Fig. 5.2 for the tunnel exit x = xe) and
the peak tm(x) of this distribution is found. The Wigner trajectory is then the function
tm(x) connecting all the maxima of the space-time probability distribution. This is an
analogous concept to the derivative of the phase.

The probability distribution at the classically expected emergence coordinate for
the tunnelled electron, |ψi(xe, t)|2, shown in Fig. 5.2, shows that the most likely time of
emergence tm(xe) ≈ 7.6 a.u. ≈ 183 as is greater than the peak of laser pulse (t = 0). The
classical tunnel exit, xe = Ip/E0, is is a rough estimate based on a classical picture of tun-
nelling. In reality, there is not a well defined co-ordinate at which we know the electron
would appear, but rather a probability distribution, as shown in Fig. 5.1, dictated by the
electron wavefunction. Thus, an appropriate treatment of the tunnelling time should
consider a range of co-ordinates and distributions, which is what the Wigner trajectory
aims to do.

One advantage of the Wigner trajectory is that it allows a particle interpretation of
the electron in the tunnelling region. This allows also for a comparisonwith the dynam-
ics of a classical electron in the same laser field, as shown in Fig. 5.3.
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Figure 5.3: Comparison between the peak (blue), classical (orange), andWigner (green)
trajectories in the region near the tunnel exit, xe. Under the barrier (x < 10, shaded blue),
there is an increasing delay of the peak w.r.t the laser peak. Over the barrier, the peak
trajectory rapidly converges with the classical and Wigner electron trajectory.

Plotted alongside the Wigner and classical trajectories is the Wigner trajectory of
the constant field electron as developed in Chapter 4. Under the potential barrier, we
see the Wigner that time delay is accrued in the process of tunnelling. Furthermore, all
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Figure 5.4: Log-log plots of the scaling w.r.t. field strength, E0, of the (a) Wigner time
delay and (b) group velocity at the classical tunnel exit, xe = Ip/E0, for the time evolved
SFA wavefunction (red dots) and the adiabatic constant field wavefunction (blue lines).
For the time evolved wavefunction, the maxima in time, tm, of the probability distribu-
tion |ψ(xe, t)|2 and its derivative were calculated; for the adiabatic case, results follow
from Eqs. (4.5) and (4.6). The agreement in the trends is good, deteriorating as one ap-
proaches the OTBI threashold Eth ≈ 0.25 a.u.

trajectories rapidly become classical in their dynamics; it is expected however, that these
trajectories differ somewhat asymptotically since two (Wigner and classical) are time
evolved. Moreover, the Wigner trajectory is not calculated via the energy derivative,
leading to some difference.

One further application of the SFAwavefunctionwas in testing the scaling relation-
ships between the tunnelling delay and group velocity derived in Chapter 4. These are
compared in Fig. 5.2; the SFA is in good agreement with the adiabatic predictions, up to
a proportionality factor. Also evident is the emergence of the OTBI threshold, estimated
at Eth ≈ 0.25 a.u., where the SFA results begin to diverge. This does not negate the valid-
ity of the SFA, but rather indicates a change in the physical picture from deep tunnelling
to over-the-barrier ionization. At these fields strengths distortions were observed in the
probability density rendering obsolete the concept of the peak trajectory.

5.3 The Role of Reflections
The results presented in so far in this chapter assert the existence of a time delay due to
the tunnelling process. One main tenet of this thesis is that the interference of transmit-
ted and reflected wavefunction components under a potential barrier generate a time
delay, measurable in the peak of the wavefunction.However, in both cases, the separa-
tion of reflected and transmitted components was straightforward since the respective
wavefunctions were simple superpositions of known functions (namely, exponential
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Figure 5.5: Complex t′ plane of the argument Φ(x, t, t′) of the wavefunction integral
ψi =

∫ t
t0
dt′ exp(iΦ), for parameters x = 9 and ωt = π/40. For these configurations

there are two saddle-points, denoted by a circle and triangle, the former which, t+, cor-
responds to reflections. The saddle-point method can be used to solve thewavefunction
integral, when the path is taken over both saddle-points. We use a partial path given
by (5.12) to remove the contribution of reflections by integrating over only one of the
saddle-points. Other possible configurations of the saddle points are shown in Fig 5.10.

and Airy functions).
On the other hand, the SFA wavefunction presented herein is calculated through

an integral where the contributions of transmitted/reflected components are amalga-
mated and not readily separable. One may very well ask “How can the contributions
of reflection/transmission be identified in such a wavefunction?” This question was
partially answered already in Chapter 4: there is a significant link between the saddle
points of the wavefunction integral and the functional form of the wavefunction i.e. the
components of the wavefunction.

Thus, the remainder of this chapter is devoted to the analysis of the saddle points
of the wavefunction integral (5.10). It shall be shown that indeed the contributions of
reflections can be extracted from the wavefunction and, importantly, when this contri-
bution is neglected the resultant pseudowavefunction displays no time delay.

5.3.1 Analytic Continuation
The integration variable t′ is extended into the complex plane and one may then ap-
ply principles from complex analysis to integrate the wavefunction integral (5.10). As
in Chapter 4, portions of the contour to and from a particular saddle can be assigned
physical meaning; partial contour integration going over only the saddle point s− ex-
cludes the the reflections associated with the saddle point s+.

The same principle is used in the time dependent case; in Fig. 5.5 the complex t′
plane for the argument Φ(x, t, t′) is shown for a representative under the barrier con-
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Figure 5.6: Log-log plot of the relative contributions to the wavefunction amplitude
from the portion of the integration path up to the saddle point (blue) and from the
saddle point to the given real time ωt = 0 (orange) for various positions x under the
classical barrier (i.e. far from the atomic core, but smaller than the tunnel exit). The
behaviours are approximately decaying and growing exponentials, respectively, anal-
ogous to transmitted and reflected parts of the wavefunction. Similar behaviour is ob-
served at other times, ωt, during the laser pulse.

figuration (x = 9, ωt = π/40). As in the adiabatic case, two saddle points t±, can be
identified; ostensibly, these correspond to reflection (t+) and transmission(t−) in the
time dependent wavefunction.

To remove the contribution of reflections we seek to avoid the reflection saddle
point. This is done by splitting the integration contour is split in two: from negative
infinity2 to the reflection saddle point t+, and from t+ (through the saddle point t−) to
the observation time t. The contributions of these two contours to the wavefunction are
shown in Fig. 5.6. The first contour contribution grows exponentially under the barrier
and can ostensibly be identified as the reflected component; the second decays exponen-
tially, corresponding to the transmitted component of thewavefunction. In this manner,
a pseudo-wavefunction can be defined which purposefully neglects contributions from
reflections.

The saddle points are naturally dependent on the two variables of the problem, the
position x and observation time t, and the effects of these parameters on the saddles
are discussed further on. However, it should be noted that since the orientation of the
saddle points in the complex plane changes around the tunnel exit, x ≈ xe, the definition
of the integration path for the pseudowavefunction necessarily also changes.

With this in mind, we define the pseudowavefunction neglecting reflections:

2The lower limit was chosen to be negative infinity rather than the start of the pulse to help numerical
convergence. This has no physical effect since the integral is zero for times before the beginning of the
pulse.
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ψnr(x, t) =



∫ t+

−∞
dt′ exp(iΦ(x, t, t′)) x > xe

∫ t

t+

dt′ exp(iΦ(x, t, t′)) x < xe.

(5.12)

This definition relies on having two saddle pointswhich are distinguishable, at least
insofar as their contributions to the integral are separable. The latter no longer holds
when cubic terms in an expansion of the argument Φ(x, t, t′) around one saddle point
are no longer negligible due to the proximity of the other saddle [73, 74], i.e. if∣∣∣∣∣∣∣

∂3

∂t′3Φ(x, t, t
′)(

∂2

∂t′2Φ(x, t, t
′)
) 3

2

∣∣∣∣∣∣∣
t′=t±

≳ 1. (5.13)

Excluding the above mentioned spacetime coordinates, we may construct a prob-
ability distribution from the pseudowavefunction (5.12), as is done in Fig. 5.7. It can
be seen that whereas the full SFA wavefunction exhibits a time delay of the order of
5 a.u. with respect to the peak of the pulse at t = 0, the same time delay is absent from
distribution which neglects reflections.

As before, we may proceed to generate a Wigner trajectory by joining up all such
temporal peaks; Figure 5.7was plotted for x = 8 a.u. so as to be as close as possible to the
classical tunnel exit, xe. The restriction given by condition (5.13) implies the existence
of an area of the (x, t) plane for which no probability distribution can be meaningfully
calculated; this exclusion region is plotted in Fig. 5.9. This region coincides with the
classical estimates for the tunnel exit and it is possible in fact to deduce a tunnel exit
from the merging of the saddle points, as is done in Sec. 5.4.

The resultant no-reflectionWigner trajectory, with the excluded region left blank, is
shown in Fig. 5.8. The extraordinary feature of this figure is that for every distribution
inside the tunnelling barrier, shaded in blue, the time delay with respect to the peak of
the laser has vanished. This corroborates the hypothesis of thiswork, that interference of
transmitted and reflected components of awavefunction induce a time delay in the peak
(i.e. a Wigner delay). This can be understood as a pure wave phenomenon; if there are
no reflected waves then there can be no interference of transmitted and reflected waves
and hence the peak of the wavefunction is unaffected by the tunnelling process.

Comparing the no-reflection trajectory with the time evolved SFA and classical tra-
jectories, as in Fig. 5.8, three aspects are worthy of note. Firstly, as already mentioned,
the wavefunction without reflections displays no delay under the barrier. Secondly,
outside the barrier the trajectory corresponding to this wavefunction quickly becomes
classical. This can be understood by the definition Eq. 5.12: as t increases the influence
of the second saddle, t−, diminishes and the wavefunction integral essentially becomes
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Figure 5.7: Temporal probability distributions at the position x = 8 a. u. (under the bar-
rier, near tunnel exit), for the ionized wavefunction, ψi, and the pseudo-wavefunction
neglecting reflections, ψnr. The physical wavefunction has accrued a Wigner time de-
lay with respect to the laser field, whereas the maximum of the pseudo-wavefunction
is synchronous with the laser field peak.
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Figure 5.8: Trajectories in the (x, t) plane via: the maximum of the wavefunction ψi, the
maximum of the wavefunction neglecting reflections ψnr, and the energy derivative of
the constant field wavefunction τW (x). The classical electron trajectory, xcl(t), starting
at the tunnel exit at the peak of the laser field is also shown. Under the barrier, the
probability distribution neglecting reflections |ψnr|2 shows zero time delay. In regions
where Eq (5.13) does not apply, mostly near the classical tunnel exit, wemay not identify
reflections nor plot a subsequent trajectory.
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Figure 5.9: Region of excluded points in (x, t) parameter space. For points within this
region, the pseudowavefunction, ψnr given by Eq. (5.12), cannot be meaningfully cal-
culated since for these parameter combinations the saddle points of the wavefunction
integral, Eq. (5.10), are too close and the contributions of each saddle point (i.e. reflec-
tion/transmission) are inseparable.

exactly half of the full time dependent integral Eq. 5.10; this factor of one half only mag-
nitude themagnitude of the integral but not the position of the peak; hence the trajectory
becomes classical. Lastly, all trajectories display similar dynamics as the pulse evolves.
This suggests that experimentally, for this parameter regime, it is difficult to differen-
tiate between these descriptions at an infinitely distant detector 3. This difference be-
tween interpreted delay at a detector (which depends on the modelling of the electron
trajectory) and delay around the tunnel exit is explored further in Section 5.5.

5.4 Tunnel Exit from Saddle Points
The saddle point analysis of Eq. (5.10)may also be used to extract relevant physical infor-
mation about the electron dynamics. In analogy to the constant field scenario, the topol-
ogy of complex t′ plane reveals the functional behaviour of the electronic wavepacket.
The configurations of the saddle points of the argument Φ(x, t, t′) of the wavefunction
integral ψi =

∫ t
t0
dt′ exp(iΦ) in complex t′ plane are presented as a table in Fig. 5.10 . The

laser pulse evolves from left to right in this figure and mostly shifts the reference line
around which the saddle points are centred, namely Re[ω t′] = ω t. It should be noted,
by the definition in Eq. 5.10, a singularity is always to be observed at the point t′ = t. As
one moves down the table of plots, configurations of the complex t′ plane are shown for
spatial coordinates inside, neighbouring, and outside the tunnelling barrier (x = 7, 10,

3This is not to say that all trajectories in Fig. 5.8 converge at large distances but rather that their dynamics
are equivalent and changing parameters such as the classical tunnel exit or the matching point for the
adiabatic wavefunction can make these trajectories converge at infinitiy. This sort of backpropagation was
explored but is not discussed further in this work.
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Figure 5.10: Configurations of the saddle points of the argument Φ(x, t, t′) of the wave-
function integral ψi =

∫ t
t0
dt′ exp(iΦ) in complex t′ plane, for parameter ranges x =

7, 10, 14 and ωt = −π/20, 0,+π, 20. The dashed line corresponds to t′ = 0 and each
plot is centred around the (scaled) observation time ωt. The scale and colour coding are
identical to those of Fig. 5.5. As x increases the two saddle points approach vertically
and, after a closest approach, separate horizontally. For the peak of the pulse, ωt = 0,
this closest approach is zero and the two saddle points merge at the point xt. Otherwise,
varying t skews the relative orientation of the saddle points around the line Re[t′] = t.
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Figure 5.11: Positions of the upper and lower saddle-points of the integral (5.10) in the
complex t′ planewith varying x and for fixedω t = ±0.1π/2 (blue and red, respectively).
The saddles draw smooth curves with varying x, where the arrows indicate growing
values of x. For values of x ≲ 7, the lower saddle-point disappears below the imaginary
axis. Each pair of curves is centred around the line Re(ωt′) = ωt, shown in dashed. For
the case ωt = 0, not shown, the two lines meet one point corresponding to x = xt.

and 14 a.u. respectively). There are marked differences between each observation coor-
dinate but the behaviour is reminiscent of the complex plane configuration for the Airy
integral, displayed in Fig. 4.2. Indeed, the two pictures can easily be reconciled by a π/2
rad. clockwise rotation.

Inside the barrier, the saddle points are vertically aligned along the line Re[ω t′] =
ω t. As one increases the observation coordinate and approaches the tunnel exit, x ≈ 10,
the two saddle points approach each other vertically; as one exits the region neighbour-
ing the tunnel exit, x≫ 10, the saddles then separate from each other on the horizontal.
This behaviour is shown also in Fig. 5.11. As one approaches the peak of the laser field,
ω t = 0, the distance of closest approach around the tunnel exit shrinks. At the exact
peak of the field, this distance is zero; that is, the saddle points merge. This is directly
comparable to the merging of saddle points for the Airy integral at the classical tunnel
exit, xe. In that case, the merging occurs at the classical exit, when x̃ = 0, and sepa-
rates evanescence and oscillatory behaviour in the wave function. In fact, the panels
in Fig 5.10 closely resemble those corresponding of Figs. 4.2 (b) and (c), only rotated
clockwise.

Thus, there exist two lines, t = 0 and x = xt, which define separatrices for the
topology of the complex plane and thus the wavefunction. The identification the exact
value of xt is in principle achievable by a binary search or global minimization of the
distance function for the saddle points. However, such precision was deemed unnec-
essary for the purposes of this work. In our study, for a field strength of E0 = 0.05 and
γK = 0.1, we find that this exit takes the value xt ≈ 10.2 a.u.; this is in good agreement
with the classically expected tunnel exit xe = Ip/E0 = 10 a.u. More precise agreement
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is achieved with the probability averaged tunnel exit

xK =

∫
dt′

Ip
|E(t′)| exp

(
− 2κ3

3|E(t′)|

)
∫
dt′ exp

(
− 2κ3

3|E(t′)|

) ≈ 10.35 a.u., (5.14)

where the integration runs over the whole laser pulse, [t0,−t0].

5.5 Asymptotic Time Delay
In conclusion, the emergence of a Wigner time delay during tunnelling and a novel
definition of the exit coordinate reveal the need to describe the tunnelling process in
ionization in quantum mechanical terms. This has implications for the interpretation
of attoclock experiments. This work has unambiguously shown that when tunnelling
ionization is the dominant mechanism, the peak of the wavefunction accrues a delay
(w.r.t. the laser peak) during ionization.

However, a purely classical electron with zero time delay and exit momentum dis-
plays equivalent dynamics and hence would yield a similar signal at a detector. Thus,
the time delay obtained by measuring the final momentum, what is termed asymptotic
time delay, is dependent on how the electron dynamics are chosen to be modelled back-
wards in time to the moments of ionization.

Since, in general, one does not have direct access to the electron dynamics dur-
ing ionization, a model dependence is always introduced in this manner. In Refer-
ences [75,76], the authors use classical equations of motion to “backpropagate” the elec-
tron towards the tunnel exit. The authors identify a negative time delay with respect
to the peak of the laser field and conclude that there can be no time delay. The resolu-
tion to this apparent inconsistency is that a non-quantum mechanical treatment of the
electron dynamics will yield a model of ionization with negative, not zero, time delay.
This is acceptable in as much as it follows from the limitations imposed by a classical
description of a quantum process.

In [28], a quantum mechanical description is taken into account using R-matrix
methods, however the tunnelling process is described by the a wavefunction calculated
using the saddle point approximation (SPA). This is valid for times ωt ∼ ωtf , where the
end points of integration are far away from the relevant saddle points. As described in
this work, during the tunnelling process (i.e. near the peak of the laser pulse, ω|t| ≈ 0)
a saddle point expansion will not approximate the wavefunction integral. Since the
end point of integration lies on a path of steepest ascents from the saddle point around
which the expansion is performed (see e.g. Fig. 4.3 and visible in Figs. 5.5 and 5.10
where the end point of integration lies always on the real axis), then the expansion does
not capture this contribution to the integral. The authors also find negative time delays
and again conclude no time delay; the use of the SPA, corresponds well to classical
propagation since after ionization (ωt ∼ ωtf ) the electron dynamics are indeed well
described classically and so a negative time delay is to be expected.
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To obtain reasonable conclusions from the attoclock experimental set up, it is paramount
that the tunnelling process be described quantummechanically. Moreover, a differenti-
ation between time delay near the ionic core and time delay asmeasured asymptotically
is an important conceptual step.
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Chapter 6

Ionization with Rescattering
Processes

The analysis of ionization so far has been considered only within the scope of direct
tunnelling, i.e. only to first order in the SFA. This is justified as the the direct ioniza-

tion term contributes themost to the integral, and each subsequent term is exponentially
suppressed. However, there are also higher orders which may have a small, but visible,
effect on the ionization. The purpose of this chapter is to elucidate some of the con-
cepts and difficulties arising from the study of the tunnelling to higher orders, with a
view to future work. Second order processes are taken into account and are shown to
be subordinate to the first order SFA. Since the magnitude of each term in the SFA series
decreases, this effect is limited. The ionization amplitude in the second order SFA can
be derived from expression (3.31),

m̃2(p) = −
∫ tf

ti

dt1

∫ ∞

t1

dt2

∫ ∞

−∞
dp2 ⟨Ψp(t1)|V |Ψp2(t1)⟩ ⟨Ψp2(t2)|Hl(t2)|ψa(t2)⟩ , (6.1)

after substitution of the field operators, Uf (t, t′) =
∫
dq |Ψq(t)⟩ ⟨Ψq(t

′)| (introduced in
Section 3.1). Consider the rescattering term in the one dimensional zero range potential
of the previous chapters:

⟨Ψp(t1)|V |Ψp(t1)⟩ =
∫ ∞

−∞
dy ⟨Ψp(t1)|y⟩ κ δ(y) ⟨y|Ψp(t1)⟩ = κ/(2π). (6.2)

The Born series expansions of scattering waves is valid only for |V | ≪ ℏ2/(mea
2)

[77], where a is the order of magnitude of the dimensions in which the field differs
significantly from zero. The term ℏ2/(mea

2) is of the order of the kinetic energy of the
electron in a volume of dimension a. That is, the correction to the incident wave from
the effects of the potential must be small [55,64]. A cursory analysis of Eq. (6.2) reveals
that this is not the case. To rectify this issue, a procedure known as the Low Frequency
Approximation is performed.
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6.1 The Low Frequency Approximation
The Low Frequency Approximation (LFA) [78, 79] essentially removes the effect of the
driving laser field on the scattering electron by effecting the substitution,

⟨Ψp(t1)| → eiS(t1) ⟨ψsc(P(t1))| (6.3)

in the second order SFA term, where |ψsc(P)⟩ = |ψsc(p+A(t1))⟩ is the scattering state
of the electron in the potentialV . A derivation of the LFA can be found in [78]; it employs
the exact transitionmatrix, or T matrix, for the field free electron and treats the laser field
as the perturbation. In particular, it is validwhen the laser period ismuch larger than the
scattering time, whence the name. In the LFA, the amplitude including “recollisions”
with the core is then well approximated by the integral:

m2(p) ≈−
∫ tf

ti

dt1

∫ ∞

−∞
dp2 e

iS(t1) ⟨ψsc(p) |V |Ψp2(t1)⟩
∫ t

t1

dt2 ⟨Ψp2(t2) |Hint(t2) |ψa(t2)⟩ .

(6.4)

This is a formidable integral to tackle, in particular once the overlaps are taken into
account. The same desire to study only the essential picture of ionization leads us to
consider a similar one dimensional model of ionization with a short range potential. As
before, to avoid multicycle effects (which can generate interference between electron
trajectories of the same energy but arising from different cycles), a half-cycle laser pulse
will be employed. This means the electron cannot be driven back towards its parent
ion after ionization, as the field never changes orientation. In this context, what do
recollisions mean?

6.2 Under the barrier recollisions
What is being considered is in fact the effect of a higher order interaction with the core
during tunnelling. These effects are known as under-the-barrier recollisons [68]. They
account for the reflection of an electron from the surface of the barrier, and the subse-
quent scattering against ionic the core. This is illustrated in Fig. 6.1.

This can be seen by considering the one dimensional quasi-static limit, c.f. Chap-
ter 4, where E(t) ≈ −E0 and V (x) = κ δ(x) (the reader may refer to Sec. 3.3 for expres-
sions for the bound and scattering states). In this case, the first overlap is

⟨Ψp2(t2) |Hl(t2) |ψa(t2)⟩ =
κ√
2π

∫ ∞

−∞
dy ei(S(t2)+P2(t2)y) (−E0) e−κ|y|+iIpt2 (6.5)

=
−E0 κ√

2π

(
2κ

P2(t2)2 + κ2

)
ei(S(t2)+iIpt2), (6.6)
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0

Figure 6.1: Schematic of the under the barrier trajectories for direct (blue) and one-time
recollision (red) ionization, given by the amplitudesm1(p) andm2(p) respectively. This
picture can be understood by studying the saddle points of the integral (6.4). Adapted
from [68].

where P2(t) = p2 +A(t), as before. The second overlap is then

eiS(t1) ⟨ψsc(P(t1)) |V |Ψp2(t1)⟩ =
κ√
2π

∫ ∞

−∞
dy

ei(S(p,t1)+P(t2)y)

1 + i/P(t1)
δ(y) e−i(S(p2,t1)+P2(t2)y)

(6.7)

=
κ√
2π

(
1

1 + i/P(t1)

)
ei(S(p,t1)−S(p2,t1)). (6.8)

Note, it is now necessary to distinguish between the Volkov phases for asymptotic
(p) and rescattering (p2) momenta. It can be seen that in the full triple integral (6.4) the
contribution from the phases of these overlaps will dominate the integrals so saddle
point methods approximate the integral well. Denoting the saddle points for the p2, t1
and t2 integrals as ps, ti, and tr, the saddle points of the integral (6.4) are given by the
equations

ps = −E0
2
(tr + ti), (6.9)

Ip =
1

2
(ps + E0 ti)2, (6.10)

1

2
(p+ E0 tr)2 =

1

2
(ps + E0 tr)2. (6.11)

This system of equations is solved for the saddle points. There is more than one
solution but the only solution leading to physical probabilities is given by

ps = p− 2iκ, E0 ti = −p+ 3iκ, and E0 tr = −p+ iκ. (6.12)
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By analysis of the integral (6.4), the saddle points ti and tr can be interpreted as the
initial ionization and recollision times, hence the suggestive labelling. Likewise, ps can
be interpreted as the recollision momentum. For a given momentum, p, these equations
define a trajectory in recollision momentum ps,

x(t) =

∫ t

ti

dt′ Ps(t′) =
∫ t

ti

dt′ ps + E0t′ = iκ(t− ti) +
E0
2
(t− ti)

2. (6.13)

For each momentum p, the electron trajectory is interpreted as follows: tunnelling
begins at time ti from the atomic core at x(ti) = 0. The electron tunnels through the
potential, arriving at the tunnel exit, xe = Ip/E0 at the time t = 2iκ/E0. It is then reflected
by the potential barrier, and tunnels again in the opposite direction where it scatters
against the core at x(tr) = 0. Here, it reverses its direction yet again and tunnels into
the continuum at time te = 0. This is schematically represented in Fig. 6.1 and forms
an intuitive picture of how recollision processes can occur under the potential barrier,
in the absence of a multicycle pulse. For each reflection from the barrier, the amplitude
m picks up a Keldysh factor of order [68]

exp

(
− κ

3E0

)
. (6.14)

It was shown in Ref. [68] that the interference between direct and recollision terms gen-
erated an asymptotic time delay. To understand, however, how under-the-barrier rec-
ollisions affect the tunnelling picture around the barrier, it is desirable to calculate the
wavefunction |ψr(t)⟩ for intermediate times and in a time dependent electric field. This
topic is broached in the following section, where the current progress in this direction
is discussed.

6.3 The Recollision Amplitude
In this section, we wish to motivate how Eq. (6.4) may be solved. This is done to show
how a pathway to the study of under-the-barrier recollisions at the tunnel exit might
look like and give a flavour of the difficulties involved. For the 1D short range potential,
the recollision amplitude is

m2(p) ≈−
∫ tf

ti

dt1

∫ tf

t1

dt2

∫ ∞

−∞
dp2 e

iS(t1) ⟨ψsc(P(t1)) |V |Ψp2(t1)⟩ ⟨Ψp2(t2) |Hint(t2) |ψa(t2)⟩ .

(6.15)

The overlaps coincide exactly with expressions (6.5)-(6.8) with the substitution −E0 →
E(t) = −E0 cos2(ω t). The integral in p2 is readily calculable analytically. The dou-
ble time integral is in principle numerically solvable but, due to the highly oscillatory
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nature of the integrand, it remains a computational challenge. Instead, for the time be-
ing, we seek to estimate the momentum distribution |m2(p)|2 by applying the saddle
point method to the integral (6.15). The above double integral can be expressed in the
form

m2(p) = −
∫ tf

ti

dt1 I(t1) =

∫ tf

ti

dt1 e
iφ(t1) (6.16)

where I(t1) =
∫ tf
t1

dt2 f(t1, t2) is the remaining integral in the recollision time t2 and tf =
−ti = π/(2ω) is the end of the laser pulse. To perform the saddle point approximation,
the saddle points τr of the phase φ(t1) are needed. However, the phase depends on t1
as a limit of integration so the Leibniz rule applies1. Fortunately, the boundary terms
in the Leibniz rule vanish for the inner integral so the derivative may be taken directly
inside the integral:

∂φ

∂t1
= −i 1

I(t1)

∂ I(t1)

∂t1
. (6.17)

The saddle points τr are the solution to the equation φ′(t1) = 0. The saddle point
method then provides as an estimate

m2(p) ≈

√
2π

φ′′(τr)
eiφ(τr) =

√
2π

φ′′(τr)
I(τr). (6.18)

The double derivative φ′′(t1) may be found by taking the derivative of Eq. (6.17). This
saddle point amplitude can easily be calculated in Mathematica. What is numerically
harder to find, however, is the relevant saddle point τr(p) around which the approx-
imation is performed. As a first approximation, we may take the saddle point of the
constant field, tr = 1/E0(p − iκ) given by Eq.( 6.12). In this case, we choose to take as
the saddle point the solution to the equation

p+A(τr) = iκ. (6.19)

Even with an approximate saddle point, this method yields faster and more accurate
results compared to a problematic brute force calculation of the double integral (6.16).
We fix ω = γK/κE0 as before, and take as token parameters E0 = 0.25 and γK = 0.2. The
asymptotic momentum distribution, |m2(p)|2 is then calculated using the saddle point
method given in Eq. (6.18). This is shown in Fig. 6.2, where the exact (i.e. non-saddle-
point) first order SFA amplitude,m1, is introduced for comparison.

1The Leibniz rule states that
d

dx

(∫ b(x)

a(x)

f(x, t) dt

)
= f

(
x, b(x)

)
· d
dx
b(x)− f

(
x, a(x)

)
· d
dx
a(x) +

∫ b(x)

a(x)

∂

∂x
f(x, t) dt.
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Figure 6.2: The probability amplitudes for direct ionization (|m1(p)|2, blue ), the (scaled)
ionization with one recollision (|m2(p)|2, orange), and their coherent superposition
(|m1 + m2|2, green) plotted against final momentum P(tf ) = p. The plot is centred
around the classically expected value p = −A(0). Dots indicate the maxima.

Two things are noteworthy about this figure. Firstly, it is noted that the recollision
distribution |m2(p)|2 is peaked at negative values of the expected classical momentum
P(tf ) = p = −A(0). This is in contrast to the direction ionization distribution |m1(p)|2
which is peaked at the classical momentum −A(0). However, their coherent superpo-
sition, |m1(p) + m2(p)|2 shows a very slight positive peak. This is in agreement with
Ref. [68], which first identified that this interference between direct and recolliding am-
plitudes led to asymptotic time delays and momentums shifts.

Secondly, the tunnelling recollision amplitude, m2, is suppressed by three barrier
interactions (shown in Fig. 6.1) compared to m1, each time by a factor of exp(κ3/3E0)
as given in Eq. (6.14). The total expected suppression factor is thus exp(κ3/E0). When
|m2|2 is rescaled by an appropriate factor exp(2κ3/E0), a good agreement is found with
the theory. This corroborates the saddle point method as an appropriate approximation
form2.

6.4 Outlook
This studymotivates further investigation of under the barrier recollisions, and their ef-
fects on time delay and momentum shifts around the tunnel exit. It would be desirable
to apply the concepts developed elsewhere in this thesis to the second order SFA wave-
function. In particular, an interpretation of the SFA saddle points and contours would
be desirable to connect the concept of time delay at the exit (rather than asymptotically,
as discussed above and in Ref. [68]).

The above proof of principle outlines the procedure through this may be achieved.
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It is doubtful whether the saddle point method remains applicable for intermediate
times during the laser pulse, although this is worth investigating. Lastly, any further
analysis concerning tunnelling time delay should choose parameters, such as those used
in Chapter 5, that ensure tunnelling is the dominant ionization mechanism.
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Chapter 7

Conclusions

In conclusion, the time delay phenomenon in ionization was studied in a series of toy
models, viz. the square barrier, adiabatic ionization and time independent, as well as

time dependent, SFA. In every case, the emergence of aWigner time delay, i.e. a delay of
the peak of thewavepacket due to the barrier, was observed. This time delaywas shown
to be causally linked to the interference of transmitted and reflected components of the
wavefunction.

This was easily demonstrable for the square barrier but more sophisticated meth-
ods are required to show the same concept in the SFA. An investigation of the ionization
problem in a constant field revealed that the reflected and transmitted components of
the wavefunction correspond to parts of the temporal integration contour. In partic-
ular, these two contours are divided by a saddle point. By construction of a pseudo-
wavefunction neglecting the path corresponding to reflected components, and observ-
ing its lack of a Wigner time delay, reflections were shown to be causally linked to the
time delay in tunnel ionization. In addition, analysis of the saddle points of the wave-
function integral reveals a new coordinate for the barrier exit grounded not on classical
principles but rather on the quantum mechanical SFA wavefunction.

This analysis highlighted the need for such quantum mechanical treatments as the
dynamics of the SFA and classical electrons rapidly became indistinguishable as the
laser pulse progresses. This brings into focus the distinct concepts of time delay at the
barrier exit and asymptotic time delay at a detector. Lastly, the outlook was presented
on studying time delay accounting for “under-the-barrier recollisions”, a novel concept
in studies of strong field ionization.

This work has for the most part implications on how to interpret attoclock data,
which is of importance to the calibration of the clock itself. In order to present a clear, un-
ambiguous, picture of tunnelling ionization, approximations and simplifications were
made such that only the necessary physics was taken into account. This is, naturally,
not the full picture of what happens in attosecond angular streaking experiments. In
what follows, these approximations are re-examined and a future outlook is presented
on how the conclusions of this work may be applicable in future work.
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7.1 Limitations
The assumptions made while composing this work may be broadly divided into phys-
ical assumptions and streamlining choices. The former are easily reasoned by consid-
ering the typical experimental conditions and making appropriate choices. For exam-
ple, most attoclock experiments involve ionization where the tunnelled electron is not
relativistically accelerated so the dipole approximation (i.e. neglecting magnetic field
effects) holds well. The latter were chosen to isolate the problem and distill into it the
necessary components: the equations of motion, the choice of potential, and the choice
of laser field.

As regards the equations, the SFA is a well established technique that lends itself to
simple interpretations. While not explicitly gauge independent, the choice of the length
gauge is based on good agreement with numerical TDSE results [65].

Experimentally, there are issues to be taken into accountwhichwere not considered.
Of these, the laser field is perhaps the most important; laser pulses are multi-cycle, with
carrier and envelope waves. One can expect the emergence of carrier-envelope phase
effects as well as the interference of ionized electrons with the same momentum but
ionized in different parts of the pulse (the so-called long and short trajectories).

Lastly, the choice of potential also plays a role. The zero range potential has been
used to describe strong field phenomena such as high harmonic generation [80, 81],
above threshold ionization [74, 82], and nonsequential ionization [83] so its use in this
work is well justified. The choice of a one dimensional treatment stems from the phys-
ical observation that ionization happens principally along the direction of the electric
field. Thus, for a theoretical model the 1D zero range potential (ZRP) works well. For
comparison with experiment, however, care might have to be taken; the ZRP allows
only one bound state so multielectron and depeltion effects are not well modelled by it.
In these cases, numerical TDSE methods could again be used as a reasonable compari-
son.

7.2 Outlook
Due to the limitations of this work, the natural next step would be to apply the concepts
developed herein and aim to clarify the calibration of the attoclock. In particular, con-
cepts of time delay, tunnel exit and electron trajectories could in principle be applied to
attoclock experimental models. The main underlying difficulty is the numeric nature of
very accurate models of ionization, such as the TDSE. This work benefitted greatly from
being able to study the saddle points of the wavefunction integral in time. This becomes
more challenging when handling models requiring numerical integration, although not
impossible. The attoclock method is, in any case, a powerful tool and it promises to
open up fruitful avenues of study into atomic and molecular physics.
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Appendix A

Atomic Units

Atomic units, first introduced by Hartree [84], are defined by setting three basic units to
unity, fromwhich all others are derived. These are typically the reduced Planck constant
ℏ, the electron mass me and the absolute value of the electric charge e. In these units,
the speed of light c ̸= 1 but rather

c =
1

α
= 4πε0

ℏ
e2

≈ 137 a.u. (A.1)

where α is the fine structure constant and ε0 = 1/(4π) a.u. is the permittivity of free
space. The following fundamental quantities, of use when considering atomic systems,
are presented in Table A.1 with conversion to SI units with values taken from [60].

Table A.1: Atomic and SI Units Conversion

Quantity Unit Significance Value in SI
Mass me Electron mass 9.10938× 10−31 kg

Electric charge e Electron charge 1.60218× 10−19 C

Angular momentum ℏ Reduced Planck constant 1.05457× 10−34 J s

Length a0 =
ℏme e
c α Bohr radius† 5.29177× 10−11 m

Velocity v0 = α c Bohr velocity † 2.18769× 106 m s−1

Momentum mv0 Bohr momentum† 1.99285× 10−24 kg m s−1

Time a0/v0 Bohr period † 2.41888× 10−17 s

Energy e2

4π ε0 a0
2× Ionization potential H∗ 4.35974× 10−18 J

Electric field strength e2

4π ε0 a20
Bohr electric field strength† 5.14221× 1011Vm−1

† These quantities are understood to pertain to the orbit of an electron in the ground state of the Bohr
model of the atom. ∗Assuming an infinitely massive nucleus.
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Appendix B

Time Evolution Operators and the
Dyson Equations

In this appendix, themain theory of time evolution operators, and some important iden-
tities, are derived, following in the style of the text by Joachain, Klystra and Potvliege
[60]. Consider the Schrödinger equation for a state |ψ⟩ in the Schrödinger picture:

i
∂

∂t
|ψ(t)⟩ = H(t) |ψ(t)⟩ . (B.1)

where the full Hamiltonian may be split into a time independent “free” part and a time
dependent interacting part:

H(r,p, t) = H0(r,p) +Hint(r,p, t). (B.2)

The evolution operator U(t, ti) in the Schrödinger picture is defined by

|ψ(t)⟩ = U(t, ti) |ψ(ti)⟩ (B.3)

with the necessary condition U(ti, ti) = 1. It is a unitary operator with U(t, ti) =
U−1(ti, t) = U †(ti, t) which satisfies the Schrödinger-type equation

i
∂

∂t
U(t, ti) = H(t)U(t, ti). (B.4)

This is readily integrable into the equations

U(t, ti) = 1− i

∫ t

ti

H(τ)U(τ, ti) dτ = 1− i

∫ t

ti

U(t, τ)H(τ) dτ, (B.5)

where the second equality stems from the unitarity condition U(t, ti) = U(ti, t)
†.

67



68 APPENDIX B. THE DYSON EQUATIONS

In the interaction picture one can define the field free evolution operator U0(t, ti)
corresponding to the free HamiltonianH0. It satisfies the same Schrödinger-type equa-
tion

i
∂

∂t
U0(t, ti) = H(t)U0(t, ti), (B.6)

but as the free fieldHamiltonian is time independent this integrates toU0(t, ti) = e−iH0(t−ti),
where a similar initial condition U0(ti, ti) = 1 applies.

The aim of the interaction picture is to find the evolution operator for the complete
Hamiltonian H(t) using the fact that the unperturbed evolution operator U0(t, ti) is al-
ready known. To this end, define a new state vector in the interaction picture |ψI⟩ by
the unitary transformation

|ψI(t)⟩ = U †
0(t, ti) |ψ(t)⟩ = exp

[
− i

ℏ
H0(t− ti)

]
|ψ(t)⟩ (B.7)

Since this wavefunction transformation is unitary, all probabilities and observables are
unchanged. Note also that at t = ti the two states, and hence the two representations,
coincide, that is |ψI(ti)⟩ = |ψ(ti)⟩. The Schrödinger equation (B.1) then implies

iℏ
∂

∂t
|ψI(t)⟩ = U †

0(t, ti)Hint(t)U0(t, ti) |ψI(t)⟩ (B.8)

≡ HI
int(t) |ψI(t)⟩ . (B.9)

with the interacting Hamiltonian in the interaction picture

HI
int(t) = U †

0(t, ti)Hint(t)U0(t, ti). (B.10)

Equation (B.8) is known as the Tomonaga-Schwinger equation. It shows that in the in-
teraction picture the time dependence of the state |ψI(t)⟩ is caused by the interaction
codified in the interaction HamiltonianHint(t). Consequently, one can define an evolu-
tion operator UI(t, ti) in the interaction picture

|ψI(t)⟩ = UI(t, ti) |ψI(ti)⟩ (B.11)

It can be readily shown that this operator has the properties of a time evolution oper-
ator and hence that this definition is not a misnomer. From the Tomonaga-Schwinger
equation (B.8) it follows

iℏ
∂

∂t
UI(t, ti) = HI

int(t)UI(t, ti). (B.12)

which can again be integrated to give the integral equations

UI(t, ti) = 1− i

∫ t

ti

HI
int(τ)UI(τ, ti) dτ = 1− i

∫ t

ti

UI(t, τ)H
I
int(τ) dτ. (B.13)
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The link between the Schrödinger and interaction picture evolution operators is de-
duced from the relations

|ψI(t)⟩ = U †
0(t, ti) |ψ(t)⟩ = U †

0(t, ti)U(t, ti) |ψ(ti)⟩ (B.14)

= U †
0(t, ti)U(t, ti) |ψI(ti)⟩ (B.15)

That is,

UI(t, ti) = U †
0(t, ti)U(t, ti), (B.16)

and likewise

U(t, ti) = U0(t, ti)UI(t, ti). (B.17)

Thus, if one knows the evolution operator U0(t, ti) for an unperturbed HamiltonianH0

then the problem of finding the full Schrödinger picture evolution operator U(t, ti) is
reduced to merely finding the evolution operator for the interaction picture UI(t, ti).
Substituting the right–handsides of (B.13) into (B.16) and (B.17) respectively yields the
identities

U(t, ti) = U0(t, ti)−
i

ℏ

∫ t

ti

U0(t, τ)Hint(τ)U(τ, ti) dτ, (B.18)

U(t, ti) = U0(t, ti)−
i

ℏ

∫ t

ti

U(t, τ)Hint(τ)U0(τ, ti) dτ, (B.19)

where the definition (B.10) is employed. These are the Dyson equations, which allow
for perturbative expansions provided judicious choices are made for the separation of
free and interaction Hamiltonians.

Note that the placement of the time dependence in the interaction Hamiltonian
Hint but not in H0 is not strictly necessary for this derivation. This means only that
direct integration of the unperturbed evolution operator no longer holds, U0(t, ti) ̸=
e−iH0(t−ti). The only true requirement for this separation to be of any use is that the
form of the unperturbed evolution operator U0(t, ti) is known beforehand.
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Appendix C

The Saddle Point Method

The saddle point method [85] is used to solve integrals of the form

I(x) =

∫
γ
dz g(z) ei f(x)h(z) (C.1)

where γ is some contour on the complex plane. If one lets

h(z) = ϕ(u, v) + iψ(u, v) z = u+ iv (C.2)

then the integral C.6 can be expressed as

I(x) =

∫
γ
dz g(z) ei f(x)ψ ef(x)ϕ (C.3)

Note that ei f(x)ψ is oscillatory and has only unit modulus for all values of f(x), so ϕ(z)
is the dominant part of the integral (for sufficiently large f(x)).

It is known from the theory of complex analysis that the contour γmay be deformed
without changing the value of I(x). A specific contour, γs, is sought wherein ϕ(z) has
a global maximum at some point z0 = (u0, v0), and decreases exponentially fast on
the contour γs the further one is from z0. This would allow I(x) to be calculated with
exponential accuracy.

By the Cauchy-Riemann equations it can be shown that at the stationary points of
either ϕ(z) and ψ(z) one must have h′(z) = 0 and moreover that ϕ(z) and ψ(z) are har-
monic functions possessing no local extrema: these stationary points are saddle points.
The Cauchy-Riemann equations imply these two functions are orthogonal:

∇ϕ · ∇ψ = 0 (C.4)

That is, contours of constant ϕ(z) are orthogonal to contours of constant ψ(z) every-
where in the complex plane. Hence, through each saddle point z∗ = (u∗, v∗) there are
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two contours of ψ(z) with the value ψ∗ = ψ(u∗, v∗). By the orthogonality condition,
along one of these contours the point ϕ∗ = ϕ(u∗, v∗) is a local (or global) minimum of
ϕ(u, v) whereas along the other contour ϕ∗ is a maximum of ϕ(u, v). That is, one con-
tour connects hills with the condition ϕ(u, v) > ϕ∗ (the steepest ascent) whereas the
other connects valleys with ϕ(u, v) < ϕ∗ (the steepest descent).

This latter is our choice for the path γs and is known, due to condition C.4, as the
path of steepest descents. Along this contour

h(z)− h(z0) = ϕ(u, v) + iψ(u, v)− ϕ(u0, v0)− iψ(u0, v0) = ϕ(u, v)− ϕ(u0, v0) (C.5)

is real and negative. By making a change of variable −τ2 = h(z) − h(z0) the integral
I(x) can be calculated using Gaussian integration. Often, it is not possible to calculate
dz/ dτ and so a series expansion must be employed,

I(x) =

∫
γ
dz g(z) ei f(x)h(z) = eih(z0)

∫
γs

dτ dz
dτ

g(z) e−i f(x) τ
2 (C.6)

Often, it is not possible to calculate dz/ dτ and so a series expansion must be em-
ployed. However, as we move away from the stationary point z0 on the integration
contour γs the successive contribution of each term decreases exponentially and so this
method approximates excellently the value of I(x).
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