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Abstract
We propose an information-theoretic quantifier for the advantage gained from cooperation that
captures the degree of dependency between subsystems of a global system. The quantifier is
distinct from measures of multipartite correlations despite sharing many properties with them. It
is directly computable for classical as well as quantum systems and reduces to comparing the
respective conditional mutual information between any two subsystems. Exemplarily we show the
benefits of using the new quantifier for symmetric quantum secret sharing. We also prove an
inequality characterizing the lack of monotonicity of conditional mutual information under local
operations and provide intuitive understanding for it. This underlines the distinction between the
multipartite dependence measure introduced here and multipartite correlations.

1. Introduction

Identifying and quantifying dependencies in multipartite systems enables their analysis and provides a
better understanding of complex phenomena. The problem has been addressed by several communities,
considering both classical and quantum systems. For example, in neuroscience and genetics measures of
multipartite synergy were put forward [1–6], in quantitative sociology quantifiers of coordination were
introduced [7], redundancy was quantified in complex systems [8], and in physics and information
processing quantities aimed at characterizing genuine multiparty correlations were studied in depth [9–14].
The former quantifiers are motivated mathematically, keeping the combinatorial aspects of complex systems
in mind, e.g. the synergy is the difference in the information all subsystems have about an extra system as
compared to the total information contained in any subset of the systems. Many of the latter quantifiers
involve difficult optimizations and are therefore hard to compute, e.g. in order to compute the extractable
work used to define genuinely multipartite correlations in [12] one has to optimize over all protocols with
local unitary operations, local dephasings and classical communication, which does not admit any
computer-friendly parameterization. Here, we introduce an operationally defined, simple and computable
quantifier of multipartite dependency in terms of information gain from cooperation when some parties
meet and try to deduce the variables of some of the remaining parties. We show how it differs from
multipartite correlations often discussed in this context, prove its essential properties and discuss examples
and applications.
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It turns out that, in order to compute the quantity introduced here, it is sufficient to consider the
respective conditional mutual information between only two subsystems. The conditional mutual
information is a well established quantity in quantum information theory and broader physics. It captures
the communication cost of quantum state redistribution [15–18], topological entanglement entropy
[19–22] and squashed entanglement [23]. It is related to quantum discord [24, 25], intrinsic steerability
[26], conditional erasure cost of a tripartite state [27, 28] and the conditional quantum one-time pad [29].
Additionally, conditional quantum mutual information appears in thermodynamics [30], in relation to
high-energy physics [31–33] and Markov chains [34–39]. Therefore, the dependence introduced here is a
relevant quantity in all these problems if we symmetrize them and look for the worst case scenario.
Concrete examples are given below. Furthermore, all these different studies will benefit from the inequality
we prove here, which characterizes the lack of monotonicity of quantum conditional mutual information
under general local operations.

2. Multipartite dependence

Let us begin by briefly recalling fundamental relationships, e.g. that two classical variables X1 and X2 are
statistically independent if their probabilities satisfy P(X1|X2) = P(X1). Alternatively, the statistical
independence can be stated in terms of entropies with the help of both the Shannon entropy [40]
H(X) = −

∑d
i=1 P(xi)logdP(xi), where d is the number of outcomes, and the conditional entropy

H(X|Y) = −
∑

i,j P(xi, yj)logd
P(xi ,yj)

P(yj)
. Note that throughout this paper logarithms are base d. As a measure of

dependence of two variables X1 and X2 one introduces the corresponding entropic difference
H(X1) − H(X1|X2), the so-called mutual information I(X1 : X2) [41]. Similarly, the quantum mutual
information captures the dependence between quantum subsystems [42], characterized by the state ρ, when
we use the von Neumann entropy S(ρ) = −Tr(ρ log d ρ) in place of the Shannon entropy. However, already
in the case of three variables there are two levels of independence. The variable X1 can be independent of all
other variables, i.e. P(X1|X2X3) = P(X1), or it can be conditionally independent of one of them, e.g.
P(X1|X2X3) = P(X1|X2). The former dependence is again captured by the mutual information I(X1 : X2X3),
while the so-called conditional mutual information I(X1 : X3|X2) = H(X1|X2) − H(X1|X2X3) considers the
latter. It is thus natural to define the tripartite dependence as the situation where any variable depends on all
the other variables. This can be quantified as the worst case conditional mutual information

D3 ≡ min
[
I(X1 : X2|X3), I(X1 : X3|X2), I(X2 : X3|X1)

]
. (1)

Due to strong subadditivity the conditional mutual information is non-negative and hence D3 � 0 [40]. D3

vanishes if and only if there exists a variable such that already a subset of the remaining parties contains all
available information about it. Note that this condition is also satisfied if a variable is not correlated with
the rest of the system at all.

The value of D3 can be interpreted using an alternative expression for conditional mutual information,
e.g. I(X1 : X3|X2) = I(X1 : X2X3) − I(X1 : X2). Accordingly, one recognizes from equation (1) that D3

expresses the gain in information about the first subsystem that the second party has from cooperating with
the third party. Non-zero value of D3 ensures that any two parties always gain through cooperation when
accessing the knowledge about the remaining subsystem. The minimal gain over the choice of parties is an
alternative way to compute D3. Of course by taking this minimum some information about the underlying
quantum state is inevitably lost, but our quantity is designed to be sensitive to genuinely multipartite
properties of the state only.

In the context of quantum subsystems we can rewrite the conditional mutual information as
I(X1 : X3|X2) = S(X1|X2) + S(X3|X2) − S(X1X3|X2). Since S(X1|X2) is the entanglement cost of merging a
state X1 with X2, see reference [43], we can interpret the conditional mutual information as the extra cost of
merging states one by one (X1 with X2 and X3 with X2) instead of altogether (X1X3 with X2). D3 is the
minimum extra cost of this merging.

As another example, quantum conditional mutual information prominently appears in the definition of
Markov chains. For a tripartite system in state ρ123, vanishing I(X1 : X3|X2) = 0 means that there exists a
recovery map RX2→X2X3 , such that ρ123 = RX2→X2X3 (ρ12), i.e. the global state can be recovered by applying
map from X2 to X2X3 on marginal X1X2. The global state is then called a quantum Markov chain. More
generally, it turns out that the state RX2→X2X3 (ρ12) has a high fidelity with ρ123 for all states with small
I(X1 : X3|X2) [34]. A small value of D3 therefore indicates that there exists a subsystem from which the
global state can be recovered, approximating a quantum Markov chain, and a large D3 shows that there is
no such subsystem.
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Moving on to larger systems, we note that there are more conditions to be considered already in order to
define the four-partite dependence. In analogy to the tripartite case the first condition is to require that
cooperation of any triple of parties provides more information about the remaining subsystem, e.g.
I(X1 : X2X3X4) − I(X1 : X2X3) must be positive. But one should also impose that cooperation between any
pair brings information gain about the two remaining variables, e.g. I(X1X2 : X3X4) − I(X1X2 : X3) must be
positive. The former condition demands a positive conditional mutual information, I(X1 : X4|X2X3) > 0,
while the latter one requires I(X1X2 : X4|X3) > 0. In order to compute D4 one takes the minimum of these
two conditional mutual informations over all permutations of subsystems. Note, however, that from the
chain rule for mutual information and its non-negativity we have, e.g. I(X1X2 : X4|X3) = I(X2 : X4|X3)
+ I(X1 : X4|X2X3) � I(X1 : X4|X2X3) and therefore it is sufficient to minimize over the conditional mutual
information between two variables only. We emphasize that this step simplifies the computation
significantly. The same argument applies for arbitrary N and leads to the definition of N-partite dependence

DN ≡ min
perm

I(X1 : X2|X3 . . .XN ), (2)

where the minimum is taken over all permutations of the subsystems. In the case of a quantum system in
state ρ we obtain

DN (ρ) = min
i,j

[S(Triρ) + S(Trjρ) − S(Trijρ) − S(ρ)], (3)

where i, j = 1 . . .N and i �= j. Triρ denotes a partial trace over the subsystem i. In general, calculating the
N-partite dependence requires computation and comparison of

(N
2

)
values, i.e. scales polynomially as N2,

whereas for permutationally invariant systems it is straightforward.
One may also like to study k-partite dependencies within an N-partite system. To this aim we propose to

apply the definitions above to any k-partite subsystem and take the minimum over the resulting values.

3. Properties

We now prove essential properties of the introduced dependence measure and explain why it is distinct
from the multipartite correlations.

3.1. Pure states
First of all, for pure quantum states |Ψ〉, the dependence can be simplified as

DN (|Ψ〉) = min
i,j

[
S(Tri|Ψ〉〈Ψ|) + S(Trj|Ψ〉〈Ψ|) − S(Trij|Ψ〉〈Ψ|)

]
= min

i,j
[S(ρi) + S(ρj) − S(ρij)],

(4)

where ρi is the state of the system after removing all but the ith particle, i.e. DN (|Ψ〉) is given by the smallest
quantum mutual information in two-partite subsystems, without any conditioning. Here, we made use of
the fact that both subsystems of a pure state have the same entropy: S(Triρ) = S(ρi) for ρ = |Ψ〉〈Ψ|. In
appendix G we prove the following upper bound on DN for pure states

DN (|Ψ〉) � 1. (5)

It is a consequence of the trade-off relation between the quantum mutual information for different
two-particle subsystems of a pure global state and the definition of DN where the smallest conditional
mutual information is chosen. In particular, the bound is achieved by the N-qudit GHZ state

1√
d

(
|0 . . . 0〉+ · · ·+ |d − 1 . . . d − 1〉

)
. This can be seen from equation (4). The two-particle subsystems of

the GHZ state are of the form ρ12 =
∑d−1

j=0
1
d |jj〉〈 jj| and their mutual information equals 1. Additionally, the

quantum mutual information is bounded by 1 whenever the state ρij is separable. This follows from the fact
that separable states have non-negative quantum conditional entropy Si|j(ρij) � 0 [74], and accordingly
their mutual information is bounded as Ii:j(ρij) = S(ρi) − Si|j(ρij) � S(ρi) � 1, where the last inequality is
the consequence of using logarithms to base d. A comprehensive list of dependencies within standard classes
of quantum states is given in table 1. The analytical formula for the N-qubit Dicke states with e excitations,
|De

N〉, is presented in appendix F. In short, if one fixes e and takes the limit N →∞, the dependence DN

vanishes. For e being a function of N, e.g. e = N/2, the dependence DN tends to 1/2.

3.2. Maximum dependence
The maximal N-partite dependence over classical distributions of d-valued variables is given by 1 (recall
that our logarithms are base d) and follows from the fact that classical mutual information cannot exceed
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Table 1. Values of the dependence for several quantum states and
probability distributions. {Psame} stands for P(000) = P(111) = 1

2

and {Peven} for P(000) = P(110) = P(101) = P(011) = 1
4 . Dk

N

denotes the N-partite Dicke states with k excitations
∼|1 . . . 10 . . . 0〉+ · · ·+ |0 . . . 01 . . . 1〉, with k ones; ρnc denotes the
genuinely multipartite entangled state without multipartite
correlations [11]; the GHZ state is described in the text; Lk and Rk

stands for the linear cluster and the ring cluster states of k qubits (in
general, the graph states are defined by the elements of the stabilizer
group for a particular linear or ring graphs, as shown in [80]) and
Ψ4 is discussed in [44]. k-uniform states are states where all k-partite
marginals are maximally mixed, whereas AME(n, d), so-called
absolutely maximally entangled states, refer to �n/2�-uniform states
of d dimensions [73].

N State D3 D4 D5 D6

3 {Psame} 0 — — —
3 {Peven} 1 — — —
3 GHZ 1 — — —
3 D1

3 0.9183 — — —
3 D2

3 0.9183 — — —
3 ρnc,3 0.5033 — — —
4 GHZ 0 1 — —
4 D1

4 0.3774 0.62256 — —
4 D2

4 0.5033 0.7484 — —
4 Ψ4 0.4150 0.4150 — —
4 L4 1 0 — —
4 Three-uniform 0 2 — —
5 GHZ 0 0 1 —
5 D1

5 0.2490 0.2490 0.4729 —
5 D2

5 0.3245 0.3245 0.6464 —
5 D3

5 0.3245 0.3245 0.6464 —
5 ρnc,5 0.1710 0.6490 0.4729 —
5 L5 0 0 0 —
5 R5 1 1 0 —
5 AME(5,2) 1 1 0 —
6 GHZ 0 0 0 1
6 D1

6 0.1866 0.1634 0.1866 0.3818
6 D2

6 0.2566 0.1961 0.2566 0.5637
6 D3

6 0.2729 0.1961 0.2729 0.6291
6 L6 0 0 0 0
6 R6 0 0 0 0
6 AME(6,2) 0 2 0 0
6 Five-uniform 0 0 0 2

the entropy of each variable. On the other hand, quantum mutual information is bounded by 2 and this is
the bound on DN optimized over quantum states (see appendix E). As seen, pure quantum states satisfy the
classical bound of 1, but there exist mixed states belonging to the class of k-uniform states, in particular for
k = N − 1 [45], achieving the bound of 2. In the case of N qubits (for N even) the optimal states have the
following form

ρmax =
1

2N

⎛
⎝σ⊗N

0 + (−1)N/2
3∑

j=1

σ⊗N
j

⎞
⎠ , (6)

where σj are the Pauli matrices and σ0 denotes the 2 × 2 identity matrix. Note that ρmax is permutationally
invariant and gives rise to perfect correlations or anti-correlations when all observers measure locally the
same Pauli observable. These states are known as the generalized bound entangled Smolin states [46, 47].
They are a useful quantum resource for multiparty communication schemes [48] and were experimentally
demonstrated in references [49–54]. Per definition for (N − 1)-uniform states all reduced density matrices
are maximally mixed, with vanishing mutual information, whereas the whole system is correlated. In
appendix E we provide examples of states which maximize DN for arbitrary d and show in general that the
only states achieving the maximal quantum value of 2 are (N − 1)-uniform.

Let us also offer an intuition for values of DN above the classical bound of one. As shown in appendix G
this can only happen for mixed quantum states. One could then consider an auxiliary system which purifies
the mixed state. High values of DN correspond to learning simultaneously the variables of the subsystems
and the auxiliary system. Note that making this statement mathematically precise may be difficult as the
problem is equivalent to the interpretation of negative values of conditional entropy [43, 55, 56].
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A practical implication of the fact that mixed states achieve maximal dependence is that coupling an
initially closed system to an environment can improve multipartite dependencies within the system.
Furthermore, this is the only way of generating non-classical values of DN as dynamics within a closed
system initialized in a pure state cannot beat the classical bound.

3.3. Comparison with multipartite correlations
Let us begin with a simple example that illustrates the difference between multipartite correlations and
multipartite dependence. Consider three classical binary random variables described by the joint probability
distribution P(000) = P(111) = 1

2 . All three variables are clearly correlated as confirmed, e.g. by quantifiers
introduced in references [13, 14]. However, the knowledge of, say, the first party about the third party does
not increase if the first observer is allowed to cooperate with the second one. By examining her data, the
first observer knows the variables of both remaining parties and any cooperation with one of them does not
change this. There is no information gain and hence this distribution has vanishing tripartite dependence.

On the other hand, let us consider the joint probability distribution with P(000) = P(011) =
P(101) = P(110) = 1

4 , which can describe also a classical system. Any two variables in this distribution are
completely uncorrelated, but any two parties can perfectly decode the value of the remaining variable.
Hence the gain from cooperation is 1 and so is the value of D3.

Nevertheless, DN does satisfy a number of properties that are expected from measures of genuine
multipartite correlations. Any such quantifier should satisfy a set of postulates put forward in references
[12, 14]. We now show that most of them also hold for DN and we precisely characterize the deviation from
one of the postulates. In appendices A–C we prove the following properties of the dependence:

(a) If DN = 0 and one adds a party in a product state then the resulting (N + 1)-party state has DN = 0.

(b) If DN = 0 and one subsystem is split with two of its parts placed in different laboratories then the
resulting (N + 1)-party state has DN+1 = 0.

(c) DN can increase under local operations. Let us denote with the bar the quantities computed after local
operations. We have the following inequality:

D̄N � DN + I(X1X2 : X3 . . .XN ) − I(X1X2 : X̄3 . . . X̄N ), (7)

where systems X1 and X2 are the ones minimizing DN , i.e. before the operations were applied.

The properties (a) and (b) hold for all quantifiers of multipartite correlations. It is expected that
measures of multipartite correlations are also monotonic under local operations (though note that often
this condition is relaxed in practice, see e.g. quantum discord [42, 57, 58]). In the present case, the
monotonicity property does not hold in general for DN , however, property (c) puts a bound on its maximal
violation (see appendix D for a concrete example). Moreover, it has a clear interpretation: local operations
that uncorrelate a given subsystem from the others may lead to information gain when the less correlated
party cooperates with other parties.

Let us explain this more quantitatively for the conditional mutual information between variables X1 and
X2. While it is well-known that this quantity is monotonic under local operations on subsystems not in the
condition [59], we prove in appendix C that the following inequality is satisfied under local operations on
arbitrary subsystem (being the origin of property (c)):

I(X1 : X2|X3 . . .XN ) � I(X1 : X2|X3 . . .XN )

+ I(X1X2 : X3 . . .XN ) − I(X1X2 : X3 . . .XN ). (8)

The second line is non-negative due to the data processing inequality and it quantifies how much the local
operations have uncorrelated the variables in the condition X3 . . .XN from the variables X1X2. This sets the
upper bound to the lack of monotonicity of the conditional mutual information.

Let us also mention that the lack of monotonicity under local operations has been discussed in the
context of complexity measures for multipartite systems [60–62]. Those measures involve a different
concept of correlation, in terms of the number of particles that have to be coupled in the Hamiltonian for
which the discussed state is a thermal state. However, these measures share a similar spirit to the
dependence in that they capture the improvement in approximating a given distribution when more and
more particles are coupled in the Hamiltonian.

3.4. Partial extension of classical interpretations
As shown, in classical information theory DN has a clear interpretation as information gain from
cooperation. Agents could measure their subsystems and the information gain from the outcomes would
match the computed value of DN . In the following we partially extend this interpretation to quantum

5
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systems, when the values of DN do not exceed unity. Let us proceed by comparing examples of classical and
quantum distributions. As shown in the previous section a classical mixture of P(000) = P(111) = 1

2 admits
D3 = 0. To the contrary, a superposition 1√

2
(|000〉+ |111〉) admits D3 = 1. The quantum coherence here

improves the dependence because we can measure the GHZ state in a different basis and the classical dataset
obtained gives rise to D3 = 1. The relevant basis is to measure each qubit along 1√

2
(|0〉 ± |1〉) directions.

As another example consider the classical distribution P(100) = P(010) = P(001) = 1
3 which gives rise

to D3 =
2
3 . The corresponding quantum superposition |W〉 = 1√

3
(|100〉+ |010〉+ |001〉) has a rather

non-trivial value of dependence given by D3 = 0.9183. However, this does not imply that there exists a set
of local measurements on |W〉 which yields a classical distribution with higher dependence. In fact, by
optimizing the dependence of local measurement results over all projective quantum measurements one
obtains the classical 2

3 . Note, however, that D3 compares the information two systems have about the third
one with the pairwise information. It is therefore natural to also consider joint measurements on two
parties. We have therefore computed the post-measurement state

∑
i,j Π

12
j ⊗ Π3

k|W〉〈W|Π12
j ⊗Π3

k, where

Π12
j are the rank-one projectors on the first two particles and correspondingly Π3

k are for the last qubit.
Indeed, when we optimize over these projectors the dependence of the post-measurement state precisely
matches the value computed for the W state, i.e. D3 = 0.9183.

The examples given suggest that perhaps the interpretation of the quantum value of DN (whenever not
exceeding unity) can be given as the highest dependence of the classical dataset that can be measured on the
quantum state (including joint measurements). It turns out that this is in general not the case. We have
found examples of pure four-qubit states for which there exist local measurements with outcomes
producing D4 higher than that of the corresponding quantum states. This further demonstrates property
(c) listed above.

4. Applications and examples

Multipartite dependence can be computed for both classical and quantum systems and is a generic
quantifier of information gain from cooperation that can be used across science. Here we discuss examples
of applications of DN in quantum information and briefly mention its role in data science.

4.1. Quantum secret sharing
An intuitive application of DN is secret sharing [63–66] with the additional constraint that the secret could
be shared by any party. We refer to this problem as symmetric secret sharing. In the tripartite setting it
requires collaboration of two parties in order to read out the secret of the remaining party. In the classical
version of this problem the secret is a random variable, e.g. the measurement outcome of, say, the first
observer. It is thus required that both, the second as well as the third party alone has only little or no
information about the secret, i.e. I(X1 : X2) and I(X1 : X3) are small, while both of them together can reveal
the result of the first observer, i.e. I(X1 : X2X3) is large or unity. Clearly, D3 is the relevant figure of merit
and due to the minimization in (1), the secret can be generated at any party. The states ρmax derived above
appear well suited for this task and since they admit perfect correlations along complementary local
measurements, by following the protocol in [65], the quantum solution to the secret sharing problem offers
additionally security against eavesdropping.

This security has also been recently quantified with the conditional quantum mutual information in
reference [29]. The dependence introduced here is in contrast taking into account that any participant could
be sharing the secret.

Let us also define the quantum secret sharing task and demonstrate the relevance of the dependence in
this context. Suppose Alice has a quantum state ρ, called the secret, which she wants to split into n shares
such that the secret is recoverable only when a party has all n shares. A quantum secret sharing scheme [66]
is a map En : A → X⊗n such that,

CQ(Trk ◦ En) = 0, (9)

where Trk is the partial trace over an arbitrary set of subsystems and CQ(Λ) is the quantum capacity of the
channel Λ. This condition encodes the requirement that from any subset of shares one is not capable of
recovering the initial quantum information in ρ. The rate of a quantum secret sharing scheme is given by
the quantum capacity of the channel En.

The concrete protocol utilizing ρmax is as follows. Consider a quantum secret ρ of a single qubit. Using
the teleportation protocol with state ρ and one subsystem of ρmax in Alice’s possession, she performs the

6
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encoding map EN−1 to her qubit:

EN−1(ρ) =
1

2N−1

⎛
⎝σ⊗N−1

0 + (−1)N/2
3∑

j=1

σ⊗N−1
j Tr

(
σT

j ρ
)⎞⎠ . (10)

In this way Alice prepares n = N − 1 shares of the secret. We denote the state above as ρN−1. Since for any ρ

we have (Trk ◦ EN−1)(ρ) ∝ 1, it follows that CQ(Trk ◦ EN−1) = 0, i.e. no subset of observers can recover the
quantum secret. All of them together, however, can recover it perfectly with the following ‘reverse’
teleportation scheme. Again take the resource (N − 1)-uniform state and conduct a measurement in the
basis {(𝟙⊗ · · · ⊗ 𝟙⊗ σμ1 ⊗ · · · ⊗ σμN−1 )|Ψ〉}, where μn = 0, 1, 2, 3 and

|Ψ〉 = 1√
2N−1

∑
j1...jN−1=0,1

| j1 . . . jN−1〉 ⊗ |j1 . . . jN−1〉, (11)

is the maximally entangled state. This measurement is conducted on the shares ρN−1 and N − 1 subsystems
of ρmax. If the measurement result corresponds to |Ψ〉 the remaining qubit is in the state ρ, otherwise there
exist unitary operations depending on the result that transform the single qubit output to ρ.

We now show that any N-partite state ρc with maximally mixed marginals and non-classical dependence
DN (ρc) > 1 is useful for the quantum secret sharing. Consider the encoding map Ec : A → X⊗N−1 with the
Choi state given by ρc [67], i.e. (𝟙⊗ Ec)(|Φ〉〈Φ|) = ρc, where |Φ〉 is the maximally entangled state. The rate
of quantum secret sharing admits the lower bound

R = CQ(Ec), (12a)

� sup
φA′A

− SA′|X1...XN−1 ((I ⊗ Ec)(φA′A), ) (12b)

� −SA′|X1...XN−1 (ρc), (12c)

= I(A′ : X1|X2 . . .XN−1) − S(A′|X2 . . .XN−1), (12d)

= I(A′ : X1|X2 . . .XN−1) − 1, (12e)

� DN (ρc) − 1. (12f)

The steps are justified as follows. The first line follows from definition. Equation (12b) is the result of
computing the quantum capacity of a channel [16, 68–72] with system A′ being of the same dimension as
system A and where SA′ |X1...XN−1 (ρ) is the quantum conditional entropy of state ρ, (12c) follows because the
maximally entangled state is a particular choice of φA′A, and the Choi state of Ec is ρc. Equation (12d)
follows from the properties of entropy recalling that our logarithms are base d. Equation (12e) follows from
the assumption that the state has maximally mixed marginals. Finally, the dependence is the worst case
conditional mutual information.

Since the marginals of ρc are maximally mixed, the same holds for the encoded state ρN−1 = Ec(ρ), i.e.
no subset of parties can recover the quantum secret alone, yet for all of them together R > 0 holds for
DN (ρc) > 1.

This lower bound is in general not tight, although it is achieved, e.g. by the (N − 1)-uniform states [73].
In fact, all degradable channels give rise to the equality in (12b) and all symmetric states admit the equality
in (12f). Note that for all pure states the lower bound on the rate is zero, whereas, e.g. [65] gives a quantum
secret sharing scheme using a GHZ state with a unit rate. In this particular case it is easy to generalize the
proof above. Since the GHZ state has classically correlated marginals (not maximally mixed), the
conditional entropy in equation (12d) vanishes and the rate is lower bounded by the dependence alone,
which is 1 for the GHZ state.

Finally, note that also situations where a subset of k parties is required to read the secret are of practical
interest. Analogical arguments to the ones just given show that the dependence Dk is the figure of merit for
sharing the secret among any k-partite subsystem of N-party state where anyone could be the secret sharer.

4.2. Witnessing entanglement
As derived above, the values of DN exceeding 1 indicate that quantum systems are being measured.
Furthermore, the quantum state of the systems is not pure. We now show that such values witness quantum
entanglement.

By our assumption DN > 1. Per definition of dependence, it is the smallest difference of mutual
informations. Let us label the subsystems such that this minimum is DN = I(X1 : X2X3 . . .XN )
− I(X1 : X3 . . .XN ). Since the second term is never positive, it is the first mutual information that has to be

7
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Table 2. Illustrative values of dependence for several experimental
quantum states. In brackets we give theoretical predictions for ideal
states.

N State D3 D4 D5 D6

3 D1
3 0.79 (0.92) — — —

3 D2
3 0.82 (0.92) — — —

3 ρnc,3 0.44 (0.50) — — —
4 GHZ4 0.06 (0.00) 0.95 (1.00) — —
4 D2

4 0.41 (0.50) 0.66 (0.75) — —
4 L4 0.90 (1.00) 0.09 (0.00) — —
4 Ψ4 0.33 (0.42) 0.39 (0.42) — —
5 D2

5 0.22 (0.32) 0.17 (0.32) 0.21 (0.65) —
5 D3

5 0.23 (0.32) 0.19 (0.32) 0.22 (0.65) —
5 ρnc,5 0.21 (0.17) 0.15 (0.65) 0.15 (0.47) —
6 D3

6 0.21 (0.27) 0.14 (0.20) 0.15 (0.27) 0.19 (0.63)

bigger than one, i.e. I(X1 : X2X3 . . .XN) > 1. Writing the mutual information in terms of the quantum
conditional entropy then gives

SX1|X2X3...XN (ρ) < −1 + S(ρ1), (13)

For subsystems with the same dimension S(ρ1) � 1 and accordingly the conditional mutual information is
negative. As shown by Cerf and Adami, this is only possible for entangled states [74]. Note that this
entanglement does not have to be genuinely multipartite. An example of a particular state violating the
bound of 1 is given in equation (6). It also nicely demonstrates the point just given as it can be written as a
mixture of correlated Bell states [46] and therefore is biseparable. Furthermore, the proof can be repeated
for any number of subsystems k, i.e. if Dk > 1 any k-party subsystem is entangled. A concrete example
where this is the case is given by the four-party subsystems of absolutely maximally entangled state of 6
qubits (see table 1).

4.3. Entanglement without dependence
An intriguing question in the theory of multipartite entanglement is whether entanglement can exist
without classical multipartite correlations [11]. The examples of N-party entangled states with vanishing
N-party classical correlations are known in the literature [75–79], though the corresponding notions of
classical correlations do not satisfy all the postulates of references [12, 14]. Here we ask whether there are
genuinely multipartite entangled states with no multipartite dependence.

It turns out there exist even pure genuinely multipartite entangled states without multipartite
dependence. Consider any N-qudit cluster state (including linear, ring, 2D, etc) for N � 4. It was shown in
reference [80] that all single-particle subsystems are completely mixed and there exists at least one pair of
subsystems in the bipartite completely mixed state. The corresponding entropies are equal to S(ρi) = 1 and
S(ρij) = 2, and lead to DN = 0, due to equation (4). Therefore, the information about a particular
subsystem cannot be increased when other subsystems are brought together which explains the
impossibility of the corresponding secret sharing task [81–83]. Note that there exist other subsets of
observers who can successfully run secret sharing using a cluster state.

4.4. Dependence without correlations
Similarly we ask whether multipartite dependence can exist without multipartite correlations and vice versa.
It turns out that all combinations are possible. The cluster states discussed in the previous subsection give
rise to multipartite correlations and therefore show that multipartite correlations can exist without
multipartite dependence.

Conversely, the dependence can be non-zero even in states with no correlations whatsoever. To this end
consider the state ρnc =

1
2 |D1

N〉〈D1
N |+ 1

2 |D
N−1
N 〉〈DN−1

N |. It is N-party entangled and has vanishing all
N-partite correlation functions [11]. Yet, its DN is finite as shown in table 1. This again shows that
multipartite dependence is distinct from multipartite correlations and captures other properties of
genuinely multi-partite entangled systems.

4.5. Experimental states
We move to multipartite dependence in quantum optics experiments. Table 2 gathers quantum states
prepared with photonic qubits. Details of the experimental preparation of the states and the evaluation of
the dependence are given in appendix H. We have chosen to present the states illustrating the properties
discussed above.
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The experimental data is in good agreement with the theoretical calculations. Deviations for the six
qubit state D3

6 result from reduced fidelities due to contributions of higher order noise in the state
preparation. The same applies to the five qubit state ρnc,5 derived from D3

6. Indeed, the states denoted as ρnc,
which have vanishing correlation functions between all N observers [76], clearly show a non-vanishing
value for DN . Hence, these states are examples for ‘entanglement without correlations’ and ‘dependence
without correlations’. Similarly, the experimental data of the linear cluster state L4 indicates ‘entanglement
without dependence’ and ‘correlations without dependence’. In the experiment, the GHZ4 state
∼|0000〉+ |1111〉 achieves the highest dependence of all considered states and is close to the theoretical
dependence D4 = 1, which is maximal over all pure states. The small value of D3 for the four-partite GHZ
state reflects its property of having vanishing dependence for all tripartite classically correlated subsystems.

4.6. Data science
The dependence is also expected to find applications outside physics and we briefly sketch how it can be
useful in data science. The problem of feature selection is to reduce available data to a smaller subset that
faithfully represents the whole dataset, so that the predictions made on the basis of the subset would be the
same as based on the entire set. In other words, we would like to eliminate variables that are not important.

Such variables can be identified from the conditions of extremal dependence. Other functions of
conditional mutual information were considered in references [84, 85]. Let us first analyze the case of
DN ≈ 0. For example, if the minimizing conditional information is I(X1 : X2|X3 . . .XN) ≈ 0 then either
variable X1 or X2 can be eliminated as it does not improve the information between the remaining variables,
e.g. I(X1 : X2X3 . . .XN) ≈ I(X1 : X3 . . .XN). On the other hand, DN ≈ 1 corresponds to the situation where
each variable is independent of the rest, e.g. I(X1 : X3 . . .XN) ≈ 0, (and hence at first sight one would have
to keep track of all of them), but from N − 1 variables one can predict the remaining one, e.g.
I(X1 : X2X3 . . .XN) ≈ 1. Accordingly, one variable can be eliminated.

5. Conclusions

We have introduced a quantity, the multipartite dependence, as new tool for the characterization of
multipartite properties of quantum states. It is surely the method of choice to determine whether and by
what amount cooperation between any subsystems brings additional information about the remaining
subsystems. It offers an extension to the characterization of multipartite properties via multipartite
correlations. The dependence is directly calculable and has a clear interpretation. As such, several
applications are identified here clearly indicating its relevance for future studies in quantum
communication and elsewhere.
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Appendix A. Proof of property (i)

If DN = 0 and one adds a party in a product state then the resulting (N + 1)-partite state has DN = 0.

Proof. Per definition, we are minimizing the conditional mutual information over all N-partite subsystems
of the total (N + 1)-party state. If one takes the N-partite subsystem that excludes the added party, by
assumptions DN = 0. �

In other words, if the cooperation of N − 1 parties within the N-partite system does not help in gaining
additional knowledge about any other remaining party, then the cooperation with any additional
independent system will not help either.

Appendix B. Proof of property (ii)

If DN = 0 and one subsystem is split with two of its parts placed in different laboratories then the resulting
(N + 1)-party state has DN+1 = 0.

Proof. Without loss of generality and in order to simplify notation let us consider an initially tripartite
system where the third party is in possession of two variables labeled X3 and X4. The splitting operation
places these variables in separate laboratories producing a four-partite system. By assumption D3 = 0, but
this does not specify which conditional mutual information in equation (1) vanishes. If this is the mutual
information where the variables X3 and X4 of the third party enter in the condition, then this mutual
information is also minimizing D4, and hence the latter vanishes. The second possibility is that the variables
of the third party enter outside the condition, e.g. the vanishing conditional mutual information could be
I(X1 : X3X4|X2). From the chain rule for mutual information, 0 = I(X1 : X3X4|X2) � I(X1 : X4|X2X3).
Finally, from strong subadditivity follows D4 = 0. In the N-partite case one writes more variables in the
conditions and follows the same steps. �

Appendix C. Proof of property (iii)

Consider a state ρ that is processed by general local operations (CPTP maps) to a state ρ. The following
upper bound on the multipartite dependence after local operations holds:

D̄N � DN + I(X1X2 : X3 . . .XN ) − I(X1X2 : X̄3 . . . X̄N ), (C1)

where systems X1 and X2 are the ones minimizing DN , i.e. before the operations were applied.
Let us begin with a lemma characterizing the lack of monotonicity of conditional mutual information

under local operations.

Lemma 1. The following inequality holds:

I(X1 : X2|X3 . . .XN ) � I(X1 : X2|X3 . . .XN )

+ I(X1X2 : X3 . . .XN ) − I(X1X2 : X3 . . .XN ), (C2)

where bars denote subsystems transformed by arbitrary local CPTP maps.

Proof. The conditional mutual information is already known to be monotonic under operations on
systems not in the condition [59]:

I(X1 : X2|X3 . . .XN) � I(X1 : X2|X3 . . .XN ), (C3)

Now we continue as follows:

I(X1 : X2|X̄3 . . . X̄N) + I(X1X2 : X̄3 . . . X̄N)

= I(X1 : X2X̄3 . . . X̄N ) + I(X2 : X1X̄3 . . . X̄N ) − I(X1 : X2)

� I(X1 : X2X3 . . .XN ) + I(X2 : X1X3 . . .XN ) − I(X1 : X2)

= I(X1 : X2|X3 . . .XN ) + I(X1X2 : X3 . . .XN ),

where the first equation is obtained by manipulating entropies such that the mutual informations
containing barred subsystems come with positive sign, next we used the data processing inequality and in
the last step we reversed the manipulations on entropies. This completes the proof of the lemma. �
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To complete the proof of property (iii) we write

DN = I(X1 : X2|X3 . . .XN )

� I(X̄1 : X̄2|X̄3 . . . X̄N) − I(X1X2 : X3 . . .XN ) + I(X1X2 : X̄3 . . . X̄N )

� D̄N − I(X1X2 : X3 . . .XN ) + I(X1X2 : X̄3 . . . X̄N ),

where in the first line we denote the subsystems such that the conditional mutual information
I(X1 : X2|X3 . . .XN) achieves minimum in DN . Next, the first inequality follows from lemma 1, and the
second inequality from the fact that I(X1 : X2|X3 . . .XN ) may not be the one minimizing DN .

Appendix D. Increasing D with local operations

We now give an analytical example where D3 increases under local operation on the system in the
condition. Consider the following classical state

ρ =
1

2
|000〉〈000|+ 1

8
|101〉〈101| (D1)

+
1

8
|110〉〈110|+ 1

4
|111〉〈111|.

One verifies that its three-dependence equals D3(ρ) = I(X2 : X3|X1) = 0.06, i.e. conditioning on X1 gives
the smallest conditional mutual information. The application of an amplitude-damping channel with Kraus
operators

K0 =

(
0 1/

√
2

0 0

)
, K1 =

(
1 0
0 1/

√
2

)
, (D2)

on subsystem X1 produces the state ρ, for which one computes D3(ρ) = I(X1 : X2|X3)= I(X1 : X3|X2) = 0.19.
Note the change in the conditioned system minimizing the dependence. The local operation on X1 has
increased the information I(X2 : X3|X1) above the other two conditional mutual informations.

Appendix E. Quantum qudit states maximizing DN

Let us consider a quantum state of N qudits, for N being a multiple of d and N � 3, defined as the common
eigenstate of the generators

G(d)
1 =

N⊕
i=1

X(d), G(d)
2 =

N⊕
i=1

Z(d), (E1)

composed of d-dimensional Weyl–Heisenberg matrices X(d) =
∑d−1

j=0 |j〉〈j + 1|, and Z(d) =
∑d−1

j=0ω
j|j〉〈j|,

with ω = ei2π/d. The explicit form of the state can be calculated in the following way:

ρ(d)
N =

1

dN

d−1∑
i,j=0

(G(d)
1 )i(G(d)

2 )j. (E2)

The state (E2) belongs to the class of k-uniform mixed states defined in [45], with k = N − 1.
It is known that for N even the state ρ(d)

N has dN−2 eigenvalues equal to 1
dN−2 , so the entropy S(ρ(d)

N ) is
equal to

S(ρ(d)
N ) = N − 2. (E3)

Since the state is (N − 1)-uniform, all reduced density matrices are proportional to identity matrices giving

S(Triρ
(d)
N ) = N − 1, (E4)

S(Tri,jρ
(d)
N ) = N − 2. (E5)
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Therefore, for N even

DN (ρ(d)
N ) = S(Triρ

(d)
N ) + S(Trjρ

(d)
N ) − S(Tri,jρ

(d)
N ) − S(ρ(d)

N ) = 2. (E6)

In the case of N odd, however, the state ρ(d)
N has dN−1 eigenvalues equal to 1

dN−1 , and by analogous
calculations we get

DN (ρ(d)
N ) = 1, (E7)

for (N − 1)-uniform states.
Now we show that the (N − 1)-uniform states are the only ones that can achieve DN = 2. The

requirement is

DN = I(X1 : X2|X3 . . .XN )

= I(X1 : X2X3 . . .XN ) − I(X1 : X3 . . .XN )

= 2, (E8)

where Xi stands for individual subsystem. Since in the definition of DN we minimize over all permutations,
the same equation holds for all permutations of subsystems. Due to subadditivity, the only way to satisfy
(E8) is

I(X1 : X3 . . .XN ) = 0, (E9)

I(X1 : X2X3 . . .XN ) = 2. (E10)

From the first equation we conclude that

ρ13...N = ρ1 ⊗ ρ3...N , (E11)

which also holds for all permutation of indices. After tracing out all but the 1st and 3rd subsystem, we
arrive at

ρ13 = ρ1 ⊗ ρ3, (E12)

which means that every pair of subsystems is described by a tensor product state. It follows that any N − 1
particle subsystem is described by a simple tensor product, e.g.

ρ13...N = ρ1 ⊗ ρ3 ⊗ · · · ⊗ ρN . (E13)

Using (E10) we write
S(X1) − S(X1|X2X3 . . .XN ) = 2. (E14)

Since for the quantum conditional entropy we have

− S(X1|X2X3 . . .XN ) � S(X1), (E15)

the bound is achieved if

2 = S(X1) − S(X1|X2X3 . . .XN )

� S(X1) + S(X1),

i.e. for S(X1) = 1. Hence, taking into account (E13), all N − 1 particle subsystems are maximally mixed, i.e.
the total state is (N − 1)-uniform.

Appendix F. Dependence of Dicke states

We now present an analytical formula for De
N in N-qubit Dicke states with e excitations. For that state it is

given by

DN (DNe ) =

(
N

e

)−1
[
− 2(N − 1)! log

(
e
N

)
(e − 1)!(N − e)!

− 2

(
N − 1

e

)
log

(
1 − e

N

)
+

(
N − 2

e − 2

)
log

((N−2
e−2

)(N
e

)
)]

+ 2

(
N − 2

e − 1

)
log

(
2
(N−2

e−1

)(N
e

)
)

+

(
N − 2

e

)
log

((N−2
e

)(N
e

)
)]

. (F1)
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This comes from the fact that for a general Dicke state with e excitations all one-party reduced density
matrices {ρi} have the two non-zero eigenvalues e/N and (N − e)/N, while all two-party reduced states
{ρij} have the three non-vanishing eigenvalues e(e − 1)/N(N − 1), 2e(N − e)/N(N − 1), and
(N − e − 1)(N − e)/N(N − 1). For e as a function of the number of parties, e = N/k, in the limit of
N →∞, the N-dependence converges to a finite value, i.e. DN(De

N ) tends to 2(k − 1)/k2. The maximally
achievable dependence of 1/2 is reached for e = N/2. For an arbitrarily chosen constant e (e.g. for the W
state, e = 1), DN(De

N ) tends to 0 for N →∞.

Appendix G. Bounds on mutual N-dependence

G.1. Bound on mixed states
The subadditivity of quantum entropy states that for the reduced quantum states we have

S(Trjρ) � S(Trijρ) + S(ρi), (G1)

S(Triρ) − S(ρi) � S(ρ), (G2)

where ρi is the reduced state of the ith particle. Using the above inequalities we write

DN (ρ) � S(Triρ) − S(ρ) + S(Trjρ) − S(Trijρ)

� S(ρi) + S(ρi)

� 2. (G3)

G.2. Bounds on pure states
Now we prove that for pure states we have DN(ρ) � 1. Note that due to equation (4) from the main text we
need to find the smallest mutual information Ii:j(ρij), where ρijare bipartite subsystems of the pure state ρ.
Consider

Ii:j(ρij) + Ij:k(ρjk), (G4)

= S(ρi) + S(ρj) − S(ρij) + S(ρj) + S(ρk) − S(ρjk)

� 2S(ρj)

� 2, (G5)

where the first inequality comes from the strong subadditivity of entropy

S(ρi) + S(ρk) � S(ρij) + S(ρjk). (G6)

Hence, this monogamy relation with respect to mutual information proves that there is always a bipartite
subsystem with mutual information bounded by 1.

Appendix H. Experimental state generation and evaluation

The evaluated experimental states have been prepared using three different photonic setups which are
detailed in references [86–88].

The four-photon singlet state |ψ4〉 was generated via a non-collinear type-II spontaneous parametric
down conversion (SPDC) source. A pulsed UV laser with a central wavelength of 390 nm and an average
power of about 600 mW from a frequency-doubled mode-locked Ti:sapphire laser was used to pump a
2 mm-thick BBO (β-barium borate) crystal. For more details on this setup, see [86]. As a matter of fact,
bosonic bunching also occurs for the emission of multi-photon states. Thereby entanglement between four
photons is obtained as in the state emitted by SPDC |Φ±〉-terms have a larger amplitude compared to
|Ψ±〉-terms.

For obtaining the Dicke and the no-correlation states, the SPDC crystal (1 mm-thick BBO, type II) was
placed inside a femto-second UV-enhancement resonator. After the colinear creation of an equal number of
photons by type-II SPDC, they have been distributed to 4 or 6 analyzer stations. Conditioning on detecting
a photon in every station, the symmetric Dicke states D2

4 and D3
6 can be observed. There, we obtained an
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average UV power of up to 8.2 W at a repetition rate of 81 MHz (see [87] for more details on the setup).
The three-photon state ρnc,3 was obtained by tracing out one particle from D2

4, whereas projection of one
photon’s polarization onto the horizontal direction and tracing this photon out provides us the Dicke state
D1

3. The tomographic data of D2
4 was originally taken from reference [76]. The five photon state ρnc,5 was

deduced from D3
6.

The four-qubit GHZ4 state as well as the linear cluster state L4 were prepared in a two-photon setup,
where the four qubits were encoded in two degrees of freedom per photon, the polarization and the path. A
type-I SPDC source (two crossed type-I BBO crystals pumped with a 402 nm continuous-wave laser at
60 mW) generated polarization-entangled photon pairs. Using polarizing beam splitters the two
polarization qubits were coupled to the path degree of freedom inside two displaced Sagnac interferometers.
Right after a polarizing beamsplitter, the four qubit GHZ4 state is created, and the combined manipulation
of polarization and path qubits in the Sganac interferometer enables the transformation of this state to
other multi-qubit entangled states [88].

Generally, the evaluation of the dependence is based on tomographic data. As the dependence is
calculated from the eigenvalues of the reconstructed state and its marginals, a careful treatment of the
eigenvalues of the reconstructed states is crucial. However, as the linearly reconstructed states feature
negative eigenvalues [89], we instead resort to a simple tomographic reconstruction based on the findings in
[87]. We model the state by 	̂ =

∑
i λi|ψi〉〈ψi|+ λ⊥𝟙⊥, where λi (|ψi〉) are the unaltered eigenvalues

(eigenstates) from the direct state estimate which are well above a noise threshold, λ⊥ is the sum of the
noise eigenvalues where 𝟙⊥ denotes the identity matrix in the space spanned by the noise eigenstates.
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