日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

All-aqueous multi-phase systems and emulsions formed via low-concentration ultra-high-molar mass polyacrylamides

MPS-Authors
/persons/resource/persons239483

Pavlović,  Marko
Lukas Zeininger, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Plucinski, A., Pavlović, M., & Schmidt, B. V. K. J. (2021). All-aqueous multi-phase systems and emulsions formed via low-concentration ultra-high-molar mass polyacrylamides. Macromolecules, 54(12), 5366-5375. doi:10.1021/acs.macromol.1c00400.


引用: https://hdl.handle.net/21.11116/0000-0008-EE3F-7
要旨
Aqueous multi-phase systems have attracted a broad interest in recent years, which is mainly due to their applicability in biology for purification and isolation of biomolecules and also for separation of particles as well as environment for enzymatic reactions. Here, three polyacrylamides poly(N,N-dimethylacrylamide), poly(acrylamide), and poly(4-acryloylmorpholine) with ultra-high molar mass were synthesized via photo-induced reversible addition–fragmentation chain-transfer polymerization (Mn > 700,000 g·mol–1). The polymers were combined to form aqueous multi-phase systems with low total polymer concentration as low as 1.1 to 2.1 wt %. Furthermore, the aqueous multi-phase system could be transformed into water-in-water (w/w) emulsions, stabilized by layered double hydroxide nanoparticles. Due to the low polymer content, these aqueous multi-phase systems open up new pathways, for example, in the separation of biomolecules or the compartmentalization of aqueous environments in catalysis.