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We study the effects of static magnetic and electric fields on Kitaev’s honeycomb model. Using the electric
polarization operator appropriate for Kitaev materials, we derive the effective Hamiltonian for the emergent Ma-
jorana fermions to second-order in both the electric and magnetic fields. We find that while individually each
perturbation does not qualitatively alter Kitaev spin liquid, the cross-term induces a finite chemical potential at
each Dirac node, giving rise to a Majorana-Fermi surface. We argue this gapless phase is stable and exhibits typ-
ical metallic phenomenology, such as linear in temperature heat capacity and finite, but non-quantized, thermal
Hall response. Finally, we speculate on the potential for realization of this physics in Kitaev materials.

I. INTRODUCTION

Topological states of matter have attracted broad interest
due to their fundamental importance in our understanding
of many-body systems [1], as well as their potential practi-
cal importance in storing and manipulating quantum informa-
tion [2]. A key role in our understanding has been played
by exactly solvable models, such as the toric code [3], where
the nature of the ground state and fractionalized excitations
is indisputable. However, finding and exploring the physics
of topological phases of matter, such as spin liquids, in more
realistic models is difficult, with fewer tractable systems to
study [4].

Kitaev’s honeycomb model [5] represents a rare example of
a class of exactly solvable models of spin liquids that may, to
a reasonable approximation, be realized in solid-state mag-
netic systems [6–8]. Specifically, in transition metal mag-
nets with strong spin-orbit coupling, a microscopic super-
exchange mechanism has been identified for an edge-shared
bonding geometry [9] that yields Kitaev’s anisotropic ex-
change interaction at leading order [10–12]. As such, Kitaev’s
model has been the subject of intense study [13] to determine
its response to a variety of perturbations and probes, including
mapping the nearby phase diagram [10–12, 14–16] with an
eye towards materials, understanding thermal properties [17–
20], computing its dynamical responses [21–26], generalizing
it to three-dimensional lattices [27–33], as well as understand-
ing the effects of disorder [34–39].

More recently, the effect of a magnetic field has been
explored in great detail [40–51], motivated by intriguing
experiments on the leading Kitaev material candidate, α-
RuCl3 [52, 53]. One finds that in a strong pre-dominantly
in-plane magnetic field the thermal Hall response, κxy/T , ap-
pears to be half -quantized, suggesting a propagating chiral
edge mode with central charge c = 1/2 [54]. This is consis-
tent with expectations from the pure Kitaev model, where a
small magnetic field produces a non-Abelian chiral spin liq-
uid phase [5], with a single chiral Majorana edge mode (see
Refs. [55,56] for some subtleties).

The effect of an electric field on the Kitaev spin liquid is
much less well-understood. Its response is encoded in the (ef-
fective) electric polarization operator [57] appropriate for Ki-

FIG. 1. Illustration of the spectrum of the Kitaev model in the pres-
ence of both electric (E) and magnetic (B) fields. An effective chem-
ical potential is generated by the combination n̂ · (E × B) where n̂ is
the direction perpendicular to the honeycomb plane. Near the Dirac
points this chemical potential induces Majorana-Fermi surfaces (see
inset).

taev materials, as was worked out in detail in Refs. [58–60].
Using these polarization operators, the dielectric response can
be computed [59], providing a natural route to subgap re-
sponse in the optical conductivity. However, only the dynamic
(linear) response has been considered, leaving open the ques-
tion: how does the Kitaev spin liquid respond to a static elec-
tric field?

In this article, we address this question, considering the
effect of combined magnetic and electric fields on Kitaev’s
honeycomb model. Using a generic, symmetry constrained
polarization operator [58, 60], we apply degenerate perturba-
tion theory to compute the effective Hamiltonian to second-
order in both the magnetic and electric fields. We find that
while the pure electric and magnetic contributions do not fun-
damentally alter the Kitaev spin liquid at this order, the lead-
ing Magnetoelectric effect induces a chemical potential at the
Dirac touching points and give rise to a Majorana-Fermi sur-
face [61]. This gapless spin liquid phase has no instabilities
with respect to arbitrary perturbations and manifests in sig-
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natures in thermodynamic quantities. We further explore the
interplay of this second-order cross-term with third-order con-
tribution from the magnetic field, which stabilizes the gapped
chiral spin liquid phase. We find that at low temperature it
gives rise to a finite, but non-quantized [62], thermal Hall re-
sponse, limT→0 κxy/T , in the gapless phase.

Magnetoelectric effects [63, 64] in ferromagnets have long
attracted intense interest due to the potential for electrical con-
trol of magnetism (and vice versa) and for a variety of ap-
plications in spintronics. Applications in frustrated magnets
(and anti-ferromagnets more broadly [65]) are not as well
explored [1]. However, several results have established the
potential utility of electrical probes, from subgap optical re-
sponse in gapless spin liquids [59, 66, 67] to allowing elec-
tric control of fractionalized excitations in spin ice materi-
als [68, 69]. Here we offer Magnetoelectric route to gener-
ating a Majorana-Fermi surface. Since this is due to applica-
tion of external fields, this has several advantages over more
drastic perturbations; avoiding, for example, some of the com-
plications of the quantum chemistry involved with doping or
application of pressure.

The appearance of such Majorana-Fermi surfaces in
Kitaev-like models has been discussed in several contexts,
however each case carries some fundamental difficulty. These
include instability towards nodal phases [29, 31] (with nodal
lines or points), sensitivity to symmetry-allowed perturba-
tions [70] (fine-tuning) or realization through models with
very unconventional lattices or interaction terms [71–75] or
with site-dependent (staggered) applied magnetic fields [76].
In contrast, our result offers a natural avenue towards a
Majorana-Fermi surface in a model that is directly related to
realistic models of Kitaev materials. With this in mind, we
discuss what kind of electric field strengths would be nec-
essary to observe this physics in an idealized realization of
Kitaev’s honeycomb model; we find that, while large, the re-
quired electric fields are not far outside experimental reach.

The article is structured as follows: in Sec. II we define the
Kitaev model and outline the derivation of the symmetry al-
lowed polarization operator. In Sec. III we review the exact
solution of the pure Kitaev model and its symmetries to es-
tablish our notation and conventions. Sec. IV describes our
main results, covering the derivation of the effective Hamilto-
nian to second-order in the magnetic field alone (Sec. IV A),
in the electric and magnetic fields (Sec. IV B) and in the elec-
tric field alone (Sec. IV C). This effective Hamiltonian is then
solved in Sec. V using the Majorana representation, and its
spectrum, including the appearance of the Majorana-Fermi
surface, is discussed in Sec. VI. In Sec.VII we explore the de-
pendence on the direction of the electric and magnetic fields,
focussing on the competition between the gap-opening term at
third-order in the magnetic field and the Majorana-Fermi sur-
face inducing second-order contribution. Finally, in Sec. VIII
we discuss relation to some recent works on perturbed Ki-
taev models, the effects of Majorana interactions, and provide
some rough estimates of electric field strengths required to
realize this physics, before concluding in Sec. IX with an out-
look and some perspective on future directions.

II. ELECTRIC POLARIZATION IN KITAEV MATERIALS

To begin, we define an effective j = 1/2 pseudo-spin Kitaev
model on a honeycomb lattice, as might appear in an ideal
Kitaev material [5]

K
∑

〈i j〉γ
S γ

i S γ
j , (1)

where 〈i j〉γ are the (labelled) nearest-neighbour bonds (see
Fig. 2). Generically, in the presence of both an electric and
magnetic field we expect this Hamiltonian to acquire two new
terms, taking the form

K
∑

〈i j〉γ
S γ

i S γ
j − B · M − E · P, (2)

where Si ≡ σi/2 are the pseudo-spins, B is the magnetic field,
M ≡ gµB

∑
i Si is the magnetization operator, E is the electric

field, and P is the electric polarization operator.
To proceed, we need to express the electric polarization op-

erator, P, in terms of the pseudo-spins appropriate for the Mott
insulating regime. This can be done perturbatively from the
atomic limit, as discussed in Ref. [57]. For Kitaev materi-
als specifically, the structure of these polarization operators
was worked out from similar microscopic considerations in
Refs. [58–60], taking into account the details of the physics
of 4d or 5d transition metal oxides. Rather than embark on
such a microscopic approach, we will follow the discussion
in Ref. [60], and parametrize the polarization operator using a
generic form only constrained by lattice symmetries.

First, let us quickly review the derivation of the form of
the polarization operators allowed by symmetry. Since the
electric polarization operator is time-reversal even, inversion
odd and translational invariant, we can immediately see that it
must take the form

Pµ ≡
∑

〈i j〉γ
pµγ · (Si × S j) + · · · , (3)

where (by convention) we order each bond 〈i j〉 so that i be-
longs to sublattice A and j to sublattice B. We have truncated
the expansion of this operator to nearest neighbours and only
two-spin terms due to the structure of the perturbative expan-
sion [57], with other contributions appearing at higher order
in t/U.

To go further, we need to know the details of the lattice
symmetries. We use the conventional basis for the pseudo-
spins defined such that, in the idealized limit, the octahedral
cage of ligands are located along the ±x̂,±ŷ,± ẑ directions.
For simplicity, both the electric and magnetic fields are also
defined with respect to this basis. Trigonal distortion of the
ligand cage generally lowers the local site symmetry of the
transition metal ion to D3d (ignoring any small monoclinic
distortions). The remaining symmetries of the crystal are the
C3 symmetry along the direction perpendicular to the honey-
comb plane, and the C2 symmetries along the nearest neigh-
bour bonds.
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FIG. 2. Definition of the nearest-neighbour bond types, sublattices
and the numbering convention for a hexagonal plaquette p.

The three-fold symmetry links the three components of P,
so we can simply focus on Pz, recovering Px and Py by ap-
plying C3 rotations. This leaves nine parameters in pz

γ. Under
the action of the bond aligned C2 symmetries one has that
Pz → −Pz for the z bond. To proceed, define the bond direc-
tions ûγ as

ûx ≡ ŷ − ẑ√
2
, ûy ≡ ẑ − x̂√

2
, ûz ≡ x̂ − ŷ√

2
. (4)

We further define an orthonormal frame for each bond
(ûγ, ûγ, ŵγ) where ŵγ = γ̂ and ûγ ≡ ŵγ × ûγ. Under its re-
spective bond C2 symmetry one has that ûγ is invariant while
ûγ and ŵγ change sign. The bond symmetry then implies that
ûz · pz

z = 0 and

ûz · pz
x = −ûz · pz

y, ûz · pz
x = +ûz · pz

y, ŵz · pz
x = +ŵz · pz

y.

These four relations then leave us with five parameters, which
we denote as m1, . . . ,m5. After some rearrangement we can
write the terms in the polarization operator [Eq. (3)] as [60]

pµγ ≡ m1ûµγûγ + v̂
µ
γ

(
m2ûγ + m4ŵγ

)
+ ŵ

µ
γ

(
m3ŵγ + m5ûγ

)
. (5)

The large number of free parameters allowed in the polar-
ization operator echoes the same freedom in the generic ex-
change Hamiltonian (four parameters) due to the relatively
low bond symmetry [11].

Before moving on to the effects of the electric field on the
physics of the Kitaev model, let us quickly note that one might
consider including contributions to the magnetization operator
at next to leading order (three-spin terms), or so-called orbital
contributions [77]. However, since these both appear at higher
order than the two-spin terms that appear in the polarization
operator, we will neglect them here.

III. REVIEW OF THE EXACT SOLUTION

We present here the structure of the exact solution which
was originally proposed by Kitaev, as discussed in Ref. [5],
to review the general ideas needed to discuss the effects of
polarization and to establish our notation and conventions.

Consider the pure (isotropic) Kitaev model defined by the
following Hamiltonian

− J
∑

〈i j〉γ
σ
γ
i σ

γ
j . (6)

where we have transitioned to using the Pauli operators σi,
rather the spin-1/2 spins Si, with J ≡ −K/4 to simplify some
of the later algebra. For simplicity we will assume K < 0 so
that J > 0, without any loss of generality [5]. This model
can be exactly solved, (partly) due to the large number of con-
served “flux” operators that commute with both the Hamilto-
nian and with each other. We can define these flux operators
for each honeycomb plaquette as a product of the spin op-
erators going around the plaquette, with the spin component
being that of the outward pointing bond type. Explicitly,

Wp = σz
p1
σx

p2
σ
y
p3σ

z
p4
σx

p5
σ
y
p6 , (7)

for a plaquette p where the indexes start from the leftmost
site and run clockwise (see Fig. 2). It is easy to verify that
when defined this way each flux operator commutes with ev-
ery other flux operator and with the Hamiltonian, so that

[Wp,Wp′ ] = 0, [H,Wp] = 0, (8)

for any plaquettes p and p′. Since W2
p = 1, each flux operator

has eigenvalues given by wp = ±1 and is a Z2 degree of free-
dom. Consequently, along with the Hamiltonian, they can be
simultaneously diagonalized and the full Hilbert space can be
decomposed into different flux sectors, each corresponding to
the choice of the Wp eigenvalues {w1, w2, ..., wn}. If there are
N sites, then there are N/2 plaquettes, and so fixing the flux
sector halves the dimension of the Hilbert space, leaving 2N/2

degrees of freedom. The remaining “half” degree of freedom
per site immediately suggests that these could be Majorana
fermions.

To make this observation manifest, we follow Kitaev [5]
and write the Hamiltonian directly in terms of a Majorana rep-
resentation

σi ≡ ibici, (9)

where bi ≡ (bx
i , b

y
i , b

z
i ) and ci are each Majorana fermions. To

project back into the physical Hilbert space of the spins we
must impose the constraint that Di ≡ bx

i byi bz
i ci = 1. Practi-

cally, this allows for multiple representations of the spins, e.g
σi ≡ Diσi = −ibi × bi. Since this constraint commutes with
the Hamiltonian, the physical eigenstates of the spin model
can be obtained from the eigenstates in the extended Hilbert
space by projection.

Using these Majorana fermions the Kitaev model in the ex-
tended Hilbert space can be written as

iJ
∑

〈i j〉γ

(
ibγi bγj

)
cic j ≡ iJ

∑

〈i j〉γ
Ui jcic j, (10)

where we have defined the Z2 gauge field operators Ui j ≡
ibγi bγj on each link. Similar to the Z2 flux operators, these
gauge field operators all commute with each other and with
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the Hamiltonian and thus can be simultaneously diagonalized
in the extended Hilbert space. Since U2

i j = 1 their eigenval-
ues are simply ui j = ±1. In terms of the ui j gauge-field the
eigenvalues of the flux operators can be interpreted as the cor-
responding Z2 gauge flux

wp = up1 p2 up2 p3 up3 p4 up4 p5 up5 p6 up6 p1 . (11)

The extended Hilbert space then decomposes into spaces
where the ui j are fixed and the effective Hamiltonian is a free
Majorana problem given by

H[u] ≡ J
∑

〈i j〉γ
iui jcic j. (12)

One can show [5, 78] that the ground state sector is such that
the Z2 gauge fluxes are equal to one and thus the ui j can be
chosen to be uniform with ui j = +1 when going from the A
sublattice to the B sublattice (up to gauge redundancy). This
describes free Majoranas on a honeycomb lattice with only
nearest-neighbour hopping; the spectrum is thus identical to
that of graphene [79], with the dispersion having linear touch-
ing points at the corners of the Brillouin zone.

This can be made precise by defining the Fourier trans-
formed operators on each sublattice

cr,α =
1√
N

∑

k

eik·rck,α, (13)

where we have defined each site i by a unit cell r and a sub-
lattice α = A or B and we note that c†k,α = c−k,α. The free
Majorana Hamiltonian for the ground state sector is then

1
2

∑

k>0

(
c−k,A c−k,B

) ( 0 f (k)
f (k)∗ 0

) (
ck,A
ck,B

)
, (14)

where the sum runs over half the Brillouin zone and we have
defined

f (k) ≡ 2iJ
(
1 + e−ik·a1 + e−ik·a2

)
, (15)

where a1 ≡ (3x̂ +
√

3ŷ)/2, a2 ≡ (3x̂ − √3ŷ)/2 are the basis
vectors of the honeycomb lattice. By diagonalizing this matrix
we obtain the spectrum ε(k) ≡ ±| f (k)|. As in graphene, we
can expand f (k) about k = ±K, where K = 2π/3(x̂ + ŷ/

√
3)

is a corner of the Brillouin zone, to obtain

f (±K + q) ≈ −3J(qx ± iqy) + O(q2). (16)

One thus has a linear spectrum ε(K + q) ≈ ±v|q|, with Dirac
velocity v ≡ 3J.

A. Projective Symmetries

Before moving on to the effects of perturbations on the Ki-
taev liquid, we first review how symmetries of the spin model
act in this Majorana basis. We focus our attention on the con-
straints imposed by inversion symmetry (broken by an elec-
tric field) and time-reversal symmetry (broken by a magnetic

field) within the ground state flux sector. The key property
of both the symmetries is that they are implemented projec-
tively [5, 80, 81], that is the application of the symmetry oper-
ation must be followed by a Z2 gauge transformation.

Consider first time-reversal: note that time-reversal, T , is
anti-unitary and maps σi → −σi. In the Majorana representa-
tion a perfectly valid time-reversal operation is simply bi → bi
and ci → ci with the imaginary prefactor giving the change in
sign. However, this changes the link variables, as ui j → −ui j
due to their imaginary prefactor. Since we would like to work
within the fixed gauge sector with uniform ui j = +1 we can
undo this via a gauge transformation with a staggered sublat-
tice sign. Our final (effective) time-reversal operator is then

ci
T−→ (−1)ici, (17)

where (−1)i is +1 on the A sublattice and −1 on the B sub-
lattice. The treatment of inversion symmetry, I, is essentially
the same: instead of being anti-unitary, it interchanges the two
sublattices, changing the sign of ui j in the same way. The ef-
fective action of inversion is then

ci
I−→ (−1)icI(i), (18)

where I(i) is the site to which i is mapped to under inversion.
These symmetry operations constrain the terms that can be

generated by the electric and magnetic fields. For example,
since B is odd under time-reversal any free Majorana terms
like icic j that are generated must respect that symmetry. This
means, e.g. that any O(B2) terms must connect different sub-
lattices, while any O(B3) terms must only connect the same
sublattice. Similarly, all of the pure electric field terms must
connect different sublattices, as they are all time-reversal even.

Inversion symmetry is less restrictive; though it does not
necessarily preserve the pair of sites in question (unlike time-
reversal), one can still make some (more limited) statements.
For example, since the first and third nearest-neighbour bonds
are preserved by inversion they cannot be generated at odd or-
der in E. For second nearest neighbour bonds, inversion only
relates the hopping on one bond to the distinct inverted bond.
Finally, let us mention the cross term, at O(EB) – the main
focus of our work – which is odd under both time-reversal
and inversion and thus appears first in the second neighbour
bonds, but is distinct from the usual O(B3) contribution.

IV. PERTURBATION THEORY IN ELECTRIC AND
MAGNETIC FIELDS

We now review the usual perturbative approach to obtain-
ing effective Hamiltonians for the ground state flux sector
when small perturbations are added. To set the stage, we
will first recap known results [5] for the effects of a magnetic
field at O(B2) in Sec. IV A. We then proceed to derive the
O(EB) contributions in Sec. IV B and the O(E2) contributions
in Sec. IV C. Relevant aspects of the O(B3) contributions are
reviewed [5] in App. A.
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A. Magnetic Field

The effect of magnetic field is encapsulated in the piece of
the Hamiltonian

− B · M ≡ −
∑

i

h · σi, (19)

where we define the (reduced) magnetic field h ≡ gµBB/2.
The form of perturbation theory to be used is motivated by the
observation that the action of a single-spin operator always
changes the flux sector. To see this consider the effect of the
single spin σz

i acting on the system – one small piece of the
magnetization Mz. Using the commutation relations of the
spins, we can see that when acting on state from the ground
state flux sector

Wx(σz
i |Ψ〉) = −σz

i Wx |Ψ〉 = −σz
i |Ψ〉 , (20a)

Wy(σz
i |Ψ〉) = −σz

i Wy |Ψ〉 = −σz
i |Ψ〉 , (20b)

Wz(σz
i |Ψ〉) = +σz

i Wz |Ψ〉 = +σz
i |Ψ〉 , (20c)

where Wµ is the plaquette operator opposite to the µ-bond con-
nected to site i. We thus see that we have added fluxes on a
pair of hexagons that are connected to the site where we acted
the spin operator. When considering the effect of this pertur-
bation, the virtual states generated will thus not be within the
ground state flux sector, but will necessarily mix in the two- or
higher-flux sectors. Graphically, the flux configurations gen-
erated by the three spin components can be illustrated as

σx
i |Ψ〉 :

σx
i

, (21a)

σ
y
i |Ψ〉 :

σ
y
i

, (21b)

σz
i |Ψ〉 : σz

i , (21c)

where a filled hexagon indicates that wp = −1 on that plaque-
tte and an empty hexagon indicates wp = +1.

We thus consider a form of quasi-degenerate perturbation
theory, where we derive an effective Hamiltonian within the
ground state flux sector. Given the dimension of this Hilbert
space, it also naturally admits a description in terms of a sin-
gle Majorana per site, i.e. the ci fermions. Formulating this
perturbation theory strictly requires consideration of the full
multi-particle spectra of the virtual flux states – which is a
much more challenging task. We will instead follow the ap-
proach of Kitaev [5] and assume that most of the weight in

the virtual processes comes from the single-particle excita-
tions, an assumption that has been made plausible by more
recent numerical studies [43, 82]. Practically, this means that
we will replace any resolvents in our perturbation theory with
a single energy scale – the relevant flux gap.

To see how this is carried out, define the projection operator
P0 that projects into the ground state flux sector. In a magnetic
field the effective Hamiltonian would then be (at second order)

P0H0P0−h·
∑

i

P0σiP0−
∑

µν

∑

i j

hµhν
∆

P0σ
µ
i (1−P0)σνjP0+· · · ,

where H0 is the Kitaev model and we have used that the resol-
vent R is approximately given by R = (1−P0)/∆, with ∆ being
the gap to creating two neighbouring flux pairs. From Ref. [5],
one can estimate this to be ∆ ≈ 0.2672|J| = 0.067|K|. Since
P0 MP0 = 0 due to the change in flux, we see the effective
Hamiltonian is then

Heff = P0H0P0 −
∑

µν

∑

i j

hµhν
∆

P0σ
µ
i σ

ν
jP0 + · · · . (22)

At this order, from the above considerations of flux generation
[Eq. (20)], we can further see that

P0σ
µ
i σ

ν
jP0 = δµν

[
δi jP0 + δ〈i j〉µP0σ

µ
i σ

µ
j P0

]
. (23)

The first term describes adding two fluxes by applying a spin
σ
µ
i at one site, and removing them using the same operator

yielding an unimportant constant. The second term describes
removing the added fluxes by applying the nearest-neighbour
σ
µ
i+µ and yields something non-trivial. We thus obtain

Heff = −
∑

〈i j〉γ

J +
2h2

γ

∆

 P0σ
γ
i σ

γ
j P0 + const. + O(h3). (24)

The leading effects of the field are thus to renormalize the Ki-
taev couplings to render them (potentially) anisotropic, de-
pending on the field direction. The presence of these O(h2)
contributions also implies a finite magnetic susceptibility [34]
at zero temperature. Note that the factor of two arises as the
operators adding and removing the flux are different, and thus
can be applied in two different orders.

B. Electric and Magnetic Field

We now consider the effects of the electric polarization op-
erator, following the same perturbative scheme that we used
for the magnetic field (Sec. IV A). The leading, and most inter-
esting, term will be the combination of the electric and mag-
netic field at O(EB). The first contribution from the electric
field alone appears at O(E2) and is somewhat more compli-
cated, without changing the essential physics of the leading
term; we will cover it in detail in Sec. IV C. To make the book-
keeping simpler, we introduce the notation

P · E =
∑

〈i j〉γ


∑

µ

Eµpµγ

 · (Si × S j) ≡
∑

〈i j〉γ
εγ · (σi × σ j), (25)
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where we have defined εγ ≡ ∑
µ Eµpµγ/4. Explicitly, in terms

of the parameters of the polarization operator [Eq. (5)], we
have

εαα =
1
4

[
m3Eα +

m4√
2

(Eβ + Eγ)
]
, (26a)

ε
β
α =

1
4

[
m5√

2
Eα +

1
2

{
(m1 + m2) Eβ + (m1 − m2) Eγ

}]
, (26b)

where α, β, γ are a permutation of x, y, z.
We first need to confirm that key property of the magnetic

field perturbation that motivated our quasi-degenerate pertur-
bation theory: that the action of the polarization operator
changes the flux sector. To see how this works, consider the
contribution of a single z-bond 〈i j〉z to E · P, which takes the
form

εx
z

(
σ
y
iσ

z
j − σz

iσ
y
j

)
+ ε

y
z

(
σz

iσ
x
j − σx

i σ
z
j

)
+ εz

z

(
σx

i σ
y
j − σyiσx

j

)
.

From the structure of this term we can see that while two spin
operators are involved in each (in contrast to the single spin
for the magnetic field), they are always different spin compo-
nents due to the anti-symmetry imposed by inversion symme-
try. This means that the fluxes generated by one spin operator
are not removed by the other – if one enumerates all the pos-
sible combinations, one can see that the two pairs of fluxes
must only share at most a single plaquette, and therefore we
are left with a pair of fluxes, just like in the magnetic field
case. This then immediately implies the first order term is
zero, with P0 PP0 = 0.

The specific combinations of fluxes can be directly inferred
from Eq. (20), but are most clearly illustrated graphically. We
delineate two types of flux configurations: those that give rise
to a pair of nearest neighbour fluxes (type I) and those that
give second-neighbour fluxes (type II). For the z-bond dis-
cussed above, four of the operators give type I flux config-
urations, as illustrated below

σ
y
iσ

z
j |Ψ〉 : σ

y
i

σz
j , (27a)

σz
iσ

y
j |Ψ〉 : σz

i σ
y
j , (27b)

σx
i σ

z
j |Ψ〉 : σx

i σz
j , (27c)

σz
iσ

x
j |Ψ〉 : σz

i
σx

j . (27d)

Note that these type I configurations are only generated by the
m1, m2 and m5 parts of the polarization operator.

The remaining two operators, coming from ẑ · (σi × σ j),
and generated by the m3 and m4 polarization operators, give
the type II flux configurations

σx
i σ

y
i |Ψ〉 : σx

i σ
y
j , (28a)

σ
y
iσ

x
i |Ψ〉 : σ

y
i

σx
j . (28b)

Note that we have not explicitly written the signs or pre-
factors in these expressions, we are simply illustrating the
flux content of the generated states. The related patterns for
the other types of bonds can be inferred using the three-fold
symmetry; for a µ-bond, then the operators corresponding to
ν̂ · (σi ×σ j) where ν , µ give the type I configurations, while
the operators from µ̂ · (σi×σ j) give the type II configurations.

To make this more explicit, write the O(EB) correction as

− gµB

∑

µν

BµEν

[
P0Mµ

(
1 − P0

∆

)
PνP0 + h.c.

]
, (29)

where again we have used that the resolvent reduces to R =

(1−P0)/∆ for the type I intermediate states of Eq. (27). Since
P0 MP0 = 0 we can see that this reduces to

−
∑

µν

∑

〈i j〉γ

∑

k

hµενγ
∆

[
P0σ

µ
k

(
σi × σ j

)ν
P0 + h.c.

]
. (30)

We can use our knowledge of the intermediate (type I) flux
states to simplify this further; we will work out one case ex-
plicitly, deriving the rest using symmetry.

Focus on the contributions to a set of three sites (i, j, k) that
define a second nearest neighbour z-bond type bond, as shown
in Fig. 3. There are two processes that involve these three
sites and both give a non-trivial contribution to the effective
Hamiltonian. Together they give

= − 2
∆

P0

[
hyε

y
zσ

y
k

(
+σz

iσ
x
j

)
+ hzε

z
yσ

z
i

(
−σykσx

j

)]
P0,

= − 2
∆

(
hyε

y
z − hzε

z
y

)
P0σ

z
iσ

x
jσ

y
kP0,

where the overall factor of two accounts for the Hermitian
conjugate processes where the magnetic field is applied first.

This can be generalized and other bond types can be ob-
tained by cyclically permuting the components of all vectors;
one finds the final O(EB) Hamiltonian to be

− 2
∆

∑

2〈i j〉α(β)γ

(−1)i(hγε
γ
α − hαεαγ )εαβγP0σ

α
i σ

β
i+ασ

γ
j P0 (31)
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σz
i σx

j

σ
y
k

σz
i σx

j

σ
y
k

FIG. 3. Illustration of the two contributions to the O(EB) part of the
effective Hamiltonian for the x-type second nearest-neighbour bond
from i to k (via j) shown in red. The piece of the electric polarization
operator is indicated by a thick bond with filled circles, while the
piece from the magnetic field is indicated by an open circle. The
hexagons that carry flux excitations in the corresponding virtual state
are indicated.

where 2 〈i j〉α(β)γ indicates a second nearest-neighbour bond of
type β from i to j, i.e. we get from i to j by traversing an
α-bond to an intermediate site, then on to j via a γ-bond (see
Fig. 6).

C. Electric Field

We now move to the processes that arise at second order
due to the electric field alone. We identify three types of dis-
tinct processes: one that generates only two-spin interactions,
renormalizing the nearest neighbour couplings and two further
processes that generate four-spin interactions that link third
and fourth nearest neighbours. These four-spin interactions
are closely related to those introduced phenomenologically in
Ref. [70], see Sec. VIII for a more detailed discussion.

1. Two-Spin Process (Type II-Type II)

The first process of interest is generated by the type II flux
configurations that did not contribute at O(EB), as shown in
Eq. (28). Due to their geometrical arrangement, we see that
only the operators that generate these further neighbour flux
pairs [Eq. (28)] are the same ones that can remove them. For
example, for a 〈i j〉z bond the two options are σx

i σ
y
j and σyiσ

x
j .

Since using the identical operator simply results in a constant,
only the cross terms give non-trivial contributions to the effec-
tive Hamiltonian; we write

= − (εz
z)

2

∆′
P0

[(
−σyiσx

j

) (
+σx

i σ
y
j

)
+

(
+σx

i σ
y
j

) (
−σyiσx

j

)]
P0,

= +
2(εz

z)
2

∆′
P0σ

z
iσ

z
jP0, (32)

where ∆′ ≈ 0.2372|J| ≈ 0.0593|K| is the gap for creating two
further neighbour pairs [5]. This can be done for each bond
type, leading to the total effective Hamiltonian contribution

+
∑

〈i j〉γ

2(εγγ)2

∆′
P0σ

γ
i σ

γ
j P0. (33)

Similar to the case of the O(B2) contributions, this simply
renormalizes the bare Kitaev couplings, and (potentially) ren-
ders them anisotropic.

Note that such processes do not exist for the type I flux
configurations: the flux pair generated by each operator (on
the same bond) is unique, and so the only way to remove them
is by applying the original operator again. As in the type II
case, this simply gives an unimportant constant.

2. Four-Spin Process (Third Neighbour)

We now consider processes that involve the type I flux con-
figurations, but with operators on different bonds. We first
consider the process where the two pieces of the polarization
operator are separated by a nearest neighbour bond and are
non-parallel. Concretely, we can consider the processes illus-
trated in Fig. 4 that can be associated with a z-type third neigh-
bour bond (see Fig. 6). The first such process contributes (tak-
ing into account the reversed, or Hermitian conjugate, process
as well)

− 2εz
yε

z
y

∆
P0

(
+σx

jσ
y
i

) (
+σx

l σ
y
k

)
P0 = −2εz

yε
z
y

∆
P0σ

y
iσ

x
jσ

y
kσ

x
l P0,

where i, j, k, l are the four sites going clockwise along the top
of the hexagon (see Fig. 4). A similar process can be written
for the sites running along the bottom of the hexagon, labeled
i, r, s, l going counter-clockwise, giving the final contribution

= −2εz
xε

z
y

∆

(
P0σ

y
iσ

x
jσ

y
kσ

x
l P0 + P0σ

x
i σ

y
rσ

x
sσ

y
l P0

)
.

Identical contributions exist for each third nearest-neighbour
bond. We can then write

− 2
∆

∑

3〈i j〉αβ(γ)

ε
γ
αε

γ
β

(
P0σ

β
i σ

α
i+βσ

β
j+ασ

α
j P0 + P0σ

α
i σ

β
i+ασ

α
j+βσ

β
j P0

)
,

where 3 〈i j〉αβ(γ) is a third-neighbour bond of type γ (asso-
ciated with the corresponding nearest-neighbour bond, see
Fig. 6).

3. Four-Spin Process (Fourth Neighbour)

Finally, we consider the process where the two pieces of
the polarization operator are separated by a nearest neighbour
bond and are parallel. Explicitly, we can consider the pro-
cesses illustrated in Fig. 5 that can be associated with a zy-type
fourth neighbour bond (labeled using the composing nearest-
neighbour bonds, see Fig. 6). This contribution gives

− 2(εyz )2

∆
P0

(
+σz

iσ
x
j

) (
−σx

kσ
z
l

)
P0 = +

2(εyz )2

∆
P0σ

z
iσ

x
jσ

x
kσ

z
l P0,

where the path i, j, k, l is shown in Fig. 5. Unlike the previous
type of process (Sec. IV C 2), this is the only contribution that
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σx
j

σ
y
i

σ
y
k

σx
l

σ
y
r

σx
i

σx
s

σ
y
l

FIG. 4. Illustration of two contributions to the O(E2) part of the
effective Hamiltonian for a four-spin coupling along a z-type third
nearest-neighbour bond from i to l shown in red. The pieces of the
electric polarization operator are indicated by thick bonds with filled
circles. The hexagons that carry flux excitations in the corresponding
virtual state are indicated.

σz
i σx

j

σx
k σz

l

FIG. 5. Illustration of a contribution to the O(E2) part of the effective
Hamiltonian for a four-spin coupling along a zy-type fourth nearest-
neighbour bond from i to l shown in red. The pieces of the electric
polarization operator are indicated by thick bonds with filled circles.
The hexagons that carry flux excitations in the corresponding virtual
state are indicated.

involves these two endpoints. We thus can write the full set of
contributions as

+
2
∆

∑

4〈il〉αβ(γ)

(εβα)2P0σ
α
i σ

γ
i+ασ

γ
j+ασ

α
j P0, (34)

where 4 〈i j〉αβ(γ) is an αβ-type fourth neighbour bond.

V. SOLUTION OF EFFECTIVE HAMILTONIAN

With the effective Hamiltonian in the zero-flux sector
worked out to second order in both the electric and magnetic
fields, we now move on to the solution of this Hamiltonian
using the Majorana representation.

The simplest terms are simply those that renormalize the
nearest neighbour couplings. It is useful to define the (in-
duced) anisotropic Kitaev exchanges Jγ for each bond as

Jγ = J + 2


h2
γ

∆
− (εγγ)2

∆′

 , (35)

which includes contributions from the O(B2) and O(E2) pro-
cesses (see Secs. IV A and IV C 1). This modifies the func-

z(x)y

x(z)y

x(y)z

y(x)z

y(z)x

z(y)x

xy(z)

yz(x)

zx(y)

yz(x)

yx(z)

xz(y)

xy(z)

zx(y)

zy(x)

FIG. 6. Illustration of notation for the second (left), third and fourth
nearest neighbour bonds (right) of the honeycomb lattice, as defined
in Secs. IV B and IV C.

tion f (k) that we encountered in the unperturbed solution
[Eq. (15)] to

f1(k) ≡ 2i
(
Jz + Jye−ik·a1 + Jxe−ik·a2

)
= 2i

∑

γ

Jγeik·(dγ−dz).

(36)
with dα being the three (outward) nearest-neighbour bond di-
rections of the honeycomb lattice, starting from the A sublat-
tice.

Next we consider the O(EB) contributions: the three-spin
term generated at this order [Eq. (31)] is a close analogue
to the three-spin interaction that was obtained by Kitaev [5]
when going to third-order in the magnetic field. However, a
key difference is in the staggered sublattice sign which is re-
quired for the operator to be odd under inversion, and thus
appear at O(EB). These additional signs qualitatively change
the effects of the interaction on the Majorana spectrum. In-
stead of opening a gap, as the O(B3) term does, this O(EB)
term will instead yield a one-dimensional manifold of zero
energy states – a Majorana Fermi surface.

To see this, start by writing the O(EB) terms defined in
Sec. IV B [Eq. (31)] using the Majorana fermions as

P0σ
α
i σ

β
jσ

γ
k P0 = i3P0bαi cib

β
jc jb

γ
k ckP0,

= −εαβγP0

(
ibαi bαj

) (
ibγj b

γ
k

) (
icick

)
P0,

= −εαβγP0Ui jU jk

(
icick

)
P0, (37)

where we have made use of the constraint through the replace-
ment

bβjc j ≡
(
εαβγbαj bβjb

γ
j c j

)
bβjc j = εαβγbαj bγj . (38)

Now since ui ju jk = −1 in the zero-flux sector (due to bond
orientations), the O(EB) contribution to the effective Hamil-
tonian for the Majorana fermions is given by

− 2
∆

∑

2〈i j〉α(β)γ

(−1)i(hγε
γ
α − hαεαγ )icic j. (39)

This is simply a second neighbour hopping, anisotropic in
space and opposite in sign between the two sublattices. In
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Fourier space this can be written

1
2

∑

k>0

g(k)
(
c−k,Ack,A + c−k,Bck,B

)
, (40)

where we have defined

g(k) = −8i
∆

∑

α,γ

(hγε
γ
α − hαεαγ )eik·(dα−dγ),

= +
16
∆

∑

α<γ

(hγε
γ
α − hαεαγ ) sin

[
k · (dα − dγ)

]
. (41)

We have used that, in general, the anti-symmetry of the Majo-
rana operators imposes that g(k) = −g(−k), which is indeed
satisfied by the above definition. Note that all of the other sec-
ond order terms connect different sublattices, and so (at this
order) this is the only contribution to g(k). This is true gener-
ally for the terms generated by the electric-field alone, given
they are time-reversal even, they cannot provide any contribu-
tions to g(k).

Finally, we consider the two types of four-spin interactions
that are generated at O(E2). Start first with the third-neighbour
type (Sec. IV C 2), looking at the contributions to a z-type
bond (as illustrated in Fig. 4)

= −2εz
xε

z
y

∆
P0σ

y
iσ

x
jσ

y
kσ

x
l P0,

= −2εz
xε

z
y

∆
P0(ibyi ci)(−ibyjb

z
j)(−ibz

kbx
k)(ibx

l cl)P0,

= +
2εz

xε
z
y

∆
ui ju jkuklP0(icicl)P0 = +

2εz
xε

z
y

∆
P0(icicl)P0.

The same manipulations on the second process yield identical
results. Generalizing to the full set of these four-spin terms,
we therefore have the contribution

− 4
∆

∑

3〈i j〉αβ(γ)

ε
γ
αε

γ
β(icic j), (42)

where we have reversed the sign, by ordering the bonds so that
i ∈ A and j ∈ B. In Fourier space this gives a contribution to
f (k) of

f3(k) ≡ −8i
∆

∑

γ

ε
γ
αε

γ
βe−ik·(2dγ+dz), (43)

where the remaining indices are such that α, β , γ. A sim-
ilar procedure can followed for the fourth neighbour bonds
(Sec. IV C 3); we simply quote the final result

− 2
∆

∑

4〈i j〉αβ(γ)

(εβα)2(icic j). (44)

Again, similarly, in Fourier space this gives a contribution to
f (k) that goes as

f4(k) ≡ −4i
∆

∑

α,β

(εβα)2eik·(2dα−dβ−dz). (45)

The final result for f (k) ≡ f1(k) + f3(k) + f4(k) can be sum-
marized as

f (k) ≡ 2i


∑

γ

Jγeik·dγ − 4
∆

∑

γ

ε
γ
αε

γ
βe−2ik·dγ

− 2
∆

∑

α,β

(εβα)2eik·(2dα−dβ)

 e−ik·dz , (46)

where the Jγ depend on the fields Eq. (35) and the sums in the
final two terms have the same meaning as in Eqs. [43,45].

The free Majorana Hamiltonian for the ground state sector,
including the O(B2), O(E2) and O(EB) contributions, is then
given by

1
2

∑

k>0

(
c−k,A c−k,B

) ( g(k) f (k)
f (k)∗ g(k)

) (
ck,A
ck,B

)
, (47)

The spectrum is then shifted from the case without the electric
field

ε±(k) ≡ g(k) ± | f (k)|. (48)

It will be useful to include some aspects of the O(B3) contri-
butions to the effective Hamiltonian into our analysis, so that
we can explore the competition with the gap-opening terms.
To this end we add the O(B3) second-neighbour hopping [5]

− 6hxhyhz

∆2

∑

2〈i j〉α(β)γ

εαβγicic j. (49)

For details of the derivation of this term, see Appendix A or
Ref. [5]. Note that we have not included the additional four-
Majorana interaction term that is also generated at O(B3) [5].
In Fourier space this yields

1
2

∑

k>0

(
c−k,A c−k,B

) ( g(k) + h(k) f (k)
f (k)∗ g(k) − h(k)

) (
ck,A
ck,B

)
,

where we have defined the new dispersion function

h(k) ≡ +
48hxhyhz

∆2

∑

α(β)γ

sin
[
k · (dα − dγ)

]
, (50)

where
∑
α(β)γ is defined as a sum over β with εαβγ = +1. With

this term included, the spectrum of the Majorana fermions
then takes the form

ε±(k) = g(k) ±
√

h(k)2 + | f (k)|2. (51)

With E = 0, and thus g(k) = 0, this is the usual gapped
spectrum expected for the Kitaev model in a small magnetic
field [5]. Expanding near the Dirac points, one has

h(K) = −h(−K) = −72
√

3hxhyhz

∆2 . (52)

The energy gap is then given by 2|h(K)| for E = 0; it will
be useful to define a mass of the Majorana fermions as m ≡
|h(K)|.
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VI. MAJORANA FERMI SURFACE

How does the electric field perturbation affect the spectrum
of the Majorana fermions, in particular the Dirac point? First,
we should note that the O(B2) and O(E2) corrections preserve
the Dirac touching, but shift them from ±K. Generically, this
shift is also accompanied by the introduction of anisotropy
and renormalization to the Dirac velocity as well. Consider
the Dirac point near K, schematically one has

f (K + δK + q) = −
(
v1[Rθq]x + iv2[Rθq]y

)
+ O(q2), (53)

where δK is the shift of the Dirac point, Rθ is the rotation of
the principal axes of the (anisotropic) Dirac cone, and v1, v2
are the two-independent Dirac velocities. The shift δK and
the rotation angle θ are both second-order in the fields, while
vn = v + O(E2),O(B2). In principle, the leading corrections
can be worked out explicitly from an expansion of Eq. (46),
though we will leave this implicit for the sake of brevity.

For the g(k) part things are somewhat simpler; since δK ∼
O(B2),O(E2) and and g(k) is already O(EB), we only need to
evaluate it at K, with any corrections from δK being O(EB3)
or O(E3B). Evaluating this in terms of the physical electric
and magnetic fields, E and B, one thus has g(K) being

g(K) =
3gµB

2∆
(m1 − m2 +

√
2m5) [n̂ · (E × B)] , (54)

where n̂ = (x̂ + ŷ+ ẑ)/
√

3 is the direction perpendicular to the
honeycomb plane. We thus see that the cross-term introduces
a finite chemical potential at the Dirac points – we define µ ≡
−g(K). A similar argument applies for h(k), since it is O(B3),
any shifts due to the second-order terms only have higher or-
der effects, and thus we can take |h(K)| ∼ 72

√
3hxhyhz/∆

2.
From the structure of E and B dependence we see that this

chemical potential vanishes in several high symmetry con-
figurations, including parallel electric and magnetic fields, as
well as with either field being perpendicular to the honeycomb
plane. This term is maximal when the electric and magnetic
field are crossed, i.e. E ·B = 0, and both are in the honeycomb
plane. We also see that the dependence field is distinct from
other field induced terms, i.e. this term can remain finite when
the gap-inducing O(B3) term vanishes. We also see that not all
of the contributions to the polarization operator are effective
in generating this chemical potential – both m3 and m4 do not
contribute as they only generate type II flux configurations.

The spectrum near the Dirac point is then given by

ε±(K + δK + q) ≈ −µ ±
√
v2|q|2 + m2, (55)

where we have ignored the renormalization of the Dirac ve-
locity due to the O(B2) and O(E2) terms, setting v = 3J for
simplicity. Note that this mass does not necessarily render the
system gapped; if small relative to the chemical potential it
only opens a gap between the two Majorana bands. The low-
energy excitations are now not at the Dirac touching point, but
appear – to a first approximation – along a circular Majorana
Fermi surface centered about the shifted Dirac points, with

−π − π2 0 + π
2 +π

kx

−π

− π2

0

+ π
2

+π

k y

ψ = 0

E = B = 0.1

FIG. 7. Illustration of the Majorana-Fermi surface for crossed elec-
tric and magnetic fields, E = EX̂ and B = BŶ [Eq. (57)], with
E = B = 0.1. See Sec. VII for the choice of electric polarization
parameters and magnetic g-factors.

Fermi wave-vector

qF ≡ |µ|
v

=
2|g(K)|

3J
∼ O(EB). (56)

The Fermi velocity at this Majorana Fermi surface is inherited
from the Dirac cone, with vF ∼ v, due to the linearity of the
dispersion. Note that we have ignored the O(B3) mass terms
here, as they are parametrically smaller than the second-order
terms that generate the chemical potential.

Just as for a more conventional Fermi surface, the addi-
tional low-energy excitations present qualitatively change the
thermodynamic properties of this state at sufficiently low tem-
peratures. For example, for temperatures well below the in-
duced O(EB) terms, the specific heat of the perturbed Kitaev
model is O(T ), rather than the O(T 2) in the original model,
leading to a finite linear specific heat coefficient, C/T ∼ γ , 0
as T → 0.

In the next section, we will confirm this simple picture us-
ing a more complete calculation of the spectrum, as well as
explore what happens when some of these terms vanish due to
geometrical effects.

VII. RESULTS

For concreteness, we consider a configuration of the electric
and magnetic fields that allows us to use the different geomet-
rical dependences of the contributions to the effective Hamil-
tonian to isolate different aspects of the physics. We consider a
configuration that can tune smoothly between regimes where
the O(B3) contributions vanish, and those where the O(EB)
contributions vanish.



11

X̂
Ŷ

n̂
E

ψ

B

ψ

FIG. 8. Illustration of the electric (E) and magnetic field configu-
rations (B) considered in Sec. VII, relative to the honeycomb plane.
These fields are parametrized by an angle ψ, as given in Eq. (57).

For each case, we present the Majorana spectrum, and a
few key physical observables, calculated (numerically) using
the complete spectrum [Eq. (51)]. For practical purposes we
need to make some choices in our free parameters. First,
we fix the polarization constants [Eq. (5)] to all be equal
m1 = m2 = m3 = m4 = m5 ≡ m0. This is a completely ar-
bitrary choice, and is made simply to control the complexity
of presentation – we expect that the qualitative features of our
results will not depend strongly on different, but still generic
choices of the mn. Next, we renormalize the energy scales and
the electric and magnetic fields to correspond closely to the
reduced variables (h and ε) that appear naturally in Sec. IV.
To this end, we set J = 1, and take gµB/2 ≡ 1, absorbing the
g-factor and Bohr magneton into the definition of B. For the
electric field, we take m0 ≡ 4, absorbing their units into E, and
choosing the pre-factor to compensate for the corresponding
factor in the definition of ε.

More explicitly, the electric and magnetic fields are taken
to be

E ≡ E
(
cosψX̂ + sinψn̂

)
, (57a)

B ≡ B
(
cosψŶ + sinψn̂

)
, (57b)

where X̂ = (2 ẑ− x̂− ŷ)/
√

6 and Ŷ = (x̂− ŷ)/
√

2. The orienta-
tion of these fields relative to the honeycomb plane is shown
in Fig. 8. These choices yield a chemical potential

µ =


12
√

2
∆

 EB cos2 ψ, (58)

which vanishes for ψ = π/2 and is maximal for ψ = 0. Nu-
merically, we expect then the radius of the Majorana-Fermi
surface to be qF ≈ |µ|/v ≈ 31.76 · EB cos2 ψ

The effective mass that splits the two Majorana bands then
takes the form

m =

(
24
∆2

)
B3|3 sinψ − 5 sin (3ψ)|, (59)

which vanishes for ψ = 0 but is maximal for ψ = π/2. Note
that this function also vanishes for ψ1 ≈ 0.282047π, in be-
tween these two limits.

We characterize the behaviour of the Majorana spectrum
as a function of the angle ψ by looking at two quantities: the
spectral gap, which we define as the energy of the lowest lying
excitation, (zero in the presence of a Majorana-Fermi Surface

I II III

0 π/8 π/4 3π/8 π/2

ψ

0.00

0.25

0.50

0.75

1.00

ψ1 ψ2

Band Gap
Spectral Gap
(
limT→0 |κxy |/T

)
/(κ0/2)

FIG. 9. Illustration of the band gap (mink |ε+(k)−ε−(k)|), spectral gap
(mink,± |ε±(k)|) and thermal Hall conductivity [Eq. (60)] as a function
of the angle ψ [Eq. (57)] for E = B = 0.1. We identify three regions:
region I where the band gap is finite and the spectral gap is zero,
region II where the thermal Hall conductivity has changed sign and
region III where the spectral gap has become finite. The boundary
between regions I & II is denoted as ψ1 ≈ 0.282047π, and the be-
tween II & III is denoted as ψ2 ≈ 0.3487π. Sec. VII for the choice of
electric polarization parameters and magnetic g-factors.

or Dirac point) and the band gap, which we define as mini-
mum energy between the two Majorana bands (which is in-
duced by the O(B3) from the magnetic field). Explicitly, we
define the band gap as mink |ε+(k) − ε−(k)| and the spectral
gap as mink,± |ε±(k)|. These quantities are shown in Fig. 9 as a
function of the angle ψ, with the Majorana-Fermi surface and
spectrum near the band gap shown in Fig. 10 for a handful of
representative angles. Starting from ψ = 0 where the chemi-
cal potential is maximal and the O(B3) term vanishes, both the
spectral and band gaps are zero. For small ψ, the band gap be-
comes finite, while the spectral gap remains zero (labelled as
region I). The band gap reaches a maximum as a function of
ψ before going to zero at the special value ψ1 where the O(B3)
term vanishes (the spectral gap is zero throughout). Increasing
ψ1 past this point, the Majorana-Fermi surface shrinks (region
II) and then disappears near ψ2 ≈ 0.3487π, and the spectral
gap then becomes finite (region III). A gapped spectrum, sim-
ilar to what is found with only the magnetic field, is recovered
as ψ approaches π/2.

These qualitative features can be diagnosed by looking
at the behaviour of the thermal Hall conductivity of the
Majorana-Fermions as T → 0 (Fig. 9), computed via [62]

lim
T→0

κxy

T
=
π2

3


k2

B

~




1
V

∑

εn(k)<0

F(n)
xy (k)


≡ κ0

∑

n

Ω(n), (60)

where F(n)
xy = ∂xA(n)

y − ∂yA(n)
x is the Berry curvature of the

nth band, V is the volume of the system and A(n)
µ (k) =

−i〈n(k)|∂µ|n(k)〉 is the associated Berry potential. This can
be naturally expressed in units of κ0 = πk2

B/(6~) and the to-
tal (occupied) Berry curvatures Ω(n) ≡ 2πV−1 ∑

εn(k)<0 F(n)
xy (k)
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FIG. 10. (a-f, top) Illustration of the spectrum of the Majorana fermions as a function of E and B (parametrized by ψ [Eq. (57)]) near the
location of the (minimal) band gap at K∗. Gapless phases with Majorana-Fermi surfaces (a-d) and gapped phases (e,f) are shown. (a-f, bottom)
Illustration of the Majorana-Fermi surfaces as a function of E and B (parametrized by ψ [Eq. (57)]). The location of the band gap (K∗) is
indicated. For ψ > ψ2 ≈ 0.3487π (e,f) the system is gapped and there is no Majorana-Fermi surface. Throughout we choose field strengths
E = B = 0.1. See Sec. VII for the choice of electric polarization parameters and magnetic g-factors.

for each band [83]. When the spectrum is gapped, the Ω(n)

are the Chern numbers of each band and thus the thermal Hall
response is quantized in units of κ0.

In region I, with ψ , 0, the finite O(B3) contribution to the
spectrum induces finite Berry curvature at the bottom of the
two Majorana bands, near the location of the band gap. This
Berry curvature gives a non-zero contribution to the thermal
Hall conductivity, following Eq. (60). However, due the pres-
ence of the Majorana-Fermi surface the effectively “occupied"
states do not include the full Brillouin zone. Thus in region I
κxy/T is not integer or rational valued when expressed in units
of κ0, varying continuously as a function of ψ. At the special
angle ψ1 the O(B3) term vanishes, changing sign; the thermal
Hall conductivity follows suit, remaining finite and unquan-
tized in region II, but with opposite sign relative to region I. In
region III, for ψ > ψ2, there is no Majorana-Fermi surface, and
the band gap is open and one thus recovers the half-quantized
thermal Hall conductivity expected from Ref. [5].

VIII. DISCUSSION

We first discuss the relevance of these results to the body
of related theoretical works on the Kitaev model and ad-
dress the effects of interactions on the Majorana-Fermi surface
(Sec. VIII A). We then discuss some estimates for the electric
fields that may be required to observe this physics, as well
as some experimental hurdles in reaching these field strengths
(Sec. VIII B).

A. Theoretical

Let us begin with the relationship of the gapless states in
this work to some recent studies in the literature. A set of
four-spin interactions, similar to those derived in Sec. IV C at
O(E2), were studied in Refs. [70,84]. These are not identical
to those studied here; generically the four-spin interactions
generated at O(E2) are anisotropic and there is a fixed rela-
tionship between the coefficients of the two different types of
operators; however, given their similarity, some discussion is
in order. In Ref. [70] it is shown that for large couplings these
operators lead to a change in the ground state flux sector of
the model, stabilizing a rich variety of “vison crystals” [70].
In our analysis, we have explicitly restricted ourselves to the
zero-flux sector, assuming that perturbations from the elec-
tric and magnetic fields are sufficiently small to leave the flux
sector unaffected. The results of Ref. [70] can give a rough
idea of the range of validity of this approximation; using their
notation, the coefficients of the four-spin terms should satisfy
K3/K1 . 0.1 and K′3/K1 . 0.4. In our notation, ignoring
the (complicated) direction dependence of E, this implies the
loose criterion m2

0E2/∆ . 0.1 (where E is the electric field
strength) to preserve the zero-flux sector. Alternatively, one
may take the view that applying a strong electric field may
be a route to stabilizing the “vison crystal” ground states de-
scribed in Ref. [70]. However, given this likely would push
our perturbation theory to the limit of its regime of validity
altogether, one must be cautious.

Some of these concerns could be addressed by more de-
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tailed numerical studies. For example, a numerical search for
the true ground state flux sector [70] through quantum Monte
Carlo studies at finite temperature [17, 18]. The degenerate
perturbation theory itself could be validated using numerical
techniques (such as DMRG or exact diagonalization) on the
original model [Eq. (2)].

We also note the work of Ref. [76], which discusses the
presence of Majorana-Fermi surfaces in a Kitaev model in the
presence of site-dependent magnetic fields and off-diagonal
exchanges Γ and Γ′ [11]. In their proposal, these fields are
generated by zigzag magnetic ordering in adjacent honey-
comb layers, providing a source of both time-reversal and in-
version symmetry breaking. While magnetic ordering in some
layers, with a Kitaev spin liquid in other layers may not seem
particularly natural, the simultaneous breaking of these sym-
metries plays a similar role to the presence of E and B in this
work.

1. Stability

An important question that must be addressed for the
Majorana-Fermi surface we find in this work is stability to
interactions. Similar states with gapless surfaces in three-
dimensional Kitaev models [85–92], as “Bogoliubov-Fermi"
surfaces. For these systems, the absence of this kind of (effec-
tive) nesting symmetry precluded such an instability.

Generically, in the case of interest for the Kitaev model in
electric and magnetic fields, all of the rotational symmetries
of the system are broken, along with time-reversal symme-
try. Thus, similar to the case of time-reversal breaking non-
centrosymmetric superconductors, the system should be sta-
ble to the inclusion of weak short-range interactions. This
can be seen from the symmetries of the problem: with finite,
generic E and B the only remaining symmetries are discrete
translations. Without any nesting vectors, interactions can
only link a finite number of patches of the Majorana-Fermi
surface and thus the enhancement that typically leads to insta-
bility is absent [93, 94]. Analogues of superconducting insta-
bilities are also avoided [95], given there is no U(1) symmetry
of the fermions left to spontaneously break [91].

However, this argument has a few subtleties, given that the
perturbations that generate the Majorana-Fermi surfaces also
generate the interaction terms, just at higher order in pertur-
bation theory. To see why this could complicate the analysis,
note that in Sec. VII we showed that at second order in E
and B the Majorana-Fermi surfaces are ellipses, which enjoy
a kind of effective inversion symmetry through their centers.
At higher-order, contributions would render these surfaces
non-elliptical (see Fig. 7), but would also include Majorana-
Majorana interactions on equal footing. We leave the (poten-
tial) competition between these two effects, and thus the ulti-
mate fate of these Majorana-Fermi surfaces to future studies.

We note that at the special angle ψ2 where the spectral
gap closes, the Majorana spectrum is that of a quadratic band
touching, with a spectrum ∝ |k|2. While the thermodynamic
signature, C ∝ T , this is the same as the Majorana-Surface,
(due to its finite density of states) the effects of interactions

FIG. 11. Illustration of z-type coverings. A product of Wp over either
the shaded plaquettes (or the unshaded plaquettes) yields the operator
Σz used in Eq. (61). The Σx and Σy operators are defined similarly,
with the plaquettes in the product sharing x-type or y-type bonds.

may be different. A similar quadratic band touching point ap-
pears in AB stacked bilayer graphene [96]. This has attracted
attention due to its instability to weak short-range interactions,
which leads to the emergence of a variety of new phases. We
leave the discussion of the interaction effects on this quadratic
Majorana spectrum, and any potential instabilities, to future
work.

2. Correlations

Finally, we note that the gapless nature of the spectrum in
our model should lead to algebraic correlations in the spin-
spin correlation functions. However, these may be “hid-
den" [97–99]; for example, as in the ideal Kitaev model the
spin-spin correlations are ultra-short range in spite of the gap-
less Dirac spectrum of the Majorana fermions. Although the
result of Ref. [97] is not directly applicable in our effective
Hamiltonian, it can be applied directly to the original model,
Eq. (2), including the electric polarization operator. Explicitly,
using the criterion from Ref. [97] if we consider the electric
and magnetic field perturbation as V ≡ −E · P − B · M from
Eq. (2), then

[Σµ,V] , 0, (61)

where Σµ is defined to be the product of flux variables over
strings of plaquettes [97], as shown in Fig. 11. We thus expect
that gaplessness of the Majorana-Fermi surface to manifest in
power-law spin-spin correlations. Alternatively, this can be
seen by computing the associated canonical transformation of
the spin operators when carrying out the degenerate perturba-
tion theory of Sec. IV, as discussed in Ref. [99] in a related
context.

B. Experimental

We now address the potential applicability of these results
to the growing family of “Kitaev materials" [6, 7, 13] that
are believed to have dominant Kitaev exchange. Ideally, one
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would like to apply electric and magnetic fields of magnitude
that are realistically attainable and generate a Majorana-Fermi
surface that could be observable in thermodynamic, transport
or spectroscopic probes.

To do so, we must determine a reasonable range of es-
timates for the coefficients mi that appear in the (effective)
electric polarization operator, as well as take a typical value
for the Kitaev exchange K. The latter is straight forward: in
transition metal Kitaev materials one typically expects K ∼
5 meV [7, 100]. We thus expect J = K/4 ∼ 1.25 meV and thus
the relevant flux gaps are ∆ ∼ ∆′ ∼ 0.35 meV. Estimating the
mi is more complex, with several distinct microscopic mech-
anisms potentially contributing at the same order [59, 60]. In
Bolens et al. [60] these are estimated as the sum of two con-
tributions: mn ≡ aAn + Bn where a is the nearest-neighbour
distance (we will take it to be as in α-RuCl3, a ∼ 3.5Å [101]).
The first contribution depends on the detailed choice of atomic
and hopping parameters, but is estimated to be as large as
A ∼ 10−2ea [60] where e is the electron charge. The con-
tribution Bn is not estimated in Ref. [60], so we will simply
neglect it in this discussion. We thus have the estimate of
m0 ∼ 3.5 · 10−2eÅ = 3.5 · 10−9 meV/(V/m). This estimate
is very rough and errors as large as an order of magnitude
would not be surprising, given the uncertainty in the micro-
scopic physics.

Given this value for m0, we can now estimate the electric
field strengths required to give a Majorana-Fermi surface of a
given size. This size is set by the chemical potential which,
for crossed fields (see Sec. VII) is µ ∼ 3

√
2gm0µBEB/(2∆)

[restoring some constants in Eq. (54)]. Taking g ∼ 2 and
B ∼ 10 T we arrive at

µ ∼
{
2.4 · 10−8 meV/(V/m)

}
E.

Since we are estimating J ∼ 1.25 meV the Dirac velocity is
v ∼ 3.75 meV and so the radius of the Fermi surface is given
by [Eq. (56)]

qFa ∼ |µ|
v
≈ 6.4 · 10−9

(
V
m

)−1

E.

To get a qF that is large, say qFa ∼ 0.1 we would thus need
that E ∼ 107 V/m ≡ E0. This is a very large field [102];
though we note that static electric fields of of magnitude
∼ 106 − 107 V/m have been used in studies of magnetic sys-
tems [103–107].

This naïve analysis must be supplemented with a number
of caveats. First, it must be self-consistent: we have that at
these large fields m0E0 ∼ 0.1 meV which is not significantly
smaller than the flux gap ∆ ∼ 0.35 meV, so our perturbation
theory may be approaching the edges of its validity. Further,
we have the requirement that we must remain in the zero-flux
sector [70]. For this large electric field m2

0E2
0/(J∆) ∼ 0.02;

reasonably far from where one might expect a transition to a
new flux sector (see discussion in Sec. VIII). [108] Similar
considerations must be applied to the magnetic field as well,
concerning the validity of its perturbation theory and its effect
on the phase boundary of the zero-flux phase. One route to

lowering the required electric field would be via larger mag-
netic fields along a direction where the O(B3) terms vanish.
Alternatively, one could search for Kitaev materials where K
or ∆ are smaller; rare-earth Kitaev materials [109, 110] may
be promising alternatives, if the size of electric field coupling
is not dramatically changed. Kitaev materials based on metal-
organic frameworks [111], which have longer bond-lengths,
may also change the balance of the exchange and electric field
interactions.

More practically, at large static fields such as these one must
also be aware of effects on the physical system that are not
included with our minimal model [Eq. (2)]. This includes
potential structural distortions of the lattice along the field,
the introduction of charge carriers through electrostatic dop-
ing as well as the modification of the microscopic exchange
processes due to the field. More dramatically, the material
itself could experience dielectric breakdown; for Mott insula-
tors breakdown electric fields of order ∼ 108−109 V/m are not
atypical, given the expected relationship to the on-site repul-
sion [112]. One potential route to avoid some of these issues
is to consider large electric field pulses, perhaps through the
application of laser light, that can reach these field strengths
over short time windows. Realizing this physics only within
a short time window (long with respect to the spin dynam-
ics) would however limit the experimental probes available to
characterize the system.

An alternative route to large static electric fields could be
through the engineering of heterostructures of Kitaev mate-
rials. Recently, heterostructures of graphene (single and bi-
layer) and (bulk and monolayer) α-RuCl3 have been reported
in the literature [113–116]. In each case, the associated poten-
tial difference (large effective electric field) results in signifi-
cant doping of both the graphene and the α-RuCl3. While the
effect of these fields appears to be too strong for our purposes,
the possibility of van der Waals heterostructures of Kitaev ma-
terials as a platform to explore the electric field physics dis-
cussed in this work remains an intriguing possibility. We note
that several recent theoretical works have explored the (re-
lated) effect of tunnelling in such heterostructures [117–120]
through the effect of localized electric fields.

While each of these complications to achieving the large
electric fields needed here are important, these need not be
insurmountable. From the properties of the Majorana Hamil-
tonian these surfaces can appear whenever we break time-
reversal and inversion symmetry simultaneously; combined
electric and magnetic fields are simply the minimal pertur-
bation that does so. Thus, while we have derived our results
within a well-defined framework for the pure Kitaev model
with a specific (though generic) electric polarization operator,
we expect that generation of a Majorana-Fermi surface not
to be strictly dependent on these implementation details. For
example, physics similar to that introduced here may be intro-
duced by disorder that breaks inversion symmetry. Explicitly,
something akin to charged defects could introduce in-plane
electric fields and, in regions where these fields are sufficiently
uniform, our results would apply. Introducing a magnetic field
would then generate a Majorana chemical potential in concert
with these defect fields. We leave the exploration of these
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possibilities for future work.
Finally, let us make a connection to more conventional

Magnetoelectric effects that have been extensively discussed
in multiferroic materials. A first step to gauge the importance
of these kinds of magnetoelectric interactions, before embark-
ing on a detailed search for a Majorana-Fermi surface, will be
to look at the bulk magnetization as a function of electric field
strength. As in conventional Magnetoelectric materials, due
to the presence of the O(EB) terms in the effective Hamilto-
nian, one expects that at leading order (fixing directions and
coupling coefficients)

M ∼ χB + αE2B,

where χ is the susceptibility and α a Magnetoelectric cou-
pling. A similar term, with E and B switched, would appear
in the electric polarization. This effect could be measurable,
even if making a sufficiently large enough Majorana-Fermi
surface is not feasible, and could provide some guidance on
the size of the unknown couplings, mn, that appear with the
polarization.

IX. CONCLUSION

In summary, we have analyzed the effects of combined
static electric and magnetic fields on Kitaev’s honeycomb
model. Starting from the symmetry-allowed effective polar-
ization operator [59, 60], we used degenerate perturbation the-
ory to derive an effective Hamiltonian to second-order in both
the magnetic and electric fields. This effective Hamiltonian is
solvable and describes a set of (free) Majorana fermions with
a Majorana-Fermi surface over a wide range of parameters,
including the neighbourhood of the Kitaev spin liquid. We
explored the effects of the O(B3) gap-opening perturbation,
showing how it competes with the generation of the Majorana-
Fermi surface depending on the relative orientations of Ê and
B̂. The spectrum of this spin liquid with Majorana-Fermi sur-
face was characterized in the weak field limit, where we de-
rived the low-energy form of the dispersion, and determined
the thermodynamic properties and thermal Hall coefficient.
Finally, we discussed some related work, speculated on the
effects of interactions and provided rough estimates of the
magnitude of electric and magnetic fields that are required to
render the size of the Majorana-Fermi surface significant.

We hope that our results further motivate the use of elec-
tric fields as potentially useful perturbations in Kitaev ma-
terials, such as α-RuCl3. Not only in linear response (as in
Refs. [59,60]), but as a tuning parameter that could shed light
on whether a Kitaev spin liquid is present and potentially gen-
erate a new spin liquid with a Majorana-Fermi surface. Many
questions remain, such as addressing the dynamics of this gap-
less liquid, the effect of temperature and the role of dilution
and bond-disorder on this state. The answers to these ques-
tions have proven a rich source of insight in Kitaev’s model.
We hope that future work on liquids with Majorana-Fermi sur-
faces, as in the models presented in this work, can be similarly
fruitful.
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Appendix A: O(B3) contributions to the effective Hamiltonian

The most general term we can write at O(B3) in our pertur-
bation theory is given by:

−(gµB)3
∑

µ,ν,λ

∑

i, j,k

BµBνBλ

[
P0σ

µ
i

(
1 − P0

∆

)
σνj

(
1 − P0

∆

)
σλk P0

]
,

where, as in the main text, we have used that the resolvent re-
duces to R = (1 − P0)/∆. From the flux patterns generated by
each piece (see Fig. 12), we see that to obtain a combination
of operators that leads us back to the zero state flux sector, one
needs µ, ν, λ to be a permutation of x, y, z. All of these permu-
tations yield the same operator, and thus can be accounted for
with an overall factor of 3! = 6. Noting that P0 MP0 = 0 we
can see that the only non-zero terms are

− 6hxhyhz

∆2

∑

i, j,k

[
P0σ

x
i σ

y
jσ

z
kP0

]
.

There are two choices for {i, j, k} which will give us non-zero
contributions. One is given by i = j = k ∈ {A, B}

− 6hxhyhz

∆2

∑

i

[
P0σ

x
i σ

y
iσ

z
i P0

]
= −6hxhyhz

∆2 (iN),

which just gives an unimportant constant. The second non-
zero contribution is generated by a configuration such as the
one shown in Fig. 12.

To make this more explicit, write the O(B3) correction (il-
lustrated in Fig. 12) as

− 6hxhyhz

∆2

{∑

i∈A

[
P0σ

x
i+xσ

y
i+yσ

z
i+zP0

]
+

∑

i∈B

[
P0σ

x
i−xσ

y
i−yσ

z
i−zP0

] }
.

σx
i+x

σ
y
i+y

σz
i+z

i

FIG. 12. Illustration of a contribution to the O(B3) part of the effec-
tive Hamiltonian, for i ∈ A. The relevant pieces of the magnetization
operator are indicated by thick bonds.
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Finally, writing these operators in terms of the Majorana
fermions we arrive at

− 6hxhyhz

∆2

∑

2〈i j〉α(β)γ

εαβγicic j, (A1)

as stated in Sec. V [Eq. (49)].
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