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Lattice parameter and Raman spectra of isotopically mixed diamond
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The influence of isotope mass and anharmonicity on the lattice parameter of isotopically mixed diamond is
studied in a simple theoretical model. The performed calculations confirm that in good approximation the
lattice parameter changes linearly with the isotope concentration. We show that the stretching harmonic-force
constants for puré?C and *°C differ slightly and we explain why the Raman-frequency ratio is smaller than
the square root of the ratio of the corresponding masses. Finally, the positive bowing of the Raman frequency
in isotopically mixed diamond is discussd&0163-18207)02642-§

. INTRODUCTION Harrison?° using the tight-binding TB) theory and some

. . . .results following from the density-functional theory, simpli-
_Phy5|cal properties of crystgls are affected by an ISOmp'(fied the calculation and the bond energy can be expressed in

mixture. For example, the lattice parameter and the Ramap, s of one-electron atomic energies and some universal

frequencies depend weakly on the isotopic cOmpOSItiony,rameters. The universal parameters replace the compli-

while the thermal conductivity is very sensitive to iSOtopiC ¢ated interaction integrals and are common for many cova-

mixture. The isotopic substitution in a crystal is a perturba-jgnt crystals.

tion with change of only one parameter—the isotopic mass. From the bond energy we calculate the stretching force

Contrary to substitutions by most other defects it does nogonstant and thus the vibrational energy of the bond. Then

change the largest interaction in a crystal—the Coulomb inwe determine the bond length from the minimum of the

teraction. Therefore the properties of crystals upon isotopi¢ielmholtz free energy instead of the minimum of the adia-

substitution are changed due to isotopic mass change and dbatic energy only.

to the breakdown of the translational symmetsyte disor-

den caused by substitution. The influence of isotopic substi- Il. BOND ENERGY AND BOND LENGTH

tution on properties of materials has been extensively studied

and many aspects of these studies have been revitwed. In TB theory for the tetrahedrally coordinated crystals

Recently the isotopic dependence of the lattice constant arf@ur orthogonal and normalizesip® hybrids are chosen on

the Raman frequency of diamond has attracted int&rést. each atom as the basic wave functions. The electronic bond

An isotopic mixture of a diamond structure crystal can beenergies are given &3

colnzsc,:idered as am\B;_, alloy in which A=C and B . 2

=“C. The measurement of the lattice constant of the _ o s dV2

13cl?c, _, alloy in Ref. 4 shows that the lattice parameter e 5(8h+8ﬁ)iq Vot Vst Klen|

is—with good accuracy—a linear function of the isotopic

@

compositionx. Contrary to Ref. 4, in Ref. 7 an x-ray- where the energy with the minus corresponds to the bonding
ents the energy of the anti-

diffraction measurement was reported indicating very wealtate; while the plus sign repres p S
parabolic dependence of the lattice constant with composonding state. In Eq. (1) Va=(en—2)/2, &y
tion. On the other hand, the Raman frequemeghowé a = (e<#+3e5#)/4, wherees andz , are the free-atom ener-
remarkable parabolic dependencesanin Ref. 6 the pres- dies fors andp states) V,=f(#7)%2/md?, with m being an
sure dependence of Raman frequencies'farand °C was  €lectron mass, determines the coupling between two atoms
reported. The decrease of the rafitw/*%w with pressure and the functiorf(7) is expressed in terms the four univer-
was interpreted as a subtle but quite distinct quantum contrisal coefficientszsg,= —1.40, 75p,=1.84, 77,,,= 3.24, and
bution to the physical properties of diamond. Mppr= — 0.81. For example, in the perfect Si crystal, for two
The A,B,_, alloy system is attractive for comparing the sp>—sp® hybrids directed against each other on two neigh-
experimental deviation from Vegard’s rule with theoretical boring atomsfs s s,3(7) = 7s,/4— 2V3 95 pel4— 37 p,14=
calculations. Becausk andB are isotopes of the same atom —4.373. Theq is the electron occupancy of the bond in units
there is only one crystal structure in the system and no effeaf electron charge and, is the average oy andef. The
of relative valency and electronegativity between the conparameterk is only one fitting coefficient entering this
stituents. The main purpose of the present investigation is thiheory. It is determined from the requirement that calculated
theoretical study of the lattice parameter and Raman frebond lengths for the C, Si, Ga crystals equal the experimen-
quency as a function of the compositian Our calculation tal ones. The value d is the same for all crystals built from
will be based on the Harrison theory for the bond energy irthe elements entering the same row of the periodic system.
tetrahedrally bonded crystals. Many properties of solids andfor examplé, for the C row k=2.5, for the Si rowk
molecules can be determined by calculating the bond energys 1.455, and for the Ge row=1.33.
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The determination of the bond length from the minimum
of the bond energyor from the minimum of the total energy
in ab initio theorie$ is only an approximation since the ki- 208 |-
netic vibration energy is neglected. The vibrational energy
depends on the interatomic distance and hence we should
search for a minimum of both electrostatic and vibrational

12C - 12C pair 13C - 13C pair ;

210 . - \

=
O©-212
energies. The equilibrium interatomic distance can be deter- <
mined from the minimum of the Helmholtz free eneffgyor %-2 14+
the bond* S I
N 216 1
1 hw 3 s I
F(d,T;M)=g(d)+ sfio+kgT In[1—exp — ——=]| |, T
2 kgT =
2) L2220+
wherekg is the Boltzman constant ardis the bond energy 222
(1) for atoms interacting by the Coulomb forces.is the [ L L L L
harmonic vibrational frequency for atoms in a single bond 220543 T1b4d 1545 1546 1.547 1548 1549
and is given by Bond length (A )
ki FIG. 1. The Helmholtz free enerd®) for single C-12C (solid)
w="\/—, €)] and °C-°C (dotted bonds afT=300 K. The origin of the energy
M was shifted by 13.96 eV and the energy was then multiplied by

where k;,= d°c/d? is the harmonic-force constant and 1000 to show the shape of the curves near minima. The relative
=MaMg/(MAo+Mjp) is the reduced mass. This is the shift of minima is seen distinctly.

stretching-type vibration of atoms entering the bond. The

second term in Eq(2) is the energy of the zero-temperature =2.35870 A at temperature T=0K. This gives
vibration and it indirectly depends on the atomic miksAt ~ Ad(?Si-*°Si)=0.000 22 A andAd(**Si-*°Si)=0.000 11 A.
T=0K only the first and second terms in E@) influence  The first-principles calculation of the lattice parameter can-
the bond length. The mass dependence of the bond lengttot give precisely the absolute value of this parameter but
originates from the quantum-mechanical effect of the zerothe relative values for a crystal made of various isotopes are
temperature vibration. We demonstrate that the anharmonigiven quite accurately. From Fig. 4 of Ref. 11 one can read
ity of £(d) directly influences this dependence. In order tovalues of Ad(?%Si*%Si)=0.00017 A and Ad(?°Si-*°Si)
determine the equilibrium distance B0 we should setto =0.000 09 A, i.e., there is good agreement between calcula-
zero the derivative of the Helmholtz energy. Thus using Egstions using essentially different techniques.

(2) and(3) we arrive at the condition

Ill. EFFECT OF ISOTOPIC SUBSTITUTION

de o PPelad® _ _ .
4 The Bragg x-ray-diffraction averages the influence of for-

—+ ———==0.
[ 92 2 . H N
ad 4\/; 9%l ad eign atoms in a crystal on the lattice constant over many

If the third derivative ofs is assumed to be zefbarmonic diffraction surfaces. This results in a dependence of the av-
approximation then we obtain the equilibrium distance from €rage lattice parameter on the concentration. Many properties
the minimum of the adiabatic energy, i.@s/ad=0. The of crystals are studied using the V|rt_ual crysta_ll appro>§|mat|on
third derivative is usually negative and therefore the firstVCA). qu simplest example of this approximation is Veg-
derivative in Eq.(4) should be positive. This means that ard’'s rule._ It gives the lattice constant _of an alloy as the
consideration of the vibrational energy makes the bondoncentration-weighted sum of the lattice constant of the
length longer than the bond length determined from the adiatomponents. In terms of the bond length, Vegard's rule can
batic energy only. Figure 1 shows the Helmholtz energy fo?€ Written as
single *2C-?C and *3C-'3C pairs. Two crystals made of two _
different isotopes have different bond lengiisee Table ) dav=Xdan+(1=X)dge ©)
because they differ ip.. In both cases the adiabatic enetgy  Zen'? suggested to calculate the average lattice constant from
is the same but Ed4) is fulfilled at two different values of the concentration-weighted sum of the specific volumes of
d. Therefore the harmonic-force constants for crystals comthe end-point materials. This results in the following equa-
posed from different isotopes of the same element diffetion for the average bond length:

slightly (see Table)l because they are calculated at different

equilibrium positionsd. The crystal composed of the heavier dia) |3
isotope has a smaller bond length than that made of the day=0dgg| 1—X 1_dT (6)
lighter one. BB

To test Eqg.(1) we compare the bond length calculated Equationg5) and(6) totally neglect the way in which atoms
using Egs.(1)—(4) with the first-principles calculatidh for  are distributed in an alloy. The average lattice parameter de-
Si crystals made of isotope¥Si, 2°Si, and %°Si. We ob-  termined from x-ray measurements does not always coincide
tained the interatomic distanai(?8Si)=2.35892 A [taking  with the average parameter calculated in the VCA. The at-
k=1.455 in Eq. (1)], d(*°si)=2.35881 A, andd(3°Si) omsA andB can be randomly distributed among thél 2
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TABLE I. The results of the bond length and vibrational frequency calculation for¥6e3C (AA),
2c12c (BB), and*2C-1°C (AB) pairs.d,y, kay, .y are linear interpolations of bond length, force constant,
and frequency ak=0.5. We give more digits than follows from the accuracy of the absolute values of
calculated quantities to show the relative change with the isotopic mass. To kbtaiEqg. (3) it is necessary
to multiply the force constant from this table by a factor of 4.

Quantity Calc.T=0K Calc. T=300K Expt. T=300 K
dan (A) 1.545427 1.545988 1.544@ (8]
dag (A) 1.545538 1.546038

dgg (A) 1.545647 1.546093 1.54460 (8]
da(x=0.5) (A) 1.545537 1.546040

Ad/d=Aala 1.42< 104 0.68< 104 1.5x10°* [5,8]
kan (eV/IA?) 11.48179 11.44412

kag (eV/IA?) 11.47433 11.44077

kgg (eV/IA?) 11.46700 11.43708

Ka(x=0.5) (eV/A?) 11.47440 11.44060

wap (cm™h) 1381.09 1378.82 1281.p6]
wap (cm™Y) 1409.11 1407.05

wgg (cm™) 1436.56 1434.68 1332.[16]
wa(x=0.5) (cm'?Y) 1408.82 1406.75

lattice sites(on two face-centered sublattigeby various Using the statistical weight of various pairs of atoms, the

ways. The real crystal possesses only one particular distribwiverage interatomic distanak,, between two atoms in an
tion. Two real crystals with the same concentration of atomslloy can be determined as

A and B will possess different random distributions. The

total number of distributions can be calculated for a given dav=X?daa+2X(1=X)dag+ (1—X)*dgg. ®

number of atom# andB. Then it is necessary to calculate The apove formula contrary to formulas given by E€®.
the number of théAA, AB, andBB pairs for each distribu- 54 (6), requires for an estimation af,, the knowledge of

tiqn. Th_e difficulty consists of sepgrating_ the distributionsdAB_ Equation(8) gives the linear dependence eprovided
with a given number of corresponding pairs of atoms. Eac 5= (daa+agg)/2. This is, in good approximation, the case
such distribution corresponds to a crystal with a particularOf the 13C12C1 alloy. The Zen formulg6) applied to dia-

X —X .

lattice parameter. In genera_ﬂ, .thIS task is not tracté%l_e..mond atx=0.5 does not show a deviation from Vegard's
Therefore, the number of pairs is usually calculated statisti-

. X . rule.
cally. Namely, the probability that two nearest lattice sites N oo . i
are occupied by C atoms is<2. Similarly, 2x(1—x) is the In the approximation, where the vibrational energy is ne

- . . . A : lected, the bond length is determined from the setting to
%gk_)gg'“g tlr;?:t_lczxg E\évoforlﬁ'ght_’r%réngvse'trzzee'mﬁ;&? ggr Ofgero of the derivative %f the bond energywith respect tog
pairs isN, = X2pN/2 and the average numberAB pairs s thr:e mtg_ratt)orr_uc d|stan_cé. The minimum of the total energy
Nag=2x(1—x)pN/2. Herep=4 is the coordination number Et ca |§1 atic potenﬂhldepends ufpor:l the elect_:_on|cds_ft][uc-

f atoms around a given lattice site. TNgg calculated in ure an not.upon the masses of t ° atoms.. Wo di grent
?his way is smaller than the number of Similar pairs Calcu_lsotoplc species of the same atom will have different vibra-

lated f : distributionghi be directly checked tional frequencies only because of the difference in isotopic
ated from various distribu ionghis c:’:m € Jrec_ Yy CheCKed -, 4sses. The ratio of the vibrational frequencies for the&C
by calculating distributions for a “crystal” with a small

X . d 13C in the *2C-*2C and '3C-**C bond pairs is gi
number of atoms, sajy=4,5,6 and with various contents of an in 'he an ond pairs is givefisee

A andB atoms insidg The number of various pairs of atoms Bq. (9] in this approximation as

calculated in this way has a purely statistical nature. Addi- w(*2C) \/,VTB \/TB

tionally, there is a physical factor which influences the dis- r=—m~=\ = \/>5=1.040 833, 9

tribution of pairs. In the approximation, where the alloying is w(*C) Ma 12

considered as a chemical reaction of the typeA  whereM, andMjg are the masses dfC and '%C, respec-

+BB=2AB, the equilibrium is reached wh&h tively. For diamond-structure crystals, the optical frequency
o(I") at thel” point is related to the vibrational frequen(S)
as follows: w(I') = \/4/3w. Therefore, the ratio of the Ra-

(7)  man frequencies for crystals composed frdfC and **C
isotopes should be given by E). The ratior for the
observed Raman frequencies MC and 'C crystals at

If the nominator in the exponent containing the bond energyT=300 K (see Table )l is r=1332.1/1281.21.0397.

of various pairs is positive, the real numberNfg pairs in  The ratio of calculated bond pair frequencies is

the crystal will exceed the number of these pairs calculated=1436.56/1381.08 1.040 16 at T=0K and

on a statistical basis. r=1434.68/1378.821.040 51 atT=300 K. We find that

(Nag)? 4 ex —2eppteanteps
(Naa)(Ngg) kgT '
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the ratior is smaller than the value given by E@). This  order of 10° A. Therefore even if the ordered-alloy ap-
implies that in crystals made of different isotopes theproximation accounts for only, say 20—-40% of the effect, it
harmonic-force constants are not the same and this is a direstill confirms the experimental accuracy of Vegard's rule for
consequence of anharmonic term in the interatomic potentiajiamond. The effect of disorder can be treated by consider-
The VCA can be used to derive the equation for the for-ing a crystal as a large cluster of randomly distributed atoms
bidden electronic-energy gap or for the Raman frequency. Ijyhich interact not only in the nearest-neighbor approxima-
VCA the vibrational frequencies at the poifitare deter- ton. n such a crystal the nearest-neighbor atoms have many
mined from the dynamical matrix different bond lengths scattered between the values for the
2 end-point materials. In view of the above results we think
AMan—o?, Mg that the lattice parameter measurements in Refs. 4, 5and 7, 8
4Mga,  AMgg—w?/’ do not contradict each other. In both measurements different
crystals were used. Even for the same concentration they
differ in the distribution of isotopeshomogenity and this
might slightly influence the measurements at a precision of

where the matrix elementMap=XXKya+2X(1—X)Kag
+(1_X)(1_X)kBB/(XMA+(1_X)MB and MBB:_MAB

=Maa- Using the_values of the force constants from T_able he order of 10% A. The measured fractional difference
one obtains atx=0.5 the small negative bowingw=

—0.8 cni ™. This is due to the fact that the “reduced” mass Aa/g atT=300K 's in reasonable agreement with _the the-
[XM,+(1—x)Mg]/2 of the AB pair in the VCA is larger oretical estimation aT=_O_K. The decreas_e dka/a W|th_a
than the reduced mags=M \Mg /(M 5+ Mpg). temperat.ure increase is in agreement ywth thel experimental
observation for Ge crystals made of different isotdpes
well as with first-principles calculations for Si crystafs.
The positive or negative bowing of the bond length can be
The difference in the bond lengths $iC and 3C crystals ~ observed whertl,g is larger or smaller thandj s+ dgg)/2,
comes out from the difference in the masses of nuclei andespectively. The average zero-temperature vibrational am-
from the anharmonicity of the interatomic potential. As seerplitude u of an atom in a crystal is given approximately by
from Eq.(4), both crystals would have the same bond lengthu= A (n+1/2)/(uw), wheren is the phonon occupation
in harmonic approximation. Because the third derivative ofnumber. We obtained=0.063 and 0.061 A fot2C and 13C
the potential is negative, the real bond length is always largest T=0 K, respectively. AtT=300 K the average ampli-
than that calculated in the harmonic approximation. The diftudes areu(*?C)=0.086 A andu(**C)=0.085 A, i.e., they
ference in the isotope masses induces by means of thge~5.5% of the interatomic distance.
anharmonic-force constant the zeros of Et.at differentd The ordered-alloy approximation predicts for the differ-
for each isotope. In this sense, the harmonic-force constarincewg— w,, a small positive bowing of=0.3 cm ! at x
calculated at differend (seeka, andkgg in Table )) depends  =0.5. The measured bowing of Raman frequency is
indirectly on the isotopic mass. ~5 cm ! and thus we should ascribe about 95% of the bow-
We did not attempt to obtain very accurately the bonding to the effect of structural disordéthe influence of va-
lengths for the end-point materials by a suitable choice otancies is neglect¢dThis can be seen even for two atomic
parametek in Eq. (1) (we have used the commonly acceptedchainsABAB and AABB containing four atoms. They pos-
valug. However, since the parametierwas chosen we can sess the same concentration 0.5. Using the force constant
calculate the difference of the lattice constant between th@s given in Table | we find that the largéRaman frequen-
end point materials. AtT=0K this difference isAa cies for both chains differ by 2 cnd. The conclusion that a
=4Ad/v3=0.00051 A and aff=300K it is 0.00011 A.  Jarge positive bowing of the Raman frequency is a conse-
The experimental value dt=300 K is 0.000 53 A, i.e., itis quence of isotopic disorder was drawn earlier in Ref. 5.
in agreement with the calculated valueTat 0 K. The rea- There, including a smalid hoccorrection for the change of
son why our calculated difference &t=300 K is too small, force constants on interatomic distan@a this way was
can be explained by the crudeness of the Einstein approxpartly accounted the anharmonic effedhis bowing was
mation where the real phonon-dispersion curves are replacedproduced by the coherent-potential approximation method.
by a single frequency of the bond-pair atoms. The calculation performed there in the VCA gave a small
We have assumed that the change of the lattice parametbowing of negative sign.
is due to two effects. First, this is the formation of the bond  The calculated vibrational frequency for th&C-*2C pair
length between the solute and solvent atoms. Second, th& T=0 K is 1436.56 cr?!, while for natural diamond it is
disorder influences the average bond len(tialloy system  1332.1 cm?. This means that our bond energy is a slightly
contains more vacancies than end-point crystal then they willteeper function ol than the real thermal potential. At this
also influence the average value, additionally to disorder efpoint we stress that the adiabatic energy is given analytically
fect). The first effect we can estimate accurately. The bondpy Eq.(1) and since its minimum was adjustéay adjusting
length effect reaches its maximum when the alloy is an orthe parametek), further properties are calculated using its
dered system, i.e., when'®C;’C, , has zinc-blende fixed shape. The differenckw between the end-point mate-
structure. For diamondg=d,,= (daa+dgg)/2 and Eq(8)  rials is 55.47 cm! at T=0K and 55.86 crn* at T=300 K
transforms to Eq(5). We confirm in this approximation the (see Table)l It is in reasonable agreement with the experi-
result of Ref. 4, i.e., the validity of Vegard's rule. We have mentally determined value 50.9 c¢that T=300 K. The Ra-
performed our calculation of th?CfCl,x system keeping man frequency in an alloy with a given concentratiois not
one digit more than experimental precision which is of thesensitive to a particular distribution of isotopes. The reason

IV. RESULTS AND DISCUSSION
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for this is that the vibrational wave comprises the whole ACKNOWLEDGMENTS

crystal and the weight of a particular crystal site in the wave
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