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Lattice parameter and Raman spectra of isotopically mixed diamond
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The influence of isotope mass and anharmonicity on the lattice parameter of isotopically mixed diamond is
studied in a simple theoretical model. The performed calculations confirm that in good approximation the
lattice parameter changes linearly with the isotope concentration. We show that the stretching harmonic-force
constants for pure12C and 13C differ slightly and we explain why the Raman-frequency ratio is smaller than
the square root of the ratio of the corresponding masses. Finally, the positive bowing of the Raman frequency
in isotopically mixed diamond is discussed.@S0163-1829~97!02642-8#
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I. INTRODUCTION

Physical properties of crystals are affected by an isoto
mixture. For example, the lattice parameter and the Ram
frequencies depend weakly on the isotopic compositi
while the thermal conductivity is very sensitive to isotop
mixture. The isotopic substitution in a crystal is a perturb
tion with change of only one parameter—the isotopic ma
Contrary to substitutions by most other defects it does
change the largest interaction in a crystal—the Coulomb
teraction. Therefore the properties of crystals upon isoto
substitution are changed due to isotopic mass change and
to the breakdown of the translational symmetry~site disor-
der! caused by substitution. The influence of isotopic sub
tution on properties of materials has been extensively stu
and many aspects of these studies have been reviewe1–3

Recently the isotopic dependence of the lattice constant
the Raman frequency of diamond has attracted interes4–8

An isotopic mixture of a diamond structure crystal can
considered as anAxB12x alloy in which A513C and B
512C. The measurement of the lattice constant of
13Cx

12C12x alloy in Ref. 4 shows that the lattice paramet
is—with good accuracy—a linear function of the isotop
composition x. Contrary to Ref. 4, in Ref. 7 an x-ray
diffraction measurement was reported indicating very we
parabolic dependence of the lattice constant with comp
tion. On the other hand, the Raman frequencyv shows4 a
remarkable parabolic dependence onx. In Ref. 6 the pres-
sure dependence of Raman frequencies for12C and 13C was
reported. The decrease of the ratio12v/13v with pressure
was interpreted as a subtle but quite distinct quantum co
bution to the physical properties of diamond.

The AxB12x alloy system is attractive for comparing th
experimental deviation from Vegard’s rule with theoretic
calculations. BecauseA andB are isotopes of the same ato
there is only one crystal structure in the system and no ef
of relative valency and electronegativity between the c
stituents. The main purpose of the present investigation is
theoretical study of the lattice parameter and Raman
quency as a function of the compositionx. Our calculation
will be based on the Harrison theory for the bond energy
tetrahedrally bonded crystals. Many properties of solids
molecules can be determined by calculating the bond ene
560163-1829/97/56~18!/11472~5!/$10.00
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Harrison,9,10 using the tight-binding~TB! theory and some
results following from the density-functional theory, simp
fied the calculation and the bond energy can be expresse
terms of one-electron atomic energies and some unive
parameters. The universal parameters replace the com
cated interaction integrals and are common for many co
lent crystals.

From the bond energy we calculate the stretching fo
constant and thus the vibrational energy of the bond. T
we determine the bond length from the minimum of t
Helmholtz free energy instead of the minimum of the ad
batic energy only.

II. BOND ENERGY AND BOND LENGTH

In TB theory for the tetrahedrally coordinated crysta
four orthogonal and normalizedsp3 hybrids are chosen on
each atom as the basic wave functions. The electronic b
energies are given as8,9

«5
1

2
~«h

a1«h
b!6qAV2

21V3
21

qV2
2

ku«̄hu
, ~1!

where the energy with the minus corresponds to the bond
state, while the plus sign represents the energy of the a
bonding state. In Eq. ~1! V35(«h

a2«h
b)/2, «h

a,b

5(«s
a,b13«p

a,b)/4, where«s and«p are the free-atom ener
gies fors andp states.9 V25 f (h)\2/md2, with m being an
electron mass, determines the coupling between two at
and the functionf (h) is expressed in terms the four unive
sal coefficients:hsss521.40,hsps51.84,hpps53.24, and
hppp520.81. For example, in the perfect Si crystal, for tw
sp32sp3 hybrids directed against each other on two neig
boring atomsf sp32sp3(h)5hsss/422)hsps/423hpps/45
24.373. Theq is the electron occupancy of the bond in un
of electron charge and«̄h is the average of«h

a and«h
b . The

parameterk is only one fitting coefficient entering thi
theory. It is determined from the requirement that calcula
bond lengths for the C, Si, Ga crystals equal the experim
tal ones. The value ofk is the same for all crystals built from
the elements entering the same row of the periodic syst
For example,9 for the C row k52.5, for the Si rowk
51.455, and for the Ge rowk51.33.
11 472 © 1997 The American Physical Society
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56 11 473LATTICE PARAMETER AND RAMAN SPECTRA OF . . .
The determination of the bond length from the minimu
of the bond energy~or from the minimum of the total energ
in ab initio theories! is only an approximation since the k
netic vibration energy is neglected. The vibrational ene
depends on the interatomic distance and hence we sh
search for a minimum of both electrostatic and vibratio
energies. The equilibrium interatomic distance can be de
mined from the minimum of the Helmholtz free energyF for
the bond11

F~d,T;M !5«~d!1
1

2
\v1kBT lnF12expS 2

\v

kBTD G ,
~2!

wherekB is the Boltzman constant and« is the bond energy
~1! for atoms interacting by the Coulomb forces.v is the
harmonic vibrational frequency for atoms in a single bo
and is given by

v5Akh

m
, ~3!

where kh5]2«/]d2 is the harmonic-force constant andm
5MAMB /(MA1MB) is the reduced mass. This is th
stretching-type vibration of atoms entering the bond. T
second term in Eq.~2! is the energy of the zero-temperatu
vibration and it indirectly depends on the atomic massM . At
T50 K only the first and second terms in Eq.~2! influence
the bond length. The mass dependence of the bond le
originates from the quantum-mechanical effect of the ze
temperature vibration. We demonstrate that the anharmo
ity of «(d) directly influences this dependence. In order
determine the equilibrium distance atT50 we should set to
zero the derivative of the Helmholtz energy. Thus using E
~2! and ~3! we arrive at the condition

]«

]d
1

\

4Am

]3«/]d3

A]2«/]d2
50. ~4!

If the third derivative of« is assumed to be zero~harmonic
approximation! then we obtain the equilibrium distance fro
the minimum of the adiabatic energy, i.e.,]«/]d50. The
third derivative is usually negative and therefore the fi
derivative in Eq.~4! should be positive. This means th
consideration of the vibrational energy makes the bo
length longer than the bond length determined from the a
batic energy only. Figure 1 shows the Helmholtz energy
single 12C-12C and 13C-13C pairs. Two crystals made of tw
different isotopes have different bond lengths~see Table I!
because they differ inm. In both cases the adiabatic energy«
is the same but Eq.~4! is fulfilled at two different values of
d. Therefore the harmonic-force constants for crystals co
posed from different isotopes of the same element di
slightly ~see Table I! because they are calculated at differe
equilibrium positionsd. The crystal composed of the heavi
isotope has a smaller bond length than that made of
lighter one.

To test Eq.~1! we compare the bond length calculat
using Eqs.~1!–~4! with the first-principles calculation11 for
Si crystals made of isotopes28Si, 29Si, and 30Si. We ob-
tained the interatomic distanced(28Si)52.35892 Å @taking
k51.455 in Eq. ~1!#, d(29Si)52.35881 Å, andd(30Si)
y
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52.35870 Å at temperature T50 K. This gives
Dd(28Si-30Si)50.000 22 Å andDd(29Si-30Si)50.000 11 Å.
The first-principles calculation of the lattice parameter ca
not give precisely the absolute value of this parameter
the relative values for a crystal made of various isotopes
given quite accurately. From Fig. 4 of Ref. 11 one can re
values of Dd(28Si-30Si)50.000 17 Å and Dd(29Si-30Si)
50.000 09 Å, i.e., there is good agreement between calc
tions using essentially different techniques.

III. EFFECT OF ISOTOPIC SUBSTITUTION

The Bragg x-ray-diffraction averages the influence of fo
eign atoms in a crystal on the lattice constant over ma
diffraction surfaces. This results in a dependence of the
erage lattice parameter on the concentration. Many prope
of crystals are studied using the virtual crystal approximat
~VCA!. The simplest example of this approximation is Ve
ard’s rule.12 It gives the lattice constant of an alloy as th
concentration-weighted sum of the lattice constant of
components. In terms of the bond length, Vegard’s rule
be written as

dav5xdAA1~12x!dBB . ~5!

Zen12 suggested to calculate the average lattice constant f
the concentration-weighted sum of the specific volumes
the end-point materials. This results in the following equ
tion for the average bond length:

dav5dBBF12xS 12
dAA

3

dBB
3 D G1/3

. ~6!

Equations~5! and~6! totally neglect the way in which atom
are distributed in an alloy. The average lattice parameter
termined from x-ray measurements does not always coin
with the average parameter calculated in the VCA. The
oms A and B can be randomly distributed among the 2N

FIG. 1. The Helmholtz free energy~2! for single 12C-12C ~solid!
and 13C-13C ~dotted! bonds atT5300 K. The origin of the energy
was shifted by 13.96 eV and the energy was then multiplied
1000 to show the shape of the curves near minima. The rela
shift of minima is seen distinctly.
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TABLE I. The results of the bond length and vibrational frequency calculation for the13C-13C (AA),
12C-12C (BB), and 12C-13C (AB) pairs.dav, kav, vav are linear interpolations of bond length, force consta
and frequency atx50.5. We give more digits than follows from the accuracy of the absolute value
calculated quantities to show the relative change with the isotopic mass. To obtainkh in Eq. ~3! it is necessary
to multiply the force constant from this table by a factor of 4.

Quantity Calc.T50 K Calc.T5300 K Expt.T5300 K

dAA ~Å! 1.545427 1.545988 1.54436~3! @8#

dAB ~Å! 1.545538 1.546038
dBB ~Å! 1.545647 1.546093 1.54460~2! @8#

dav(x50.5) ~Å! 1.545537 1.546040
Dd/d5Da/a 1.4231024 0.6831024 1.531024 @5,8#

kAA (eV/Å2) 11.48179 11.44412
kAB (eV/Å2) 11.47433 11.44077
kBB (eV/Å2) 11.46700 11.43708
kav(x50.5) (eV/Å2) 11.47440 11.44060
vAA (cm21) 1381.09 1378.82 1281.2@6#

vAB (cm21) 1409.11 1407.05
vBB (cm21) 1436.56 1434.68 1332.1@6#

vav(x50.5) (cm21) 1408.82 1406.75
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lattice sites~on two face-centered sublattices! by various
ways. The real crystal possesses only one particular distr
tion. Two real crystals with the same concentration of ato
A and B will possess different random distributions. Th
total number of distributions can be calculated for a giv
number of atomsA andB. Then it is necessary to calcula
the number of theAA, AB, andBB pairs for each distribu-
tion. The difficulty consists of separating the distributio
with a given number of corresponding pairs of atoms. Ea
such distribution corresponds to a crystal with a particu
lattice parameter. In general, this task is not tractabl13

Therefore, the number of pairs is usually calculated stat
cally. Namely, the probability that two nearest lattice si
are occupied by13C atoms isx2. Similarly, 2x(12x) is the
probability that on two neighboring sites either the pair
12C-13C or 13C-12C is found. The average number ofAA
pairs isNAA5x2pN/2 and the average number ofAB pairs is
NAB52x(12x)pN/2. Herep54 is the coordination numbe
of atoms around a given lattice site. TheNAB calculated in
this way is smaller than the number of similar pairs calc
lated from various distributions~this can be directly checke
by calculating distributions for a ‘‘crystal’’ with a smal
number of atoms, say,N54,5,6 and with various contents o
A andB atoms inside!. The number of various pairs of atom
calculated in this way has a purely statistical nature. Ad
tionally, there is a physical factor which influences the d
tribution of pairs. In the approximation, where the alloying
considered as a chemical reaction of the typeAA
1BB
2AB, the equilibrium is reached when13

^NAB&2

^NAA&^NBB&
54 expS 22«AB1«AA1«BB

kBT D . ~7!

If the nominator in the exponent containing the bond ene
of various pairs is positive, the real number ofNAB pairs in
the crystal will exceed the number of these pairs calcula
on a statistical basis.
u-
s

n

h
r

i-
s

f

-

i-
-

y

d

Using the statistical weight of various pairs of atoms, t
average interatomic distancedav between two atoms in an
alloy can be determined as

dav5x2dAA12x~12x!dAB1~12x!2dBB . ~8!

The above formula, contrary to formulas given by Eqs.~5!
and ~6!, requires for an estimation ofdav the knowledge of
dAB . Equation~8! gives the linear dependence onx provided
dAB5(dAA1aBB)/2. This is, in good approximation, the cas
of the 13Cx

12C12x alloy. The Zen formula~6! applied to dia-
mond atx50.5 does not show a deviation from Vegard
rule.

In the approximation, where the vibrational energy is n
glected, the bond length is determined from the setting
zero of the derivative of the bond energy« with respect to
the interatomic distanced. The minimum of the total energy
~the adiabatic potential! depends upon the electronic stru
ture and not upon the masses of the atoms. Two differ
isotopic species of the same atom will have different vib
tional frequencies only because of the difference in isoto
masses. The ratior of the vibrational frequencies for the12C
and 13C in the 12C-12C and 13C-13C bond pairs is given@see
Eq. ~3!# in this approximation as

r[
v~12C!

v~13C!
5AMB

MA
5A13

12
51.040 833, ~9!

whereMA and MB are the masses of13C and 12C, respec-
tively. For diamond-structure crystals, the optical frequen
v~G! at theG point is related to the vibrational frequency~3!
as follows:v(G)5A4/3v. Therefore, the ratior of the Ra-
man frequencies for crystals composed from12C and 13C
isotopes should be given by Eq.~9!. The ratio r for the
observed Raman frequencies in12C and 13C crystals at
T5300 K ~see Table I! is r 51332.1/1281.251.0397.
The ratio of calculated bond pair frequencies
r 51436.56/1381.0951.040 16 at T50 K and
r 51434.68/1378.8251.040 51 atT5300 K. We find that



he
ire
tia
or
.

e

s

an
e

gt
o
g

di
t

ta

nd
o

ed

th

ox
c

e
nd
t

w
e

nd
o

ve

he

-
, it
for
er-
ms
a-
any
the
nk
7, 8

rent
hey

of
e
e-

ntal

be

am-
y

-

r-

is
w-

ic
-
t

se-
5.

f

od.
all

tly
s
ally

its
-

ri-

on

56 11 475LATTICE PARAMETER AND RAMAN SPECTRA OF . . .
the ratio r is smaller than the value given by Eq.~9!. This
implies that in crystals made of different isotopes t
harmonic-force constants are not the same and this is a d
consequence of anharmonic term in the interatomic poten

The VCA can be used to derive the equation for the f
bidden electronic-energy gap or for the Raman frequency
VCA the vibrational frequencies at the pointG are deter-
mined from the dynamical matrix

S 4MAA2v2, 4MAB

4MBA , 4MBB2v2D ,

where the matrix elementMAA5xxkAA12x(12x)kAB
1(12x)(12x)kBB /(xMA1(12x)MB and MBB52MAB
5MAA . Using the values of the force constants from Tabl
one obtains atx50.5 the small negative bowingDv5
20.8 cm21. This is due to the fact that the ‘‘reduced’’ mas
@xMA1(12x)MB#/2 of the AB pair in the VCA is larger
than the reduced massm5MAMB /(MA1MB).

IV. RESULTS AND DISCUSSION

The difference in the bond lengths of12C and13C crystals
comes out from the difference in the masses of nuclei
from the anharmonicity of the interatomic potential. As se
from Eq.~4!, both crystals would have the same bond len
in harmonic approximation. Because the third derivative
the potential is negative, the real bond length is always lar
than that calculated in the harmonic approximation. The
ference in the isotope masses induces by means of
anharmonic-force constant the zeros of Eq.~4! at differentd
for each isotope. In this sense, the harmonic-force cons
calculated at differentd ~seekAA andkBB in Table I! depends
indirectly on the isotopic mass.

We did not attempt to obtain very accurately the bo
lengths for the end-point materials by a suitable choice
parameterk in Eq. ~1! ~we have used the commonly accept
value!. However, since the parameterk was chosen we can
calculate the difference of the lattice constant between
end point materials. AtT50 K this difference is Da
54Dd/)50.000 51 Å and atT5300 K it is 0.000 11 Å.
The experimental value atT5300 K is 0.000 53 Å, i.e., it is
in agreement with the calculated value atT50 K. The rea-
son why our calculated difference atT5300 K is too small,
can be explained by the crudeness of the Einstein appr
mation where the real phonon-dispersion curves are repla
by a single frequency of the bond-pair atoms.

We have assumed that the change of the lattice param
is due to two effects. First, this is the formation of the bo
length between the solute and solvent atoms. Second,
disorder influences the average bond length~if alloy system
contains more vacancies than end-point crystal then they
also influence the average value, additionally to disorder
fect!. The first effect we can estimate accurately. The bo
length effect reaches its maximum when the alloy is an
dered system, i.e., when13Cx

12C12x has zinc-blende
structure. For diamonddAB>dav5(dAA1dBB)/2 and Eq.~8!
transforms to Eq.~5!. We confirm in this approximation the
result of Ref. 4, i.e., the validity of Vegard’s rule. We ha
performed our calculation of the13Cx

12C12x system keeping
one digit more than experimental precision which is of t
ct
l.

-
In

I

d
n
h
f
er
f-
he

nt

f

e

i-
ed

ter

he

ill
f-
-

r-

order of 1025 Å. Therefore even if the ordered-alloy ap
proximation accounts for only, say 20–40% of the effect
still confirms the experimental accuracy of Vegard’s rule
diamond. The effect of disorder can be treated by consid
ing a crystal as a large cluster of randomly distributed ato
which interact not only in the nearest-neighbor approxim
tion. In such a crystal the nearest-neighbor atoms have m
different bond lengths scattered between the values for
end-point materials. In view of the above results we thi
that the lattice parameter measurements in Refs. 4, 5 and
do not contradict each other. In both measurements diffe
crystals were used. Even for the same concentration t
differ in the distribution of isotopes~homogenity! and this
might slightly influence the measurements at a precision
the order of 1025 Å. The measured fractional differenc
Da/a at T5300 K is in reasonable agreement with the th
oretical estimation atT50 K. The decrease ofDa/a with a
temperature increase is in agreement with the experime
observation for Ge crystals made of different isotopes14 as
well as with first-principles calculations for Si crystals.11

The positive or negative bowing of the bond length can
observed whendAB is larger or smaller than (dAA1dBB)/2,
respectively. The average zero-temperature vibrational
plitude u of an atom in a crystal is given approximately b
u5A\(n11/2)/(mv), where n is the phonon occupation
number. We obtainedu50.063 and 0.061 Å for12C and 13C
at T50 K, respectively. AtT5300 K the average ampli
tudes areu(12C)50.086 Å andu(13C)50.085 Å, i.e., they
are'5.5% of the interatomic distance.

The ordered-alloy approximation predicts for the diffe
encevAB2vav a small positive bowing of'0.3 cm21 at x
50.5. The measured bowing of Raman frequency
'5 cm21 and thus we should ascribe about 95% of the bo
ing to the effect of structural disorder~the influence of va-
cancies is neglected!. This can be seen even for two atom
chainsABAB andAABB containing four atoms. They pos
sess the same concentrationx50.5. Using the force constan
as given in Table I we find that the largest~Raman! frequen-
cies for both chains differ by 2 cm21. The conclusion that a
large positive bowing of the Raman frequency is a con
quence of isotopic disorder was drawn earlier in Ref.
There, including a smallad hoccorrection for the change o
force constants on interatomic distance~in this way was
partly accounted the anharmonic effect!, this bowing was
reproduced by the coherent-potential approximation meth
The calculation performed there in the VCA gave a sm
bowing of negative sign.

The calculated vibrational frequency for the12C-12C pair
at T50 K is 1436.56 cm21, while for natural diamond it is
1332.1 cm21. This means that our bond energy is a sligh
steeper function ofd than the real thermal potential. At thi
point we stress that the adiabatic energy is given analytic
by Eq.~1! and since its minimum was adjusted~by adjusting
the parameterk!, further properties are calculated using
fixed shape. The differenceDv between the end-point mate
rials is 55.47 cm21 at T50 K and 55.86 cm21 at T5300 K
~see Table I!. It is in reasonable agreement with the expe
mentally determined value 50.9 cm21 at T5300 K. The Ra-
man frequency in an alloy with a given concentrationx is not
sensitive to a particular distribution of isotopes. The reas
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for this is that the vibrational wave comprises the who
crystal and the weight of a particular crystal site in the wa
is very small. Hence, the frequency is determined by
average of the force constant and mass over all atoms.
c

e
e

ACKNOWLEDGMENTS

We are grateful to Professor H.-J. Schulz for several va
able discussions throughout the course of this work.
.

.

*Electronic address: biern@ifpan.edu.pl
1E. E. Haller, J. Appl. Phys.77, 1 ~1995!.
2A. K. Ramdas, Solid State Commun.96, 111 ~1995!.
3M. Cardona, P. Etchegoin, H. D. Fuchs, and P. Molina´s-Mata, J.

Phys.: Condens. Matter5, A61 ~1993!.
4H. Holloway, K. C. Hass, M. A. Tamor, T. R. Anthony, and W. F

Banholzer, Phys. Rev. B44, 7123~1991!.
5K. C. Hass, M. A. Tamor, T. R. Anthony, and W. P. Banholze

Phys. Rev. B44, 12 046~1991!; 45, 7171~1992!.
6M. Muinov, H. Kanda, and S. M. Stishov, Phys. Rev. B50,

13 860~1994!.
7T. Yamanaka, S. Morimoto, and H. Kanda, Phys. Rev. B49, 9341

~1994!.
8T. Yamanaka and S. Morimoto, Acta Crystallogr., Sect. B: Stru
.

r,

t.

Sci. 52, 232 ~1996!.
9W. A. Harrison,Electronic Structure and the Properties of Solids

~Freeman, New York, 1980!, Chaps. 2–8.
10W. A. Harrison, Phys. Rev. B23, 5230~1981!; 27, 3592~1983!;

34, 2787~1986!.
11S. Biernacki and M. Scheffler, J. Phys.: Condens. Matter6, 4879

~1994!.
12For a short review of deviations from Vegard’s rule, see K. A

Gschneidner, Jr. and G. H. Vineyard, J. Appl. Phys.33, 3444
~1962!.

13L. A. Girifalco, Statistical Physics of Materials~Wiley, New
York, 1973!, Chap. 5.

14R. C. Buschert, A. E. Merlini, S. Pace, S. Rodriguez, and M. H
Grimsditch, Phys. Rev. B38, 5219~1988!.


