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Computational micromagnetics has become an essential tool in
academia and industry to support fundamental research and the
design and development of devices. Consequently, computational
micromagnetics is widely used in the community, and the fraction
of time researchers spend performing computational studies is
growing. We focus on reducing this time by improving the
interface between the numerical simulation and the researcher.
We have designed and developed a human-centred research en-
vironment called Ubermag. With Ubermag, scientists can control
an existing micromagnetic simulation package, such as OOMMF,
from Jupyter notebooks. The complete simulation workflow,
including definition, execution, and data analysis of simulation
runs, can be performed within the same notebook environment.
Numerical libraries, co-developed by the computational and data
science community, can immediately be used for micromagnetic
data analysis within this Python-based environment. By design,
it is possible to extend Ubermag to drive other micromagnetic
packages from the same environment.

I. INTRODUCTION

A. Historical context

Computational micromagnetics has enjoyed increasing pop-
ularity since simulation codes such as OOMMF [1] have
become available. As of early 2021, more than 3000 scientific
manuscripts have been published1 that refer to the OOMMF
simulation software, presumably using it to enhance or enable
their study.

The challenge of numerical micromagnetics’ computational
complexity, involving non-linear stiff partial differential equa-
tions with long-range interactions, has been addressed through
new simulation methods that reflect the computing landscape’s
development. Magpar [2] pioneered the use of MPI to make
use of high-performance computing clusters, Nmag [3] com-
bined MPI with automatic code generation and performance
optimised run-time compilation, and mumax3 [4] exploits
graphics processing unit (GPU) hardware to accelerate the
numerical calculations.

In this work, we do not attempt to reduce the time numerical
calculations take but instead focus on minimising the effort
researchers need to invest in when setting up, driving, and
analysing micromagnetic simulations to make their research
more effective. We present Ubermag [5] – a micromagnetic
simulation environment that makes micromagnetic simulations
more flexible and effective. We review the conventional com-
putational workflows and show how adopting Ubermag can
help to make them more effective.

1https://math.nist.gov/oommf/oommf cites.html

B. Computational workflows in micromagnetics

The general workflow of using micromagnetic simulations is
identical to many areas of computational science and consists
of the following steps:

1) Decide what problem needs to be solved.
2) Translate this physics-based problem into the syntax

understood by the simulation tool (often a configuration
or script file).

3) Run simulation to compute results and write data files.
4) Analyse and visualise data files to obtain tables and plots.
5) Summarise and write up results and insights in a scientific

manuscript or technical report. In this process, steps 1 to 4
may be repeated iteratively many times.

For simplicity, this generic summary ignores that some of the
steps can also be done for some simulation packages through
a graphical user interface (GUI).

Open-source micromagnetic simulation packages are written
in different languages, often combining one language for the
computational core, which solves the numerical problem, and
a different language or syntax for the problem definition
and user interface. As long as researchers do not need to
change a simulation package’s functionality, they can ignore
the computational core languages. However, they need to know
the syntax of configuration files or scripts from which the
simulation is driven – workflow Step 2 requires the translation
of the micromagnetic problem into the simulation tool syntax.
For OOMMF [1], a Tcl-based syntax is used for configuration
files, for mumax3 [4] the Go language, and in Fidimag [6]
micromagnetic simulations are configured with Python.

For post-processing, data analysis, and visualisation in
workflow Step 4, researchers may be able to use relevant
tools coming with the simulation package. However, due to the
nature of research and the need to investigate new ideas, they
may have to write additional data analysis and visualisation
scripts. This requires understanding data file formats and con-
ventions used by the simulation tool. Often, these scripts are
not publicly available and simulation-package-specific – they
process results produced by a particular simulation package
and cannot be easily applied to results from other packages.

In workflow Step 5, one may want to run many simulations
in a loop to explore parameter space (e.g. by changing geom-
etry and material parameters) and gain a good understanding
of the problem. In general, this requires writing additional
code outside the simulation configuration files to generate
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simulation configuration files, and subsequently, additional
post-processing and data analysis scripts.

For the reproducibility of scientific studies [7], it is required
to be able to repeat each of the many simulations in the future.
Ideally, one keeps a detailed log of all steps taken to obtain
a particular table or figure, starting from the configuration
file and execution parameters, including all post-processing,
analysis, and visualisation steps.

A researcher may need to use more than one simulation tool
because different micromagnetic simulation packages have dif-
ferent functionalities. Thus, the researcher must comprehend
their capabilities, installation, configuration, user interfaces,
and data formats.

The combined effort of these steps establishes the
learning curve for users of micromagnetic software. For
computationally-minded scientists, this is probably faster to
master than for those with expertise in other fields such as
experiments, pure theory, or device design. As simulation use
becomes more widespread, there are also more users with
less computational training. We developed Ubermag2 [5] to
make computational micromagnetic workflows and studies
more effective from usability and user-centred perspective [8],
[9].

II. UBERMAG

A. Introduction

Ubermag [5] can be understood as a Python-based layer
that lies on top (German über) of existing micromagnetic
simulation tools, exposing them to Python’s ecosystem and
integrating them into the Jupyter environment. We decided to
start with OOMMF [1] as the micromagnetic calculator to
carry out the numerical simulations, but work is underway to
make mumax3 [4] available as a first alternative calculator.
This section shows an example of Ubermag in practice, and
we discuss some of the design choices in section III.

B. Defining the micromagnetic problem
(micromagneticmodel)

The first step in a computational micromagnetic workflow
is to decide what micromagnetic problem to solve (workflow
Step 1 in Sec. I-B). The micromagneticmodel [10] li-
brary provides a Python-based domain-specific language for
defining micromagnetic systems (which could also be called
problems or models). It is a description of the physics we
are interested in. This machine-readable description is not
concerned with finding a solution of the problem: the actual
numerical solving is discussed in Sec. II-C. To fully define
a micromagnetic system, the following components must be
specified: (i) energy equation – the sum of energy density
terms, (ii) dynamics equation – the sum of dynamics terms
governing the magnetisation dynamics, and (iii) magnetisation
field, which uniquely defines the state of the system.

For example, let us define a micromagnetic system mod-
elling a thin-film Permalloy square sample with L = 100 nm
edge length and 5 nm thickness. Its energy equation consists of

2https://ubermag.github.io/

ferromagnetic exchange, Zeeman, and demagnetisation energy
terms:

E =

∫
V

[
−Am · ∇2m− µ0Msm ·H+ wd

]
dV, (1)

where A = 13 pJ m−1 is the exchange energy constant, Ms =
8 × 105 A m−1 magnetisation saturation, wd demagnetisation
energy density, H an external magnetic field, and m = M/Ms
the normalised magnetisation field. The magnetisation dynam-
ics is governed by the Landau-Lifshitz-Gilbert equation’s [11]
precession and damping terms:

∂m

∂t
= − γ0

1 + α2
m×Heff −

γ0α

1 + α2
m× (m×Heff), (2)

where γ0 = 2.211 × 105 m A−1 s−1. Although we sim-
ulate a Permalloy sample, we use an artificially large
value for Gilbert damping α = 0.2 to simplify the
magnetisation dynamics in our example. The initial mag-
netisation state is a vortex defined for each point r =
(x, y, z) in the sample as m(r) = (mx,my,mz) =
(−cy, cx, 0.1)/

√
c2y2 + c2x2 + (0.1)2, with c = 109 m−1.

The normalisation to |m| = 1 is done by Ubermag automati-
cally. The Python code for defining the micromagnetic system
in Ubermag is:

import discretisedfield as df
import micromagneticmodel as mm

# Geometry
L = 100e-9 # sample edge length (m)
thickness = 5e-9 # sample thickness (m)

# Discretisation cell (lengths in m)
cell = (5e-9, 5e-9, 5e-9)

# Material parameters (Permalloy)
Ms = 8e5 # saturation magnetisation (A/m)
A = 13e-12 # exchange energy constant (J/m)

# Dynamics (LLG equation) parameters
gamma0 = 2.211e5 # gyromagnetic ratio (m/As)
alpha = 0.2 # Gilbert damping

system = mm.System(name=’vortex_dynamics’)

# Energy equation - we omit Zeeman energy term,
# because H=0
system.energy = mm.Exchange(A=A) + mm.Demag()

# Dynamics equation
system.dynamics = (mm.Precession(gamma0=gamma0) +

mm.Damping(alpha=alpha))

# Initial magnetisation state
def m_init(point):

x, y, z = point
c = 1e9 # (1/m)
return (-c*y, c*x, 0.1)

# Sample’s centre is placed at origin
region = df.Region(p1=(-L/2, -L/2, -thickness/2),

p2=(L/2, L/2, thickness/2))
mesh = df.Mesh(region=region, cell=cell)
system.m = df.Field(mesh, dim=3,

value=m_init, norm=Ms)

At this point, we have a system object modelling the
problem we want to simulate on a finite-difference mesh. So
far, we have no means to solve the associated equations –
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we have only expressed the relevant physics in a computer-
readable way. We have completed workflow Step 2 in Sec. I-B.

C. Using a micromagnetic calculator (oommfc)

To solve the equations numerically (workflow Step 3 in
Sec. I-B), we use OOMMF. In the framework of Ubermag,
OOMMF is one (of potentially many) micromagnetic cal-
culators. The corresponding library is called oommfc, i.e.
OOMMF calculator. We call the methods to change the mag-
netisation field drivers, imagining that they drive the system
through different points in phase space either by minimising
the energy Eq. (1) or solving the dynamics Eq. (2).

In this example, we are going to use the energy minimisation
driver from oommfc library to act on our defined system:
import oommfc as mc # micromagnetic calculator
md = mc.MinDriver()
md.drive(system)

The md.drive(system) call will change the state of the
system so that it corresponds to the nearest energy minimum.
Ubermag translates the micromagnetic model system to a
configuration file and then calls the OOMMF executable.
When OOMMF has completed the calculation, Ubermag reads
output files with spatially-resolved and tabular data. The
obtained magnetisation field is used to update the state of
the system object. In our example, we are minimising the
system’s energy which results in a vortex magnetisation field,
as we show in Fig. 1.

Let us now apply an external magnetic field H = 104 Am−1

in the positive x-direction to displace the vortex core. We can
achieve that by adding the Zeeman energy term to the energy
equation and driving the system again:
H = (1e4, 0, 0) # an external magnetic field (A/m)
system.energy += mm.Zeeman(H=H)
md.drive(system)

We have now moved the state of the system in phase space
by displacing the vortex core, as we show in Fig. 2, cell 13.
Finally, we set the external magnetic field to zero, simulate the
time-evolution of the magnetisation field for 5 ns, and save the
output in 500 steps (i.e. save once every 10 ps):
system.energy.zeeman.H = (0, 0, 0)
td = mc.TimeDriver()
td.drive(system, t=5e-9, n=500)

If the commands described above are used in a Jupyter
Notebook (see Sec. III-A), they can be executed interactively,
modified and re-executed as often as desired within the same
notebook. This enables the researcher to drive and modify the
system iteratively to probe and understand its behaviour.

D. Data analysis and visualisation

After driving the system, we can analyse and visualise
data (workflow Step 4 in Sec. I-B). There are three Uber-
mag libraries that can be used for data analysis and vi-
sualisation: discretisedfield, ubermagtable, and
micromagneticdata.

The purpose of discretisedfield is to represent
spatially-resolved vector and scalar fields as numpy arrays,

Fig. 1. Magnetisation field visualisation using matplotlib (Cell 8) and
k3d (Cell 9) in Jupyter environment.

making all linear algebra and array manipulation methods
available, and to provide visualisation capabilities for spatially
resolved data using matplotlib for two-dimensional and
k3d for interactive three-dimensional plots. Fig. 1 shows two-
and three-dimensional plots from a Jupyter notebook that also
contains the code snippets shown above.

The ubermagtable library uses pandas dataframes for
representing time- or step-dependent scalar data, its manip-
ulation, and visualisation, as we show an example in cells
10 and 11 in Fig. 2. In order to analyse different results
from subsequent calls of the drive method from time- and
minimisation-drivers, micromagneticdata is used. We
show an example in cell 12 in Fig. 2.

All analysis libraries allow building interactive plots, con-
sisting of GUI widgets for varying different parameters and
interactive visualisation. In cell 13 in Fig. 2, we show an
example where the step slider can be moved, and the dis-
played magnetisation vector field will update automatically.
Interactive plotting environments enable users to inspect and
explore the data and gain additional insight.

A Jupyter notebook containing the entire example presented
in this work is available in the repository [12] accompanying
this work.
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micromagneticdata

data[-1]

discretisedfield

In [12]: import micromagneticdata as md 
 
data = md.Data(system.name) 
data.info 

Out[12]:

In [13]: @df.interact(nstep=data[-1].slider()) 
def interactive_plot(nstep): 
    data[-1][nstep].orientation.plane('z').mpl() 

In [9]: system.m.z.k3d_scalar() 

In [10]: system.table.data[['t', 'mx', 'my', 'mz', 'E']] 

Out[10]:

In [11]:

Fig. 2. Scalar data table representation (Cell 10) and its visualisa-
tion (Cell 11) with ubermagtable, accessing micromagnetic data from
subsequent drives (Cell 12), and building a custom interactive plot in the
Jupyter environment (Cell 13).

III. DISCUSSION

A. Jupyter Notebook

We have chosen the Jupyter Notebook [13], [14] as the
primary user interface because “Jupyter helps humans to think
and tell stories with code and data” [9], and has been designed
for that purpose by researchers for researchers. A notebook can
contain narrative (human-readable text, equations, and figures),
code, and code’s output in a single document. Apart from using
it to interactively explore and understand simulation results,
we can include an entire micromagnetic study in a single self-
consistent document. Jupyter notebooks are powerful environ-
ments for data analysis [15].

Jupyter notebooks make research more reproducible [16]
and help share studies either as a read-only HTML or PDF
or as executable documents. Services such as myBinder [17]
make it possible to execute notebooks in the cloud within a
web browser without installing any software locally. Software
required to run the notebook can be defined in a separate file
which, together with notebooks, can be made available in a
public repository. Some examples include works in Refs. [18],
[19], [12].

B. Exploiting existing scientific software ecosystem

There are multiple reasons why we have chosen Python
as the programming language used in Ubermag. This in-
cludes the active science user-community and a wide range
of existing scientific libraries for data analysis and visual-
isation such as numpy for linear algebra, scipy for nu-
merical analysis, pandas for tabular data analysis and vi-
sualisation, matplotlib for visualisation, k3d for inter-
active three-dimensional visualisation, scikit-learn for
machine learning, etc. Python is a language that is relatively
accessible to scientists and engineers [20], and as such, adding
customised research code to a study is more easily achievable.
A use-case for such a situation is the computation of custom
mathematical operations on discretised fields. For example,
one can compute this expression for the winding number:

S =
1

4π

∫∫
m ·

(
∂m

∂x
× ∂m

∂y

)
dxdy (3)

in discretisedfield using the following notation, which
exploits operator overloading:

import math
m = system.m.orientation.plane(’z’)
q = m @ (m.deriative(’x’) & m.derivative(’y’))
S = 1/(4*math.pi) * df.integral(q * df.dx*df.dy)

and modify it further, using all the power of Python and its
supporting libraries, as required by the research task.

Finally, Python (as any general-purpose programming lan-
guage) provides execution flow control commands, such as
loops and conditional branching, to enable computational
workflow automation without leaving the computational en-
vironment. This is important for workflow Step 5 in Sec. I-B.
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C. Open Science

All Ubermag libraries are written in Python and available as
open source, making contributions by the community possible.
We welcome all contributions, including improvements of
documentation and tutorials3. As Ubermag has been designed
with this in mind, it is possible to integrate other finite-
difference based micromagnetic calculators into the package
– for mumax3 this work has started. Multiple micromagnetic
calculators will open up new opportunities: by changing one
line of code, the researcher can repeat the same micromagnetic
study with a different micromagnetic calculator. Similarly,
different calculators could be used subsequently within the
same notebook session.

D. Installation

Ubermag can be installed on all major operating systems
via pip and conda package managers. Installing the Uber-
mag meta-package [5] installs all its dependencies, including
OOMMF. For reproducibility purposes, the availability of past
versions of Ubermag in public pip and conda clouds is not
guaranteed. Therefore, to permanently retain the working copy
of the computing environment, a Docker4 image can be built
and made available in a public repository with an assigned
digital object identifier (DOI). While packaging the Python-
based Ubermag libraries is a reasonable effort, conda packag-
ing of third-party software such as OOMMF, and potentially
mumax3 and others in the future is likely to be not sustainable
for the Ubermag project team: users would thus need to install
OOMMF or mumax3 themselves, before installing Ubermag.

IV. CONCLUSION

Ubermag provides a Jupyter-Notebook-based interface to
micromagnetic simulations. The user defines micromagnetic
problems in a computer-readable way and solves them using
external calculators such as OOMMF. Results can be explored,
annotated, and refined interactively and iteratively. Fully auto-
matic parameter space exploration can be realised within the
same environment. In practical terms, this holds the potential
to enable researchers to work more effectively.

In conceptual terms, Ubermag introduces a machine-
readable definition of a micromagnetic problem and an ab-
straction layer above existing simulation packages. The prob-
lem’s numerical solution is delegated by automatic translation
of the problem definition into the tool-specific configuration
syntax and subsequent execution of the tool.

Related projects in other scientific fields are the Atomic
Simulation Environment [21], and the self-documenting data
standard NeXuS [22] for neutron, x-ray and muon science.
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