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Stochastic multiplicative processes with reset events
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We study a stochastic multiplicative process with reset events. It is shown that the model develops a
stationary power-law probability distribution for the relevant variable, whose exponent depends on the model
parameters. Two qualitatively different regimes are observed, corresponding to intermittent and regular behav-
ior. In the boundary between them, the mean value of the relevant variable is time independent, and the
exponent of the stationary distribution equals22. The addition of diffusion to the system modifies in a
nontrivial way the profile of the stationary distribution. Numerical and analytical results are presented.
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PACS number~s!: 05.40.2a, 05.20.2y, 89.90.1h
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The occurrence of power-law distributions~PLDs! is a
common feature in the description of natural phenome
These distributions appear in a wide class of nonequilibri
systems, ranging from physical processes such as diele
breakdown, percolation, and rupture@1#, to biological pro-
cesses such as dendritic growth and large-scale evolution@2#,
to sociological phenomena such as urban development@3#.
Power laws have been associated with the effect of the c
plex driving mechanisms inherent to these systems and
their intricate dynamical structure. Criticality, fractals, a
chaotic dynamics are known to be intimately related to PL
@4#.

In view of the ubiquity of PLDs in the mathematical d
scription of Nature, much work has been recently devoted
detecting universal mechanisms able to give rise to such
tributions. There is a class of systems where PLDs ar
mathematical artifact originating from standard distributio
through a mere change of variables@5#. On the other hand
many other instances are known where PLDs arise as a g
ine and characteristic feature of the involved phenomena
the frame of equilibrium processes, for instance, power la
have been shown to derive from generalized maximu
entropy formulations@6#. For nonequilibrium phenomena
self-organized criticality~SOC! and stochastic multiplicative
processes~SMPs! have been identified as sources of PLD
According to the SOC conjecture@7#, some nonequilibrium
systems are continuously driven by their own internal d
namics to a critical state where, as for equilibrium pha
transitions, power laws are omnipresent. On the other ha
SMPs@8# provide a~more flexible! mechanism for generat
ing PLDs, based in the presence of underlying replicat
events.

It is, however, well known that a pure SMP,

n~ t11!5m~ t !n~ t !, ~1!

with m a random variable, does not generate a station
PLD for n(t). Rather, it gives rise to a time-dependent lo
normal distribution. To model the abovementioned pheno
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ena, therefore, SMPs have to be combined with additio
mechanisms. It has been shown that transport processe@9#,
sources@10#, and boundary constraints@11# are able to in-
duce a SMP to generate power laws. The aim of the pre
paper is to discuss an alternative additional mechani
namely, randomly reseting of the relevant variable to a giv
reference value. In a real system, this would represent c
strophic annihilation or death events, seemingly origina
outside the system.

We consider a discrete-time stochastic multiplicative p
cessn(t), added with reset events in the following way. A
each time step,n is reset with probabilityq to a new value
n0, drawn from a probability distributionP0(n0). If the reset
event does not occur,n is multiplied by a random positive
factor m with probability distributionP(m). Namely,

n~ t11!5H n0~ t11! with probabilityq,

m~ t !n~ t ! with probability 12q.
~2!

Between two consecutive reset events,n(t) thus behaves as
pure multiplicative process. When one of such events occ
the multiplicative sequence starts again.

In order to gain insight into the dynamics of process~2!
we first consider the simplest case wheren0(t) andm(t) are
constant for allt. Since an arbitrary factor in the initial valu
of n is irrelevant to its subsequent evolution, we taken0
51 without loss of generality. We have thus

n~ t11!5H 1 with probabilityq,

mn~ t ! with probability 12q.
~3!

This stochastic recursive equation can be readily solved
give

n~ t !5H mk with probabilitypk5q~12q!k ~0<k<t21!,

m t with probabilitypt5~12q! t.
~4!
4945 ©1999 The American Physical Society
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Note that the possible values ofn(t), nk5mk (k
50,1, . . . ,t), lie in the interval @m t,1# for m,1 and in
@1,m t# for m.1. Except for the extreme valuent5m t, the
associated probabilities are time independent. As t
elapses, the probability of each possible value ofn(t) is
therefore quenched fornÞm t, and the corresponding prob
ability distribution evolves at this extreme value only. Thu
the distribution sequentially builds up in zones that lie
creasingly further fromn51.

For large times, when the number of possible values
n(t) becomes also large, it is convenient to define a pr
ability distribution f (n) for nP(m t,1# for m,1 and n
P@1,m t) for m.1 as

f ~n!5
pk

uDnu
5

q

u ln mu
n2a, ~5!

whereDn is the variation inn when k is increased by one
unit, and a512 ln(12q)/ln m. In order to account for the
contribution atn5m t, f (n) should be added with ad-like
term f 0(t)d(n2m t), where the factorf 0 can be obtained
from the normalization off (n).

According to Eq.~5!, the stochastic process~3! gives rise
to a stationary power-lawdistribution f (n) in an increas-
ingly large interval of values ofn. For t→`, f (n) is a sta-
tionary power-law distribution in (0,1# for m,1, and in
@1,̀ ) for m.1. In contrast with multiplicative processe
with boundary constraints@11#, there are no conditions o
the parameters to obtain a stationary power-law distribut
For 12q,m,1, the exponent of this distribution is positiv
(a,0), and f (n) grows with n. In this situation, however
the distribution is defined for 0,n<1 and exhibits a cutoff
at n51. On the other hand, form,12q or m.1 the expo-
nent is negative (a.0). For m.1, i.e., whenn(t)P@1,̀ ),
the momentsmi5* f (n)nidn diverge for i .a21, indicat-
ing the presence of intermittent amplifications@9,12#. For
m,12q, mi diverges fori ,a21.

It is interesting to relate the exponent of the power-l
distribution with the evolution of the mean value^n(t)&.
From Eq.~4!, this mean value can be written as

^n~ t !&5
q

12~12q!m
1

~12q!~12m!

12~12q!m
m t~12q! t. ~6!

For m(12q),1, the mean value ofn(t) converges to a
finite value ^n&5q/@12(12q)m#, whereas form(12q)
.1 it ‘‘explodes.’’ In the boundary between both regime
where m51/(12q), the exponent of the distribution isa
52 and f (n);n22. This exponent is therefore to be asso
ated with the explosion threshold.

The power-law distribution in Eq.~5! can also be inferred
from a description of the evolution off (n). In fact, since at
each time step where no reset occurs the probability co
bution to f (n) comes fromn85n/m, we can write

f t11~n!Dn5~12q! f t~n/m!Dn/m. ~7!

Assuming now that this distribution is stationary,f t11[ f t , a
solution to Eq.~7! is given by f (n)5An2a, with

~12q!ma2151, ~8!
e

,
-

f
-

n.

,

-

ri-

which produces the same value ofa as in Eq.~5! @13#. Note
that Eq.~7! does not hold forn51, where the contributions
to the probability come from reset events.

The above argument provides a method for dealing w
the general multiplicative process with reset events, Eq.~2!,
when bothm andn0 are drawn from prescribed probabilit
distributionsP(m) and P0(n0). We assume thatP0(n0) is
appreciably different from zero in a bounded region, whe
the contributions from reset events are relevant. Outside
region the evolution off (n) can be written as

f t11~n!Dn5~12q!E
0

`

dm P~m! f t~n/m!Dn/m, ~9!

which generalizes Eq.~7!. Under the assumption of station
arity, this equation is solved byf (n)5An2a, where the ex-
ponenta must verify

~12q!E
0

`

dm ma21P~m!51. ~10!

For regular forms ofP(m) this equation has at least on
solution fora. When the probability is mainly concentrate
in values ofm larger than unity the solution is expected to
positive (a.0) and vice versa.

As in the case of constantm andn0, a close relation exists
here between the evolution of the average^n(t)& and the
exponent of the power-law distribution. In particular,^n(t)&
is found to remain stationary along the whole process w
a52. Again, thus, the exponenta52 is associated with the
explosion threshold, and marks the boundary between re
lar and intermittent evolution. This can be seen, for instan
from Eq. ~9!. Multiplication of this equation byn and inte-
gration overn yields

^n~ t11!&5~12q!F E
0

`

dm mP~m!G^n~ t !&. ~11!

Comparing with Eq.~10!, we readily note that the multipli-
cative constant (12q)*dm mP(m) that governs the evolu
tion of ^n(t)& in Eq. ~11! equals unity fora52.

In summary, depending onq andP(m) the system can be
in a regular regime wherên(t)& converges to a finite value
or in an intermittence regime, where^n(t)& diverges. At the
boundary, i.e., at the explosion threshold,^n(t)& remains
constant and, independently of the specific value ofq and of
the particular form ofP(m), the probability distributionf (n)
exhibits a power-law tail with a characteristic expone
f (n);n22.

We have numerically checked that the exponent of
stationary profile off (n) does not depend on the particul
form of the distribution of reset valuesP0(n0). In Fig. 1 we
present the functionf (n) obtained with constantm andq, for
three different choices ofP0(n0): A uniform distribution be-
tweenn050 andn051 ~circles!, an exponential distribution
P0(n0)5^n0&

21 exp(2n0 /^n0&), with ^n0&5100 ~squares!,
and a discrete distributionP0(n0)5@d(n021)1d(n0
2100)#/2. The particular form ofP0 sets a lower boundary
for the region wheref (n) behaves as a power law, but do
not affect the corresponding exponent. Solid lines in the l
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log plot of Fig. 1 have the theoretical slopea51.1054••• .
Figure 2 shows our simulation results for three differe

forms of P(m): An exponential distribution P(m)
5^m&21 exp(2m/^m&) with ^m&52, a uniform distribution
P(m)55/2 with mP@9/10,13/10#, and a discrete distribution
P(m)5(k51

3 d(m2mk)/3 with m151, m256/5 and m3

57/5. The slope of the solid lines has been obtained num
cally for various values ofq from Eq. ~10!. This yieldsa
51.4965••• for the exponential distribution withq50.2, a
51.2195••• for the uniform distribution withq50.02, and
a51.8965••• for the discrete distribution withq50.15. In
all cases, our numerical and analytical results are in
agreement within six to nine decades in the power-law
gion.

We have also investigated the effects of diffusive tra
port on the process~3!. With this aim, we have considered
one-dimensional array of elements whose individual dyna
ics is given by Eq.~3! and, at each time step, we have inco
porated an interaction mechanism that mimics diffusion.
ter the multiplicative process with reset events has b
applied, the state of each element is further changed to

FIG. 1. Stationary distributionf (n) for m51.1 andq50.01,
and for different distributions of reset valuesP0(n0) ~see text!.
Straight lines have the theoretical slopea51.2195••• .

FIG. 2. Stationary distributionsf (n) for different forms of
P(m) and different values ofq ~see text!. The slope of the straigh
lines has been obtained through numerical solution of Eq.~10!.
t
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ni8~ t !5~12D !ni~ t !1
D

2
@ni 11~ t !1ni 21~ t !#, ~12!

wherei labels the elements in the array, with periodic boun
ary conditions. Then,ni8 is used as the input state for the ne
step. In this deterministic, time-discrete version of diffusi
transport,D plays the role of a diffusion constant.

Figure 3 summarizes our numerical results on the eff
of diffusion on the SMP~3!, displaying the dependence o
the power-law exponent with the diffusion constant. W
have chosen values ofq and m such that the different re
gimes of the process have been explored. The value of
multiplicative constant has been fixed in this case tom
54/3. In the regular regime@i.e., m(12q),1], diffusion
produces a decrease ofa in the power-law distribution. This
can be understood if we consider that the role of diffusion
to deplete dense areas, transporting material to less occu
cells. The multiplicative process is not fast enough in t
regime to balance the joint effect of reset events and di
sion. As a result, underpopulation occurs in the high-den
region, anda decreases (q50.3 in Fig. 3!. In the intermittent
regime@q50.23, i.e.,m(12q).1], diffusion favors the op-
posite effect. Remarkably, diffusion does not have any eff
on the value ofa when the system is evolving at the expl
sion threshold. Within numerical errors, in fact,a52 irre-
spectively of the value ofD. It is also worth to point out that
the qualitative behavior of the process depends onm and q
only. ChangingD does not allow the system to switch b
tween the intermittent and the regular regimes.

Summing up, in this paper we have studied a stocha
multiplicative process with reset events. The combination
this random reseting with the replication events driven by
stochastic process allows for the development of a station
distribution in the system, both when the mean value of
relevant variable converges to a finite value~regular regime!
and when it diverges~intermittent regime with persistenc
@14#!. The regime at the boundary between regular and in
mittent behavior is of particular interest. At this point, whe

FIG. 3. Dependence of the exponenta on the diffusion coeffi-
cient D for m54/3 and three values ofq corresponding to the in-
termittence regime (q50.23), the regular phase (q50.3), and the
explosion threshold (q50.25). The error bars stand for the error
a in a least square fit to the numerical data.
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the overall effects of the multiplicative process are exac
balanced by the random resets, the mean value of the
evant variable remains constant in time. We have shown
this property is closely related with the fact that the expon
of the power-law stationary distribution equals22. This
value is to be related with Zipf law, which predicts the sam
exponent of power-law distributions in a series of seemin
disparate natural systems@2,3#. Thus, the SMP with rese
events offers an alternative explanation of this ubiquito
exponent. In fact, whereas a general trend of biological
social systems could be to improve their growth rates
.
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increasing the parameterm, it is on the other hand to be
expected that external constrains are going to operate in
der to avoid divergencies by increasingq. It is not unlikely
that the competition between these two processes could
real systems to this boundary between regular behavior
developed intermittency.
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