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Noise-induced breakdown of coherent collective motion in swarms

Alexander S. Mikhailov
Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Dahlem, Germany

Damián H. Zanette
Consejo Nacional de Investigaciones Cientı´ficas y Te´cnicas, Centro Ato´mico Bariloche and Instituto Balseiro, 8400 Bariloche, Argentin

~Received 12 April 1999!

We consider swarms formed by populations of self-propelled particles with attractive long-range interac-
tions. These swarms represent multistable dynamical systems and can be found either in coherent traveling
states or in an incoherent oscillatory state where translational motion of the entire swarm is absent. Under
increasing the noise intensity, the coherent traveling state of the swarms is destroyed and an abrupt transition
to the oscillatory state takes place.@S1063-651X~99!11309-6#

PACS number~s!: 87.23.Cc, 05.20.2y, 05.40.Ca, 87.10.1e
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There is a large class of problems where individual int
acting particles, which constitute a system, are capable
active motion and form collectively traveling population
Self-propulsion of particles is already possible in simp
physical systems~see, e.g.,@1–5#! and is widely found in
biology where individual animals may group themselves i
swarms, fish schools, bird flocks, or traveling cell popu
tions@6–9#. The role of individual self-propelled ‘‘particles’
can also be played by localized patterns~spots! in reaction-
diffusion systems. A bifurcation leading to the onset of
translational motion of spots has been studied in an activa
inhibitor system with global feedback@10# and in three-
component reaction-diffusion systems@11,12#. Interactions
between individual self-propelled spots have been de
mined from the underlying reaction-diffusion equations a
used to describe formation of bound states of such ‘‘p
ticles’’ @13#.

Mathematical modeling of collective active motion fo
lows several different directions. One approach is based
the notion of discrete stochastic automata@8,14–16#. An-
other approach is formulated in terms of continuous veloc
and density fields and essentially treates a swarm as an a
fluid @17# ~such hydrodynamical equations may be deriv
by averaging from the respective automata models@18#!. A
similar hydrodynamic approach is also used in the theory
traffic flows @19,20#. Alternatively, one can specify dynam
cal equations of motion for all individual particles that e
plicitly include interactions between them and/or action
external fields@3,7,9,13,21#. An interesting problem related
to statistical mechanics of large populations of self-prope
particles is the spontaneous development of coherent co
tive motion in such systems. This problem has recently b
discussed in the framework of continuous hydrodynam
and discrete automata models, and the properties of the
spective kinetic phase transition were numerically and a
lytically investigated @17,18#. Both in one- and two-
dimensional systems, first- and second-order transitions h
been found@15#.

In the present paper we consider a population of ident
self-propelled particles near a transition between disorde
oscillating motion and coherent translational motion. T
particles interact via an isotropic attractive binary poten
PRE 601063-651X/99/60~4!/4571~5!/$15.00
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and are subjected to the action of noises. This globa
coupled population forms a cloud~the swarm! in the consid-
ered one-dimensional space. The swarm can be found in
ferent states. Coherent compact traveling states are cha
terized by a narrow distribution of velocities around a cert
mean drift velocity, directed either to the left or to the righ
Another possible state of this population corresponds to
absence of coherent translational motion, with noisy osci
tions around a certain mean position in space, determine
the initial conditions.

The coherent traveling states exist only for sufficien
weak noise and, as the noise intensity increases, the sw
undergoes a transition to the incoherent oscillatory state.
find that the breakdown of coherent collective motion in th
system is abrupt and characterized by a strong hyster
Thus, the globally coupled swarm represents a multista
system that may be found in different states depending
the initial conditions. This behavior, revealed by numeric
simulations, is well reproduced by an approximate analyti
theory and may represent a typical property of swarms w
long-range interactions.

To formulate the model, we note that if a system is clo
to the onset of active motion and this instability is soft, i.
characterized by a supercritical bifurcation, the motion w
small velocityV can generally be described by equation

V̇5aV2bV3, ~1!

with real coefficientsa and b.0. This equation may be
viewed as a normal form of the supercritical bifurcation lea
ing to translational motion. Such bifurcations are possible
simple physicochemical systems@3#. They are also known
for localized spot patterns in reaction-diffusion models a
correspond to the onset of their translational motion@10,12#.

According to Eq.~1!, the velocity V is zero below the
bifurcation point ~i.e., for a,0). Above this point, active
motion with V56Aa/b is asymptotically established. Th
direction of this motion for an individual particle remain
arbitrary and is determined by initial conditions. Rescali
time and introducing the new velocity variableu5VAb/a,
Eq. ~1! can be written as
4571 © 1999 The American Physical Society
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u̇5u2u3. ~2!

When a population of identical self-moving particles is co
sidered, the velocityui5 ẋi of each particlei will satisfy this
dynamical equation.

Interactions between individuals may generally depend
both their relative positions and velocities. In this paper
assume that the interactions are pairwise and describe
forces f (xi2xj ) that depend only on the difference of coo
dinates of two particlesi and j. We shall further assume tha
the interactions are attractive and depend linearly on the
tance between the particles, i.e.,f (xi2xj )}(xi2xj ). These
attractive forces are supposed to model the interaction wi
the size ranges of the dynamical states considered be
where the population forms clouds of either oscillating
translational motion. The interaction could be extended
larger distances in order to represent, for instance, vanis
forces at infinity@22#. Additionally, the system may includ
noise that will be modeled by independent random for
j i(t) acting on individual particles. Noise prevents the c
lapse of the population, so that short-range repulsion@15,22#
can here be ignored.

Under these conditions, the dynamical equations for a
of N identical self-moving particles with coordinatesxi(t)
are

ẍi1~ ẋi
221!ẋi1

a

N (
j 51

N

~xi2xj !5j i~ t ! ~ i 51, . . . ,N!.

~3!

The coefficienta characterizes the intensity of interactio
and can be viewed as the parameter, specifying the stre
of coupling in the population. Equations~3! constitute the
basic model investigated in this paper. We shall assume
j i(t) are independent white noises of intensityS, so that
^j i(t)j j (t8)&52Sd i j d(t2t8). Note that Eqs.~3! are invari-
ant with respect to an arbitrary translation in the coordin
space.

Model ~3! can behave as a system of globally coup
limit-cycle oscillators~cf. @23,24#!. Introducing the average
coordinatex̄(t) of the swarm,

x̄~ t !5
1

N (
j 51

N

xj~ t !, ~4!

Eqs.~3! in absence of noise read

ẍi1~ ẋi
221!ẋi1a~xi2 x̄!50 ~ i 51, . . . ,N!. ~5!

Thus, if the swarm does not move as a whole, i.e.,x̄(t)
5constant, the particles perform persistent oscillations.
this state the phases of individual oscillations are rand
Note that the spatial locationx̄ of an oscillating swarm is
arbitrary.

In addition to the random oscillatory state, system~5! has
two coherent collapsed states where the coordinates o
particles are identical, i.e.,xi5 x̄ for any i. These states cor
respond to uniform translational motion of the entire swa
with the velocityu561. A simple analysis shows that th
oscillatory state and both coherent traveling states are
-
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early stable for any positive parametera. The final state of
the population is determined by the initial conditions. O
numerical simulations show that, if the average velocityū
5N21( iui is initially close to zero, the oscillatory standin
state is asymptotically reached. If, however, this initial av
age velocity is large enough, one of the two coherent trav
ing states will be approached.

Since the particles either converge to coherent mot
with constant velocity or to disordered oscillations with n
average drift, the ensemble can be thought of as amultistable
systemwith qualitatively different attractors. In the follow
ing, we focus our attention on how these attractors resp
to the effect of noise. With this aim, we study Eq.~3! nu-
merically. Integration is performed by means of a stand
Euler scheme with a time stepDt51023 to 1022. Most cal-
culations correspond to ensembles of 100 particles, with
coupling intensity ranging froma51 to 100. Larger values
of a require smaller values ofDt. Noise is introduced by
generating at each time step a random numberj with uni-
form distribution in the interval (2j0 ,j0). This choice cor-
responds to havingS5j0

2/6Dt. In practice,j0 is calculated
for each given value ofS. Initial conditions are selected a
random, distributing the particles aroundx50 andu50 or 1
with a dispersion of the order of 0.5 in both variables. Fro
each initial condition the system is left to evolve in the a
sence of noise until it reaches the state of disordered osc
tions or coherent motion. Then, att530, noise is switched
on. Typical calculations extend up tot'1000.

For small noise intensitiesS&0.1, the stochastic pertur
bations to the trajectories preserve the characteristic feat
of the collective dynamics observed in the absence of no
The completely collapsed state of the noiseless case tr
forms into a cloud of particles, which still moves coheren
at a given velocity. Oscillatory orbits, meanwhile, proce
now along a noisy limit cycle. Figure 1 shows three sna
shots of a system of 100 particles witha510, subjected to
noise withS50.1. They started from different initial condi
tions, as described above. The arrows indicate the ove
motion of each swarm.

Within coherent clouds, each particle performs an osci
tory noisy motion, which is superimposed to the collecti

FIG. 1. Three snapshots of 100-particle systems witha510 and
S50.1, in different dynamical regimes. The central ensemble c
responds to disordered oscillations along a noisy limit cycle. T
other two ensembles stand for coherent clouds with opposite a
age velocities.
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translation. The distribution of particles inside the clouds h
a well-defined profile, shown in Fig. 2 for some values oa
in the case of positive velocity. The normalized distributi
r(y) is there plotted as a function of the coordinate relat
to the average positionyi5xi2 x̄. For decreasinga, the dis-
tribution becomes broader and more asymmetric, with
accumulation of particles at the front of the cloud.

The coherent traveling states of the population ceas
exist at sufficiently high noise intensities and the swarm
dergoes an abrupt transition to its random oscillatory st
characterized by the absence of the translational motion.
breakdown of coherent swarm motion is illustrated in Fig.
We see that if the noise is relatively weak@Fig. 3~a!#, switch-
ing it on at t530 only produces a slight decrease of t
velocity of the coherent cloud, so that the average velo
ū(t) exhibits fluctuations around a constant mean valueū
,1. If, however, the noise intensity exceeds a certain thre
old, the effect of introducing noise is qualitatively differe
@Fig. 3~b!#. Within a certain time interval after the introduc
tion of noise, the swarm continues to travel at a somew
reduced, strongly fluctuating average velocityū(t). Then, it
suddenly starts to decelerate and soon reaches a steady
where the average velocityū(t) fluctuates near zero. Inspec
tion of the distribution of particles in the ensemble sho
that in this state the system has been attracted to the n
limit cycle mentioned above. We conclude that the syst

FIG. 2. Normalized profiles of coherent clouds as functions
the deviation from the average position, for different values oa
andS50.1 in a 100-particle ensemble.

FIG. 3. Average velocity of 100-particle coherent clouds in tw
realizations at~a! S50.10 and ~b! 0.12, with a510. Noise is
switched on att530 ~dashed line!. The horizontal lines indicate the
asymptotic mean values ofu(t).
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undergoes anoise-induced transitionfrom a condition of
multistability with two kinds of attractors to a situatio
where only one of them exists. The coherent clouds obser
for small noise intensities are no longer possible forS
.Sc , and the system is necessarily led to the state of no
disordered oscillations.

Figure 4 displays the dependence of the mean velocitū
of the traveling swarm on the noise intensityS for three
different values of the coupling coefficienta. We see that the
mean velocity monotonously decreases with the noise in
sity, until a certain critical noise intensity is reached and
coherent swarm motion becomes impossible. The mean
locity at the critical point is still relatively large,ū'0.8. The
critical noise intensitySc becomes lower for smaller value
of a. Note that the behavior of the swarm is characterized
a strong hysteresis. If the breakdown of the coherent mo
has occurred, subsequently decreasing the noise inte
leaves the system in the oscillatory state with zero m
velocity, down toS50.

An interesting property of the considered noise-induc
transition is the divergence of the waiting time at the critic
point. The waiting timeT0 is defined as the time at which th
average velocityū(t) of the cloud first reaches zero~we
measure this time starting from the momentt530 when the
noise is switched on!. Figure 5 shows the waiting timeT0 as
a function of S-Sc in a log-log plot. We see that for very
small values ofS-Sc , this time decreases following a powe
law, T0}(S-Sc)

2g, with g'1.33. Then, at aboutS-Sc
50.03, the behavior changes to a power law withg'0.52.
Straight dashed lines with slopes24/3 and21/2 have been
plotted for reference.

The observed noise-induced transition between cohe
clouds and disordered oscillations of the swarm can be
plained by a simple approximate analytical approach.
summing all Eqs.~5! for different particlesi and taking into
account that the noises acting on individual particles are
correlated, an evolution equation for the average swarm
locity ū(t) is obtained:

u̇̄1
1

N (
i 51

N

ẋi
32ū50. ~6!

f
FIG. 4. The asymptotic mean velocity of 100-particle coher

clouds as a function ofS, for different values ofa. Symbols corre-
spond to numerical measurements and lines stand for the analy
result, Eq.~13!.
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Let us introduce for each particle its deviationyi5xi2 x̄
from the average position of the swarm. Then we can w

1

N (
i 51

N

ẋi
35ū313sū1

1

N (
i 51

N

ẏi
3 , ~7!

wheres5N21( i ẏi
2 is the average square dispersion of t

swarm. The last cubic term in this equation can be neglec
if the distribution of particles in the traveling cloud is sym
metric. As we have seen from numerical simulations~Fig. 2!,
this is indeed a good approximation for sufficiently lar
values of the coupling constanta. Within this approximation,
Eq. ~6! takes the form

u̇̄1~ ū221!ū13sū50. ~8!

On the other hand, deviations of particles from the cen
of the swarm obey the stochastic differential equation

ÿi1~3ū221!ẏi1ayi13ū~ ẏi
22s!1S ẏi

32
1

N (
i 51

N

ẏi
3D

5j i~ t !. ~9!

Assuming that the deviations ofẏi are relatively small and
linearizing this equation, we obtain

ÿi1~3ū221!ẏi1ayi5j i~ t !. ~10!

In this approximation the deviations for different particlesi
represent statistically independent random processes. Th
lows us to replace the ensemble average in the dispersios
by the statistical average taken over independent random
alizations of such processes, defined by Eq.~10!.

Hence, we have derived a closed set of Eqs.~8! and ~10!
that approximately describe the swarm. We want to inve
gate steady statistical states of this system. The statio
solutions to Eq.~8! are ū56A123s andu50. The latter
solution corresponds to the resting swarm.

Examining Eq.~10!, we note that it describes dampe
oscillations only if 3ū221.0, i.e., only if the mean velocity
of the swarm is sufficiently large. Under this condition, t

FIG. 5. Waiting timeT0, at which the average velocity of ini
tially coherent clouds vanishes for the first time, as a function
S-Sc for a510 in a 100-particle system. The dashed lines ha
slopes21/2 and24/3.
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stationary probability distribution foryi is readily found and
the average square dispersion of velocities is obtained a

s5
S

3ū221
. ~11!

The algebraic equations forū ands can be solved, yield-
ing the statistical dispersion of particles in the traveli
swarm,

s1,25
1
9 ~16A129S!, ~12!

and its mean velocity

ū1,2
2 5 1

3 ~26A129S!. ~13!

Thus, the traveling-state solutions disappear when
critical noise intensitySc51/950.11 . . . isreached. At this
critical point the mean swarm velocity isūc5A2/3
50.82 . . . and themean dispersion of particles in the clou
is sc51/950.11 . . .

Below the breakdown threshold~for S,Sc), solution~13!
has two branches shown by solid and dashed lines in Fig
The lower branch is apparently unstable, since it approac
the valueū51/A350.58 . . . atS50, i.e., in absence of the
noise. A special property of the derived solution is that
does not depend on the parametera.

Comparing the theoretical prediction with the numerica
determined values of the mean swarm velocity, which
also plotted in Fig. 4, we can see that this approximat
provides good estimates of the swarm velocity and the c
cal noise intensity when the parametera is relatively high
(a5100 anda510). At small values ofa, the deviations
from the numerical results become significant near the bre
down threshold. This can be understood if we take into
count that, according to Fig. 2, the distribution of particles
a traveling swarm shows significant asymmetry for such
small value ofa and, therefore, our approximations are n
valid.

For a standing swarm (ū50), the deviationsyi5xi2 x̄
obey in the limitN→` the nonlinear stochastic differentia
equation

ÿi1~ ẏi
221!ẏi1ayi5j i~ t !, ~14!

which is similar to the Van der Pol equation@25#. In this
state, therefore, the particles in the swarm perform perio
limit-cycle oscillations with a random distribution of phase
This state exists for any noise intensityS and is approached
when the noise-induced breakdown of the coherent mo
takes place atS5Sc .

Thus, we have found in this paper that a swarm of int
acting, actively moving particles may show bistable beh
ior, i.e., they can be found either in a coherent state trave
at a fixed velocity, or in a rest state where the translatio
motion is absent and the individual particles perform os
lations around the center of the swarm. The bistability p
sists in the presence of noise if its intensity remains re
tively low. Increasing the noise intensity leads to a sudd
breakdown of the coherent traveling motion and a transit
to the resting oscillatory state occurs. This behavior is diff

f
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ent from the second-order phase transitions to coherent
lective motion, which were found in the previously studi
models@17,18#. We conjecture that the difference is relat
to the fact that in our model the interactions between s
propelled particles have a long range and extend over
entire swarm. It would be interesting to see how this beh
ior is modified when other interaction laws and systems w
higher dimensionality are considered. Finally, we rem
that, when formulated in terms of dynamical equations
.
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e,

ys

ys
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individual interacting self-propelled particles, the proble
shows significant similarities to synchronization and cond
sation in populations of globally coupled oscillators~see,
e.g., @23,26#!. The significant new aspect is that collaps
synchronous states correspond here to translational motio
the entire population.

The authors acknowledge financial support from Fun
ción Antorchas~Argentina!.
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