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Lieb Robinson bounds quantify the maximal speed of information spreading in nonrelativistic
quantum systems. We discuss the relation of Lieb Robinson bounds to out of time order correlators,
which correspond to different norms of commutators C(r, t) = [Ai(t), Bi+r] of local operators. Using
an exact Krylov space time evolution technique, we calculate these two different norms of such
commutators for the spin 1/2 Heisenberg chain with interactions decaying as a power law 1/rα with
distance r. Our numerical analysis shows that both norms (operator norm and normalized Frobenius
norm) exhibit the same asymptotic behavior, namely a linear growth in time at short times and a
power law decay in space at long distance, leading asymptotically to power law light cones for α < 1
and to linear light cones for α > 1. The asymptotic form of the tails of C(r, t) ∝ t/rα is described
by short time perturbation theory which is valid at short times and long distances.

I. INTRODUCTION

One of the most general concepts to study dynamical
properties of quantum many-body systems is the dynam-
ics of quantum information, generalizing the spreading
of all possible types of correlations in the system. Of
particular interest is the dynamical spreading of local
operators1–3, which contains information about all cor-
relation functions composed of these operators. While
in relativistic systems, the spreading of information is
limited by the speed of light, there is no such strict
limit in nonrelativistic quantum mechanics. However,
it was shown by Lieb and Robinson4 that quantum
systems with short range interactions exhibit a simi-
lar, non-universal speed limit, implying a causal struc-
ture. This emergent “light cone” has important conse-
quences for the behavior of many-body interacting sys-
tems such as the area law of entanglement5,6, the decay of
correlations7 and stability of topological order8, but also
for the timescales of thermalization9–11. Recently, a lot
of progress has been made in establishing similar speed
limits for the spreading of information in systems with
long range interactions and it is clear that also in such
systems, information can not spread infinitely fast12–23,
however it is not always clear whether so far established
analytical bounds on information spreading are tight for
experimentally relevant lattice models. Power law decay-
ing interactions are present in several quantum simulator
platforms such as trapped ions24,25, Rydberg atoms26, ul-
tra cold atoms27 and superconducting qubits28 and it is
therefore important to obtain tight bounds on informa-
tion scrambling and thermalization timescales.

A useful measure to quantify the spreading of an ini-
tially local operator Âi(t) is the commutator with an-

other local operator B̂i+r

Ĉ(r, t) = ||[Âi(t), B̂i+r]|| (1)

where B̂i+r serves as a probe and the operators Âi and
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B̂i+r act only on sites i and i + r of the system respec-

tively. Âi(t) = exp (iĤt)Âi exp (−iĤt) is the operator Âi
under time evolution in the Heisenberg picture and ||.||
denotes any matrix norm. Vanishing C(r, t) indicates
that no information has traveled from site i to i + r at
time t. It should be noted here that this generally de-
pends very little on the choice of the operator in chaotic
quantum many-body systems and only fine tuned situa-
tions exist, where a dependence on the operator at short
times can be observed12.

In systems with short range interactions, C(r, t) is
bounded within a “light-cone” region t > r/v where v is
a velocity that depends on the microscopic model. This
bound does not represent a strict cutoff, since exponen-
tial tails exist outside the light cone4,29,30.

Similarly, analytical bounds have been derived in sys-
tems with long range interactions decaying as a power
law 1/rα with distance r. Hastings and Koma suggested
a logarithmic bound t ∼ log(r)13 for any α.

In the case of strongly long ranged systems with small
α < D (D is the spatial dimension), the logarithmic
bound is dominant16,31. Polynomial light cones have
been proposed14,17,32 of the form t ∼ r(α−2D)/(α−D+1)

in the regime α > 2D which consistently recovers the
linear light cone in the short range limit α → ∞. This
bound was tightened to t ∼ r(α−2D)/(α−D)18. In general
α large but finite is consistently found to exhibit asymp-
totically short-ranged behavior12,19,21,33. It was argued
by Gong et al. that a linear light cone structure per-
sists for α > D15, which is also supported by numerical
simulations12. A stochastic model of operator spreading
in long range interacting systems points to linear light
cones for α ≥ D+ 1

2
34. For general quantum state trans-

fer protocols, only a weaker bound for a linear light cone
for α > 2D + 1 is valid35,36.

The analysis of analytical bounds4,13–16,18,31,32,35,37 is
mostly concerned with the operator norm ||Ĉ(r, t)||2 (the

largest singular value of the commutator matrix Ĉ(r, t)
in Eq. (1)) because it encodes the “worst case” sce-
nario, namely the fastest spreading modes in the system.
On the other hand, numerical simulations of C(r, t) usu-
ally employ the square of the normalized Frobenius norm
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‖Ĉ(r, t)‖2F 11,12,33, which is the average over the square of
its singular values and is directly related to the out of
time order correlator (OTOC)38–41 as shown in Eq. (7).
In Ref. 36 a bound on the Frobenius norm was estab-
lished and found to be different from the bound on the
operator norm. The Frobenius norm, associated with
typical states, was shown to exhibit linear light cones for
α > 5/2, while for the operator norm a weaker bound of
α > 3 was found.

In a previous numerical study of long range interact-
ing spin chains12, the asymptotic shape of the light cone
of the OTOC (normalized Frobenius norm) was consid-
ered. In the present work, we are interested instead in
the behavior of the operator norm of the commutator to
compare the spreading of the fastest mode to that of typ-
ical modes (Frobenius norm). Interestingly, our analysis
suggests, that both the average and the largest singular
value of Ĉ(r, t) have the same asymptotic behavior: We

find a linear growth in time of ‖Ĉ(r, t)‖2 at short times,
and a power law decay with distance at long distances
with the exponent α, which can be understood from per-
turbation theory.

II. MODEL AND METHOD

We study the isotropic one-dimensional Heisenberg
XXX model with long range interactions:

H =
∑
i<j

J

|i− j|α
(
Ŝxi Ŝ

x
j + Ŝyi Ŝ

y
j + Ŝzi Ŝ

z
j

)
, (2)

where Sγi = σγi /2 are spin 1/2 operators acting on site
i, with γ = x, y, z (σγi are the corresponding Pauli ma-
trices). The interaction exponent α controls the range
of the interactions and we use J = 1 throughout this
paper. We do not use a rescaling of the coupling con-
stant with system size L to make the energy extensive
for small α, since this essentially only rescales our units
of time. The model (2) conserves the total magnetization

Sztot =
∑
i Ŝ

z
i and we focus on the largest magnetization

sector Sztot = 0 for even L and Sztot = 1
2 for odd L, to

maximize the accessible system sizes. The limit α → 0
corresponds to all-to-all interactions and α → ∞ is the
nearest neighbor limit, which are both integrable points
of the model. There is also a special integrable point at
α = 2, the so called Haldane-Shastry model42,43.

For concreteness, we consider the dynamical spreading
of the local Ŝzi (t) operator, probed by the commutators

Ĉ(r, t) =
[
Ŝzi (t), Ŝzi+r

]
. (3)

We note that due to the SU(2) symmetry of the model,
all Sxi , Syi , Szi operators spread in the same way.

A. Matrix norms of the commutator

In order to quantify the growth of the commutator
norm C(r, t), we use two different matrix norms. The
(normalized) Frobenius norm is defined as

‖Ĉ(r, t)‖F :=

√√√√Tr
(
Ĉ(r, t)†Ĉ(r, t)

)
N

=

√∑
i s

2
i

N
, (4)

where si are the singular values of the commutator Ĉ(r, t)

(and consequently s2i the eigenvalues of Ĉ(r, t)†Ĉ(r, t)).

The operator norm ‖Ĉ(r, t)‖2, or 2-norm is defined by
the largest singular value

‖Ĉ(r, t)‖2 = sup
ψ∈H

‖Ĉ(r, t) |ψ〉 ‖2
‖ |ψ〉 ‖2

= max
i
si. (5)

Therefore, the normalized Frobenius norm is always
smaller than (or equal to) the operator norm

C2(r, t) ≥ CF (r, t). (6)

Where for simplicity we have denoted C2(r, t) =

‖Ĉ(r, t)‖2 and CF (r, t) = ‖Ĉ(r, t)‖F .

B. Out of time order correlator and relation to
Frobenius norm of the commutator

Expanding the definition of the normalized Frobenius
norm (4) for the commutator Ĉ(r, t) = [Ŝzi (t), Ŝzi+r]
yields

CF (r, t)2 = ||[Ŝzi (t), Ŝzi+r]||2F

=
1

8
− 2

N
Tr
(
Ŝzi (t)Ŝzi+rŜ

z
i (t)Ŝzi+r

)
. (7)

The correlation function 1
N Tr

(
Ŝzi (t)Ŝzi+rŜ

z
i (t)Ŝzi+r

)
is

known as the out of time order correlator (OTOC) and
can be viewed as an infinite temperature four point func-
tion, where the partition function is given by the dimen-
sion of the Hilbert space Z = N .

In order to study the long distance behavior of this
quantity, it is crucial to access large enough system sizes
to ensure the convergence of our results in the thermody-
namic limit and we therefore use dynamical typicality44

for computing the trace which appears in the Frobe-
nius norm Tr(C(r, t)†C(r, t)). This method consists of
replacing the trace operation by the expectation value
〈ψ|Ĉ(r, t)†Ĉ(r, t)|ψ〉 where ψ is a random vector in the
Hilbert space drawn from the Haar measure45, and av-
eraging over random vectors |ψ〉. Eq. (7) is then

boiled down to Tr
(
Ĉ(r, t)†Ĉ(r, t)

)
= 〈ψ′|ψ′〉 , where

|ψ′〉 = C(r, t)|ψ〉, up to an error exponentially small
in the system size L, requiring a very small number of
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random vectors (typically 1 . . . 100) for large enough sys-
tems. The operation C(r, t)|ψ〉 is performed as a se-
quence of matrix-vector multiplications and several time
propagations e−iHt|ψ〉 of (intermediate) wave functions
|ψ〉. These propagations can be performed efficiently us-
ing massively parallel sparse matrix Krylov space tech-
niques. Technical details of this method for the calcu-
lation of the OTOC are discussed in Refs. 11, 12, and
46.

C. Operator norm of the commutator

In the present paper, our main focus is on the operator
norm (2-norm) of the commutator

C2(r, t) = ‖[Ŝzi (t), Ŝzi+r]‖2, (8)

which corresponds to the largest eigenvalue (equivalent
to the largest singular value of C(r, t)) of the Hermitian

form of the commutator iC(r, t) = i[Ŝzi (t), Ŝzi+r]. We
use a matrix free implementation of the matrix vector
product |ψ̃〉 ← iC(r, t)|ψ〉, such that we never have to
deal with dense matrices and use the Lanczos algorithm
to obtain the largest eigenvalue of iC(r, t).

This means that we calculate

iC(r, t) |ψ〉 = i
[
Ŝzi (t), Ŝzi+r

]
|ψ〉

= iŜzi (t)Ŝzi+r |ψ〉 − iŜzi+rŜ
z
i (t) |ψ〉

= ieiĤtŜzi |ψ2(t)〉 − iŜzi+re
iĤtŜzi |ψ(t)〉

= ieiĤt |ψ3〉 − iŜzi+re
iĤt |ψ4〉

= i |ψ3(−t)〉 − iŜzi+r |ψ4(−t)〉
= i |ψ3(−t)〉 − i |ψ5〉
→ |ψ̃〉 .

(9)

Here, we have used the replacements |ψ2〉 = Ŝzi+r |ψ〉,
|ψ3〉 = Ŝzi |ψ2(t)〉, |ψ4〉 = Ŝzi |ψ(t)〉, |ψ5〉 = Ŝzi+r |ψ4(−t)〉.
The matrix-free matrix-vector product involves again for-

ward |ψ(t)〉 = e−iĤt |ψ〉 and backward |ψ(−t)〉 = eiĤt |ψ〉
real time evolution of the wavefunction, very similarly
to the case of the OTOC11,12, for which we employ a
Krylov space technique for the matrix exponential47–49.
Matrix vector multiplications of Ŝzi operators with wave
functions are trivial, since these operators are diagonal
in the computational Sz basis, and the entire algorithm
thus requires only storage of a few vectors. This method
gives access to the largest eigenvalue of the commuta-
tor with controlled accuracy up to system size L = 22
(N = 705432 in the zero magnetization sector). We note
that for larger α and short distances r, the convergence
of the Lanczos algorithm is particularly challenging due
to small gaps in the spectrum. Lastly, for treating small
systems L < 18, the calculations were performed using
full exact diagonalization.

Throughout this paper, we fix the position of the
spreading operator to i = 3 (the left most is indexed

i = 0) in such a way that distances r = 0, 1, . . . , L − 4
are accessible (using open boundaries) and the reflection
of the left information front does not interfere with prop-
agation of the right one (which is the one we study in
detail).

III. RESULTS

In the following, we analyze in detail the space-time
profile of the operator norm of the commutator ‖Ĉ(r, t)‖2
of the long range XXX chain (2) and compare it to
the case of the normalized Frobenius norm (OTOC), for
which a very detailed analysis can be found in Ref. 12.
We provide additional complementary data for the XYZ
chain in Appendix B.

A. Causal space time region

We start our analysis by providing a qualitative com-
parison of the two norms of the commutators Ĉ(r, t) =

[Ŝz3 (t), Ŝz3+r] for different range of the interaction α and
all distances r as a function of time. The synopsis of
these results is shown in Fig. 1, where the top row shows
the operator norm and the bottom row the normalized
Frobenius norm (OTOC), while columns correspond to
different ranges of the interaction α = 0.3, 0.7, 1.2, 2.4.
Both norms are shown on the same color scale. Full lines
show contour lines of the space time profile for various
thresholds θ, extracted from the solution of the equation
C(r, t) = θ to obtain the light “cone” tθ(r). It is clear al-
ready from a visual inspection of the two norms that the
essential behavior is identical. Both norms reveal a clear
causal space time region outside of which the commuta-
tor is very small, which means that almost no quantum
information is communicated at short times and long dis-
tances for all α.

The contours are calculated for the same set of thresh-
old values θ (indicated as vertical lines in the colorbar for
clarity), clearly showing that the operator norm reaches
a fixed threshold earlier than the Frobenius norm due to
the property given by Eq.(6). Since no signal can travel
faster than governed by the operator norm, it strictly
limits the amount of quantum communication outside
the causal region. The comparison between the opera-
tor and the Frobenius norm shows that typical modes in
the system [singular values of Ĉ(r, t)] travel significantly
slower than the fastest mode (maximal singular value),
an effect which is particularly pronounced at small α as
can be seen from a comparison of the contour lines be-
tween the two norms.

The overall shape of the contour lines appears to be
identical (with different prefactors). For large α, both
norms are consistent with asymptotically linear light
cones.

For intermediate α = 1.2, and large thresholds (black
contour lines), we observe a “bump” in the case of the
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FIG. 1. Norms of the commutator Ĉ(x, t) = [Ŝzi (t), Szx] as a function of time t and position x in the chain for different
interaction exponents α. The first operator is located at i = 3. The top row corresponds to the operator norm (largest
singular value of C(x, t)), the bottom row shows the normalized Frobenius norm (root of mean of squared singular values of
C(x, t)). The curves correspond to contour lines for different thresholds θ, i.e. the solution tθ(x) of the equation ‖C(x, t)‖ = θ
with θ = 0.05, 0.1, 0.15, 0.2, 0.25 for both norms. The interaction exponents α = 0.3, 0.7, 1.2, 2.4 correspond to system sizes
L = 21, 22, 21, 20 respectively.

operator norm, which is likely nonuniversal and stems
from the reflection at the left edge of the system, there-
fore we focus on smaller thresholds in these cases, where
reflection does not (yet) interfere due to the observed
causality.

B. Early time growth

In Fig. 2 we analyze the growth of the operator norm
C2(r, t) = ‖Ĉ(r, t)‖2 as a function of time t for fixed
distances r. The results are shown for a system of size
L = 22 and reveal very clearly that the operator norm
grows linearly in time (linear growth shown by dashed
black lines for comparison). We have checked that this
short time behavior is converged in system size. This
is identical to the behavior of the normalized Frobenius
norm (OTOC)12 and is expected in the short time per-
turbative regime when t � 1. We show how this linear
growth arises from short time perturbation theory in Sec.
III C, where it becomes also clear that nearest neighbor
interactions lead to a different (power law) short time
behavior.

C. Perturbation theory in the short time limit

At short times, we can use the Baker-Campbell-
Hausdorff (BCH) formula

eX̂ Ŷ e−X̂ =

∞∑
m=0

1

m!
[X̂, Ŷ ]m, (10)

with [X̂, Ŷ ]m = [X̂, [X̂, Ŷ ]m−1] and [X̂, Ŷ ]0 = Ŷ . Re-

placing Ŷ = Ŝzi and X̂ = itĤ we get a perturbative
expansion for time dependent Heisenberg operators:

Ŝzi (t) =

∞∑
m=0

(it)m

m!
[Ĥ, Ŝzi ]m. (11)

The commutator Eq. (3) can then be written as

[Ŝzi (t), Ŝzi+r] =

∞∑
m=0

(it)m

m!
[[Ĥ, Ŝzi ]m, Ŝ

z
i+r]. (12)

For systems with long range interactions, the commu-
tator to linear order [[Ĥ, Ŝzi ], Ŝzi+r] is nonzero for any
distance r, and is therefore the leading order at short
times, leading to a dominant term linear in t. For the
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FIG. 2. C2(r, t) as function time at fixed distance r from site
i = 3. Dashed lines are linear power law fits to times t < 1.
The fitted lines are extended up to t = 3. The system size is
L = 22.

long range XXX model Eq. (2), we obtain for r > 0:

[Ŝzi (t), Ŝzi+r] =
it

rα

(
Ŝxi Ŝ

x
i+r + Ŝyi Ŝ

y
i+r

)
+O(t2). (13)

Therefore, the operator norm C2(r, t) to leading order in
t reads

‖[Ŝzi (t), Ŝzi+r]‖2 =
t

2rα
+O(t2). (14)

For any finite α the operator norm Eq. (8) grows lin-
early in time and scales as r−α at long distance and short
times. We note that this perturbative behavior is true for
any choice of the norm. In Fig. 3 the exact time evolu-
tion (colored lines) is compared to the leading order Eq.
(14) (grey straight lines), yielding excellent agreement at
short times.

On the other hand, Eq. (12) yields a very different
behavior when interactions are limited to only nearest
neighbors. In the short range limit α → ∞ the support
of the nested commutator [Ĥ, Ŝzi ]m grows by one lattice

site at eachm term which makes [[Ĥ, Ŝzi ]m, Ŝ
z
i+r] vanishes

for m < r. This can be seen more clearly by looking at
the first term in the expansion [Ĥ, Ŝzi ]1 = i(Ŝxi Ŝ

y
i+1 −

Ŝyi Ŝ
x
i+1)+ i(Ŝxi−1Ŝ

y
i − Ŝ

y
i−1Ŝ

x
i ) which has support only on

sites i − 1, i, i + 1 and therefore [[Ĥ, Ŝzi ]1, Ŝ
z
i+r] vanishes

as long as r > 1. Higher order terms in the BCH formula
for r > 1 become only nonzero if a string of nontrivial
Pauli matrices of length r is generated between sites i
and i+r, and thus the leading order in the BCH formula

reads for nearest neighbor interactions

[Ŝzi (t), Ŝzi+r] ∝
tr

r!
Ô(1), (15)

where Ô(1) is given by the operator norm of a sum of
Pauli strings of length r. In other words, at short times
and outside the light cone the operator norm grows as
a power law in time with an exponent given by the dis-
tance between the two operators. This is a quite general
result, valid for any pair of local operators that are sep-
arated by a distance r larger than the support of the
most extended term in the Hamiltonian. In Fig. 6 the
exact time evolution of Eq. (8) for the XXX short range
model is compared to the perturbation theory result Eq.
(15). The power law growth C2(r, t) ∝ tr is in excellent
agreement with the exact calculation at short times.

D. Role of the nearest neighbor part of the
Hamiltonian at large α

10−4

10−3

10−2

10−1

||C
(r

,t
)||

2
α = 1.5

r = 3

r = 5

r = 7

r = 9

α = 2.0

10−1 100 101

t

10−6

10−5

10−4

10−3

10−2

10−1

||C
(r

,t
)||

2

α = 3.0

10−1 100 101

t

α = 4.0

FIG. 3. Time evolution of C2(r, t) at fixed distance r =
3, 5, 7, 9 from i = 3 and α = 1.5, 2.0, 3.0, 4.0 for nearest neigh-
bor (dashed lines) and long range interactions. Grey lines are
the leading order in perturbation theory given by Eq. (14).
The system size is L = 14.

For large values of α, there is a significant speedup of
the growth of the commutator norm and a clear depar-
ture from the linear growth of C2(r, t) at intermediate
times (cf. Fig. 2 lower panels). On the other hand, when
α is large enough the commutator C2(r, t) is expected to
exhibit a similar behavior as a short range interacting sys-
tem, which corresponds to the limit α → ∞ in Eq. (2).
The Hamiltonian of the long range model contains the
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||C
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,t
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2
α = 0.3

L = 18

L = 20

L = 21

t/2rα

α = 0.7

t = 1.88

t = 1.58
t = 1.27

t = 0.98

t = 0.68

t = 0.38

L = 18

L = 20

L = 22

t/2rα

22 23 24

r

10−3

10−2

10−1

||C
(r

,t
)||

2

α = 1.2

L = 18

L = 20

L = 22

t/2rα

22 23 24

r

α = 2.4

L = 18

L = 20

L = 21

t/2rα

FIG. 4. Commutator as function of distance r from site i = 3
at times t = 0.38, 0.68, 0.98, 1.27, 1.58, 1.88 (descending order
in the plots). The overall behavior seems to be power law at
any fixed time. The trends of the smaller sizes are followed
off by the larger ones.

nearest neighbor part plus longer distance couplings, de-
caying as 1/rα, which are strongly suppressed for α� 1.
Therefore, a dominant effect of the nearest neighbor part
is expected for large α12,22. In Fig. 3 we compare C2(r, t)
for the long range model (full colored lines) to the near-
est neighbor model (red dashed) at fixed distances r. At
short times, the long range model shows the perturbative
growth r−αt/2 for all α, and speeds up at intermediate
times. The initial growth is significantly faster than in
the case of nearest neighbor interactions. For nearest
neighbor interactions, the operator norm C2(r, t) grows
much faster due to the large power law ∝ tr. There-
fore, at later times and for α > 1, the nearest neighbor
part catches up and dominates the overall growth of the
commutator and leads to an asymptotic linear light cone.

Focusing only on large α, the operator norm of the
commutator exhibits two kinds of grows: linear at short
times (see Fig. 2) and short-ranged like at intermediate
times (see Fig. 3). The short-range time evolution of
C2(r, t) is well characterized by (t/r)r50, while the long-
range part is described by Eq (14) t/rα in the limit t� 1.
These two results can be combined into a single expres-
sion:

C2(r, t) ∝ t

2rα
+O(1)

(
t

r

)r
. (16)

At short times the linear term on the right hand side is
always dominant, at intermediate time the second term
become dominant and the dynamics is short-range like.

At long distances there is a clear transition from a
linear light cone for α > 1 to a power law light cone
at α < 1, which can be understood with the following
reasoning. The asymptotic form of C2(r, t) in Eq. (16)
grows monotonically and the two terms compete. The
light cone is given by the set of times tθ(r) as a function of
distance r, for which C2(r, t) reaches a threshold value θ,
i.e. C2(r, tθ(r)) = θ. It is clear that tθ(r) ≤ tc(r) = 2θrα,
since this is the time the first (linear in t) term needs
to reach the threshold. If the second (power law in t)
term reaches the threshold first, we get a linear light
cone, otherwise we get a power law light cone. We can
estimate the power law term at long distances and t ≤ tc
by tr/rr ≤ trc/r

r = (2θrα)r/rr. Therefore, at tc, this
term diverges for α > 1 and r →∞, and overwhelms the
linear term, leading to a linear light cone tθ(r) ∝ r. For
α < 1, and r →∞, this term is irrelevant and we are left
with a power law light cone tθ(r) ∝ rα. Analogously, the
linear term is bounded by the time when the short range
front reaches the threshold, i.e. t/2rα ≤ rθ1/r/2rα. The
bounding term vanishes in the limit r → ∞ and α > 1
and diverges otherwise, which agrees with the bound to
the short range term. This behavior is consistent with
the numerical observation in Fig. 1.

E. Long distance decay
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α = 2.4

α = 2.8
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α = 3.4

FIG. 5. Tail exponent of long distance decay (see Fig.
4) computed from the discrete logarithmic derivative β =
∂log r logC2(r, t) as a function of distance r for different sys-
tem sizes L at fixed time t = 0.67. The asymptotic exponent
β converges towards the interaction exponent α (dashed hor-
izontal lines) for all values of α at long distances.
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In Fig. 4 we analyze the behavior of C2(r, t) at long
distances r outside the “light cone”. It falls off as a power
law at long distances, with an exponent that asymptot-
ically approaches the interaction exponent α (see quan-
titative analysis using a discrete logarithmic derivative
in Fig. 5). The same behavior was found previously12

for the normalized Frobenius norm. This power law de-
cay r−α is in perfect agreement with the prediction from
perturbation theory in the short time limit given by Eq.
(14), and seems to be valid asymptotically outside the
causal region.

This analysis confirms the validity of short time per-
turbation theory (which is valid for any matrix norm)
and shows that the asymptotic shape of the tails (outside
the causal region) of long range interacting spin chains is
given by C2(r, t) ∝ t/rα.

IV. CONCLUSIONS

The operator norm C2(r, t) of the commutator Eq. 1
has been examined in the XXX chain with long range
interactions falling off as a power law r−α with distance
r and interaction exponent α. In order to reach large
enough systems to check the convergence of our results
with system size, we introduce a Krylov space method for
the direct calculation of the operator norm of the commu-
tator C(r, t). We find a linear growth in t at early time t
and a long distance decay outside the causal region given
by r−α. Both the normalized Frobenius norm (directly
related to OTOCs) and operator norm which correspond
to the average and fastest information spreading modes
in the system have the same asymptotic behavior (with
different prefactors) of t/rα at long distance and short
time, which is strikingly different from systems with near-
est neighbor interactions, which instead exhibit a leading
growth as a power law in time ∝ tr at short times and
long distances.

For α > 1, the information front is dominated by
the contribution from the nearest neighbor part of the
Hamiltonian, which overtakes the initial linear growth of
C2(r, t), inducing a linear light cone. These results are
confirmed using a slightly different XYZ model in ap-
pendix B.

We conclude that the findings from the study of out
of time order correlators in Ref. 12 provide information
about Lieb Robinson bounds and agree with the behavior
of the fastest spreading information mode in the system.
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Appendix A: Perturbative treatment at short times

10−1 100

t
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10−10
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||C
(r

,t
)||

2
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r = 7

tr

FIG. 6. Time evolution of the operator norm C2(r, t) at fixed
distance r for the nearest neighbor XXX chain with system
size L = 18. Black dashed lines are power low fits C2(r, t) ∼ tr
for the corresponding r. This is the behavior obtained in Eq.
(15) from perturbation theory.

In the main text, section III C, the Baker-Campbell-
Hausdorff (BCH) formula was employed for treating the
time evolution of Eq. (1) at short times. From this anal-
ysis, the leading order of the operator norm C2(r, t) ≈
tr/r! was obtained. In Fig. 6 the exact time evolution
C2(r, t) is shown along with the leading order in the BCH
formula (dashed lines), with excellent agreement at short
times.

1

3

5

t

α = 0.4 α = 0.8

1 5 10

x

1

3

5

t

α = 1.3

1 5 10

x

α = 2.5

0.1 0.2 0.3 0.4 0.5

FIG. 7. Spreading of operator norm C2(x, t) = ||[Szi (t), Sxx ]||2
in the XYZ model (B1) with i = 3, over time and space for
α = 0.4, 0.8, 1.3, 2.5. Continuous lines are contour lines given
by the equation ‖C(x, t)‖ = θ with θ = 0.1, 0.2, 0.25, 0.3, 0.35.
System size is L = 14. The shape of the ”light cone” and
their countour lines are very similar to the ones discussed in
the main text (see Fig. 1)

Appendix B: Results for XYZ model

In order to test the universality of the results presented
in the main text, we have also performed similar calcu-
lations for the long range XYZ Heisenberg model:

H =
∑
i<j

1

|i− j|α
(
JxŜ

x
i Ŝ

x
j + JyŜ

y
i Ŝ

y
j + JzŜ

z
i Ŝ

z
j

)
, (B1)

with parameters Jx = 0.9, Jy = 1.2, Jz = 0.7. The XXX
model study in the main text is recovered by setting
Jx = Jy = Jz = 1. The XYZ model does not have
U(1) symmetry, therefore the Hamiltonian is not block
diagonal and we must deal with the full Hilbert space
dimension N = 2L. Analogously to the main text, we
study the operator norm of the commutator

C2(r, t) = ||[Ŝzi (t), Ŝxi+r]||2. (B2)

The difference compared to Eq. (8) lies in the static op-

erator that is now Ŝxi+r. The time evolution and operator
norm computation are carried out using exact diagonal-
ization.

We analyze the behavior of Eq. (B2) as function of
both r and t. In Fig. 7 the causal regions of C2(r, t) are
shown. For all values of α the overall shape of the causal
region is the same as for the XXX long range model (see
Fig. 1). Small α exhibit fast spreading with power law
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FIG. 8. Spatial decay of C2(r, t) in the XYZ model (B1) at
fixed time t0 = 0.38, 0.68, 0.98, 1.27, 1.58, 1.88. Similarly to
XXX model treated in the main text, there is a power law
decay (see Fig. 4).
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FIG. 9. Time evolution of C2(r, t) in the XYZ model (B1)
at fixed distance r0 and system size L = 14. Dashed lines
are the asymptotic form t/4rα at short times t < 1. The
overall behavior is again similar to what was found for the
XXX model (see Fig. 2)

causal regions and large α approach the linear light cone
limit α → ∞. The long distance decay is also similar to
what has been found in the main text (see Fig. 8 and
4) outside the light “cone” there is a power law decay
of C2(r, t). Time evolution at fixed distance is displayed
in Fig. 9 and is compatible with linear growth at short
times t < 1 which was found also in the XXX version (see
Fig. 2). In conclusion, the main features of both opera-
tor norm discussed in the main text are the same when
considering a different commutator [Ŝzi (t), Ŝxi+r] and a
different long range model, namely the long range XYZ
model. As expected only the interaction exponent α is
crucial for characterizing the dynamics of the commuta-
tor Eq. (1)

Applying perturbation theory Eq. (12) up to first order
we get the following expression for the commutator when
r > 0:

[Ŝzi (t), Ŝxi+r] =
t

rα
Szi+rS

x
i +O(t2), (B3)

yielding the following asymptotic form for the operator
norm:

||[Ŝzi (t), Ŝxi+r]||2 =
t

4rα
+O(t2). (B4)

In Fig. 9 this asymptotic form is compared with the
exact time evolution yielding very good agreement. In
conclusion, the BCH formula also predicts the short time
behavior for the XYZ model.
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