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Abstract: In this paper, we construct a single Lagrangian for both limits of Galilean

electrodynamics. The framework relies on a covariant formalism used in describing Newton-

Cartan geometry. We write down the Galilean conformal algebra and its representation in

this formalism. We also show that the Lagrangian is invariant under the Galilean conformal

algebra in d = 4 and calculate the energy-momentum tensor.
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1 Introduction

Relativistic classical electrodynamics is a theory that studies the interactions between cur-

rents and electric charges. In the classical regime where the quantum mechanical effects are

negligible, this theory describes electromagnetic phenomena. However, for small distances,

these interactions are best expressed by quantum electrodynamics.

In the development of covariant field theories of radiation and matter, this theory

provides both a point of reference and a point of departure. The observation predicted by

Maxwell’s equations about a universal speed of light in vacuum gave birth to the special

theory of relativity. The symmetries of special relativity made us realise that the equations

of classical electrodynamics can be written down in a compact form, using a Lorentz vector

representing the field, where we can maximally simplify various dynamical properties in a

way that the Lorentz covariance is easily manifest.

Classical electrodynamics is also an example of a conformal field theory (CFT). It is

Poincaré invariant in all dimensions but conformally invariant in d = 4 [1]. Invariance

under finite-dimensional conformal transformations in the covariant formulation has been

discussed in [1, 2]. This theory is anomalous at the quantum levels, but when we gen-

eralise to N = 4 Supersymmetric Yang-Mills (SYM), the conformal symmetries survive

miraculously [3–5]. One of the reasons we study conformal invariance in gauge theories is

the AdS/CFT correspondence [6] which provides a concrete example of the Holographic

Principle [7, 8]. The Holographic Principle tells us about the connection between a theory

of gravity in d+ 1 dimensions to a quantum field theory in d dimensions. The AdS/CFT

correspondence perceives it by relating a specific theory of gravity (Type IIB superstring

theory) on 5-dimensional negatively curved Anti-de sitter times S5 to a specific quantum

field theory (N = 4 SU(N) Supersymmetric Yang-Mills theory) in d = 4.

One thing to be noted is that the conformal symmetry is infinite-dimensional in two

dimensions [9]. It means one can compute various physical quantities without even resorting

to a Lagrangian description. The infinite symmetries apply only to field theories found in

d = 2. But for classical electrodynamics that is conformally invariant in d > 2, it is not

applicable. It would be interesting to have infinite symmetries in all possible spacetime

dimensions (especially in d = 4 for our case) such that it will be of use to constrain

various quantities. If one looks at the non-relativistic limits of conformal field theories,

this wish gets fulfilled. The conformal algebra in non-relativistic limit gives rise to infinite-

dimensional Galilean conformal algebra (GCA) [10].

Galilean electrodynamics (GED) is one such example of a Galilean conformal field

theory that exhibits infinite-dimensional Galilean conformal symmetries in four spacetime

dimensions. Galilean Electromagnetism was first examined in the language of electric ( ~E)

and magnetic ( ~B) vectors by Le Ballac and Levy-Leblond in 1973 [11]. In [2], the authors

reformulate GED by taking the non-relativistic scaling on spacetime coordinates as well as

on electromagnetic four-potential vector (Aµ). They started with the equations of motion of

the original relativistic theory and expressed it in terms of the component form of Lorentz

vector (fµ = ft, fi). Then they applied the non-relativistic limit to get the two limits

(Electric and Magnetic limit) of GED. The possible disadvantage of this process of taking
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the limit on CFTs is that there is no standard way to do the same on the Lagrangian. But

now, there has been a lot of progress to find the action of GED in recent years by using

different techniques in hand [12–17]. In [18], the authors went one step forward where

they couple this theory to a Schrödinger scalar in 2+1 dimensions to study the quantum

properties. They found an infinite number of couplings at the quantum level due to the

scalar field present in the Galilean multiplet of the gauge field.

The main reason for looking into GED is that the conformal symmetry survives at the

quantum regime of relativisticN = 4 SYM. We expect that the non-relativisticN = 4 SYM

will have invariance under GCA both at classical and quantum domains. The presence of

such a non-relativistic sector raises fascinating possibilities due to the existence of infinite-

dimensional symmetries. If this is a close sub-sector, it could turn out to be a new integrable

sub-sector like the planar limit of N = 4 SYM.

As we notice, all the techniques rely mainly on the component formalism of the Lorentz

vector to proceed. It motivates us to frame a covariant formulation for GCA and Galilean

electrodynamics in this paper. We first start with some features of the geometry of Galilean

space-time which are pertinent to our formalism of GCA and Galilean electrodynamics.

We then give a brief review of Galilean conformal algebra in component form. Once we

have them, we write GCA and its representation in covariant formalism. We can write a

single Lagrangian that defines the dynamics of both the limits of GED in four dimensions

which was not possible before. We also look at the invariance of the Lagrangian under

GCA. Finally, we calculate the energy-momentum tensor and find the conserved Noether

currents associated with this theory.

2 Galilean Conformal Algebra

Geometry of Galilean Spacetime: Newton-Cartan geometry

We will first discuss the geometry of Galilean spacetime and then move to Galilean con-

formal algebra. We know from literature [11] that Lorentz transformations of a vector

V µ
r = (V 0

r , V
i
r ) for boost velocities v << c in four dimensions are given by

V ′0r = V 0
r −

vi

c
V i
r +O

(v
c

)2
, V ′ir = V i

r −
vi

c
V 0
r +O

(v
c

)2
. (2.1)

where i = (1, 2, 3), c is the speed of light and r denotes the relativistic quantities. If we

take c → ∞ directly in (2.1), it won’t lead to Galilean transformations. For that we have

to first classify vectors into two categories:

• Case 1: The vectors V µ
r for which the ratio (V 0

r /V
i
r ) is proportional to ‘c’ in the

limit c → ∞. Such vectors are often called largely timelike vectors and they can be

written as V µ
r = (cV 0, V i). By substituting it in (2.1), we see that the V µ = (V 0, V i)

transforms like a Galilean vector in the limit. One such example is the spacetime

coordinates: xµr = (ct, xi) =⇒ xµ = (t, xi).

• Case 2: The vectors V µ
r for which the ratio (V 0

r /V
i
r ) is inversely proportional to ‘c’.

Such vectors are known as largely spacelike vectors. They can be mathematically
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realized as V µ
r =

(
−V 0/c, V i

)
. The vector Vµ = (V0, Vi) also transforms like a

Galilean vector in the limit c→∞. The examples include 4-force: Frµ = (F.v/c, F i)

=⇒ Fµ = (−F.v, F i)

These reparametrized vectors V µ and Vµ will act as the Galilean versions of Lorentz vectors

in the non-relativistic limits. One can verify that these vectors transform under Galilean

boost and rotations in accordance with Galilean relativity. We can write down how these

vectors change under general coordinate transformations xµ → x′µ(xν):

V µ → V ′µ =
∂x′µ

∂xν
V ν , Vµ → V ′µ =

∂xν

∂x′µ
Vν . (2.2)

Therefore, we call V µ as a contravariant vector and Vµ a covariant vector. For generalisation

to Galilean tensors, we urge the readers to look at Appendix[A].

We have two kinds of vectors (2.2), those represented by a contravariant vector and

the others which are represented by a covariant vector. Therefore, we can have two kinds

of metric tensors, represented by τµν and hµν respectively for contravariant and covariant

vectors. These metric tensors have been known in the literature [15, 19–21] and are given

by

hµν =

[
0 0

0 13×3

]
, τµν =

[
−1 0

0 03×3

]
. (2.3)

The metric hµν preserves the spatial norm of an up-indexed vector under rotations and

Galilean boosts whereas, τµν preserves the 0-component of a down indexed vector under

rotations and Galilean boosts. Note that these metric tensors are non-invertible. Moreover,

τµν has a matrix rank equal to 1, therefore it can be written as

τµν = −τµτν where τµ =
[
1 0 0 0

]
. (2.4)

The following relation holds between the metric tensors that will be used extensively later

in the paper

hµντν = 0. (2.5)

In addition to these metric tensors, there are two more tensors defined in the literature.

These two will act like the metric tensors for the irreducible subspaces of the contravari-

ant (up-indexed vectors) vector space and the covariant (down-indexed vectors) vector

space under the action of Galilean boosts and rotations. The irreducible subspace of the

contravariant vector space is a 3-dimensional vector space defined by

T0 := {V µ | V µτµ = 0}. (2.6)

Similarly, the irreducible subspace of the covariant vector space is a 1-dimensional vector

space defined by

C0 := {Vµ | Vµhµν = 0}. (2.7)
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It is easy to verify that these two vector spaces defined above are invariant and irreducible

under the action of Galilean boosts and rotations. Therefore they deserve their own metric

tensors. We will call them submetric tensors and denote them by hµν for T0 and τµν for

C0. The submetric hµν turns out to be

hµν =

[
a bi
bi 13×3

]
, (2.8)

where a, bi(= b1, b2, b3) can be any real numbers. Under Galilean boosts and rotation, the

3× 3 identity matrix block doesn’t change but the rest of the components a, bi can change.

The submetric τµν turns out to be

τµν = τµτν where τµ = (1, c1, c2, c3), (2.9)

where ci’s can be any real numbers and they will change under boosts and rotations.

Properties of the metric and the submetric tensors

We know that the submetric tensors have some components which transform under Galilean

boosts and rotations. We cannot use such components to calculate physical scalars. Still,

the submetric tensors can be combined with the metric tensors to create quantities that

do not change under boosts and rotations. One such useful property to note about the

submetric τµ is τµτµ = 1 whereas another property for hµν is given by hµαhαβh
βν = hµν .

In addition, we can construct a new and very useful tensor out of these. To find that, we

first notice a curious combination of τµ and some arbitrary down indexed vector Vµ defined

as

V ?
µν := 2τ[µVν] = (τµVν − τνVµ). (2.10)

The only non-zero components of V ?
µν are V ?

0i = −V ?
i0 = Vi. This antisymmetric combination

doesn’t have the V0 component at all. Now, notice that the only components of hµν that

are invariant under Galilean boosts and rotations are hij where i and j run from 1 to 3.

Therefore, we can use an antisymmetric combination of τµ with hαβ so that the non-zero

components of the resulting combination will only have the information of hij in it. This

means that the resulting tensor will be invariant under Galilean boosts and rotations. That

tensor is defined as

Tαβµν := 4τ[αhβ][µτν] = (ταhβµτν − τβhαµτν − ταhβντµ + τβhαντµ). (2.11)

It is easy to see that Tαβµν remains same on exchanging α and ν simultaneously with an

exchange of β and µ that is given as Tαβµν = Tνµβα. Notice that Tαβµν changes sign if we

exchange α with β or µ with ν i.e.

Tαβµν = −Tβαµν = −Tαβνµ = Tβανµ. (2.12)

It also follows the property given by

Tαβµν − Tαµβν = Tανµβ . (2.13)
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The advantage of this tensor Tαβµν is that it encompasses the geometrical properties of

the metric tensors and the submetric tensor hµν in such a way that it remains unchanged

under rotation and Galilean boosts. We will use it in the construction of Galilean conformal

algebra in covariant formulation in the next section.

For completeness, we discuss the partial derivative ∂µ with respect to space-time co-

ordinates and also construct a contravariant version of this. We know from the chain rule

of derivatives, ∂µ := (∂t, ∂x, ∂y, ∂z) follows the same transformation that of a covariant

Galilean vector. Its transformation is given by

∂′µ =
∂xν

∂x′µ
∂ν . (2.14)

Unlike the relativistic case, the metric tensors are non-invertible here which means that

there is no reversible way to convert an up index to down index or vice versa. Nevertheless,

given a vector V µ, we can create a down indexed vector Ṽµ = V ντµν . If we have only the

information of Ṽµ, we can’t reconstruct a unique V µ. Similarly, we can create an up indexed

vector Ṽ µ = Vνh
µν . By definition of Ṽµ and Ṽ µ, it is evident that they will transform as

(0,1) and (1,0) tensors respectively under any general coordinate transformation. Likewise,

we can define an up indexed contravariant operator ∂µ from ∂µ by contracting it with hµν

as

∂µ = hµν∂ν =⇒ ∂µ = (0, ∂x, ∂y, ∂z). (2.15)

Covariant Formulation of GCA

We will first review the Galilean Conformal Algebra (GCA) and its infinite extensions in

component form and then write it down in covariant language. We can find the Galilean

group by doing an Inonu-Wigner contraction [10] on the conformal group. The process of

going to the Galilean framework from relativistic one involves breaking of Lorentz covari-

ance. In order to do so, we will consider xi
ct ≡

εxi
t → 0.

The finite part of GCA (f-GCA) consists of rotations (Jij), spacetime translations (H

and Pi), boosts (Bi), scaling (D) and special conformal transformations (K and Ki). In

terms of vector field, we can write the generators of the Galilean group as

Jij = −(xi∂j − xj∂i), Pi = ∂i, H = −∂t, Bi = t∂i. (2.16)

The extension to a conformal part of the algebra is done through scaling (D) and special

conformal transformations (K and Ki). They are given by

D = −(t∂t + xi∂i), K = −(2txi∂i + t2∂t), Ki = t2∂i. (2.17)

We can rewrite the generator (2.16) and (2.17) in a more compact form given by

L(n) = −(n+ 1)tnxi∂i − tn+1∂t, M
(n)
i = tn+1∂i, (2.18)

where for n = 0,±1, the generators L(n),M
(n)
i denotes

L(−1,0,1) = {H,D,K}, M
(−1,0,1)
i = {Pi, Bi,Ki}. (2.19)
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The f-GCA in terms of these new generators can now be written as following[
L(n), L(m)

]
= (n−m)L(n+m),

[
L(n),M

(m)
i

]
= (n−m)M

(n+m)
i ,[

M
(n)
k , Jij

]
= (M

(n)
i δjk −M

(n)
j δik),

[
M

(n)
i ,M

(m)
j

]
= 0,

[
L(n), Jij

]
= 0. (2.20)

One can see that (2.20) closes even if we let the index n of (2.18) run over all integers.

It means that finite algebra becomes an infinite-dimensional algebra. We will refer to this

algebra (2.20) as GCA from now on. Another thing to notice from (2.18) is that the

generators M
(n)
i give rise to time-dependent boosts, whereas L(n) generates some form

of conformal isometry of the Galilean spacetime. Similar to L(n) and M
(n)
i , the rotation

generators could also be given an infinite lift as follows

J
(n)
ij = −tn(xi∂j − xj∂i). (2.21)

The complete infinite-dimensional algebra becomes[
L(n), L(m)

]
= (n−m)L(n+m),

[
L(n),M

(m)
i

]
= (n−m)M

(n+m)
i ,

[
M

(n)
i ,M

(m)
j

]
= 0,[

L(n), J
(m)
ij

]
= −mJ (n+m)

ij ,
[
J
(n)
ij ,M (m)

r

]
= −(M

(n+m)
i δjr −M (n+m)

j δir),[
J
(n)
ij , J (m)

rs

]
= δisJ

(n+m)
rj + δjrJ

(n+m)
si + δirJ

(n+m)
js + δjsJ

(n+m)
ir . (2.22)

We will now use the results from above to write the generators (2.18) and the algebra (2.20)

in a covariant form. We have seen that the variable t appears in most of the generators

of GCA. Our first step will be to write t in a covariant tensor form. We also know that

time is absolute in Galilean relativity and doesn’t change under time-independent Galilean

boosts and rotation. Therefore, t is a scalar and given by

t = xατα. (2.23)

We will note down the following trivial, nevertheless, useful properties of t:

∂µt = τµ, ∂µt
n = ntn−1τµ, ∂

µtn = 0. (2.24)

Now, we will move on to defining the generators in covariant formulation. Let us first focus

on time-dependent rotation and boosts. They are given by

J ij(n) = −tn(xi∂j − xj∂i), J0j (n) = −tn+1∂j = −M (n)
j . (2.25)

Both of the generators can be combined into a single generator as

Jµν (n) = −tn(xµ∂ν − xν∂µ). (2.26)

Now will write down L(n) in covariant form. For that, we will examine its transformation

under a Galilean boost (xi → xi − vit) given by

L(n) → L(n) + vi(ntn+1∂i). (2.27)
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It looks like a transformation of the zeroth component of a down indexed Galilean vector.

Let us denoted it by Zµ. Then the transformation looks like

Z0 → Z0 + viZi. (2.28)

Inspired by this, we define a down indexed vector Zµ as follows

Z(n)
µ = −(n+ 1)tnτµ(xα∂α) + ntn+1∂µ. (2.29)

It is easy to verify that Z
(n)
0 = L(n) and Z

(n)
i = nM

(n)
i . Note that these two generators

Z
(n)
µ and Jµν (n) are not independent, but are related to the time dependent boosts M

(n)
i

as

Z
(n)
i = nJ i0 (n) = nM

(n)
i . (2.30)

In covariant form, this dependence is given by

hµνZ(n)
µ = −n τµJµν (n). (2.31)

Next, we can write down the commutation relations of these generators. They are given

by [
Jµν (n), Jαβ (m)

]
= hµαJνβ (n+m) + hµβJαν (n+m) + hναJβµ (n+m) + hνβJµα (n+m),[

Z(n)
µ , Z(m)

ν

]
=
n−m

2

(
τνZ

(n+m)
µ + τµZ

(n+m)
ν

)
+

(n−m)2

2
TµαβνJ

αβ (n+m),[
Z(n)
µ , Jαβ (m)

]
= −mτµJαβ (n+m) + n τγ

(
Jγβ (n+m)δαµ − Jγα (n+m)δβµ

)
. (2.32)

where Tαβµν is defined in (2.11). We can also split the commutation [Z
(n)
µ , Z

(m)
ν ] for the

two cases when m+ n 6= 0 and m+ n = 0 as[
Z(n)
µ , Z(m)

ν

]
=
n−m
n+m

(
nτνZ

(m+n)
µ +mτµZ

(m+n)
ν

)
for m 6= −n (2.33a)[

Z(n)
µ , Z(−n)

ν

]
= 2n

(
τµZ

(0)
ν + n TµαβνJ

αβ (0)
)

for m = −n (2.33b)

If we restrict the rotation Jµν (n) only to time-independent rotations i.e. restrict n = 0 and

define Jµν := Jµν (0), then we get an infinite-dimensional subalgebra as following:[
Z(n)
µ , Z(m)

ν

]
=
n−m
n+m

(
nτνZ

(m+n)
µ +mτµZ

(m+n)
ν

)
for m 6= −n[

Z(n)
µ , Z(−n)

ν

]
= 2n

(
τµZ

(0)
ν + n TµαβνJ

αβ
)
,[

Z(n)
µ , Jαβ

]
=
(
hγαδβµ − hγβδαµ

)
Z(n)
γ ,[

Jµν , Jαβ
]

= hµαJνβ + hµβJαν + hναJβµ + hνβJµα. (2.34)

In the subsequent sections, we will show that this infinite-dimensional subalgebra will come

out to be the symmetry of Galilean electrodynamics at the level of Lagrangian.
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Representation of GCA for Galilean Vectors

We will now write down the representation of GCA for Galilean vectors. The highest

weight representation was discussed at lengths in [2, 22–24]. Here, we will construct it in

the language of covariant formalism. The theory of representation will then serve us to

determine the invariance of the Lagrangian under GCA. In terms of notations, we will use

[T,Φ(t, x)] for the action of a group generator T on a generic field Φ(t, x). Since we will

be talking about gauge fields (V µ, Vµ ≡ aµ, aµ) in this paper, we will only note down the

representation theory in terms of these fields.

Let us start by writing down the action of Jµν (0) (or simply Jµν) on vectors aα and

aα. It comes out to be

[Jµν , aα] = (xµ∂ν − xν∂µ)aα + (δνβ h
αµ − δµβ h

αν)aβ,

[Jµν , aα] = (xµ∂ν − xν∂µ)aα + (δµα h
βν − δνα hβµ)aβ. (2.35)

If you write (2.35) in component form, you will get the same expressions mentioned in [2].

Similarly, the action of Z
(n)
µ is given by[

Z(n)
µ , aα

]
=
(

(n+ 1)tnτµ(xβ∂β)− ntn+1∂µ + (n+ 1)tnτµ

)
aα

+n(n+ 1)tn−1aβxγ
(
δαγ τβµ − δαµτβγ

)
, (2.36a)[

Z(n)
µ , aα

]
=
(

(n+ 1)tnτµ(xβ∂β)− ntn+1∂µ + (n+ 1)tnτµ

)
aα

+n(n+ 1)tn−1aβx
γ
(
δβµτγα − δβγ τµα

)
. (2.36b)

For simplicity, we can also write (2.36) as follow[
Z(n)
µ , aα

]
= (n+ 1)τµ

(
tnxβ∂βa

α + tnaα − n(aβτβ)xαtn−1
)

−n
(
tn+1∂µa

α − (n+ 1)tn(aβτβ)δαµ

)
, (2.37a)[

Z(n)
µ , aα

]
= (n+ 1)τµ

(
tnxβ∂βaα + tnaα + n(aβx

β)ταt
n−1
)

−n
(
tn+1∂µaα + (n+ 1)tnaµτα

)
. (2.37b)

where we have used (2.4) in the intermediate steps. Similar to Jµν , if we replace Z
(n)
µ with

(L(n), nM
(n)
i ) and write the gauge fields in component forms, we get back the expressions

which are mentioned in [2].

3 Galilean Electrodynamics: From perspective of equations of motion

In literature, Galilean electrodynamics (GED) was studied first by Le Bellac and Levy-

Leblond in [11]. In [2], the authors were motivated to search for finite and infinite GCA

symmetries in GED at the level of equations of motion. To their surprise, they find GCA

as symmetries of this theory.
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In this section, we will construct GED in the covariant formulation. We will first start

by briefing ourselves on the equations of relativistic electrodynamics (Maxwell’s equations)

that are given by

∂rνF
µν
r = µ0J

µ
r , (3.1)

where Fµνr = (∂µrAνr − ∂νrA
µ
r ) is the electromagnetic tensor, Jµr is the four-current, ∂rν =

(∂t/c, ∂i) is the relativistic partial derivative. Next, depending on whether Aµr and Jµr are

largely timelike or largely spacelike, we will redefine Aµr and Jµr in terms of new fields aµ

or aµ and jµ or jµ respectively which will act as the Galilean version of Aµr and Jµr .

To begin with, we will unpack (3.1) in the space and time components and write

c = 1/ε:

−ε∂t(∂iAir)− ∂i∂iA0
r = µ0J

0
r ,

∂j(ε∂tA
0
r + ∂iA

i
r)− (−ε2∂t + ∂i∂

i)Ajr = µ0J
j
r . (3.2)

We will now invoke the two kinds of limits defined in Sec[2] on Aµr and Jµr . The largely

timelike limit on Aµr and Jµr is known as the Electric limit, whereas the largely spacelike

limit on Aµr and Jµr is the Magnetic limit [2].

Electric Limit

In terms of ε, the largely timelike limit on the gauge field and the current in (3.2) is the

following

A0
r =

a0

ε
, Air = ai; J0

r =
j0

ε
, J ir = ji. (3.3)

Plugging (3.3) into (3.2) and taking the limit ε→ 0, the final resulting equations becomes

−∂i∂ia0 = µ0j
0, ∂j(∂ta

0 + ∂ia
i)− (∂i∂

i)aj = µ0j
j . (3.4)

The equations (3.4) are the non-relativistic limit of Maxwell’s equations in the Electric

limit [2].

We will now write the equations in the language of Galilean vectors as follows. Let us

define a quantity analogous to the electromagnetic tensor as:

fµν = (∂µaν − ∂νaµ), (3.5)

where ∂µ = (0, ∂x, ∂y, ∂z) as defined in (2.15) and aµ is the Galilean definition of gauge

field in this limit. In terms of fµν , the equations (3.4) becomes:

∂νf
µν = µ0j

µ. (3.6)

Magnetic Limit

Like in the previous case, we need to invoke the spacelike limit on (Aµr , J
µ
r ) in (3.2). In

terms of ε, the spacelike condition becomes

A0
r = −εa0, Air = ai; J0

r = −εj0, J ir = ji. (3.7)
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Plugging (3.7) into (3.2) and using the limit ε→ 0, the result come out to be

∂t∂iai − ∂i∂ia0 = µ0j0, ∂
j∂iai − ∂i∂iaj = µ0jj . (3.8)

These are the equations of motion in the Magnetic limit. Similar to the Electric limit, we

will define a quantity analogous to the electromagnetic tensor:

fµν = (∂µaν − ∂νaµ), (3.9)

where ∂µ = (∂t, ∂x, ∂y, ∂z) and aµ is the Galilean definition of gauge field in the Magnetic

limit. In terms of this fµν , the equations (3.8) become very compact as:

∂νfµν = µ0jµ. (3.10)

The General Solution of the GED

We now have the equations of motion that we calculated in the previous section. The next

step will be to find the general solutions in the presence of the sources for both the limits.

To solve (3.6) and (3.10), we will use a particular gauge choice, which is analogous to the

Lorenz gauge (∂rµA
µ
r = 0). In other words, we will choose a gauge that will hold in all

inertial frames. Specifically, we choose the following gauges

∂µa
µ = 0 (Electric limit), (3.11a)

∂µaµ = 0 (Magnetic limit), (3.11b)

for our case. It is easy to show that the Lorenz gauge in the non-relativistic limit becomes

one of the above two depending on the Electric or Magnetic limit. We first show that

we can choose such gauge conditions with some assumptions. Suppose that we know a

field configuration aµ(xµ) (in the case of Electric limit) that doesn’t obey the above gauge

conditions. Because of the gauge freedom, let us see if we can add a gauge term ∂µX

for some function X such that the new field obeys the above gauge conditions and so the

following will hold

∂µ(aµ + ∂µX) = 0 =⇒ ∂µ∂
µX = −∂µaµ. (3.12)

Note that ∂µ∂
µ = ∇2 is the Laplacian operator in Galilean definitions. Given the values

of aµ, the above condition is a Poisson equation in the variable X. We assume that the

solution for this X exists which means, we can choose the gauge conditions as (3.11).

Now we solve for the non-relativistic equations (3.6) and (3.10) which on imposing the

above gauge conditions (3.11) becomes

∂µ∂
µaν = −µ0jν (Electric limit), ∂µ∂

µaν = −µ0jν (Magnetic limit). (3.13)

These are Poisson equations and can be solved to obtain the following solutions

aν(xα) = µ0

∫
jν(x′α)

r
d4x′ (Electric limit), (3.14a)

aν(xα) = µ0

∫
jν(x′α)

r
d4x′ (Magnetic limit). (3.14b)
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where r is the spatial distance between the two simultaneous events x′µ and xµ. The events

x′µ and xµ are simultaneous because there is no time derivative in the Poisson equation.

Hence, these solutions are in stark contrast with the relativistic solutions. Fields at one

point are instantaneously affected by a source at some arbitrary distance. Because the

difference of x′µ and xµ has time difference equal to zero, the vector x′µ − xµ belongs to

the space T0 defined in (2.6). The distance r is defined using the submetric tensor hµν as

r2 = (x′µ − xµ)hµν(x′ν − xν). (3.15)

We will get the same results as we got in (3.14) if one takes the non-relativistic limit on

the solutions of Maxwell’s equation written in Lorentz gauge.

4 Action of Galilean Electrodynamics

The goal here is to write down the action in terms of covariant formulation in the Galilean

background. To evaluate it, we will use the equations of motion of GED denoted by

∂νf
µν = µ0j

µ, ∂νfµν = µ0jµ. (4.1)

Let us begin with the action of relativistic electrodynamics in d = 4 given by

Sr(Arµ, ∂rµArν) =

∫
d4x

[
− 1

4
FrµνFr

µν + µ0Jr
µArµ

]
, (4.2)

which gives the equations of motion (3.1) where the subscript r denotes relativistic defini-

tion of quantities. Similarly, we want to find the action which gives (4.1) as the equations

of motion in Galilean limit. The action which gives us the correct non-relativistic equations

is

S(aµ, a
µ, ∂µaν , ∂

µaν) =

∫
d3x dt

[
− 1

4
fµνf

µν +
1

2
µ0 j

µaµ +
1

2
µ0 jµa

µ
]
. (4.3)

Notice that we have written the action as a function of aµ and aµ. It means that aµ and aµ
are two independent fields, and there is no invertible linear map between them. To find the

equations of motion from (4.3), we have to treat the two fields separately. Mathematically

speaking, the following functional derivatives vanish:

δaµ

δaν
= 0 and

δaν
δaµ

= 0. (4.4)

It is easy to see from the Lagrangian (4.3) that we get the equations (4.1) for the Electric

and the Magnetic limit by varying the action with respect to aµ and aµ respectively.

Gauge Transformation

From this section onwards, we will only consider the free Lagrangian (i.e. without current

sources jµ and jµ) unless mentioned. The reason is that the source term can be different

matter (scalars or fermions) fields and these fields transform differently under symmetry
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transformations. To avoid the difficulties related to it right now, we will stick only to the

free part of the Lagrangian.

In the non-relativistic limit, two sets of gauge symmetries are also present. They are

somehow similar to the relativistic case in appearance. It is because both fµν and fµν

appear in the free Lagrangian as

Lf = −1

4
fµνfµν . (4.5)

The two sets of gauge symmetries, one for the Electric case and one for the Magnetic case,

are as follows:

aµ → aµ + ∂µX =⇒ fµν → fµν (Electric Limit), (4.6)

aµ → aµ + ∂µY =⇒ fµν → fµν (Magnetic Limit). (4.7)

Because these are two independent sets of symmetries, we have used two different variables

that are X and Y for the gauge transformations. Also, in the Electric case, aµ is trans-

formed by ∂µX = (0, ∂1X, ∂2X, ∂3X) which means only the three spatial components are

transforming, unlike the Magnetic case.

Symmetries of the Lagrangian

We will now move on to finding the symmetries related to the free Lagrangian (4.5). For

that, we will use the results mentioned in Sec[2]. Because of the covariant formalism, it is

evident that the Lagrangian of the free theory is invariant under Galilean boosts, rotations

and translations. To find the variation of Lagrangian under Z
(n)
µ , denoted by δ[Z

(n)
µ ]Lf , we

need to use (2.36) which describes the variation of the gauge fields aµ and aµ under Z
(n)
µ

and a simple calculation shows:

δ[Z(n)
µ ]Lf = (n+ 1)τµt

n∂α (xαLf )− ntn+1 ∂µLf
= ∂α

(
(n+ 1)τµt

nxαLf − δαµ n tn+1Lf
)
. (4.8)

In the second line, we have used the by-parts rule to get the variation as a total derivative

term. In conclusion, it means that the generator Z
(n)
µ is a symmetry of the Lagrangian.

5 Energy-Momentum Tensor

We will derive the energy-momentum tensor (EM tensor) for the Galilean electrodynam-

ics using the similar procedures that we followed for finding the non-relativistic limit of

Maxwell’s equations. We start by writing the EM tensor of the relativistic theory given by

(Tr)
µ
α = (Fr)

µν(Fr)να +
1

4
δµα

(
(Fr)

βν(Fr)βν

)
, (5.1)

and then take the non-relativistic limit on the relativistic EM tensor and write the resultant

in terms of the Galilean vectors aµ and aµ.

As we know that the EM tensor can be written in the relativistic scenario as (Tr)
µν ,

(Tr)
µ
ν or (Tr)µν . We can switch between the up and down indices using the Minkowski
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metric ηµν or ηµν . Unlike the relativistic case, our Galilean scenario doesn’t have the

freedom to switch between such tensors. It is because the metric tensors are non-invertible

and so any contraction of some tensor with the metric tensor will lose information of that

tensor. So, we can only have one unique definition of EM tensor, which will have the full

information of the energy-momentum of the fields, instead of three inter-convertible tensors

(Tµν , Tµν or Tµν).

To find out which one of these three is mathematically appropriate, we propose the

following arguments. The EM tensor is usually of interest partly because of its conservation

law. Mathematically, we take a divergence of the EM tensor to find the rate of change of

energy-momentum of the fields such that it is equal to zero for a free theory. In our Galilean

framework, we can represent the divergence by a contraction with ∂µ which implies that

the EM tensor must have an upper index. We cannot use ∂µ = (0, ∂x, ∂y, ∂z) because there

is no time-derivative in ∂µ. So we have to take the contraction with ∂µ to be able to talk

about the conservation law.

The divergence of the EM tensor does not vanish in the presence of the source. Math-

ematically, the divergence of the EM tensor is equal to the negative of the Lorentz force

(Fν) applied by the fields on the sources. It is given by

∂rµ(Tr)
µ
ν = −(Fr)ν . (5.2)

If we use this definition of the Lorentz force, we see that we have to perform a contraction

on the EM tensor with ∂µ. It is because of the force given by a down indexed vector in the

Galilean case. It leaves us with only one thing that is Tµν .

Electric Limit

We have to substitute (3.3) in place of the field Aµr to write it in terms of the Galilean

vector aµ. But instead of this, we can also substitute Aµr = (a0, εai). It is just a scaled

definition of (3.3) by a factor ε. We do this to avoid ε in the denominators and doing this

won’t change the physical content of EM tensor as it is homogeneous in Aµr (scaling Aµr by

any number k, scales the EM tensor by k2 and therefore we can extract the same useful

content if we didn’t scale). We simplify the first term on the right side of equation (5.1)

which is

(Fr)
µν(Fr)να =

[
0 −(∂ja0 + ε2∂ta

j)

∂ia0 + ε2∂ta
i ε(∂iaj − ∂jai)

] [
0 ∂ka

0 + ε2∂ta
k

−(∂ja
0 + ε2∂ta

j) ε(∂ja
k − ∂kaj)

]
.

In each matrix element, we will keep only the lowest order terms of ε, because higher order

terms will inevitably go to zero on taking the limit ε→ 0. So, neglecting the higher order

terms in ε, we can simplify the above equation as

(Fr)
µν(Fr)να =

[
0 −∂ja0

∂ia0 ε(∂iaj − ∂jai)

] [
0 ∂ka

0

−∂ja0 ε(∂jak − ∂kaj)

]
. (5.3)

We can also write it as

(Fr)
µν(Fr)να =

[
∂ja0∂ja

0 ε∂ja0(∂ja
k − ∂kaj)

−ε(∂iaj − ∂jai)∂ja0 ∂ia0∂ka
0

]
. (5.4)
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Using the same process, we can simplify the second term 1
4δ
µ
α(Fr)

βν(Fr)βν . It becomes

1

4
δµα(Fr)

βν(Fr)βν = −1

2

[
∂ja0∂ja

0 0

0 δik (∂ja0∂ja
0)

]
. (5.5)

Now that we have the expressions in terms of Galilean vectors aµ and ε. We need to remove

ε by defining a new tensor that will act as the Galilean version of the EM tensor. We will

now look at the first term of (Tr)
µ
α i.e. (Fr)

µν(Fr)να. As described in Sec[A], there is no

direct way to extract a Galilean tensor out of it. To understand how to solve this problem,

we need to use the fact that we are trying to find a specific tensor which is the EM tensor.

More importantly, we want to find a conservation law that equates the divergence of the

EM tensor and the Lorentz force on the sources. Let us first take divergence of the first

term of (Tr)
µ
α which is (Fr)

µν(Fr)να in the relativistic case. It is given by[
ε∂t
(
∂ja0∂ja

0
)
− ε∂i

(
f ij ∂ja

0
)

ε2∂t
(
∂ja0(∂ja

k − ∂kaj)
)

+ ∂i
(
∂ia0∂ka

0
)]
, (5.6)

where f ij = (∂iaj − ∂jai). We note that in the second element of the row matrix above,

there is this term ε2∂t
(
∂ja0(∂ja

k − ∂kaj)
)

which has to be neglected in comparison to

∂i
(
∂ia0∂ka

0
)

because of the ε2 sitting in the former term. What we can do to neglect this

is to remove the second element of the first row in the matrix of (5.4) which is ε∂ja0(∂ja
k−

∂ka
j). This may seem ad-hoc at first, but as we will show now it really solves the problem

entirely. What we did is that we removed a term earlier which was eventually going to

be removed. Therefore, we will write only the relevant terms (the ones which will survive

eventually) of the matrix in (5.4) as

(Fr)
µν(Fr)να =

[
∂ja0∂ja

0 0

−ε f ij∂ja0 ∂ia0∂ka
0

]
. (5.7)

Now this looks like a quantity which can be converted to its Galilean counterpart. But

we can do even better and neglect the irrelevant quantities (those which were going to be

removed eventually) at one more earlier step i.e. in (5.3). In the equation (5.3), if we

remove the second element of the second row of the second matrix i.e. ε(∂ja
k − ∂kaj) and

carry on the same steps forward, we get the same result as (5.7). Therefore, the relevant

terms of (5.3) are as follows:

(Fr)
µν(Fr)να =

[
0 −∂ja0

∂ia0 ε f ij

][
0 ∂ka

0

−∂ja0 0

]
. (5.8)

Now it is relatively easier to guess the Galilean counterpart from here. We write the

extracted Galilean parts from the useful components of Tr
µ
α to formulate the Galilean EM

tensor as

TE
µ
α := fµν f̃να +

1

4
δµαf

βν f̃βν , (5.9)

where we define

f̃µν := −fαβTµαβν = (∂µãν − ∂ν ãµ), ãµ := aντµν , (5.10)
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and the subscript E denotes EM tensor in the Electric limit. It can be verified that this

EM tensor is indeed conserved in the free theory and is also traceless. It is easy to show

that in the presence of sources, the conservation equation comes out to be

∂µTE
µ
α = −jν f̃να. (5.11)

where we have set µ0 = 1. The definition of Lorentz force on the sources then becomes

Fα := −∂µTEµα which in the Electric limit turns out to be Fα = jν f̃να.

Magnetic Limit

Using the same method as we did for the Electric limit, we will now write the EM tensor

for the magnetic limit. After neglecting the irrelevant quantities in the case of magnetic

limit, the first and the second term of the energy-momentum tensor come out to be the

following

(Fr)
µν(Fr)να =

[
0 0

−ε(∂taj − ∂ja0)fij fikfjk

]
, (5.12a)

1

4
δµα(Fr)

βν(Fr)βν = −1

2

[
(∂jal − ∂laj)(∂jal − ∂laj) 0

0 δik (∂jal − ∂laj)(∂jal − ∂laj)

]
. (5.12b)

Using (5.12), the Galilean EM tensor becomes

TM
µ
α := f̃µνfνα +

1

4
δµαf̃

βνfβν , (5.13)

where we define f̃µν := hαµfαβh
βν and the subscript M denotes EM tensor in the Magnetic

limit. This tensor is conserved in the free theory and is also traceless. In the presence of

sources, the conservation equation is given by

∂µTM
µ
α = −j̃νfνα, (5.14)

where we define j̃ν := hµνjµ and we have set µ0 = 1. The Lorentz force on the sources can

be defined as Fα := −∂µTMµ
α which in the Magnetic limit turns out to be Fα = j̃νfνα.

6 Noether Currents

We have looked into the symmetries of the Lagrangian in Sec[4]. The next step will be to

find the Noether charges corresponding to those symmetries. For that, we will again look

at the free Lagrangian (4.5). We see that the Lagrangian contains both the Electric and the

Magnetic limit. As we know, these two limits can’t exist simultaneously by their definition.

Still, if we find the Noether charges corresponding to a symmetry using the Lagrangian, we

will get a conserved quantity containing both the aµ and aµ, in general. At first sight, this

doesn’t make sense because any conserved quantity should refer to one physical scenario,

either the Electric limit or the Magnetic limit. To understand the resolution of this seeming

problem, we will first describe two properties to the non-relativistic equations.
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Useful properties of GED

To start, we will first write the properties in the case of Electric limit. We define two

vectors ãµ and j̃µ. They are given by

ãµ = τµνa
ν , j̃µ = τµνj

ν . (6.1)

In the previous section, we have already defined a tensor f̃µν while finding the EM tensor

for the Electric limit as

f̃µν := −fαβTµαβν = (∂µãν − ∂ν ãµ), (6.2)

in terms of the vectors (6.1). This f̃µν doesn’t contain the full information of fµν by its

definition. One can check that it still follow the equations of the Magnetic limit

∂ν f̃µν = µ0j̃µ. (6.3)

We can prove it by multiplying ταν on both sides of equation of motion of the Electric

limit. It shows that given a field configuration in the Electric limit, we can create a

corresponding field configuration for the Magnetic limit by the procedure described above.

This correspondence is not one to one as the information from converting fµν to f̃µν is

lost.

Now we will state a similar properties for the Magnetic limit. We define two vectors

ãµ and j̃µ as

ãµ = hµνaν , j̃
µ = hµνjν . (6.4)

We have defined a tensor f̃µν in the previous section and it is given by

f̃µν := hµαfαβh
νβ = (∂µãν − ∂ν ãµ). (6.5)

This f̃µν does not contain the full information of fµν by definition, still it follow the

equations of the Electric limit. It is given by

∂ν f̃
µν = µ0j̃

µ. (6.6)

We can easily prove it by multiplying hαν on both sides of the equations of motion of the

Magnetic limit. It shows that given a field configuration in the Magnetic limit, we can

create a corresponding field configuration for the Electric limit. These two properties (6.3)

and (6.6) will be useful in the next section.

EM Tensor as a Noether Current

We will rederive the EM tensor for both the limits, but this time we will use the Noether’s

theorem. Using the spacetime translation symmetry in our GED Lagrangian, we obtain

the canonical EM tensor denoted by θµν (aγ , aγ), which is a function of both the dynamical

fields aµ and aµ, as

θµν (aγ , aγ) =
∂Lf
∂µaα

∂νa
α +

∂Lf
∂µaα

∂νaα − δµνLf

= −1

2
hµβfβα∂νa

α − 1

2
fµα∂νaα − δµν (−1

4
fαβfαβ). (6.7)
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We will now describe what quantity we can extract from (6.7). Let us start by saying that

we want to find the EM tensor for the Electric limit. It is easy to verify explicitly that

the divergence of this canonical EM tensor will vanish, provided we use the equations of

motion of the Electric and Magnetic limit. When we are in the Electric limit, the field

aµ of Magnetic limit is like an auxiliary field with no physical significance. Similarly,

when we are in the Magnetic limit, the field aµ is a field with no physical significance.

If we have some field configuration aµ in the Electric limit, then any gauge field aµ that

obeys the equations of motion ∂µfνµ = 0 allows this canonical EM tensor to be conserved.

Looking at the canonical EM tensor this way for the Electric limit makes it richer, in that

we can have infinite possible conserved currents, that is one conserved current for each

field configuration aµ satisfying ∂µfνµ = 0. We can pick any one of those currents at our

convenience. But to find the EM tensor for the Electric limit, we must use the information

from only the gauge field aµ.

To resolve this issue, we use those properties that we presented in the previous section.

We know from (6.3) that ãµ is a vector which satisfies the equations for the Magnetic

limit and more importantly ãµ is a vector that can be constructed entirely from aµ itself.

Therefore, we can insert ãµ in (6.7) to obtain a conserved tensor which is in principle

defined only using the field configuration aµ. The EM tensor (6.7) becomes

θµν (aγ , ãγ) = −1

2
hµβ(∂αãβ − ∂β ãα)∂νa

α − 1

2
fµα∂ν ãα − δµν

(
−1

4
fαβ(∂αãβ − ∂β ãα)

)
= −fµα∂ν ãα +

1

4
δµν f

αβ f̃αβ. (6.8)

The EM tensor is conserved, gauge independent and is made only from the information of

the field aµ. The equation (6.8) can also be written down in terms of the variables fµν and

f̃µν . To do this, we will add a conserved current fµα∂αãν (divergenceless with respect to

index µ) to (6.8). The new EM tensor then becomes

TE
µ
ν := θµν (aγ , ãγ) + fµα∂αãν = fµαf̃αν +

1

4
δµν f

αβ f̃αβ. (6.9)

As we see, it is the same traceless EM tensor defined in (5.9).

We will now follow a similar procedure for finding the EM tensor in the Magnetic limit.

This time the field aµ acts like an auxiliary field. Let us say we have a particular field

configuration of aµ on-shell, then for every field configuration aµ which satisfies ∂µf
νµ = 0

we have a corresponding conserved current defined by the canonical EM tensor. From

(6.6), we know that such a field configuration is ãµ := hµαaα which is constructed entirely

out of the Magnetic field variable aµ. Now, we replace ãµ with aµ in (6.7) but we will also

need to add a conserved tensor f̃µα∂αaν to make it gauge independent, then the EM tensor

becomes

TM
µ
ν := θµν (ãγ , aγ) + f̃µα∂αaν = f̃µαfαν +

1

4
δµν f̃

αβfαβ. (6.10)

It is the same as the same traceless EM tensor defined in (5.13) for the Magnetic limit.
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Conserved Currents for the Conformal Symmetries

We will first find the canonical conserved current associated to the Z
(n)
α symmetry which

will be a function of both aν and aν . We denote it by Jµ[Z
(n)
α ](aν , aν). The canonical

conserved current that we obtain from Noether’s theorem using (4.8) is

Jµ[Z(n)
α ](aν , aν) =

∂Lf
∂(∂µaν)

[
Z(n)
α , aν

]
+

∂Lf
∂(∂µaν)

[
Z(n)
α , aν

]
− ((n+ 1)ταt

nxµ− δµαntn+1)Lf ,

(6.11)

where Lf = −1
4F

µνFµν . This current is conserved if both aν and aν satisfy their on-shell

conditions i.e. (3.6) and (3.10). We will follow on the similar lines of reasoning for finding

the current for both the limits that we did while finding the EM tensor in the previous

subsection. For the Electric limit, we have to replace aµ by ãµ so that the conserved current

contains only the information of the field aµ. It is given by

Jµ[Z(n)
α ](aν , ãν) = −fµν

(
(n+ 1)tnτα(xβ∂β)− ntn+1∂α + (n+ 1)tnτα

)
ãν

+
tn

4

(
(n+ 1)ταx

µ − δµαnt
)
fνβ f̃νβ . (6.12)

We can also add a conserved quantity to Jµ[Z
(n)
α ](aν , ãν) which is defined as

CE
µ
α := fµν∂ν

(
(n+ 1)tnταx

β ãβ − ntn+1ãα

)
(6.13)

so that we can write the resultant in terms of fµν and f̃µν as

JE
µ[Z(n)

α ] := Jµ[Z(n)
α ](aν , ãν) + CE

µ
α =

(
(n+ 1)tnταx

β − ntn+1δβα

)
fµν f̃νβ

+
tn

4

(
(n+ 1)ταx

µ − δµαnt
)
fνβ f̃νβ . (6.14)

The final expression becomes

JE
µ[Z(n)

α ] =
(

(n+ 1)tnταx
β − ntn+1δβα

)
TE

µ
β, (6.15)

where TE
µ
β is the EM tensor for the Electric limit defined in (5.9). Substituting n = −1

above will give us the EM tensor TE
µ
α for the Electric limit.

For the Magnetic limit, we have to replace aν by ãν in (6.11) to get

Jµ[Z(n)
α ](ãν , aν) = −f̃µν

(
(n+ 1)tnτα(xβ∂β)− ntn+1∂α + (n+ 1)tnτα

)
aν

+
tn

4

(
(n+ 1)ταx

µ − δµαnt
)
f̃νβfνβ . (6.16)

This is a gauge dependent conserved current. We can add a conserved current to it to

make it gauge independent. That conserved quantity is given as

CM
µ
α := f̃µν∂ν

(
(n+ 1)tnταx

βaβ − ntn+1aα

)
. (6.17)

After adding it to Jµ[Z
(n)
α ](ãν , aν) and simplifying, we get the gauge independent conserved

current for the Magnetic limit as

JµM [Z(n)
α ] =

(
(n+ 1)tnταx

β − ntn+1δβα

)
TM

µ
β, (6.18)

where TM
µ
β is the EM tensor for the Magnetic limit defined in (5.13). If we substitute

n = −1 above, we recover the EM tensor for the Magnetic limit.
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7 Conclusion

A quick summary

We will now summarise the main results mentioned in the paper. Our main aim was

to construct the GCA and the Lagrangian for Galilean electrodynamics in the covariant

formulation of Galilean spacetime.

We first looked into the basics of the non-relativistic limit and talked about the geom-

etry of Galilean spacetime. We then discussed the properties of the metric tensor and the

submetric tensor. We moved on to writing the GCA and its representation based on the

newly constructed covariant formulation. Once we have that in place, we wrote down the

most general Lagrangian for the Galilean electrodynamics. We also checked the symmetry

and found that it comes out to be invariant under infinite-dimensional GCA. Finally, we

calculated the energy-momentum tensor and the conserved Noether currents associated

with this theory.

Future directions

Some obvious generalisations follow from the current work. Below is a list of a few of them.

• Galilean gauge theories: The equations of motion and its symmetries for these theo-

ries have already been seen in [23, 24]. We would like to have an action formulation

for Galilean gauge theories in the covariant formulation constructed in this paper.

We also want to look at the conserved charges and Poisson brackets associated with

the charges. It will confirm the presence of GCA at the level of the charges.

• Carrollian limit: We like to build a similar covariant formulation for the Carrollian

limit (c → 0) of electrodynamics. It was formulated first in [12, 25] in terms of

equations of motion. Then the action was constructed using Helmholtz conditions

in [26]. This theory is very captivating with different sectors, both of which exhibit

infinite-dimensional BMS symmetries. It will be interesting to examine it in the

covariant formulation.

• Supersymmetric Galilean theories: We want to investigate the Galilean version of

N = 4 SU(N) supersymmetric Yang-Mills (SYM). The hope is that even if the

Galilean conformal symmetries survive only at the classical version of electrodynamics

and Yang-Mills theories. The conformal symmetries would hold out the quantum lift

in the supersymmetric generalisation. The expectation would be to obtain the super-

GCA [27–30] in the non-relativistic sector of N = 4 SYM. These symmetries may

indicate the presence of a new integrable sub-sector. It would differ from the usual

integrable planar sector.
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A Construction of Galilean Tensors

We will use the tensor products of contravariant and covariant Galilean vectors to construct

the Galilean tensors and infer their transformation properties. Specifically, under general

coordinate transformations, a Galilean tensor of rank (n,m) should transform as

T ′α1α2...αn
β1β2...βm

(x′) =
∂x′α1

∂xγ1
∂x′α2

∂xγ2
...
∂x′αn

∂xγn
∂xη1

∂x′β1
∂xη2

∂x′β2
...
∂xη3

∂x′β3
T γ1γ2...γnη1η2...ηm(x). (A.1)

We saw before that we cannot get the correct Galilean transformations by naively taking

c → ∞ limit on Lorentz vectors (V µ, Vµ). We need to have certain conditions on Lorentz

vectors (Sec[2]). Similarly, when we try c→∞ on Lorentz tensors, they should have some

specific forms to transform like Galilean tensors. Using the fact that we can decompose

every tensor into a sum of outer products of vectors, we can then find the expression of

Lorentz tensors explicitly written in terms of c that can be converted into Galilean tensors

in the limit c→∞. From now, we will use 1/ε instead of c and will take ε→ 0.

Let us take an example to understand this. Consider a tensor Tr
µ
α and say that it is

given by

Tr
µ
α =

[
−εA B

−ε2C εD

]
. (A.2)

This tensor can be thought of as linear combinations of outer product of largely timelike

Lorentz vectors Pµr = (P 0, εP i) and largely spacelike Lorentz vectors Qrα = (−εQ0, Qi).

Mathematically, it follows as

Tr
µ
α =

∑
Pµr Qrα =

[
−εA B

−ε2C εD

]
, (A.3)

where the summation
∑

denotes that we are taking linear combinations of such dyads.

Similar to what we did for vectors, we can define a new Galilean tensor Tµα =

[
A B

C D

]
,

whose components are independent of ε. Now, because we see that Tr
µ
α was made up of

Pµr and Qrα, we know how Tr
µ
α transforms under Lorentz boosts with velocities v � c. It

means we can find out how A, B, C, and D transforms. Thus, one can easily show that

the transformation of the tensor Tµα is the same as that of a (1,1) Galilean tensor under

Galilean boosts. Also, it is important to note that we may need to divide or multiply a

Lorentz tensor by an overall factor of ε to see how it is made up of largely timelike or

spacelike Lorentz vectors. For example, consider the following quantity

Mr
µ
α =

[
−A B/ε

−εC D

]
. (A.4)

Although it looks different from Tr
µ
α, it is just a scaled version of Tr

µ
α by a factor 1/ε.

Hence, the Galilean tensor that we will extract from Mr
µ
α, will be the same as Tµα. In

conclusion, the overall factors of ε or 1/ε are irrelevant in deciding the extracted Galilean

quantity.
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Till now, we have only looked at a specific example where the relativistic quantity Tr
µ
α

is in the form of a linear combination of the outer product of the vectors (A.3). In other

words, the dyads were all of the same ranks that allowed us to write consistent tensor

indices on the Galilean tensor Tµα.

But in some cases, it may happen that a Lorentz tensor, when written in the lowest

order of ε, cannot be decomposed into a linear combination of dyads of the same type

(largely spacelike and largely timelike). It would then imply that the Lorentz tensor has

no Galilean counterpart. For example, consider

Sr
µ
α =

[
−A εB

−εC D

]
. (A.5)

If we break this tensor into two parts, then we will see that it is a sum of two Galilean

tensors of different ranks which would imply that the overall quantity has no corresponding

Galilean tensor:

Sr
µ
α =

[
−A 0/ε

−εC D

]
+

[
0 εB

0/ε 0

]
. (A.6)

Let us first focus on the first matrix in the equation above. It looks like a particular case

of (A.4) with B = 0, which means that the Galilean tensor that we can extract from it

is of the kind Xµ
α (some Galilean tensor with µ index up and α index down). Now, look

at the second matrix in (A.6). The Galilean quantity we can extract from this would be

of the type Y α
µ (Galilean tensor with the µ index down and α index up). Therefore, the

sum of these two cannot be a Galilean tensor. It means that all relativistic tensors need

not have a corresponding Galilean tensor.

References

[1] R. Jackiw and S. Y. Pi, Tutorial on Scale and Conformal Symmetries in Diverse

Dimensions, J. Phys. A44 (2011) 223001 [1101.4886].

[2] A. Bagchi, R. Basu and A. Mehra, Galilean Conformal Electrodynamics, JHEP 11 (2014)

061 [1408.0810].

[3] N. Beisert et al., Review of AdS/CFT Integrability: An Overview, Lett. Math. Phys. 99

(2012) 3 [1012.3982].

[4] N. Beisert, A. Garus and M. Rosso, Yangian Symmetry and Integrability of Planar N=4

Supersymmetric Yang-Mills Theory, Phys. Rev. Lett. 118 (2017) 141603 [1701.09162].

[5] N. Beisert, A. Garus and M. Rosso, Yangian Symmetry for the Action of Planar N = 4

Super Yang-Mills and N = 6 Super Chern-Simons Theories, Phys. Rev. D 98 (2018) 046006

[1803.06310].

[6] J. M. Maldacena, The Large N limit of superconformal field theories and supergravity, Adv.

Theor. Math. Phys. 2 (1998) 231 [hep-th/9711200].

[7] G. ’t Hooft, Dimensional reduction in quantum gravity, Conf. Proc. C 930308 (1993) 284

[gr-qc/9310026].

[8] L. Susskind, The World as a hologram, J. Math. Phys. 36 (1995) 6377 [hep-th/9409089].

– 22 –

https://doi.org/10.1088/1751-8113/44/22/223001
https://arxiv.org/abs/1101.4886
https://doi.org/10.1007/JHEP11(2014)061
https://doi.org/10.1007/JHEP11(2014)061
https://arxiv.org/abs/1408.0810
https://doi.org/10.1007/s11005-011-0529-2
https://doi.org/10.1007/s11005-011-0529-2
https://arxiv.org/abs/1012.3982
https://doi.org/10.1103/PhysRevLett.118.141603
https://arxiv.org/abs/1701.09162
https://doi.org/10.1103/PhysRevD.98.046006
https://arxiv.org/abs/1803.06310
https://doi.org/10.1023/A:1026654312961
https://doi.org/10.1023/A:1026654312961
https://arxiv.org/abs/hep-th/9711200
https://arxiv.org/abs/gr-qc/9310026
https://doi.org/10.1063/1.531249
https://arxiv.org/abs/hep-th/9409089


[9] A. A. Belavin, A. M. Polyakov and A. B. Zamolodchikov, Infinite Conformal Symmetry in

Two-Dimensional Quantum Field Theory, Nucl. Phys. B241 (1984) 333.

[10] A. Bagchi and R. Gopakumar, Galilean Conformal Algebras and AdS/CFT, JHEP 07 (2009)

037 [0902.1385].

[11] M. L. Bellac and J.-M. Levy-Leblond, Galilean Electromagnetism, Nuovo Cimento. 14B .

[12] C. Duval, G. W. Gibbons, P. A. Horvathy and P. M. Zhang, Carroll versus Newton and

Galilei: two dual non-Einsteinian concepts of time, Class. Quant. Grav. 31 (2014) 085016

[1402.0657].

[13] G. Festuccia, D. Hansen, J. Hartong and N. A. Obers, Symmetries and Couplings of

Non-Relativistic Electrodynamics, JHEP 11 (2016) 037 [1607.01753].

[14] E. Bergshoeff, J. Rosseel and T. Zojer, Non-relativistic fields from arbitrary contracting

backgrounds, Class. Quant. Grav. 33 (2016) 175010 [1512.06064].

[15] D. Van den Bleeken and C. Yunus, Newton-Cartan, Galileo-Maxwell and Kaluza-Klein,

Class. Quant. Grav. 33 (2016) 137002 [1512.03799].

[16] K. Banerjee, R. Basu and A. Mohan, Uniqueness of Galilean Conformal Electrodynamics and

its Dynamical Structure, JHEP 11 (2019) 041 [1909.11993].

[17] D. Hansen, J. Hartong and N. A. Obers, Non-Relativistic Gravity and its Coupling to

Matter, JHEP 06 (2020) 145 [2001.10277].

[18] S. Chapman, L. Di Pietro, K. T. Grosvenor and Z. Yan, Renormalization of Galilean

Electrodynamics, JHEP 10 (2020) 195 [2007.03033].

[19] H. P. Kuenzle, Covariant Newtonian limit of Lorentz space-times, General Relativity and

Gravitation 7(5) (1976) 445.

[20] G. Dautcourt, On the newtonian limit of general relativity, Acta. Phys. Pol. B21 (1990) 755.

[21] R. Andringa, E. Bergshoeff, S. Panda and M. de Roo, Newtonian Gravity and the Bargmann

Algebra, Class. Quant. Grav. 28 (2011) 105011 [1011.1145].

[22] A. Bagchi and I. Mandal, On Representations and Correlation Functions of Galilean

Conformal Algebras, Phys. Lett. B675 (2009) 393 [0903.4524].

[23] A. Bagchi, R. Basu, A. Kakkar and A. Mehra, Galilean Yang-Mills Theory, JHEP 04 (2016)

051 [1512.08375].

[24] A. Bagchi, J. Chakrabortty and A. Mehra, Galilean Field Theories and Conformal Structure,

JHEP 04 (2018) 144 [1712.05631].

[25] A. Bagchi, R. Basu, A. Kakkar and A. Mehra, Flat Holography: Aspects of the dual field

theory, JHEP 12 (2016) 147 [1609.06203].

[26] K. Banerjee, R. Basu, A. Mehra, A. Mohan and A. Sharma, Interacting Conformal Carrollian

Theories: Cues from Electrodynamics, Phys. Rev. D 103 (2021) 105001 [2008.02829].

[27] M. Sakaguchi, Super Galilean conformal algebra in AdS/CFT, J. Math. Phys. 51 (2010)

042301 [0905.0188].

[28] A. Bagchi and I. Mandal, Supersymmetric Extension of Galilean Conformal Algebras, Phys.

Rev. D80 (2009) 086011 [0905.0580].

[29] J. A. de Azcarraga and J. Lukierski, Galilean Superconformal Symmetries, Phys. Lett. B678

(2009) 411 [0905.0141].

– 23 –

https://doi.org/10.1016/0550-3213(84)90052-X
https://doi.org/10.1088/1126-6708/2009/07/037
https://doi.org/10.1088/1126-6708/2009/07/037
https://arxiv.org/abs/0902.1385
https://doi.org/10.1088/0264-9381/31/8/085016
https://arxiv.org/abs/1402.0657
https://doi.org/10.1007/JHEP11(2016)037
https://arxiv.org/abs/1607.01753
https://doi.org/10.1088/0264-9381/33/17/175010
https://arxiv.org/abs/1512.06064
https://doi.org/10.1088/0264-9381/33/13/137002
https://arxiv.org/abs/1512.03799
https://doi.org/10.1007/JHEP11(2019)041
https://arxiv.org/abs/1909.11993
https://doi.org/10.1007/JHEP06(2020)145
https://arxiv.org/abs/2001.10277
https://doi.org/10.1007/JHEP10(2020)195
https://arxiv.org/abs/2007.03033
https://doi.org/10.1088/0264-9381/28/10/105011
https://arxiv.org/abs/1011.1145
https://doi.org/10.1016/j.physletb.2009.04.030
https://arxiv.org/abs/0903.4524
https://doi.org/10.1007/JHEP04(2016)051
https://doi.org/10.1007/JHEP04(2016)051
https://arxiv.org/abs/1512.08375
https://doi.org/10.1007/JHEP04(2018)144
https://arxiv.org/abs/1712.05631
https://doi.org/10.1007/JHEP12(2016)147
https://arxiv.org/abs/1609.06203
https://doi.org/10.1103/PhysRevD.103.105001
https://arxiv.org/abs/2008.02829
https://doi.org/10.1063/1.3321531
https://doi.org/10.1063/1.3321531
https://arxiv.org/abs/0905.0188
https://doi.org/10.1103/PhysRevD.80.086011
https://doi.org/10.1103/PhysRevD.80.086011
https://arxiv.org/abs/0905.0580
https://doi.org/10.1016/j.physletb.2009.06.042
https://doi.org/10.1016/j.physletb.2009.06.042
https://arxiv.org/abs/0905.0141


[30] J. Lukierski, Galilean Conformal and Superconformal Symmetries, Phys. Atom. Nucl. 75

(2012) 1256 [1101.4202].

– 24 –

https://doi.org/10.1134/S1063778812100134
https://doi.org/10.1134/S1063778812100134
https://arxiv.org/abs/1101.4202

	1 Introduction
	2 Galilean Conformal Algebra
	3 Galilean Electrodynamics: From perspective of equations of motion
	4 Action of Galilean Electrodynamics
	5 Energy-Momentum Tensor
	6 Noether Currents
	7 Conclusion
	A Construction of Galilean Tensors

