
PRX QUANTUM 2, 030308 (2021)

Infinite-Dimensional Programmable Quantum Processors

Martina Gschwendtner 1,2,* and Andreas Winter 3,4,†

1
Munich Center for Quantum Science and Technology (MCQST), München 80799, Germany

2
Zentrum Mathematik, Technical University of Munich, Garching 85748, Germany

3
Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig de Lluis Companys, 23, Barcelona 08001,

Spain
4
Grup d’Informació Quàntica, Departament de Física, Universitat Autònoma de Barcelona, Bellaterra

(Barcelona) 08193, Spain

 (Received 7 December 2020; revised 18 April 2021; accepted 18 May 2021; published 13 July 2021)

A universal programmable quantum processor uses “program” quantum states to apply an arbitrary
quantum channel to an input state. We generalize the concept of a finite-dimensional programmable quan-
tum processor to infinite dimension assuming an energy constraint on the input and output of the target
quantum channels. By proving reductions to and from finite-dimensional processors, we obtain upper and
lower bounds on the program dimension required to approximately implement energy-limited quantum
channels. In particular, we consider the implementation of Gaussian channels. Due to their practical rele-
vance, we investigate the resource requirements for gauge-covariant Gaussian channels. Additionally, we
give upper and lower bounds on the program dimension of a processor implementing all Gaussian unitary
channels. These lower bounds rely on a direct information-theoretic argument, based on the generalization
from finite to infinite dimension of a certain “replication lemma” for unitaries.
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I. INTRODUCTION

A programmable quantum processor takes an input state
and applies a quantum channel to it, controlled by a pro-
gram state that contains all relevant information for the
implementation. This concept, introduced by Nielsen and
Chuang [1], is inspired by the von Neumann architecture of
classical computers and universal Turing machines, which
postulate a single device operating on data using a “pro-
gram,” which ultimately is just another kind of data. The
main result of Ref. [1] is the no-programming theorem,
stating that a universal programmable quantum processor,
i.e., one capable of the implementation of any quantum
channel exactly with finite program dimension, does not
exist. If one relaxes the requirement to only approximate
implementation, a trade-off between the accuracy of the
implementation and the size of the program register occurs.

Exact and approximate quantum processors have been
extensively studied, with respect to the required resources,
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which here are identified with the dimension of the pro-
gram register. Many efforts have been made to obtain
optimal scaling in different regimes. Recently, Yang et
al. [2] closed the gap for the universal implementation
of unitaries, providing essentially the optimal scaling of
the program dimension and the accuracy for a given
finite-dimensional Hilbert space on which the unitaries act.

Since infinite-dimensional (also known as continuous-
variable) systems are fundamental in quantum theory, and
are gaining more and more attention in quantum com-
munication [3,4], quantum cryptography [5,6], and quan-
tum computing [7–9], here we investigate programmable
quantum processors for continuous-variable systems.

Results. In the present paper, we define programmable
quantum processors with infinite-dimensional input and
output, assuming an energy constraint. This means that
we seek to approximately implement arbitrary energy-
limited unitary quantum channels (which are those that
map energy-bounded states to energy-bounded states) with
finite program dimension, the accuracy of the implemen-
tation judged using the energy-constrained diamond norm
[10,11] (cf. Refs. [12,13] for a closely related definition) as
distance measure. After Definition 5, we argue the intrin-
sic necessity of both the use of the energy-constrained
diamond norm and energy limitation of the channels.

Our first group of main results concerns the resource
requirements, determining upper and lower bounds on the
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program dimension. We achieve this by relating the perfor-
mance of infinite-dimensional approximate programmable
quantum processors to that of their finite-dimensional
counterparts in Theorems 9 and 10. In Theorem 9, we
construct an infinite-dimensional programmable quantum
processor assuming an existing finite-dimensional one
whereas Theorem 10 states that a finite-dimensional pro-
grammable quantum processor can be constructed assum-
ing an existing infinite-dimensional one. We establish thus
a fundamental link between discrete and continuous quan-
tum systems in the context of programmable quantum
processors. These results allow us to import known upper
and lower bounds on the program register from finite-
dimensional processors. The upper bounds we obtain are
summarized in Table I whereas the lower bounds can be
found in Table II.

The case of unitary channels, in the exact case covered
by Nielsen and Chuang’s no-programming theorem, was
analyzed by Yang et al. [2] for the approximate imple-
mentation and using an information-theoretic approach.
In Lemma 11 we generalize their central tool, the recy-
cling of the program register to implement the same uni-
tary multiple times, to infinite-dimensional unitaries and
energy-constrained diamond norm approximation. To do
so, we also introduce a multiply energy-constrained dia-
mond norm with several simultaneous constraints rather
than a single one, in Eq. (13). At the end of Sec. IV, we out-
line what Yang et al.’s information-theoretic lower-bound
strategy looks like in infinite dimension. The approach of
lower bounding the program dimension by relating the
Holevo information of program and (compressed) output
ensembles is then used in the subsequent consideration of
various classes of Gaussian Bosonic channels.

Looking beyond fully universal processors, we
furthermore study the approximate implementation of

energy-limited gauge-covariant Gaussian channels of a
single Bosonic mode. Gauge-covariant channels play
an important role physically, since they describe the
consequences of attenuation of signals and addition of
noise in communication schemes. Furthermore, they pre-
serve the class of thermal Gaussian states [3]. Using ε-net
constructions, we provide upper bounds on the program
dimension in Theorem 17, which diverge with the accuracy
of implementation. Due to the energy limitation, our lower
bounds for gauge-covariant channels rely only on lower
bounds for the implementation of the attenuator channels
and of the phase unitaries. The concrete bounds are stated
in Theorems 18 for the phase unitaries and Theorem 19 for
attenuators, the former diverging with the implementation
accuracy.

Another case study is the universal implementation of
energy-limited Gaussian unitaries of any finite number of
Bosonic modes. We show that there exists an infinite-
dimensional programmable quantum processor whose pro-
gram register can be upper bounded in terms of the
approximation error ε in Theorem 20. The upper bound
we obtain, using an ε-net construction, diverges as inverse
polynomial in ε. Due to the phase unitaries treated ear-
lier, we show that the program register of every inifinte-
dimensional programmable quantum processor can be
lower bounded by a term diverging with the inverse of ε
in Theorem 21 with a different power, though.

Context. Nonuniversal programmable quantum proces-
sors, i.e., those implementing (either exactly or approxi-
mately) only a prescribed set of, rather than all, quantum
channels between two given systems have occurred in
various other contexts different from quantum computing,
where channel simulation can help reduce the analysis of
quantum channels to that of the corresponding program
state(s). For example, the quantum and private capacities

TABLE I. Upper bounds on the program dimension for infinite-dimensional processors from
bounds for finite-dimensional processors. Note that d in the third column is the dimension of the
subspace of H spanned by eigenvectors of H with eigenvalues ≤ E

ε4 .
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P ≤
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TABLE II. Lower bounds on the program dimension for infinite-dimensional processors from bounds for
finite-dimensional processors. The last row holds for any α < d2−1

2 . The dimension d in the third column
is the chosen dimension of the finite-dimensional processor.

dP ≥ References d∞
P ≥

K
(

1
d

)d+1
2
(

1
ε

)d−1
2

Pérez-García [29] K
(

1
d

) d+1
2
(

E
γ max{E(d), E}

) d−1
2

(
d
ε

)2

Majenz [21]
(

dE
γ max{E(d), E}

)2

2
1−ε
3C d− 2

3 log d Kubicki et al. [20] 2
E−γ max{E(d), E}

3CE d− 2
3 log d

(
1 + �(d−2)√

ε

)2α

Yang et al. [2],
(

1 + �(Ed−2)√
γ max{E(d), E}

)2α

with a slight arithmetic improvement

of a quantum channel, assisted by local operations and
classical communication (LOCC), are the same as those of
its Choi state, if the channel can be implemented by a pro-
cessor built from LOCC elements with the Choi state as
the program [13,14]. Similarly, if a family of channels can
be implemented by the same processor using their Choi
states as programs, adaptive strategies to distinguish or
estimate the channels cannot be better than nonadaptive
ones, for any finite number of channel uses and asymptoti-
cally, and in fact boil down to the much better-understood
discrimination of the Choi states [12,15], see also Refs.
[16,17].

Structure. In Sec. II we start by introducing basic
notions for infinite-dimensional quantum information; in
Sec. III we prove two reductions, first of an infinite-
dimensional universal programmable quantum proces-
sor for energy-limited channels (unitaries) to a finite-
dimensional one for arbitrary channels (unitaries), and
second vice versa, and can thus import known program
dimension bounds (upper and lower) from the finite-
dimensional world; in Sec. IV we prove that a proces-
sor implementing unitaries approximately can implement
them repeatedly by reusing the same program successively,
and sketch how this leads to information-theoretic lower
bounds on program registers (cf. Yang et al. [2]); in Sec.
V we turn our attention to quantum processors for gauge-
covariant one-mode Gaussian channels, on the one hand,
and multimode Gaussian unitaries on the other, proving
upper and lower bounds on the program dimension in
both settings; in Sec. VI we conclude, discussing future
directions and open questions.

II. NOTATION AND PRELIMINARIES

Let H be a separable Hilbert space and denote T (H)
the Banach space of all trace-class operators acting on H,

equipped with the trace norm ‖A‖1 = tr
√

A∗A,

T (H) = {A : H → H such that ‖A‖1 < ∞}.
The set of quantum states, which we identify with den-
sity operators [positive semidefinite operators in T (H)
with unit trace] is denoted D(H), and the subset of pure
quantum states by DP(H). The set of all quantum chan-
nels is denoted CPTP(H1,H2). A quantum channel is a
completely positive (CP) and trace-preserving (TP) linear
map (superoperator) � : T (H1) → T (H2) for separable
Hilbert spaces H1 and H2. It can equivalently be described
by its adjoint map on the dual spaces of bounded operators,
�∗ : B(H2) → B(H1), which is a completely positive and
unit preserving (CPUP) map characterized uniquely by the
duality relation

tr�(α)B = trα�∗(B) ∀α ∈ T (H1), B ∈ B(H2).

Let H be a positive semidefinite Hamiltonian H ≥ 0 with
discrete spectrum. We denote its spectral decomposition
as H =∑∞

n=0 enPn, in the sense of the spectral theorem
for unbounded self-adjoint operators, see Refs. [18,19]: it
amounts to convergence of

∑
n en〈φ|Pn|φ′〉 to 〈φ|H |φ′〉 for

all |φ〉, |φ′〉 in the domain of H . We additionally assume
finite degeneracy of all eigenvalues, i.e., dim Pn < ∞ for
all n (we call such Hamiltonians finitary). We shall in the
following always assume that 0 is the smallest eigenvalue
of H (such Hamiltonians are called grounded).

Throughout this paper, we consider energy constraints
on the input and output, of the form tr ρH1 ≤ E1 and
tr�(ρ)H2 ≤ E2, respectively, where H1 ≥ 0 is a finitary
and grounded Hamiltonian as above (i.e., with discrete
spectrum, smallest eigenvalue 0 and finite degeneracy of
every eigenvalue) acting on H1, and H2 ≥ 0 likewise on
H2. Thus, let us define energy-limited quantum chan-
nels, which map energy-bounded states to energy-bounded
states.
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Definition 1 ((α,β)-energy-limited quantum channel
[11]). Given two positive semidefinite Hamiltonians H1 ≥
0 and H2 ≥ 0 on H1 and H2, respectively, a quan-
tum channel � : T (H1) → T (H2) is called (α,β)-energy
limited if for all ρ ∈ D(H1) with tr ρH1 < ∞, it holds
tr�(ρ)H2 < ∞, and in fact

tr�(ρ)H2 ≤ α tr ρH1 + β.

This can be expressed equivalently as �∗(H2) ≤ αH1 +
β1, using the adjoint CPTP map �∗ : B(H2) → B(H1),
which however has to be interpreted suitably, given that
the adjoint map is a priori only defined on bounded opera-
tors and the same for the semidefinite operator order—see
the following explanation.

Since we have the spectral decomposition of H2 =∫∞
0 e dP(e), with the spectral measure dP on [0; ∞), we

can define a positive operator-valued measure (POVM)
dM on [0; ∞) by letting M (I) = �∗[P(I)] for any mea-
surable set I ⊂ [0; ∞), and let �∗(H2) = ∫∞0 e dM (e),
assuming that there is a dense domain on which the
convergence with respect to test vectors holds. Equiva-
lently, we can consider the bounded operators H2(E) :=∫ E

0 e dP(e)+ EP
[
(E; ∞)
]
, which form an increasing fam-

ily that converges to H2—as usual, in the weak-operator
sense with respect to pairs of test vectors from the domain
of H2; then, �∗[H2(E)] is an increasing family of bounded
positive semidefinite operators on H1, whose limit, if
it exists, is called �∗(H2). Note that in either way, the
definition makes sure that the result, if densely defined, is
an essentially self-adjoint operator.

As for the operator order, A ≤ B for bounded operators
means that B − A is positive semidefinite. For unbounded
A and B, we only define it if both operators are self-
adjoint, in particular with dense domains D(A) and D(B),
respectively. Then, A ≤ B is defined as meaning D(A) ⊃
D(B) and 〈ψ |A|ψ〉 ≤ 〈ψ |B|ψ〉 for all |ψ〉 ∈ D(B). Notice
that we employ this notation for a positive semidefinite
B, where |ψ〉 �∈ D(B) amounts to 〈ψ |B|ψ〉 = +∞, thus
automatically fulfilling the inequality also in that case.

So as to allow trivial channels, such as the identity
and the constant channel mapping every input state to the
ground state of the output space, we always assume α ≥ 1
and β ≥ 0.

The diamond norm is a well-motivated metric to dif-
ferentiate quantum channels in terms of their statistical
distinguishability. Since we consider energy constraints on
the channel input, we are motivated to use the energy-
constrained diamond norm instead.

Definition 2 (Energy-constrained diamond norm [10,11]).
Let H1 ≥ 0 be a grounded Hamiltonian on H1, and E > 0.
For a Hermitian-preserving map � : T (H1) → T (H2),

define the energy-constrained diamond norm (more pre-
cisely, E-constrained diamond norm) as

‖�‖E
� = sup

HR

sup
ρ∈D(H1⊗HR)
tr ρ(H1⊗1R)≤E

‖(�⊗ idR)ρ‖1.

From the definition, one may without loss of generality
restrict the test states ρ ∈ D(H1 ⊗ HR) to be pure states,
and HR may be assumed isomorphic to H1. For the triv-
ial Hamiltonian H1 = 0 this definition reduces to the usual
diamond norm. On the other hand, Shirokov [10] showed
for our class of finitary and grounded Hamiltonians, that
the energy-constrained diamond norms ‖ · ‖E

� all induce
the strong topology. For more details and properties of
the energy-constrained diamond norm we refer to Refs.
[10,11]. Note that a slightly different notion of energy-
constrained diamond norm was considered earlier in Refs.
[12] and [13].

In the following, we adapt the definition of an ε-
universal programmable quantum processor (ε-UPQP),
originally discussed for finite-dimensional systems, to infi-
nite dimension.

Definition 3 (ε-PQPC , cf. Ref. [20]). Let H1 and H2 be
separable Hilbert spaces. Then, we call P ∈ CPTP(H1 ⊗
HP,H2), with finite-dimensional HP, an ε-programmable
quantum processor for a set C ⊂ CPTP(H1,H2) of chan-
nels (ε-PQPC), if for every CPTP map � ∈ C there exists
a state π� ∈ D(HP) such that

1
2
‖P(·⊗π�)−�(·)‖�≤ε.

To address the Hilbert spaces H1, H2, and HP, we refer
to the former two as the input and output registers, to
the latter as program register. We say that the processor
P ε-implements the class C of channels, leaving out the
reference to ε-when it is 0.

When C = CPTP(H1,H2), we call the processor uni-
versal and denote it as ε-PQPCPTP. Note that allowing
mixed states in the program register is essential, since
it allows for example the programming of all depolariz-
ing channels using a qubit HP. On the other hand, we
can always replace a mixed program state π� by a suit-
able purification on HP ⊗ HP to obtain a pure program
state at the expense of increasing (squaring) the pro-
gram dimension, and accordingly modify the processor
to one acting on H1 ⊗ H⊗2

P . Another important special
case, that has been considered before, is that H1 = H2 =
H is a finite-dimensional Hilbert space, and C = U(H)
the set of all unitaries, or rather the channels defined by
conjugation with unitaries, which has been addressed as
“universal” in the literature, but which—in view of the
restriction to unitaries—we want to call unitary-universal
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and denote ε-PQPU ; in the literature this class is referred
to as ε-UPQP, a “universal” programmable quantum pro-
cessor. We consider a d1-dimensional input space, a d2-
dimensional output space, and an d∞

P -dimensional program
register. In the unitary case, the program states are custom-
arily assumed to be pure, in accordance with the previous
literature.

For the exact case, i.e., ε=0, Nielsen and Chuang proved
the no-programming theorem [1]. They consider a proces-
sor, which implements the set C of the channels generated
by conjugation with unitaries U1, . . . , UN perfectly.

Theorem 4 (No programming [1]). Let U1, . . . , UN ∈
U(Cd) be distinct unitary operators (up to a global phase),
which are implemented by some programmable quantum
processor. Then,

(i) the corresponding programs |P1〉, . . . , |PN 〉, which
are states of the program register HP, are mutually
orthogonal;

(ii) the program register is at least N-dimensional, or
in other words, it contains at least log2 N qubits.

While the theorem was originally proved for finite-
dimensional H, it is not difficult to see that its proof
extends to separable Hilbert spaces.

This result shows that no exact universal quantum pro-
cessor with finite-dimensional program register exists.
Indeed, every unitary operation, which is implemented
by the processor, requires an extra dimension of the pro-
gram Hilbert space. Since there are infinitely, in fact
uncountably, many unitary operations, no universal quan-
tum processor with finite-dimensional (or indeed separable
Hilbert) space exists. Note that with a separable Hilbert
space, one can however approximate every unitary chan-
nel arbitrarily well, by choosing C as a countable, dense
set of unitaries (see the following construction). On the
other hand, using a d-dimensional program register, up
to d unitary operations, which are distinct up to a global
phase, can be implemented by a series of controlled uni-
tary operations. Therefore, we are interested in ε > 0 and
in particular how the program register depends on the
accuracy ε.

Note that if C = {�i}K
i=1 is a finite set of channels,

then we can construct the processor that implements those
channels exactly with memory dimension equal to the car-
dinality K of the set in the following way. We encode the
specifying index i from the set of channels into the program
state π�. The following processor implements the channels
�i from the set C exactly:

P(ρ ⊗ π�):=
∑

i

�i(ρ) 〈i|π� |i〉 ,

which clearly satisfies

P(ρ ⊗ |i〉〈i|) = �i(ρ).

The program dimension d∞
P is equal to the cardinality K of

the set C, thus meeting the lower bound from the Nielsen
and Chuang no-programming Theorem 4 (for unitary chan-
nels). Since we use this construction several times through-
out the paper, we refer to it as the processor-encoding
technique (PET).

In the present paper we are interested in programmable
quantum processors that ε-implement (α,β)-energy-
limited quantum channels between infinite-dimensional
systems H1 and H2 with Hamiltonians H1 and H2, respec-
tively. However, in this case we do not measure the error by
the diamond norm, but by the energy-constrained diamond
norm.

Definition 5 (ε-EPQPC). Let H1 and H2 be separa-
ble Hilbert spaces and consider a class of quantum
channels C ⊂ CPTP(H1,H2). A quantum operation P ∈
CPTP(H1 ⊗ HP,H2) is called an ε-approximate energy-
constrained programmable quantum processor for C
(ε-EPQPC) if for all � ∈ C there exists a state π� ∈
D(HP) such that

1
2
‖P(·⊗π�)−�‖E

� ≤ ε. (1)

We denote the dimension of the program register of an
ε-EPQPC as d∞

P . We consider only classes C of CPTP
maps that are (α,β)-energy limited for some α ≥ 1, β ≥
0. Important classes treated next are the following: the
set of all (α,β)-energy-limited quantum channels from
H1 to H2 is denoted L(α,β). For H1 = H2, the set of
(α,β)-energy-limited unitary channels is denoted U(α,β).
In a Bosonic system of a single Bosonic mode, we look
at the set GCG(α,β) of all (α,β)-energy-limited gauge-
covariant Gaussian channels; finally, for a general (mul-
timode) Bosonic system, we denote the set of all (α,β)-
energy-limited Gaussian unitary channels as GU(α,β).

While the no-programming Theorem 4 is not directly
applicable to an ε-EPQPU(α,β), we can reduce the case
of infinite dimension to the finite-dimensional case, to
rule out the existence of perfect universal programmable
quantum processors, by considering only unitaries of the
form U = U0 +∑∞

n=2 Pn, where U0 is an arbitrary uni-
tary on the support H1 ⊂ H of P0 + P1, i.e., U0U∗

0 =
U∗

0U0 = P0 + P1, which are (α,β)-energy limited for all
α ≥ 1, β ≥ ε1 − ε0. Namely, a 0-EPQP would imply a
0-UPQP for input register H1, and since the latter is a
finite-dimensional space, Theorem 4 applies.

Before launching into the rest of the paper, where we
derive results about various ε-EPQPC , it is worth paus-
ing to regard the definition, and to justify why we use the
energy-constrained diamond norm and why we restrict our
attention to (α,β)-energy-limited channels. In fact, it turns
out that dropping either restriction results in simple no-go
theorems ruling out finite-dimensional program registers.
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Remark 6 (Unsuitability of the usual diamond norm).
Fix a direct sum decomposition of a closed subspace H0
of H into orthogonal subspaces, H0 =⊕∞

n Hn, where
dimHn = n, and consider C =⋃nU(Hn) ⊂ U(H), where
we regard U(Hn) as a subset of U(H) by identifying
each unitary U ∈ U(Hn) with U ⊕ (1 − UU∗) ∈ U(H).
An ε-PQPC would effectively serve as an ε-PQPU(Hn) for
the unitaries on each of the finite-dimensional spaces Hn.
Previous results [2,20,21] then show lower bounds on dP
that diverge as a function of n, showing that d∞

P must be
infinite. The energy-constrained diamond norm, besides
inducing the more natural strong topology on the CPTP
maps, avoids this problem. Note that if the subspaces Hn
are contained in eigenspaces of the Hamiltonian H ≥ 0,
the class C even consist of (1, 0)-energy-limited unitary
channels.

The same argument also shows why we have to use a
finitary Hamiltonian for the E-constrained diamond norm.
Indeed, for a nonfinitary Hamiltonian H ≥ 0 there exists
an energy E such that the subspace H′ ⊂ H spanned
by eigenstates of energy ≤ E has infinite dimension.
Then, the class of unitaries C = U(H′) ⊂ U(H) is (1, E)-
energy limited, and restricted to H′, the E-constrained
diamond norm equals the unconstrained diamond norm.
This includes all Hamiltonians with continuous or partially
continuous spectrum.

Remark 7 (Triviality of energy-unlimited quantum chan-
nels). The considerations in the preceding remark should
have convinced us that we need to consider Definition 5
with a finitary Hamiltonian H1 on H1. Now let us consider
how allowing energy-unlimited channels would similarly
trivialize our quest for finite program registers. Namely,
for every eigenstate |φn〉 of H2 with energy en there exists
a well-defined CPTP map �n that maps all of D(H1)

to |φn〉〈φn|. A processor that can ε-implement any of the
�n, even with respect to ‖ · ‖E

� , can approximately prepare
an arbitrary eigenstate |φn〉〈φn| ∈ D(H2), with respect to
the trace norm, from the ground state of H1, so it is
intuitively clear that it requires an infinite-dimensional
program register. This can be made precise using the
information-theoretic lower-bound method explained at
the end of Sec. IV.

III. DIMENSION BOUNDS FOR
ENERGY-LIMITED PROGRAMMABLE

QUANTUM PROCESSORS

In the following, we focus on the resources the pro-
cessor requires to approximately implement all (α,β)-
energy-limited unitary channels U(α,β). To obtain upper
bounds on the dimension of the program register in Sec.
III A, we present a construction method based on an
existing ε-PQPU . This can be seen as an extension of
a finite-dimensional programmable quantum processor to
infinite dimension.

FIG. 1. Schematic illustration of the construction method for
an γ -EPQPU(α,β) based on an ε-PQPU . The parts of the figure
that we construct in the proof are represented by dashed lines,
the parts we assume to exist by regular lines.

A technical lemma we use in the proof is the gentle oper-
ator lemma, which shows that a measurement with a highly
likely outcome can be performed with little disturbance to
the measured quantum state.

Lemma 8 (Gentle operator [22, Lemma 9], [23, Lemma
5], [24, Lemma 9.4.2]). Let ρ ∈ D(H) and T be a mea-
surement operator with 0 ≤ T ≤ 1. Suppose that T has a
high probability of detecting ρ, i.e., tr ρT ≥ 1 − κ , with
κ ∈ [0, 1]. Then,

∥∥∥ρ −
√

Tρ
√

T
∥∥∥

1
≤ 2

√
κ .

In the following theorem, we construct a processor that
maps any input state ρ ∈ D(H) with a certain energy

tr ρH ≤ E,

approximately to UρU∗, if U ∈ U(H) is (α,β)-energy lim-
ited, using a program register HP of dimension dimHP =
d∞

P < ∞. We express the approximation parameter γ of
our γ -EPQPU(α,β) in terms of the approximation parameter
ε of a given finite-dimensional ε-PQPU . This is illustrated
in Fig. 1.

To obtain such a processor, we use the energy con-
straints to approximate the input and output system by a
finite-dimensional subspace of H.

Theorem 9. Let H ≥ 0 be a finitary and grounded Hamil-
tonian on the separable Hilbert space H, and E > 0. Fur-
thermore, let ε > 0 and d:= rank{H ≤ E/ε4}, the dimen-
sion of the subspace of H spanned by eigenvectors of
H with eigenvalues ≤ (E/ε4). Assume that we have an
ε-PQPU Pd with d-dimensional input register and pro-
gram register HP. Then, we can construct an infinite-
dimensional γ -EPQPU(α,β) P ∈ CPTP(H ⊗ HP,H) such
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that for all (α,β)-energy-limited unitaries U ∈ U(H)
there exists a unit vector |ψU〉 ∈ HP such that

1
2
‖P(·⊗|ψU〉〈ψU|)− U(·)U∗‖E

� ≤ γ :=4.5ε
(
α + β

E

)
.

(2)

Proof. The construction of the infinite-dimensional pro-
cessor consists of two components: a compression map
that projects down to states on a finite-dimensional sub-
space Hd of H spanned by the lowest-lying energy eigen-
states, and the application of the given finite-dimensional
ε-PQPU Pd to that subspace.

Define Pδ , the projector onto the subspace Hδ spanned
by all eigenstates with eigenvalue ≤ E/δ, where δ ≤ 1.
Consider Hδ2 , which has projector Pδ2 and define the
compression map K onto Hδ ⊂ Hδ2 as K(ρ) := PδρPδ +
tr ρ(1 − Pδ)|0〉〈0|, where |0〉 is a ground state of the Hamil-
tonian H . Now we can define our infinite-dimensional
processor as P = Pd ◦ (K ⊗ idP).

Next, we need to describe how to use the processor P
to implement an (α,β)-energy-limited unitary U ∈ U(H),
namely what is the program state |ψU〉. To do this, consider
the polar decomposition of Pδ2UPδ , which we can think of
as an operator acting on Hδ , mapping to Hδ2 :

Pδ2UPδ = Vd
√

PδU∗Pδ2UPδ , (3)

where Vd : Hδ → Hδ2 is consequently an isometry. We
obtain Ud as an extension of Vd to a unitary on Hd := Hδ2 .
By assumption, Pd can implement Ud approximately with
error ≤ ε in diamond norm, using a certain program state
|φUd〉, and we let |ψU〉 := |φUd〉.

The rest of the proof is the demonstration that this con-
struction satisfies the claimed approximation quality in
E-constrained diamond norm. To start with, we show that

∥∥Vd − Pδ2UPδ
∥∥ ≤ δ

(
α + β

E

)
, (4)

both operators in the difference being understood as opera-
tors on Hd, and ‖ · ‖ denoting the operator norm. For this,
thanks to Eq. (3) it is enough to show
[

1 − δ

(
α + β

E

)]
Pδ ≤ PδU∗Pδ2UPδ ≤ Pδ , (5)

since the square root is operator monotonic, and thus
implies

∥∥∥Pδ −√PδU∗Pδ2UPδ
∥∥∥ ≤ δ

(
α + β

E

)
.

The right-hand inequality in Eq. (5) follows trivially
from Pδ2 ≤ 1 by conjugation with U∗ and Pδ . The left-
hand inequality amounts to showing 〈ψ |U∗Pδ2U|ψ〉 ≥

1 − δ [α + (β/E)] for all state vectors |ψ〉 ∈ Hδ . Indeed,
|ψ〉〈ψ | is supported on the subspace Hδ, all of whose state
vectors have energy ≤ E/δ, in particular tr

(|ψ〉〈ψ |H) ≤
E/δ. By our assumption that U is (α,β) limited,
this implies tr

(
U|ψ〉〈ψ |U∗H

) ≤ αE/δ + β, and thus by
Markov’s inequality we get

tr
[
U|ψ〉〈ψ |U∗(1 − Pδ2)

] ≤ αE/δ + β

E/δ2 ≤ δ

(
α + β

E

)
,

proving the claim.
To prove the bound, Eq. (2), we consider an arbitrary

state ρ ∈ D(H ⊗ Ck) with energy bounded by E, i.e.,
tr ρ(H ⊗ 1

Ck ) ≤ E. To start, by Markov’s inequality this
implies tr ρ(Pδ ⊗ 1) ≥ 1 − δ, thus by the gentle operator
Lemma 8, and the triangle inequality,

∥∥ρ − (K ⊗ id
Ck )(ρ)
∥∥

1 ≤ 2
√
δ + δ, (6)

and furthermore (K ⊗ id
Ck )(ρ) is a state on Hd ⊗ Ck

that has energy bounded by tr(K ⊗ id
Ck )(ρ)(H ⊗ 1) ≤

tr ρ(H ⊗ 1) ≤ E.
Now, from the definition of P and the processor prop-

erty of Pd, we have

∥∥(P ⊗ id
Ck )(ρ ⊗ ψU)

− (Ud ⊗ 1
Ck )(K ⊗ id

Ck )(ρ)(Ud ⊗ 1
Ck )

∗∥∥
1 ≤ 2ε.

(7)

Noting that (Ud ⊗ 1
Ck )(K ⊗ id

Ck )(ρ)(Ud ⊗ 1
Ck )∗ = (Vd

⊗ 1
Ck )(K ⊗ id

Ck )(ρ)(Vd ⊗ 1
Ck )∗, because (K ⊗ id

Ck )(ρ)

is supported on Hδ ⊗ Ck, we furthermore have

∥∥(Vd ⊗ 1
Ck )(K ⊗ id

Ck )(ρ)(Vd ⊗ 1
Ck )

∗

−(Pδ2UPδ ⊗ 1
Ck )(K ⊗ id

Ck )(ρ)(PδU∗Pδ2 ⊗ 1
Ck )
∥∥

1

≤ 2δ
(
α + β

E

)
, (8)

where we invoke Eq. (4) twice. Continuing, we observe
that we can drop the projection Pδ in the second term
inside the norm, because (K ⊗ id

Ck )(ρ) is supported on
Hδ ⊗ Ck. Next, by Eq. (6) we have

∥∥(Pδ2U ⊗ 1
Ck )(K ⊗ id

Ck )(ρ)(U∗Pδ2 ⊗ 1
Ck )

− (Pδ2U ⊗ 1
Ck )ρ(U∗Pδ2 ⊗ 1

Ck )
∥∥

1 ≤ 2
√
δ + δ. (9)

Finally, since tr
[
(U ⊗ 1

Ck )ρ(U ⊗ 1
Ck )∗H
] ≤ αE + β,

another application of Markov’s inequality and the gentle
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FIG. 2. Assuming a γ -EPQPU(α,β), we can construct a finite-
dimensional ε-PQPU which is drawn in dashed lines including
its input, output, and program register.

operator Lemma 8 yields

∥∥(Pδ2U ⊗ 1
Ck )ρ(U∗Pδ2 ⊗ 1

Ck )

− (U ⊗ 1
Ck )ρ(U∗ ⊗ 1

Ck )
∥∥

1 ≤ 2δ

√
α + β

E
. (10)

It remains to put everything together: by triangle inequality
and the bounds from Eqs. (7), (8), (9) and (10), we obtain

∥∥(P ⊗ id
Ck )(ρ ⊗ ψU)− (U ⊗ 1

Ck )ρ(U∗ ⊗ 1
Ck )
∥∥

1

≤ 2ε + 2δ
(
α + β

E

)
+ 2

√
δ + δ + 2δ

√
α + β

E

≤ 2ε + 7
√
δ

(
α + β

E

)
,

and choosing δ = ε2 concludes the proof. �
To obtain lower bounds on the dimension of the pro-

gram register in Sec. III B, in the following theorem we
present a method to construct a finite-dimensional proces-
sor assuming an existing infinite-dimensional one, which
is illustrated in Fig. 2.

Theorem 10. Let H ≥ 0 be the Hamiltonian with a
discrete spectrum describing the system on the separa-
ble Hilbert space H, E > 0, γ > 0, and furthermore
choose d > 0. Assume that we have an infinite-dimensional
γ -EPQPU(α,β) P ∈ CPTP(H ⊗ HP,H) for all sufficiently
large α and β. Then, there exists an ε-PQPU Pd ∈
CPTP(Hd ⊗ HP,Hd) such that for all Ud ∈ U(Hd) there
is a unit vector |ψUd〉 ∈ HP with

1
2

∥∥Pd(·⊗|ψUd〉〈ψUd |)− Ud(·)U∗
d

∥∥
� ≤ε,

where ε = γ (1/E)max{E(d), E} and E(d) is the smallest
energy such that the space spanned by the eigenstates of
energies between 0 and E(d) is of dimension d or larger.

Proof. We assume that an infinite-dimensional
γ -EPQPU(α,β) processor P ∈ CPTP(H ⊗ HP,H) exists
as described in the theorem, and construct a finite-
dimensional one with the same program register, i.e., we
aim to bound

1
2
‖Pd(·⊗ |ψUd〉 〈ψUd |)− Ud(·)U∗

d‖�≤ε := ε(E, d, γ ).

We start with fixing an isometric embedding V of
the d-dimensional Hilbert space Hd into H. Namely,
with respect to the ordered spectral decomposition H =∑∞

n=0 enPn of the Hamiltonian, let n(d) be the smallest
integer such that d ≤∑n(d)

n=0 rank Pn and E(d) := en(d) the
largest occurring energy. Let

V : Hd ↪→
⎛
⎝n(d)∑

n0

Pn

⎞
⎠H =: H′ ⊂ H,

where the first embedding is an arbitrary isometry. This
defines an isometric channel

V : D(Hd) → D(H)
ρ �→ VρV∗.

Thanks to V we view Hd as a subspace of H, and denote
its orthogonal complement by H⊥

d .
An arbitrary Ud ∈ U(Hd) is extended to a unitary U ≡

Ud ⊕ 1H⊥
d

∈ U(H). We would like to implement this uni-
tary using the processor P , followed by a CPTP compres-
sion onto the subspace Hd, using its projection operator
�d:

K(ρ):=�dρ�d + κ0 tr ρ(1 −�d),

where κ0 is an arbitrary state with energy zero in Hd. Since
we assume that there exists a γ -EPQPU(α,β) for all suf-
ficiently large α > 0 and β > 0, this unitary can be γ -
implemented. [In fact, we could choose α = 1 and β =
E(d), the largest occurring energy gap in H′.] The pro-
cessor is a concatenation of the isometric channel V , the
infinite-dimensional γ -EPQPU(α,β) P and the compression
map K, namely P ′:=K ◦ P ◦ (V ⊗ idHP ), which leads us
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to

1
2
‖K ◦ P ◦ [V(·)⊗ ψUd ] − Ud(·)U∗

d‖�

≤ 1
2
‖P ◦ [V(·)⊗ ψUd ] − U(·)U∗‖E(d)

�

≤ 1
E

max{E(d), E}1
2
‖P ◦ [V(·)⊗ ψUd ] − U(·)U∗‖E

�

≤ γ
1
E

max{E(d), E},

where we use the contractivity of the diamond norm under
postprocessing and that our subspace goes up to energy
E(d), so restricted to it the E(d)-constrained diamond norm
equals the unconstrained diamond norm; then, that going
to the E-constrained diamond norm blows up the error
by a factor of at most (1/E)max{E(d), E}; finally, the
infinite-dimensional processor makes an error of at most
γ . Hence, this is the ε = γ (1/E)max{E(d), E} we get for
the resulting finite-dimensional processor. �

A. Upper bounds

Upper bounds on the program dimension of a finite-
dimensional ε-PQPU were derived in various previous
works, most recently in Refs. [20] and [2]. To specify
an upper bound for the dimension of the program of the
infinite-dimensional γ -EPQPU(α,β) (Definition 5), we thus
import the existing bounds via Theorem 9.

Let P be an infinite-dimensional γ -EPQPU(α,β) as
in Theorem 9 and Pd a finite-dimensional ε-PQPU as
required. Since our construction of an infinite-dimensional
processor relies on a finite-dimensional one, we reformu-
late the bound, Eq. (2), as

ε:= γ

4.5

(
α + β

E

)−1

.

Several upper bounds on the program dimension for finite-
dimensional unitary processors can be found in the liter-
ature. Note that the bound in the second row of Table I
is derived from Ref. [28, Lemma 1, Section II.C] which
uses port-based teleportation working with copies of Choi
states. We get upper bounds for our infinite-dimensional
γ -EPQPU(αβ) P if we insert ε into the existing bounds in
Table I.

B. Lower bounds

Given an ε-EPQPU(α,β) for infinite-dimensional (α,β)-
limited unitaries, we can build a finite-dimensional
ε-PQPU via Theorem 10, whose program dimension is
lower bounded through results from the literature. The
following lower bounds for d-dimensional ε-PQPU are
known, as shown in Table II.

IV. RECYCLING THE PROGRAM FOR
IMPLEMENTING UNITARIES

In this section, we prove a general lemma, which was
first shown by Yang et al. [2] for finite-dimensional uni-
taries and using the diamond norm. We generalize their
statement to infinite-dimensional systems. This lemma is
applicable to any unitary that a given processor implements
approximately, and it says that in such a case the processor
can be modified to one that reuses the program state sev-
eral times to approximately implement the same unitary
several times sequentially or in parallel. This statement is
crucial in the information-theoretic lower bounds obtained
in Ref. [2] for the program dimension of a universal PQP in
finite dimension. We use our infinite-dimensional, energy-
constrained version in the next section to give lower
bounds on the program dimension of approximate EPQPs
for Gaussian unitaries.

Before we state and prove the lemma, we recall some
definitions from Shirokov [30]. The completely bounded
energy-constrained channel fidelity between two quantum
channels is defined as

FE
CB(A,B):= inf

ψ
F
[
(A ⊗ idR)(ψ), (B ⊗ idR)(ψ)

]
,

such that |ψ〉 varies over states on H1 ⊗ HR with
energy constraint tr ρH1 ≤ E. We take, without loss
of generality, the infimum over all pure states |ψ〉 ∈
H1 ⊗ HR with HR � H1 being a reference system, and
F(ρ, σ):= tr

√
ρ(1/2)σρ(1/2) for ρ, σ ∈ D(H1) denoting the

usual fidelity.
From Ref. [30] we have

FE
CB(A,B) ≥ 1 − 1

2
‖A − B‖E

� (11)

and

‖A − B‖E
� ≤ 2
√

1 − FE
CB(A,B)2. (12)

Finally, for an �-partite system with Hilbert space H(�) =
H1 ⊗ H2 ⊗ · · · ⊗ H�, where each Hj carries its own
Hamiltonian Hj ≥ 0, and for numbers Ej > 0, we define
the multiply energy-constrained diamond norm, or more
precisely the (E1, . . . , E�)-constrained diamond norm,
of a Hermitian-preserving superoperator � : T (H(�)) →
T (H′) as

‖�‖(E1,...,E�)� := sup
ρ∈D(H(�)⊗HR)

‖(�⊗ idR)(ρ)‖1 such that

∀j = 1, . . . , � tr ρj Hj ≤ Ej . (13)

This is evidently a norm, being in fact equivalent to
the energy-constrained diamond norm: concretely, with
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Emin = minj Ej and Esum =∑j Ej ,

‖�‖Emin� ≤ ‖�‖(E1,...,E�)� ≤ ‖�‖Esum� ,

where we use H =∑j Hj as the Hamiltonian on H(�). As
with the energy-constrained diamond norm, the induced
topology is not the issue, but the fact that the multiple con-
straints in Eq. (13) allow us to encode more refined metric
information.

Lemma 11 (Replication of infinite-dimensional unitaries).
Consider a processor, i.e., a quantum channel P ∈
CPTP(H ⊗ HP,H), coming with a Hamiltonian H ≥ 0
and a number E > 0, and an integer � ≥ 1. Then, there
exists another processor P̂ ∈ CPTP(H⊗� ⊗ HP,H⊗�)
with the following property: for every unitary channel
U(·) = U · U∗ whose inverse U∗ is (α′,β ′)-energy-limited
and such that there exists a pure state |ψU〉 on HP with

1
2
‖P(·⊗ψU)− U‖E

� ≤ ε,

it holds that

1
2

∥∥P̂(·⊗ψU)− U⊗�∥∥(E,...,E)
� ≤ 2�ε′,

where ε′ =
(

1 + β ′
E

)√
2ε.

In words, whenever P , using a pure program state
ψU, ε-implements an (α,β)-energy-limited unitary chan-
nel U(·) = U · U∗ with (α′,β ′)-energy-limited inverse U∗
(with respect to the E-constrained diamond norm), then P̂ ,
using the same pure program state ψU, 2�ε′-implements
U⊗� [with respect to the (E, . . . , E)-constrained diamond
norm]. In the finite-dimensional setting and without energy
constraint, the above statement reduces to that of Ref. [2].

Proof. Applying Eq. (11), we obtain for the energy-
constrained completely bounded fidelity between the out-
put of the processor and the target unitary,

FE
CB

[
P(·⊗ψP),U

] ≥ 1 − ε.

Throughout the proof, we observe the convention to mark
states for clarity with the index of the subsystem on
which they act; similarly for channels, whenever it is not
clear from the setting. Let V : B(H)⊗ B(HP) → B(H)⊗
B(HQ) be a Stinespring dilation of P , with HQ being a
suitable environment space. Then, by Uhlmann’s theorem
for the completely bounded energy-constrained fidelity of
quantum channels, stating that any two channels have
isometric dilations with the same completely bounded
energy-constrained fidelity [30, Prop. 1] (generalizing the

case without energy constraint [31]), there exists a state
|φQ〉 ∈ HQ such that

FE
CB

[
V ◦ (idH ⊗ψP),U ⊗ φQ

] ≥ 1 − ε.

Note that here and in the following, we regard a state ρ ∈
D(HP) as a channel from a trivial system, denoted 1 (with
one-dimensional Hilbert space C), to HP. Using Eq. (12),
we get

1
2

∥∥V ◦ (idH ⊗ψP)− U ⊗ φQ
∥∥E

� ≤
√

1 − (1 − ε)2 ≤
√

2ε.

(14)

We want to apply the processor several times, and for this
we have to recover the program state. So, the first step of
the proof is to show that we can modify the processor to
a new map P ′ ∈ CPTP(H ⊗ HP,H ⊗ HP) in such a way
that apart from implementing U , it also preserves the pro-
gram state ψP (all with the appropriate approximations).
For this purpose, choose a pseudoinverse of V ,

W :=V∗ + R = V∗(·)V + R,

where R is a CP map designed to make W CPTP. Note
that this is always possible because VV∗ is a projection,
and so V∗ is completely positive and trace nonincreasing.
In fact, denoting �:=VV∗ the projection operator onto the
image of V in H ⊗ HQ, one choice is R(ξ) = ρ0 tr ξ(1 −
�), with a fixed state ρ0 ∈ D(H ⊗ HP). We observe that
indeed W ◦ V = idH ⊗ idHP , and hence (V ◦ W) ◦ V =
V . Thus we get from Eq. (14) that

√
2ε ≥ 1

2

∥∥V ◦ (idH ⊗ψP)− V ◦ W ◦ (U ⊗ φQ)
∥∥E

�

= 1
2

∥∥idH ⊗ψP − W ◦ (U ⊗ φQ)
∥∥E

�

≥ 1
2

E
E + β ′

∥∥idH ⊗ψP − W ◦ (U ⊗ φQ)
∥∥E+β ′

� ,

where we obtain the second line by the invariance of the
(energy-constrained) diamond norm under multiplication
from the left by an isometric channel (V), and the last
line by the equivalence of the energy-constrained diamond
norms for different energy levels [11].

Since U∗ is (α′,β ′)-energy limited, we can lower bound
the last expression in turn by

1
2

E
E + β ′

∥∥U∗ ⊗ ψP − W ◦ (idH ⊗φQ)
∥∥E/α′

� .

Defining the memory recovery map M : T (HQ) →
T (HP) by

M(ρ):= trH(W|0〉〈0|H ⊗ ρ),
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where |0〉〈0| is a ground state (i.e., of zero energy) of the
Hamiltonian H , we can now conclude that

1
2
‖M(φQ)− ψP‖1 ≤

(
1 + β ′

E

)√
2ε =: ε′.

Note that this map depends only on the chosen Stinespring
dilation V of P , and thus we can define

P ′:=(idH ⊗M) ◦ V ,

which by the above reasoning has the desired property that

1
2
‖P ′ ◦ (idH ⊗ψP)− U ⊗ ψP‖E

� ≤ 2ε′, (15)

via a simple application of the triangle inequality and the
contractivity of the (energy-constrained) diamond norm
under multiplication from the left by CPTP maps.

At this point we are almost there, and the remaining
argument requires only careful notation. We have isomor-
phic copies Hj of H, j = 1, . . . , � as well as the program
register HP in the big tensor-product space H(�) ⊗ HP, and
we use index j or P to indicate on which tensor factor a
superoperator acts (implicitly extending the action to the
whole space by tensoring with the identity id on the other
factors). This allows us to rewrite Eq. (15) as

1
2
‖P ′

jP ◦ (idj ⊗ψP)− Uj ⊗ ψP‖E
� ≤ 2ε′,

for all j = 1, . . . , �. By tensoring this with identities
Uk (for k < j ) and with idk (k > j ), and observing the
definition of the multiply energy-constrained diamond
norm, this results in

1
2

∥∥P ′
jP ◦ (U1 ⊗ · · · ⊗ Uj −1 ⊗ idj ⊗ idj +1 ⊗ · · · ⊗ id� ⊗ψP)

− U1 ⊗ · · · ⊗ Uj −1 ⊗ Uj ⊗ idj +1 ⊗ · · · ⊗ id� ⊗ψP
∥∥(E,...,E)

�
≤ 2ε′, (16)

for j = 1, . . . , �. (It is perhaps worth noting that we impose
only energy constraints on the nontrivial systems Hj , both
in the simply and multiply constrained norm expressions.)

Adding all the � bounds from Eq. (16), and using the
triangle inequality results in

1
2

∥∥P ′
�P ◦ · · · ◦ P ′

2P ◦ P ′
1P ◦ (id1 ⊗ · · · ⊗ id� ⊗ψP)

− U1 ⊗ · · · ⊗ U� ⊗ ψP
∥∥(E,...,E)

� ≤ 2�ε′.

This means that we can define our desired EPQP via
P̂ := trP ◦P ′

�P ◦ · · · ◦ P ′
2P ◦ P ′

1P, concluding the proof. �
We do not make use of it, but from the proof (and

much more explicitly from that of Ref. [2]), something

stronger can be obtained. Namely, the processor can be
modified in such a way that, rather than merely implement-
ing � instances of U sequentially, it does so by alternating
them with � instances of U∗. This is quite curious and
hints at an interesting property of programmable quantum
processors for unitary channels, namely that with every
unitary it approximately implements, it essentially (i.e.,
after suitable modification) also implements the inverse of
the unitary.

The methodology for lower bounding the program reg-
ister, expounded in Ref. [2], is information theoretic, and
in itself does not rely on the unitarity of the target chan-
nels. Namely, choose a fiducial state ρ0 ∈ D(H) of energy
≤ E to be used in the channels� ∈ C and the processor, as
well as a probability distribution μ(d�) on the class C, so
that by Definition 5 [Eq. (1)] we have for all � ∈ C,

1
2
‖P(ρ0 ⊗ π�)−�(ρ0)‖1 ≤ ε.

Now we can consider three ensembles of states, all sharing
the same probability distribution μ:

{π�,μ(d�)} P(ρ0⊗·)−−−−→ {ω�,μ(d�)} ε≈ {�(ρ0),μ(d�)},

the first an ensemble on the program register HP, the
second the output of the processor, ω� = P(ρ0 ⊗ π�),
and the third the ideal ensemble from the implemented
channels, if the processor was perfect.

The Holevo information of the left-hand ensemble is
upper bounded by log d∞

P , and by data processing it is
lower bounded by the middle one. We would like to apply
a continuity bound for the von Neumann entropy to lower
bound the Holevo information of the middle ensemble in
turn in terms of the Holevo information of the right-hand
ensemble. This is straightforward in finite dimension using
the Fannes inequality, but a bit more subtle in infinite
dimension, where however analogous bounds exist when
additionally the states obey an energy bound [32]. Assum-
ing that C ⊂ L(α,β), this is indeed given for the states
of the ideal ensemble: tr�(ρ0)H ≤ αE + β. But we have
a priori no such bound for the actual output states ω�.

Lemma 12. Consider two states ρ, σ ∈ D(H), where H
carries a grounded Hamiltonian H ≥ 0, and a number
E > 0. If (1/2)‖ρ − σ‖1 ≤ η and tr ρH ≤ E, then there
exists a state σ ′ with tr σ ′H ≤ (E/η) and

1
2
‖σ − σ ′‖1 ≤ 3

√
η,

1
2
‖ρ − σ ′‖1 ≤ 4

√
η.

Proof. Take the subspace projector Pη onto the energy
subspace of all eigenvalues ≤ (E/η), and construct the
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compression map

K(ξ) = PηξPη + κ0 tr ξ(1 − Pη),

where κ0 is an arbitrary state with support Pη, e.g., a ground
state of H . Then, let σ ′:=K(σ ). This does it, as can be
seen as follows: tr ρPη ≥ 1 − η, hence by the trace norm
assumption, tr σPη ≥ 1 − 2η, and now we can apply the
gentle operator Lemma 8 and get (1/2)‖σ − PησPη‖1 ≤√

2η, hence by the triangle inequality (1/2)‖σ − σ ′‖1 ≤
2η + √

2η ≤ 3
√
η.

Using the triangle inequality once more, we get the
distance from ρ bounded by 4

√
η. �

Using Lemma 12, we can process the ensemble further,
letting ω′

� = K(ω�), using the compression map from the
lemma:

{π�,μ(d�)} P(ρ0⊗·)−−−−→ {ω�,μ(d�)} K−→ {ω′
�,μ(d�)}

4
√
ε≈ {�(ρ0),μ(d�)},

and now both �(ρ0) and ω′
� have their energy bounded

by (αE + β/ε) =: Ê. Assuming not only a grounded, but
also finitary Hamiltonian H2 with finite Gibbs entropy at all
temperatures on the output space H2, we then get the fol-
lowing chain of inequalities, lower bounding the program
dimension:

log d∞
P ≥ χ
({
π�,μ(d�)

})
≥ χ
({
ω�,μ(d�)

})
≥ χ
({
ω′
�,μ(d�)

})
≥ χ
({
�(ρ0),μ(d�)

})

− 16
√
εS
[
γ

(
Ê

4
√
ε

)]
− 2h(4

√
ε)

≥ χ
({
�(ρ0),μ(d�)

})

− 16
√
εS

[
γ

(
αE + β

4
√
ε

3

)]
− 2, (17)

where the first three inequalities are by definition of the
program ensemble and data processing (twice), and the
fourth follows from Ref. [32, Lemma 15]. Here, h(t) =
−t log t − (1 − t) log(1 − t) is the binary entropy and we
assume that 4

√
ε ≤ 1. (Alternatively, one could use the

Meta-Lemma 16 from Ref. [32], which results in a simi-
lar bound with slightly better constants, but they are not
that important for us, so we prefer the use of the simpler
continuity bound.)

In the case of a class C of unitary channels U , we first
use Lemma 11 to get a processor for the channels U⊗�,
and then choose a fiducial state ρ0 ∈ D(H⊗�) such that

tr ρ0Hj ≤ E for all j = 1, . . . , �. The rest of the reasoning
is then the same, except that to define the compression map
in the application of Lemma 12, we have to consider total
energy �E at the input and �(αE + β) at the output.

V. PROGRAMMABLE QUANTUM PROCESSOR
FOR GAUSSIAN CHANNELS

We proved upper and lower bounds for a processor that
implements all energy-limited channels with finite pro-
gram register for an infinite-dimensional input state up to
a certain energy E > 0, i.e., tr(ρH) ≤ E. In the following,
the Hamiltonian is the photon-number operator N :=a∗a.
We now consider a special class of Gaussian channels:
gauge-covariant Gaussian channels that are relevant in
quantum optics, for instance. As explained in the previous
sections, we also assume an energy constraint tr(ρH) ≤ E
on the input. Thus, we already know from Sec. III that there
is a processor implementing an approximate version of all
energy-limited Gaussian channels with finite-dimensional
program register. These bounds also apply here. Since
gauge-covariant Gaussian channels obey special proper-
ties compared to general channels, we aim to use those to
develop better upper and lower bounds on the dimension
of the program register. We start with presenting the basic
ingredients and fix the corresponding notation.

A. Preliminaries and notation

There are many review articles on Gaussian states and
channels such as Refs. [3,33,34] and textbooks such as
Ref. [35]. Hence we review only briefly the most relevant
notions and notations.

Density operators have an equivalent representation in
terms of a Wigner function defined over the phase space,
which is a real symplectic space R2M equipped with the
symplectic form. The most fundamental object is the Weyl
displacement operator defined as

D̃(ξ):= exp(iX T�ξ), (18)

where X = (x1, p1, . . . , xM , pM )
T with (xj , pj ) the canoni-

cal quadrature operators for each mode j ∈ {1, . . . , M },

�:=
M⊕

j =1

ω with ω =
(

0 1
−1 0

)

and ξ ∈ R2M . They establish a connection between opera-
tors and complex functions on phase space.

Then, an M -mode quantum state ρ can be represented
by its Wigner characteristic function

χ̃ρ(ξ):= tr ρD̃(ξ)

for ξ ∈ R2M and ρ ∈ D(H⊗M ) [3, Eq. (12)].
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Definition 13 (Gaussian states). A Gaussian state is an M-
mode quantum state with Gaussian characteristic function.

An important example are coherent states ρG(ξ ,12) of
a single mode, ξ = (ξ1, ξ2). They are pure and can be
generated by displacing the vacuum state |0〉, i.e.,

|ξ〉:=D(ξ)|0〉.

The coherent states are the eigenstates of the annihilation
operator,

a|ξ〉 = ξ1 + iξ2√
2

|ξ〉.

They form an overcomplete basis, which means that any
coherent state can be expanded in terms of all other
coherent states because they are not orthogonal. Certain
representations of states are based on a coherent-state
expansion. Another class of Gaussian states are thermal
states ρG(0, (2N + 1)12)with N = tr ρa∗a being the mean
photon number.

Let us now define Gaussian channels.

Definition 14. A Gaussian channel is a quantum chan-
nel, i.e., a CPTP map � : B(H⊗n) → B(H⊗m) that maps
every Gaussian state ρG to a Gaussian state, i.e., �(ρG) is
Gaussian as well.

Note that we can also input a non-Gaussian state into
a Gaussian channel since Gaussianity is a property of the
channel, not the state. The action of a Gaussian channel on
a Gaussian state is described by the action on its first and
second moments. Gaussian channels acting on M modes
are characterized by a vector η ∈ R2M and two real 2M ×
2M matrices K and N . Those transform the displacement
vector d and the covariance matrix � of the input state as
follows:

d → Kd + η, � → K�KT + N .

The matrices K and N obey the following relations:

N + i�− iK�KT ≥ 0,

in order to map positive operators to positive operators
and N is symmetric. We can interpret K as being respon-
sible for the linear transformation of the canonical phase
variables, while N introduces quantum or classical noise.
Recall that any channel can be conceived as a reduction of
a unitary transformation acting on the system ρ plus some
environment ρE

�(ρ) = trE UG(ρ ⊗ ρE)U∗
G.

For a Gaussian channel �, it is always possible to find a
unitary dilation of this form with a Gaussian unitary US

and a pure Gaussian environment state ρE . Special Gaus-
sian unitaries are displacement operators [see Eq. (18)] and
squeezing operators described by

S(s) = exp
( s

2
a2 − s

2
a∗2
)

,

with s ∈ [0, ∞). It has zero displacement and its covari-
ance matrix is (

e−s 0
0 es

)
.

As a special class of channels, we introduce gauge-
covariant channels, which commute with the phase rota-
tions. Since these channels are invariant under the rotation
in phase space, they are also called phase insensitive.

Definition 15. A channel � that maps a single Bosonic
mode to a single Bosonic mode is called gauge covariant
if it satisfies

�(eiφN1ρe−iφN1) = eiφN2�(ρ)e−iφN2

where φ is a real number and Nj = a∗
j aj is the photon-

number operator in system j = 1, 2.

Gauge-covariant channels are a concatenation of an
attenuation and an amplification part. If one is inter-
ested in additivity questions of the Holevo information,
for instance, then the parameter specifying the channel is
considered to be real because the Holevo information is
invariant under phase rotations, which are passive trans-
formations. However, viewed from the perspective of a
processor, phases yield different outputs, which we want
to distinguish. Hence, we consider a complex parameter
that specifies gauge-covariant channels.

The following proposition states this concatenation of
an attenuator channel and an amplifier channel to obtain
one-mode gauge-covariant quantum channels. Since we
use complex parameters, we combine the phases to an
additional phase-rotation part, which yields real param-
eters for the attenuation and amplification that can be
found in Ref. [36], for example. A quantum optical
explanation including the complex parameter is given in
Ref. [35, p. 31].

Proposition 16. Any one-mode Bosonic gauge-covariant
Gaussian channel � can be understood as a concatena-
tion of a quantum-limited attenuator channel Tλ, a rota-
tion channel Rϕ and a (diagonalizable) quantum-limited
amplifier channel Aμ, i.e., � = Aμ ◦ Rϕ ◦ Tλ.

We briefly specify the three parts involved in the decom-
position. First, there is an attenuator channel Tλ with
parameter 0 ≤ λ ≤ 1, λ ∈ R, which is called the attenu-
ation factor. The two matrices describing the attenuator
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channel with the turn out to be K = √
λ12 and N =

(1 − λ)12. The rotation in phase space is described by the
unitary operator

R(ϕ) = exp(−iϕa∗a),

which transforms the covariance matrix according to

R̂ =
(

cosϕ sinϕ
− sinϕ cosϕ

)
.

We denote the corresponding rotation channel as Rϕ(·) =
e−iϕN (·)eiϕN . The third part is an amplifier channel Aμ with
parameter μ > 1. We consider quantum-limited ampli-
fiers, which are the least noisy deterministic amplifiers
allowed by quantum mechanics. We obtain K = √

μ12
and N = (μ− 1)12 for μ ∈ (1, ∞) [34].

B. Gauge-covariant Gaussian channels

In the first part, we considered an infinite-dimensional
input state with a certain maximal energy E and showed
that there is a programmable quantum processor able
to implement approximations of all (α,β)-energy-limited
unitary channels with finite-dimensional program register.

In this section, we study the class of (α,β)-energy-
limited gauge-covariant Gaussian channels GCG(α,β).
Recall that we denote the processor implementing these
channels as ε-EPQPGCG(α,β). We give upper and lower
bounds on the dimension of the program register of an
approximate programmable quantum processor that imple-
ments all (α,β)-energy-limited gauge-covariant Gaussian
channels with an input and output state of a certain maxi-
mal energy.

1. Upper bounds for gauge-covariant Gaussian channels

To obtain upper bounds on the program dimension
d∞

P , we establish an ε-net on GCG(α,β) to get a dis-
crete approximation of the output. Afterwards, we use the
PET to construct a processor that implements the chan-
nels of the ε-net with program dimension equal to the
cardinality of the ε-net. With this construction, we obtain
upper bounds on the program dimension of a processor
implementing all (α,β)-energy-limited gauge-covariant
Gaussian channels.

Theorem 17 (Upper bounds). Let ε > 0 and E > 0. Then,
there exists an infinite-dimensional ε-EPQPGCG(α,β) P ∈
CPTP(H1 ⊗ HP,H2) whose program register is upper
bounded as follows:

d∞
P ≤ CE2(2E + 2)(β + 1)

ε6

for a constant C.

Proof. Since we consider gauge-covariant Gaussian chan-
nels, we use Proposition 16, which states that those chan-
nels can be described as concatenation of an attenuator
channel Tλ, a rotation channel Rϕ , and a quantum-limited
amplifier channel Aμ and thus, we construct one ε-net
on the set of attenuator channels, one on rotations and
one on the amplifier channels. They are specified by one
parameter each.

Let us consider the attenuator channels first. Recall
that the parameter 0 ≤ λ < 1 is the attenuation param-
eter. Thus, we construct an ελ-net for λ with {λi}|Iλ|i=1 ⊂
[0, 1) such that for every λ there is an index i ∈ Iλ
satisfying

|λ− λi| ≤ ελ.

The range of λ forms a compact interval. The cardinality
of such a net is

|Iλ| ≤
(

1
ελ

+ 1
)

.

Analogously, we construct an εϕ-net for the parameter ϕ ∈
[0, 2π ] such that for every ϕ, there exists an index j ∈ Iϕ
with

|ϕ − ϕj | ≤ εϕ

with cardinality

|Iϕ| ≤
(

2π
εϕ

+ 1
)

.

We continue with the parameter describing the amplifier
channel. Note that amplifier channels enlarge the energy.
The larger the amplification factor, the higher the energy of
the output. The (α,β)-energy limitation of the considered
channels yields a maximal amplification factor μmax. Let
us specify this parameter.

To obtain a necessary condition for the parameter
μ, we consider the vacuum state ρG(0,12) as input
state with zero energy. The attenuator channel with K =√
λ12 and N = (1 − λ)12 and η = 0 (see Sec. V A)

maps the vacuum state to the vacuum state. The ampli-
fier channel with K = √

μ12 and N = (μ− 1)12, η =
0 maps it to ρG(0, (2μ− 1)12) with mean photon
number

tr{ρG(0, (2μ− 1)12)} = μ− 1,

where we use tr(ρGa∗a) = (1/2) tr(�)+ (1/4)d2 − (1/2)
for a general ρG(d,�) [34, Eq. (6.60)]. This yields the
necessary condition

μ ≤ β + 1.

Hence, we choose

μmax = β + 1. (19)
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Due to the energy constraint and μmax, the values μ ∈
(1,μmax] form a compact set and we construct an εμ-net
{μk}|Iμ|

k=1 ⊂ (1,μmax] such that for every μ there is an index
k ∈ Iμ such that

|μ− μk| ≤ εμ.

The cardinality of this net reveals as

|Iμ| ≤
(
μmax − 1
εμ

+ 1
)

.

The overall cardinality for the parameter appears as fol-
lows:

|I�| = |Iλ||Iϕ||Iμ|

≤
(

1
ελ

+ 1
)(

2π
εϕ

+ 1
)(

μmax − 1
εμ

+ 1
)

≤ 16μmax

ελεϕεμ
≤ 16(β + 1)

ελεϕεμ
,

where we use Eq. (19) in the last inequality. Since we are
interested in the cardinality of ε-nets in GCG(α,β), we lift
the parameter nets to nets on the set of channels. We use
the E-diamond norm distance (see Definition 2).

First, for the attenuator channel, we know from Ref. [37,
Example 5] that

‖Tλ − Tλi‖E
� ≤ 4

√
2
√

Eελ.

Secondly, concerning the rotation channel, we use the
result by Becker and Datta [37, Proposition 3.2] for the
one-parameter unitary semigroup of rotations

‖Rϕ − Rϕj ‖E
� ≤ 4

√
E
√|ϕ − ϕj | = 4

√
Eεϕ .

Thirdly, the norm of the distance of the amplifier channels
can be bounded as [37, Example 5]

‖Aμ − Aμk‖E
� ≤ 4

√
2
√
(2E + 2)εμ.

For the (α,β)-energy-limited gauge-covariant Gaussian
channels we overall obtain

‖�−�i‖E
� ≤ ‖Aμ ◦ Rϕ ◦ Tλ − Aμk ◦ Rϕj ◦ Tλi‖E

�

≤ ‖Tλ − Tλi‖E
� + ‖Rϕ − Rϕj ‖E

�

+ ‖Aμ − Aμk‖E
� ≤ 4

√
2
√

E
√
ελ + 4

√
E
√
εϕ

+ 4
√

2
√

2E + 2
√
εμ =: ε.

We express ελ, εϕ , and εμ in terms of the ε-parameter that
specifies the accuracy of the processor:

ελ = ε2

CλE
, εϕ = ε2

CϕE
, εμ = ε2

Cμ(2E + 2)
.

Inserting these expressions into |I�| we get

|I�| ≤ 16 (β + 1) Cλ Cϕ Cμ E(2E + 2)
ε6

= CE2(2E + 2) (β + 1)
ε6 .

We use the PET to construct an ε-EPQPGCG(α,β) with
program dimension

d∞
P = |I�| ≤ CE2(2E + 2)(β + 1)

ε6 ,

concluding the proof. �

2. Lower bounds for gauge-covariant Gaussian channels

In Proposition 16, we obtain three different building
blocks for the ε-net for the upper bounds: attenuation,
amplification, and phase rotation. It turns out that for lower
bounds, the third part is particularly relevant because it
yields ε-divergence.

a. Phase rotation. To lower bound the program dimen-
sion d∞

P of an ε-EPQPGCG(α,β), we proceed in two steps.
First, we apply Lemma 11 to the phase-rotation channels
Rϕ(·) = e−iϕN (·)eiϕN , which are (1, 0) limited. This results
in a modified processor that implements the rotation �

times in parallel. Motivated by the fact that all information
for the implementation of Rϕ is contained in the program
state, which has to contain almost the same information as
the �-tensor power phase rotation, we design an ensemble
on the output space to obtain lower bounds on the pro-
gram dimension by bounding the Holevo information in
the second step. The resulting lower bounds are stated in
the following theorem.

Theorem 18 (Lower-bounds phase rotations). Let ε >
0 and E > 0. Then, for every infinite-dimensional
ε-EPQPGCG(α,β) P ∈ CPTP(H ⊗ HP,H), with α ≥ 1 and
β ≥ 0, its program register can be lower bounded as
follows:

d∞
P ≥ 1

8192e
δ2E

(
√

2E + 1)δ

(
1√
2ε

)1−δ
≥ Cδ2
(

E√
ε

)1−δ
,

for any 0 < δ < 1, and the latter for E ≥ 1 and an absolute
constant C.

Proof. The gauge-covariant Gaussian channels contain the
one-parameter group of unitaries Rϕ of phase rotations.
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Applying Lemma 11 to these unitaries, we obtain

1
2

∥∥P̂(·⊗ψR)− R⊗�
ϕ

∥∥(E,...,E)

� ≤ 2�
√

2ε. (20)

Next, we create a state of high total energy on which we act
with R⊗�

ϕ to generate an ensemble, where ϕ is uniformly
distributed on [0, 2π ]. The ideal output is the phase rota-
tion R⊗�

ϕ on � modes. Since the photon number is the sum
of those on the subsystems, the unitary is generated by the
total photon number, i.e., R⊗�

ϕ = eiϕ(N1+...+N�). Since this
yields a phase multiplication eiϕn on each degenerate sub-
space of total photon number n, the �-fold tensor-product
unitary is diagonal in the photon-number basis and we use
only one state from each eigenspace.

For each total number n of photons, we define a unique
way of distributing them across the � modes in an as equi-
librated way as possible. For instance, choose a partition of
n into non-negative integers, n = n1 + . . .+ n� and define
|“n”〉 as the unit norm symmetrization of |n1〉 · · · |n�〉,

|“n”〉 :∝
∑
π∈S�

|nπ(1)〉 · · · |nπ(�)〉.

This state evidently has total photon number n, and the
expected photon number in each mode is (n/�).

As input state to the processor we choose

|ν〉 =
∞∑

n=0

cn|“n”〉,

with amplitudes such that 〈ν|N |ν〉 =∑n n|cn|2 ≤ �E. The
following calculations of the Holevo information take
place on the subspace spanned by |“n”〉. Note that on that
subspace, the total number operator N = N1 + · · · + N� is
isomorphic to a number operator, hence the time evolu-
tion of R⊗�

ϕ leaves this “virtual Fock space” HV ⊂ H⊗�
invariant.

Since all information about the output of the processor
is contained in the program state,

log d∞
P ≥ χ

({
P̂(|ν〉〈ν| ⊗ ψϕ),

dϕ
2π

})
,

following the approach explained at the end of Sec. IV.
We compare these ensemble states ωϕ = P̂(|ν〉〈ν| ⊗ ψϕ)

with the ideal ones R⊗�
ϕ (|ν〉〈ν|), which are supported on

HV with projector PV. Thus, defining the compression map
onto that subspace,

KV(ξ) = PVξPV + κ0 tr ξ(1 − PV),

and letting ω′
ϕ = KV(ωϕ), we have, by Eq. (20) and the

contractivity of the trace norm, that

1
2

∥∥R⊗�
ϕ (|ν〉〈ν|)− ω′

ϕ

∥∥
1

≤ 1
2

∥∥R⊗�
ϕ (|ν〉〈ν|)− ωϕ

∥∥
1

≤ 2�
√

2ε,

and on the other hand by data processing for the Holevo
information,

logd∞
P ≥ χ

({
ω′
ϕ ,

dϕ
2π

})
.

As mentioned before, the Hamiltonian restricted to the
virtual Fock space HV is isomorphic to a normal num-
ber operator HV =∑∞

n=0 n|“n”〉〈“n”|, and the ideal ensem-
ble states have energy trR⊗�

ϕ (|ν〉〈ν|)HV = tr |ν〉〈HV ≤ �E.
Now we invoke Lemma 12 with η = 2�

√
2ε, yielding

the compression map K onto the subspace with energy
≤ (�E/2�

√
2ε) = (E/2

√
2ε), which gives rise to states

ω′′
ϕ = K(ωϕ) with

1
2

∥∥R⊗�
ϕ (|ν〉〈ν|)− ω′′

ϕ

∥∥
1

≤ 4
√

2�
√

2ε,

and so finally

log d∞
P ≥ χ

({
ω′′
ϕ ,

dϕ
2π

})
≥ χ

({
R⊗�
ϕ (|ν〉〈ν|),

dϕ
2π

})

− 16
√

2
√
�
√

2εg

(
E

16
√
ε
√
�
√

2ε

)
− 2,

using Eq. (17) at the end of Sec. IV, where g(N ) = (N +
1) log(N + 1)− N log N is the well-known formula for
the von Neumann entropy of the thermal (Gibbs) state of
mean photon number N . On the other hand, it is easily seen
that

χ

({
R⊗�
ϕ (|ν〉〈ν|),

dϕ
2π

})
= H({|cn|2}),

which itself is maximized for the thermal distribution with
mean photon number

∑
n n|cn|2 = �E, and the maximum

is g(�E). Using the elementary upper and lower bounds

log N ≤ g(N ) ≤ log(N + 1)+ log e,
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and letting
√
� =
[
δ/
(

16
√

2
√

2ε
)]

, with 0 < δ < 1, we
thus get

log d∞
P ≥ log(�E)− δ log

(√
2E

δ
√
ε

+ 1

)
− δ log e − 2

≥ (1 − δ) log
1√
2ε

+ log
δ2E
512

− δ log(
√

2E + 1)− log(16e).

The final form of the bound is hence

d∞
P ≥ 1

8192e
δ2E

(
√

2E + 1)δ

(
1√
2ε

)1−δ
≥ Cδ2
(

E√
ε

)1−δ
,

as claimed. �
Note that in this way, considering only the phase-

rotation part of the decomposition of gauge-covariant
Gaussian channels, we obtain lower bounds on the pro-
gram dimension that diverge with ε, confirming that the
divergence of the upper bounds is not an artifact of the
net construction. Qualitatively, one can see that this is
a method to obtain similar lower bounds on the pro-
gram dimension to implement more general subgroups of
unitaries.

b. Attenuation. The lower bound we obtain in Theorem
18 relies only on the phase-rotation unitaries, since they
allowed us to invoke the replication Lemma 11. Here, we
want to explore what kinds of lower bounds we can obtain
from looking at attenuation only, i.e., on ε-EPQPT , which
denotes processors implementing the attenuator chan-
nels T = {Rϕ ◦ Tλ : ϕ ∈ (0,π), λ ∈ [0; 1]}. Note that we
allow a single phase rotation of angle π , which in itself
cannot give an unbounded lower bound. We could give the
subsequent argument without it, but including it makes the
following discussion a little nicer.

Theorem 19. Let 0 < ε < (1/1024) and E ≥ 2e − 1.
Then, for every infinite-dimensional ε-EPQPT P ∈
CPTP(H ⊗ HP,H), its program register is lower bounded
as follows:

d∞
P ≥ 2−16 1√

ln log(E + 1)
(E + 1)

1
2 −16

√
ε .

Proof. As in the previous theorem, and explained at the
end of Sec. IV, to obtain the lower bound, we test the pro-
cessor on a concrete input state ρχ which we choose to be a
coherent state ρχ = |ζ 〉〈ζ | with the highest allowed energy
(photon number) E, i.e., ζ = √

2E. With this fixed input
state, the processor generates the output states {�(ρχ)},
� ∈ T . These output states ideally are precisely the coher-
ent states |ξ〉〈ξ | with −ζ ≤ ξ ≤ ζ .

Rather than describing the ensemble of program states
ρλ, which through the processor lead to unique output
states ρξ = P(|ζ 〉〈ζ | ⊗ ρλ) (that approximate the coherent
state |ξ〉〈ξ |), we give instead directly a distribution over
the ξ . We choose the truncated Gaussian distribution with
variance σ 2

pE(ξ):=
⎧⎨
⎩

1
1−η

1√
2πσ

e− ξ2

2σ2 if |ξ | ≤ √
2E,

0 otherwise,

where

η = 1 −
∫ +√

2E

−√
2E

dξ
1√

2πσ
e− ξ2

2σ2 = erfc(
√

E/σ) ≤ e−E/σ 2
,

with the complementary error function erfc(x) and its
well-known upper bound erfc(x) ≤ e−x2

, see Ref. [38].
Note furthermore that, denoting the density of the cen-
tered normal distribution with variance σ 2 by p(ξ) =[
1/
(√

2πσ
)]

e−(ξ2/2σ 2), we have (1/2)‖p − pE‖L1 = η.
Following the method described at the end of Sec. IV,

using data processing, we start off from the inequality

log d∞
P ≥ χ({ρξ , pE(ξ)dξ}) = S

(∫ √
2E

−√
2E

dξ pE(ξ)ρξ

)

−
∫ √

2E

−√
2E

dξ pE(ξ)S
(
ρξ
)

, (21)

where we recall the definition of the Holevo informa-
tion. The remaining calculation is about controlling the
Holevo information on the right-hand side, which we do
by first modifying the states from ρξ to the compressed
state ρ ′

ξ = K(ρξ ), and finally to |ξ〉〈ξ |, incurring a certain
error. According to Eq. (17) we get from Eq. (21)

log d∞
P ≥ S

(∫ √
2E

−√
2E

dξ pE(ξ)|ξ〉〈ξ |
)

− 16
√
εS

[
γ

(
E

4
√
ε

3

)]
− 2, (22)

keeping in mind that our channels are (1, 0)-energy limited
and that the attenuator output states |ξ〉〈ξ | are pure.
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It remains to calculate the entropy, which however is
challenging. To lower bound it in turn, we modify the
distribution from the truncated Gaussian pE to the full
Gaussian p , incurring another certain Fannes error, but
having the benefit of leaving us with a Gaussian state. We
abbreviate the mixtures

ω:=
∫ ∞

−∞
dξ

1√
2πσ

e− ξ2

2σ2 |ξ〉〈ξ |,

ωE:=
∫ √

2E

−√
2E

dξ pE(ξ)|ξ〉〈ξ |,

to which we can apply [32, Lemma 15], noting that both
states have energy bounded by σ 2/2 and E, respectively.
We choose σ 2 = (1/t)E with t ≥ 1, making the energy
bound E, and η ≤ e−t, thus

|S(ω)− S(ωE)| ≤ 2ηg
(

E
η

)
+ h(η)

≤ 2η
[

log
(

E
η

+ 1
)

+ log e
]

+ 1.

On the other hand, ω is a Gaussian state having a diag-
onal covariance matrix with eigenvalues 1 and 1 + 2σ 2.
From this we can obtain its symplectic eigenvalue, which
is

√
1 + 2σ 2, as one can see by considering a Gaussian

squeezing unitary that transforms the state to a thermal
Gaussian state. Hence,

S(ω) = g

(√
1 + 2σ 2 − 1

2

)
≥ log

(√
1 + 2σ 2 + 1

2

)
,

where here and in the previous display equation we use the
bounds log(x + 1) ≤ g(x) ≤ log(x + 1)+ log e.

Putting it all together, using Eq. (22) and the above
bounds, we obtain

log d∞
P ≥ g

(√
1 + 2σ 2 − 1

2

)
− 2ηg
(

E
η

)
− 16

√
εg

(
E

4
√
ε

3

)
− 3

≥ log

(√
1 + 2σ 2 + 1

2

)
− 2e−t log

(
Eet + 1
)− 2e−t log e − 16

√
ε log

(
E

4
√
ε

3 + 1

)
− 16

√
ε log e − 3

≥ 1
2

log
(

E + 1
2t

)
− 2e−t log

[
(E + 1)et]− 16

√
ε log

(
E + 1

4
√
ε

3

)
− 3 − 2e−t log e − 16

√
ε log e

=
(

1
2

− 16
√
ε − 2e−t

)
log(E + 1)− 1

2
log t − 1

2
− 3 − 2e−t log e − 2e−t log et + 16

√
ε log
(

4
e
√
ε

3
)

.

Now we look at the terms in the last line, showing that
their sum can be lower bounded by −14. Namely, note
that the function −x log x is monotonically increasing on
the interval [0; 1/e], and so e−t log et ≤ (log e/e) as well as
−√

ε log
√
ε ≤ (5/32), where we use that ε ≤ (1/1024).

Thus,

log d∞
P ≥
(

1
2

− 16
√
ε

)
log(E + 1)

− 1
2

log t − 14 − 2e−t log(E + 1),

and letting t = ln log(E + 1) ≥ 1, recalling the assumption
on E, concludes the proof. �

c. Amplification and attenuation. In the case of α > 1,
amplifier channels are also available. Thus, one could try to

use attenuators as well as amplifiers to construct an ensem-
ble. Heuristically, it makes sense to input a coherent state
with the highest energy. Applying the attenuator channel
yields coherent states with lower energy, which serve as
input for the amplifier channel. The amplifier channel maps
these coherent states to displaced thermal states. However,
we did not find an appropriate ensemble where the mixture
of ensemble states is still Gaussian (this is a heuristic to be
able to calculate entropies in closed form) and the Holevo
information is improved compared to the coherent states.

Such an ensemble plausibly does not exist, because
the amplifier channel introduces noise, which means that
to obtain an advantage, the ensemble must use different
amplification strengths, otherwise data processing shows
directly that the Holevo information is only smaller. On
the other hand, using a distribution over amplifications
would likely result in an ensemble mixture that is a convex
combination of different thermal states, and no nontrivial
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convex combination of them can lead to a thermal state
again.

Hence, to obtain lower bounds for gauge-covariant
Gaussian channels, we consider the subset of attenuator
channels. In other words, we obtain the same lower bounds
for a processor that is merely able to implement attenuator
channels and one that implements all Gaussian channels.
Note that the lower bound on the processor dimension,
such as Theorem 19, in any case will not diverge as a func-
tion of ε, as the net-based upper bounds do. Rather, for
ε → 0 the lower bound converges to an expression that
depends only on the energy, which is natural as it is based
on an information bound for a single output of the channel
that the processor implements, and we do not have access
to the replication Lemma 11.

C. Gaussian unitary channels

In analogy to existing programmable quantum proces-
sors that implement unitary channels, we aim for (α,β)-
energy-limited Gaussian unitary channels. Recall that we
denote this processor as ε-EPQPGU(α,β). We study resource
requirements in terms of the dimension of the program
register.

1. Upper bounds for Gaussian unitary channels

We again aim to determine upper bounds on the program
dimension d∞

P of an ε-EPQPGU(α,β) in three steps. Firstly,
we construct an ε-net on the parameter set, secondly we
relate it to a set of channels, and thirdly, we construct a
processor with program register equal to the cardinality
of the net. We denote the set of all (α,β)-energy-limited
Gaussian unitary channels as GU(α,β) with elements

UG(·) = UG(·)U∗
G,

where S ∈ Sp2M (R).

Theorem 20 (Upper bound). Let ε > 0 and E > 0.
Then, for a system of M Bosonic modes, there exists
an infinite-dimensional ε-EPQPGU(α,β) P ∈ CPTP(H ⊗
HP,H) whose program register is upper bounded as
follows:

|IS,d| ≤
(

2352(Mα)3/2(
√
α + 1)(E + 1)

ε2

)4M2

(
2
√

2(
√

2β + 1)
√
αE + β + 1

ε

)2M

for an absolute constant cS.

Proof. A general M -mode Gaussian unitary can be decom-
posed into a generalized phase rotation, which is a passive
operation that does not change the energy, followed by M

separate single-mode squeezing transformations, followed
by another passive generalized rotation, and finally a dis-
placement, cf. Refs. [39,40]. Thus, we construct two nets:
one for the first three operations based on the symplec-
tic group and another one on the displacements. Note that
these sets are not compact but due to the energy limitation,
we can introduce a cutoff in each of the sets to obtain com-
pact ones. Where we place the cutoff depends on α and
β.

For the first net, let us consider the following compact
subset of Sp2M (R):

Sp
√
α+1

2M (R):={S ∈ Sp2M (R), ‖S − 1
R2M ‖∞ ≤ √

α + 1}.
(23)

To see what this does, the cutoff yields all elements with
maximal singular value r ≤ √

α. Since the singular val-
ues of a symplectic matrix come in pairs x and 1/x, this
means that the above subset contains all matrices whose
singular values lie between (1/

√
α) and

√
α. From the

Bloch-Messiah decomposition, which shows that modulo
passive Gaussian transformations, every Gaussian unitary
described by a symplectic matrix is equivalent to a ten-
sor product of single-mode squeezing operators [41], this
means that we only have to consider the (α,β)-energy
limitation of those M single-mode squeezers.

It is indeed elementary to see that a squeezing unitary
with singular values of the symplectic matrix r ≥ 1 and
1/r is not (α,β)-energy limited for any r2 > α and β ≥ 0.
Indeed, consider a squeezed vacuum state σ with �x2 =
γ 2 � 1, �p2 = [1/ (2γ 2

)]
, which has photon number

tr σH ≈ [(γ 2 − 1
)
/2
]
; after squeezing, we have an even

more squeezed vacuum state with photon number tr σ ′H ≈[(
r2γ 2 − 1

)
/2
] ≥ r2 tr σH . On the other hand, it is not dif-

ficult to see that the squeezing unitary is
[
r2, (r2 − 1)/2

]
-

limited. Namely, it transforms x to rx and p to p/r,
and so the Hamiltonian H = (1/2)(x2 + p2 − 1) is trans-
formed to H ′ = (1/2)(r2x2 + p2/r2 − 1) ≤ (1/2)r2(x2 +
p2 − 1)+ ((r2 − 1)/2) = r2H + ((r2 − 1)/2).

Thus, the set Sp
√
α+1

2M (R) from Eq. (23) contains all
symplectic matrices giving rise to (α,β)-energy-limited
Gaussian unitaries. An ε-net IS on this set is constructed
and its cardinality |IS| determined in Ref. [42, Lemma
S16] as

|IS| ≤
(

3(
√
α + 1)
εS

)4M2

.

Concerning the displacement, we must have |d|2 = |d1|2 +
|d2|2 + · · · + |dM |2 ≤ 2β for an admissible displacement
vector d = (d1, . . . , dM ), where each dj = (dj 1, dj 2) is a
pair of single-mode phase-space coordinates; otherwise the
unitary channel Ud is not (α,β)-energy limited. Indeed,
consider a coherent state |ξ〉 = |ξ1〉 · · · |ξM 〉 as input; the
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displacement unitary D(d) transforms it into the coher-
ent state |ξ + d〉 = |ξ1 + d1〉 · · · |ξM + dM 〉, which changes
the photon number from (1/2)|ξ |2 to (1/2)|ξ + d|2 =
(1/2)|ξ |2 + (1/2)|d|2 + ξ� · d; choosing ξ = 0 we see
that necessarily |d|2 ≤ 2β.

At the same time, the displacement unitary channel Ud is
(1 + t, [1 + (1/t)] (1/2)|d|2)-limited for all t > 0. Namely,
for the j th mode, D(dj ) transforms its annihilation oper-
ator aj to aj + (1/

√
2)(dj 1 + idj 2) =: aj + αj ; this has

the effect of transforming the photon-number Hamiltonian
Hj = a∗

j aj to

H ′
j = (a∗

j + αj )(aj + αj ) = a∗
j aj + |αj |2 + αj aj + αj a∗

j .
(24)

Now consider that for t > 0, we have

0 ≤
(√

taj − 1√
t
αj

)∗ (√
taj − 1√

t
αj

)

= ta∗
j aj + 1

t
|αj |2 − αj aj − αj a∗

j ,

which we can insert into Eq. (24) to get

H ′
j ≤ (1 + t)a∗

j aj +
(

1 + 1
t

)
|αj |2 = (1 + t)Hj

+
(

1 + 1
t

)
1
2
|dj |2.

Summing over j yields the claim.
Hence, we construct a net on the ball of radius

√
2β in

R2M with the Euclidean metric. Its cardinality is known to
be [43, Lemma 5.8]

|Id| ≤
(

1 +
√

2β
εd

)2M

.

Bringing these two nets together by multiplying the uni-
taries, results in an overall net cardinality

|IS,d| ≤ |IS||Id| ≤
(

3(
√
α + 1)
εS

)4M2(
1 +

√
2β
εd

)2M

≤
(

3(
√
α + 1)
εS

)4M2(√
2β + 1
εd

)2M

.

Having established ε-nets on the parameter level, we
require an upper bound for (1/2)‖UG − UGi‖E

� . So we
transfer both nets on the sets of parameters to the corre-
sponding channels. The symplectic matrices correspond
to the first three parts of the decomposition, a rotation
followed by a squeezing and again a rotation,

Since we assume an energy limitation on the set of
Gaussian unitary channels, we can construct a compact

subset of channels that contains these channels, as follows.
In fact, we obtain it from a compact subset of the sym-
plectic group and a compact subset of the displacement
group.

For the former, we use Ref. [42, Eq. (4)], which states

1
2
‖US − US′‖E

� ≤
√
(
√

6 +
√

10 + 5
√

2M )(E + 1)g
(‖S−1S′‖∞

)√‖S−1S′ − 1‖2,

where g(x):=
√

π
x+1 + √

2x. Note ‖S−1‖ ≤ √
α, ‖S′‖ ≤

1 + √
α, hence the argument x of g(x) is between 1 and

α + √
α ≤ 2α, thus g(x) ≤ √

π/2 + √
2x ≤ (2 + √

π/2
)

√
α < 3.26

√
α. Furthermore, ‖S−1S′ − 1‖2 = ‖S−1(S′ −

S)‖2 ≤ √
2M‖S−1(S′ − S)‖∞ ≤ √

2M‖S−1‖∞‖S′ − S‖∞
≤ √

2M
√
αεS. Finally,

√
6 + √

10 + 5
√

2M ≤ (
√

6 +√
10 + 5

√
2)M < 13M . Hence, in simplified form the

result says that

1
2
‖US − USi‖E

�

≤
√

13M
√

E + 1 3.26
√
α

4√2M 4√α√
εS

≤ 14(Mα)3/4
√

E + 1
√
εS.

For the latter, we consider Ref. [42, Eq. (3)], which states

1
2
‖Dz − Dw‖E

� ≤ sin
(

min
{
‖z − w‖f (E),

π

2

})

≤
√

2
√

E + 1‖z − w‖,

where f (E):=(1/√2)(
√

E + √
E + 1) ≤ √

2
√

E + 1 and
as before we use only the simplified upper bound.

Note that with the action of US on the input, the input
energy of the displacement part changes, i.e., we work with
the (αE + β)-energy-constrained diamond norm here.
Thus we obtain

1
2
‖Ud − Udi‖αE+β

� ≤ ‖d − di‖f (αE + β)

≤
√

2
√
αE + β + 1εd.

Overall, we obtain for the net of channels

1
2
‖UG − UGi‖E

� ≤ 1
2
‖Ud ◦ US − Udi ◦ USi‖E

�

≤ 1
2
‖US − USi‖E

� + 1
2
‖Ud − Udi‖αE+β

�

≤ 14(Mα)3/4
√

E + 1
√
εS

+
√

2
√
αE + β + 1εd.
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We now choose εS and εd in terms of ε, E, α, and β, as
follows:

εS = ε2

784(Mα)3/2(E + 1)
, εd = ε

2
√

2
√
αE + β + 1

,

which yields an ε-net with

|IS,d| ≤
(

2352(Mα)3/2(
√
α + 1)(E + 1)

ε2

)4M2

(
2
√

2(
√

2β + 1)
√
αE + β + 1

ε

)2M

.

With the PET, we construct a programmable quantum pro-
cessor with d∞

P = |IS,d|, which concludes the proof. �

2. Lower bounds for Gaussian unitary channels

Concerning lower bounds on the dimension of the pro-
gram register of an ε-EPQPGU(α,β) for an M -mode Bosonic
system with Hilbert space H = H1 ⊗ · · · ⊗ HM , evidently
Lemma 11 is applicable to suitably energy-limited uni-
taries. The difficulty is mainly that of finding a good
distribution over those unitaries and a fiducial state with
which to calculate a lower bound along the lines of the end
of Sec. IV.

Since phase rotations are a subset of Gaussian unitaries,
the bounds from Theorem 18 (Sec. V B 2) directly apply
here, showing that the program dimension diverges at least
with the inverse square root of ε. We can however imme-
diately do a little better by considering M -fold phase rota-
tions Rϕ = Rϕ1 ⊗ · · · ⊗ RϕM with ϕ = (ϕ1, . . . ,ϕM ) ∈
[0; 2π ]M in Lemma 11. Note that these are a subset of
the passive linear transformations, and as such conserve
energy, hence are (1, 0)-energy limited. We get that the
modified processor P̂ approximately implements the R⊗�

ϕ :

1
2

∥∥∥P̂(·⊗πϕ)− R⊗�
ϕ

∥∥∥(E,...,E)

�
≤ 2�

√
2ε.

In the �M -mode system H⊗� we address the modes Hjk
by double indices, where j = 1, . . . , M are the original
physical modes and k = 1, . . . , � the repetitions. The rep-
etitions of the j th mode have the Hilbert space H⊗�

j =
Hj 1 ⊗ · · · ⊗ Hj � =: Hj •. As in the proof of Theorem 18,
we choose a virtual Fock space HVj ⊂ Hj • spanned by
symmetric number states |“n”〉j , and let

|νj 〉:=
∞∑

n=0

cn|“n”〉j ,

where {|cn|2} is the probability distribution of the ther-
mal state (of the virtual mode HVj ) of mean energy (i.e.,

photon number) (�E/M ). The rotation R⊗�
ϕj

acts on Hj •
and leaves HVj invariant, in fact it puts phases eiϕj n in
the above superposition. Now, |ν〉:=|ν1〉 ⊗ · · · ⊗ |νM 〉 is
our fiducial state. It has the property that on each copy
H•k = H1k ⊗ · · · ⊗ HMk of the original M -mode system,
its energy is E. We can evaluate the Holevo informa-
tion of the ideal ensemble of uniformly distributed states
R⊗�
ϕ (|ν〉〈ν|) as we did in Theorem 18:

χ

({
R⊗�
ϕ (|ν〉〈ν|),

dMϕ

(2π)M

})
= Mg
(
�E
M

)
≥ M log

�E
M

= M (log �+ log E − log M ) . (25)

By Lemma 11, we now have for all ϕ

1
2

∥∥∥P̂(|ν〉〈ν| ⊗ πϕ)− R⊗�
ϕ (|ν〉〈ν|)

∥∥∥
1

≤ 2�
√

2ε.

Now we can massage the processor outputs ωϕ =
P̂(|ν〉〈ν| ⊗ πϕ) as in the proof of Theorem 18, first by the
compression maps Kj from Hj • to HVj , resulting in ω′

ϕ =
(K1 ⊗ · · · ⊗ KM )ωϕ obeying the same approximation as
before

1
2

∥∥∥ω′
ϕ − R⊗�

ϕ (|ν〉〈ν|)
∥∥∥

1
≤ 2�

√
2ε.

Second, by applying a compression map K from HV1 ⊗
· · · ⊗ HVM to an energy-constrained subspace, according
to Lemma 12, resulting in ω′′

ϕ = K(ω′
ϕ) such that

1
2

∥∥∥ω′′
ϕ − R⊗�

ϕ (|ν〉〈ν|)
∥∥∥

1
≤ 4
√

2�
√

2ε,

while obeying an energy bound trω′′
ϕH ≤
[
E/
(

2
√

2ε
)]

.
As explained at the end of Sec. IV, we now have

log d∞
P ≥ χ

({
ω′′
ϕ ,

dMϕ

(2π)M

})

≥ χ

({
R⊗�
ϕ (|ν〉〈ν|),

dMϕ

(2π)M

})

− 16
√

2
√
�

√√
2εMg

(
E

16
√
ε
√
�
√√

2εM

)
− 2,

cf. the proof of Theorem 18. Inserting Eq. (25) for the
Holevo information in the last line expresses everything
in terms of the g function, which we can upper and lower
bound as before. We choose

√
� =
[
δ/
(

16
√

2
√√

2ε
)]
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with 0 < δ < 1, and obtain

log d∞
P ≥ M log

�E
M

− δM log

( √
2E

Mδ
√
ε

+ 1

)

− δM log e − 2

≥ M (1 − δ) log
1√
2ε

+ M log
δ2E

512M

− δM log

(√
2E

M
+ 1

)
− M log e − 2.

This proves the following lower bound on the program
dimension.

Theorem 21 (Lower-bounds’ generalized phase rotations).
Let ε > 0 and E > 0 and consider an M-mode Bosonic
system with Hilbert space H. Then, for every infinite-
dimensional ε-EPQPU(α,β) P ∈ CPTP(H ⊗ HP,H), its
program register can be lower bounded as follows:

d∞
P ≥ 1

4(512e)M

(
δ2E/M

(
√

2E/M + 1)δ

)M ( 1√
2ε

)(1−δ)M

≥ (Cδ2)M
(

E/M√
ε

)(1−δ)M
,

for any 0 < δ < 1, and the latter for (E/M ) ≥ 1 and an
absolute constant C. �

In the above analysis, as in that of Theorem 18, it is
helpful that the ensemble is obtained from an orbit of a
compact subgroup of the Gaussian unitaries, for which we
can impose the Haar measure as probability distribution. It
might be possible to extend the analysis of Theorem 21
to the largest compact subgroup, which is the set of all
passive linear transformations, parametrized precisely by
the orthogonal symplectic matrices Sp2M (R) ∩ SO2M (R),
which is well known to be isomorphic to the group U(CM )

of M × M -unitary matrices (cf. Ref. [39]). This would give
access to a much larger set of ensembles, but in view of
the above result (featuring the entropy-maximizing Gibbs
states), it would be surprising if it yielded a significant
improvement.

VI. THE FUTURE

We introduce approximate programmable quantum pro-
cessors in infinite dimension and establish a relation to
finite-dimensional ones. With two different constructions,
the first reducing an infinite-dimensional processor to a
finite-dimensional one, and the second vice versa, we
obtain upper and lower bounds on the program dimension
based on existing bounds. It remains an open question to

determine how tight these bounds are, and may best be
addressed in a specific setting.

We do this for Bosonic systems and restrict to Gaussian
channels. In the unitary case, we obtain lower bounds that
diverge with the reciprocal of the approximation parame-
ter, with a polynomial degree of at least half the number of
Bosonic modes in the system. We also have upper bounds
based on nets on compact sections of the Gaussian unitary
group, also polynomial in the reciprocal of the approxima-
tion parameter, but the order is quadratic in the number of
modes. We leave the determination of the exact optimal
degree as an open question. To obtain these lower bounds,
the method of Yang et al. [2] by which the program state
can be recycled to implement the same unitary several
times, is adapted to infinite dimension and the energy-
constrained diamond norm (necessitating a generalization
of the latter with multiple constraints).

However, this trick cannot be applied in the case of the
well-studied and physically relevant class of single-mode
gauge-covariant Gaussian channels, because those are gen-
uinely noisy channels. We still provide lower bounds,
which are comparatively weak, though. Concretely, while
the corresponding upper bounds that we develop (based
on nets) diverge with the accuracy of implementation, the
lower bounds tend to a constant function of the energy con-
straint. It remains an open problem to close this gap, and
indeed to determine whether an infinite program register is
actually necessary to implement all gauge-covariant chan-
nels (modulo phase rotations), or even only the attenuator
channels. The latter is a particularly interesting subclass, as
attenuators map pure coherent states to other pure coher-
ent states, suggesting that perhaps a variant of Lemma 11
could be shown to hold for repeated applications of the
channel to coherent states.

Furthermore, one could think of more degrees of gener-
alizations towards a programmable quantum processor that
implements all Gaussian channels. This could potentially
be done by considering their Gaussian unitary dilations,
for which we already have upper bounds. A necessary
requirement to carry out this program would be a version of
the Stinespring theorem that gives an energy-limited Gaus-
sian dilation for every energy-limited Gaussian channel.
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