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Quantum control has been of increas-
ing interest in recent years, e.g. for tasks
like state initialization and stabilization.
Feedback-based strategies are particularly
powerful, but also hard to find, due to
the exponentially increased search space.
Deep reinforcement learning holds great
promise in this regard. It may provide
new answers to difficult questions, such
as whether nonlinear measurements can
compensate for linear, constrained control.
Here we show that reinforcement learn-
ing can successfully discover such feedback
strategies, without prior knowledge. We
illustrate this for state preparation in a
cavity subject to quantum-non-demolition
detection of photon number, with a sim-
ple linear drive as control. Fock states can
be produced and stabilized at very high
fidelity. It is even possible to reach super-
position states, provided the measurement
rates for different Fock states can be con-
trolled as well.

1 Introduction

Modern quantum technologies in their various
incarnations, ranging from sensing to computa-
tion, rely on quantum control as an essential
part of their toolbox. The numerical optimiza-
tion of pulse sequences, using powerful meth-
ods such as GRAPE [1, 2], has by now become
an essential aspect of many experiments. Al-
though important challenges remain in this do-
main, e.g. in multi-qubit control, there is an-
other frontier where the optimization of control
strategies is comparatively much less developed:
the regime of feedback-based control [3–12]. The
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automatic discovery of feedback strategies, which
include real-time decision-making based on previ-
ously observed measurement results, is challeng-
ing for two reasons: First, standard optimal con-
trol techniques are not applicable, and second,
feedback leads to a drastic expansion of the search
space, involving a doubly-exponential growth of
the number of strategies vs. the number of time
steps. Deep reinforcement learning (RL) [13] is
a general approach that offers a possible solution
for this challenge, with powerful recent examples
in other areas, ranging from computer games [14]
to robotics [15]. Deep RL for discovering quan-
tum feedback strategies was first introduced in
[16] where it was illustrated in the application
of quantum error correction. The idea behind
deep RL is that a neural network-based "agent"
makes observations and suggests corresponding
actions. During the learning phase, the agent
discovers from scratch novel strategies, in a sys-
tematic procedure which at first resembles trial
and error but later begins to build on insights ac-
quired earlier. That RL in general and deep RL
in particular is a powerful approach in quantum
physics has by now been demonstrated in a vari-
ety of tasks in different areas: in most works so
far, these tasks did not yet require real-time feed-
back involving decision-making based on physical
measurements, but RL already proved itself to
be a versatile tool even in those settings [17–31].
These publications are part of a larger drive to-
wards the use of machine learning tools for quan-
tum experiments (e.g. [32–35]). A small number
of works have explored the use of various RL(-
related) techniques to optimize feedback or adap-
tive measurement protocols [36–39]. Investiga-
tions of deep RL, which promises to be a pow-
erful approach in the domain of measurement-
based quantum feedback, are still rare. Beyond
[16], there have been some very interesting addi-
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Figure 1: Reinforcement learning for discovering feed-
back control based on continuous measurements. a) A
neural-network-based agent can find a strategy to con-
trol a quantum system, compensating for simple (lin-
ear) controls by extracting information from advanced
(nonlinear) measurements. b) Schematics of the model
considered in the main text (see [44]): a qubit is illu-
minated with multiple frequencies in order to probe the
number of photons n in a coupled cavity. The informa-
tion can be extracted by observing the reflected radiation
in each of the channels. The reduction in amplitude in
the outgoing wave indicates detection of the Fock state
corresponding to the respective channel. c) Timetraces
of the quadrature signal observed in the homodyne mea-
surement channels of Eq. 5. In this particular example,
the cavity state decays at an intermediate time.

tional works in this direction. These include op-
tomechanical feedback cooling [40] as well as state
preparation and stabilization in a potential with
position measurements [41, 42]. Very recently,
feedback-based quantum state preparation in a
cavity-qubit system [43] was proposed, for a set-
ting employing continuously parameterized quan-
tum circuits. Deep RL for measurement-based
quantum feedback can be used to address ex-
perimentally relevant questions where no general
straightforward answer is available. While gen-
eral results exist in the absence of feedback, e.g.
which terms in a Hamiltonian need to be con-
trollable to produce arbitrary unitaries, such in-
sights are not available for feedback-based strate-
gies. One obviously important example concerns
the question whether one can compensate for sim-
ple control (e.g. purely linear operations) by ex-
ploiting more advanced nonlinear measurements
(Fig. 1a). In the present work, we answer this
question by investigating an example inspired by
recent experimental progress: a harmonic oscilla-
tor where individual Fock states can be contin-
uously monitored in a quantum non-demolition
fashion. The corresponding experimental setting

(demonstrated in [44]) concerns a microwave cav-
ity where the precise Fock state number can be
monitored by driving a coupled qubit with a fre-
quency comb.

Using a state-of-the-art deep RL approach, we
show that under these conditions a mere displace-
ment drive, conditioned on the measurement out-
come, is sufficient to produce and stabilize Fock
states. Even superpositions of such states can be
stabilized to a good degree of fidelity, provided
the control is expanded to include adaptive mea-
surement rates.

2 Physical system

Measurement-based feedback for quantum
physics, using digital controllers, dates back
to 2011 with a pioneering experiment that
demonstrated the stabilization of a Fock state
in a microwave cavity using the information
extracted by interacting flying circular Rydberg
atoms [7]. Each circular Rydberg atom encodes
one bit of information about the number of
photons in the cavity. From the extracted
information, a classical controller computes the
density matrix of the cavity in real time. It
can then react in one of two ways. Either it
sends a resonant atom that can add or subtract
a photon to the cavity [45, 46], or it sends a
classical microwave drive whose amplitude is
chosen to displace the cavity state in an optimal
way [7]. The latter case makes a fascinating
use of quantum measurement backaction as it
is the combined effect of a classical drive and
quantum measurement that steers the cavity
towards the targeted Fock state. We will propose
a more general scheme, that can accommodate
the preparation of superpositions, or that can
deal with the extra presence of noise, without
the need of constructing the strategy by hand.

Several experiments with Rydberg atoms or su-
perconducting circuits have by now been realized
to count the number of photons in a microwave
resonator [47–50], enabling them in principle to
implement quantum feedback strategies of this
sort.

The present work is heavily inspired by a re-
cent implementation [44] which demonstrated a
way to acquire information about the number of
photons in a resonator in a continuous manner. It
exploits a qubit, coupled to both the cavity and
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a measurement transmission line, driven by mul-
tiple frequencies simultaneously, each of which is
sensitive (via dispersive qubit-cavity coupling) to
one Fock state.

Thus, in this experiment, to each number of
photons n in the cavity is associated one of the
frequencies of the frequency comb. The signal at
this particular frequency is affected (i.e. the co-
herent state is displaced) when exactly n photons
are present in the cavity. This situation is shown
in Fig. (1)b.

If we change the reference frame by displacing
the state by the opposite of the input coherent
state (such that the input state would turn into
the ground state), we can equivalently say the
following about the physical situation in the ex-
periment: for any given cavity photon number n,
only the field at a single frequency is excited and
all the other frequencies are in the vacuum state.

This measurement introduces an unavoidable
intrinsic fluctuating back-action but also tries to
localize the system into some random Fock state
according to the Born rule - not necessarily the
desired target state. Any kind of control must
both counteract and exploit these tendencies in-
troduced by the measurement [45].

3 Model
We now design a model for this situation that
is as simple as possible, without going into the
dynamics of the propagating waves. The basic
idea is that, in our model, we replace the trav-
elling waves at the different frequencies of the
measurement frequency comb with artificial local-
ized modes, which are driven and can be treated
in the usual input-output formalism. Each of
these modes than can experience a frequency shift
(leading to a phase shift of a wave transmitted
through this mode), provided the cavity photon
number n takes on the value matching the index
of this mode.

Apart from drive and decay (which we will in-
troduce later), the Hamiltonian of the cavity sub-
ject to the Fock state QND measurement can be
expressed as

Ĥmeas =
∑
n

χnâ
†
nânP̂n, (1)

where P̂n = |n〉 〈n| is the projector on Fock state
n of the cavity and we have switched to a frame

rotating at the cavity resonance frequency. The
mode ân refers to the n-th measurement channel,
which will be monitored to assess the cavity state,
and which, as we have said above, will be treated
like a driven, decaying bosonic mode. We will
choose χn equal for all n from now on. Eq. (1)
represents the simplest possible model that cap-
tures the essence of such a multichannel disper-
sive Fock state measurement.

At this stage of the effective description, we
have already eliminated the qubit which is cou-
pled to the cavity and which provides the non-
linearity needed for the dispersive coupling dis-
played above. When a homodyne measurement is
performed on the phase quadrature of any of the
measurement channels (i.e. the output of any of
these localized modes ân), the resulting evolution
of the cavity’s reduced density matrix, obtained
after integrating out the measurement channels
ân, can be described by a stochastic master equa-
tion (SME) [51, 5]. With Â = P̂n as the measure-
ment operator, the contribution to the SME from
this channel reads:

dρ̂ = γmeasD[Â]ρ̂(t)+√γmeasH[Â]ρ̂(t)dW (t) (2)

where γmeas is the measurement rate of a perfectly
efficient measurement, D[Â] is the measurement-
induced Lindblad superoperator,

D[Â]ρ̂ = Âρ̂Â† − 1
2
(
ρ̂Â†Â+ Â†Âρ̂

)
, (3)

and H[Â] is

H[Â]ρ̂(t) = (Âρ̂+ ρ̂Â−
〈
Â+ Â†

〉
ρ̂) (4)

with
〈
Â
〉

= Tr[Âρ̂].
The stochastic part of Eq. (2) contains dW (t),

which is an infinitesimal Wiener process, with
zero mean and 〈dW (t)2〉 = dt. The Wiener pro-
cess is experimentally obtained from the homo-
dyne measurement record, which reads√

γmeas
2 Tr(Âρ+ ρÂ†)dt+ dW (t). (5)

Combining the effect of all the simultaneous
measurements, plus an additional coherent drive,
we obtain the Itô stochastic differential equation
of motion for the quantum state of the cavity:

dρ̂ =− i[Ĥ(t), ρ̂(t)]dt+

+
∑
n

γn
2 D[P̂n]ρ̂dt+

+
√
γn

2 (P̂nρ̂+ ρ̂P̂n −
〈

2P̂n
〉
ρ̂)dWn(t)

(6)
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Figure 2: Reinforcement Learning pipeline. A fully con-
nected neural network receives the quantum state of the
cavity (represented via the density matrix) at timestep t.
The network outputs the suggested action (i.e. real and
imaginary part of the displacement drive) to be applied
to the cavity in that particular timestep. The driven dis-
sipative quantum system is evolved following Eq. (2) in
order to obtain the density matrix at the next timestep
t+ 1. Furthermore, the instantaneous reward value r(t)
is computed from the current state fidelity and enters the
loss function L. We are using an actor-critic method, in
which the current quantum state is also assigned a value
function V (t), by another neural network, which helps
in searching for the optimum feedback strategy.

where, if not otherwise mentioned, we choose
the same rate γn = γmeas for all channels and
the Wiener processes dWn(t) associated to ev-
ery channel are uncorrelated 〈dWn(t)dWm(t′)〉 =
δ(t − t′)δnmdt. Here Ĥ(t) describes a time-
dependent drive that is used to control the cavity
conditioned on the measurement outcomes, im-
plementing feedback control. That is,

H(t) = i
(
β(t)â† − β∗(t)â

)
(7)

where β(t) is the complex time-dependent drive
amplitude.

The main point that we want to stress is that
the control is completely linear, while the non-
linear part of Eq. (2) is given by the homodyne
measurement only.

The goal that we want to achieve with the help
of a suitable feedback-based control strategy is
quantum state preparation, i.e. to drive an arbi-
trary initial state to a prescribed target state.

4 Reinforcement Learning
In this section we will show how Reinforcement
Learning (RL) can be applied to the problem at
hand. In general, Reinforcement Learning tries to
discover good feedback-based control strategies.
An "agent" observes the world (typically called
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Figure 3: Reinforcement learning for cavity state prepa-
ration: Fock state results. a) Training progress of the
RL agent (here, for reaching Fock state |3〉). Upper
panel: Cumulative reward (i.e. the sum of all instanta-
neous rewards during a trajectory) during different train-
ing episodes (the solid line is the average). The return
is normalized in the sense that having the maximum re-
ward in each timestep would result in R = 1. Lower
panel: Final state fidelity in each episode (maximum
1.0). b) Example of a trajectory after the training is
completed. Upper panel: Fock state probability distri-
bution of the cavity, where the stochasticity stems from
the weak Fock state measurement. Wigner densities
corresponding to times [0, 1/3, 2/3, 1]Tmax are shown.
Lower panel: Real (blue) and imaginary (red) part of
the displacement drive. The actions are capped in range
to ±βmax. c) Same information, but averaged over 50
trajectories. d) Results after training, in terms of final
infidelity 1−F , averaged over multiple trajectories, dis-
played for different networks trained on reaching differ-
ent final target Fock states. Lower infidelities (compared
to the training shown in panel a) are reached by turning
the policy into a deterministic one, always taking the ac-
tion corresponding to the peak of the Gaussian distribu-
tion suggested by the neural network. Note logarithmic
axis. Saturated color represents the RL approach, pale
color the greedy strategy (performing much worse). In
all examples, γmeasTmax = 400 and βmax = 20.

"environment") and takes an action based on that
observation ("state"). The mapping from obser-
vation to action defines the strategy ("policy").
Modern powerful RL variants, such as the one
we will be using here, produce this mapping with
the help of a deep neural network. The aim of RL
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training is to maximize a reward that has been de-
signed to express the goal of the particular task
at hand. This is done via running many thou-
sand trajectories, improving the policy gradually,
e.g. via some version of gradient descent on pa-
rameters that determine the policy (i.e. typically
the parameters defining the agent’s network). In
our case, we want to control the cavity (the RL
"environment") via a linear drive, based on the
noisy measurement trajectories of the nonlinear
measurement. The goal is to prepare some de-
sired quantum state and stabilize it against noise,
e.g. noise coming from the measurement itself or
from external decay or decoherence. The RL en-
vironment is modeled using a simulation of the
physical time evolution of the cavity, employing
the SME introduced above, which we solve with
a Runge-Kutta method with additive noise. The
physical time t is discretized in Nmax timesteps,
such that t can only assume discretized values
tj = ∆t · j with j ∈ [0, Nmax]. At each time
tj , the environment receives an action aj , carries
out this action, and outputs the next observation
sj+1 and a reward rj . We will define all of these
key variables in the following paragraph.

The obvious choice for the observation sj would
be to feed into the RL agent some representation
of a noisy measurement trajectory. Then, the net-
work would need to learn to filter the trajectory
in a suitable way to learn as much as possible
about what is going on inside the quantum de-
vice. However, it turns out that (i) solving this
challenge simultaneously with the RL problem is
surprisingly hard and (ii) we can apply another
approach that is more efficient and also works well
in an experiment. In fact, to solve this subtask,
we can take the noisy measurement traces and
use them to evolve the quantum state according
to the stochastic ME. This can be performed on-
line in a real experiment (as long as the quantum
device is well characterized beforehand, and we
have a sufficiently fast signal processing device,
e.g. a field-programmable gate array, FPGA).
Therefore, we choose to feed the result of this pro-
cedure into the RL agent, meaning we provide the
quantum state ρ̂ as input. Any measurement in-
efficiencies will be encoded in this quantum state,
increasing the uncertainty and decreasing the pu-
rity. This approach has been applied successfully
before, e.g. in [20, 16]. Alternatively, one can
apply the idea of ’two-stage learning’ introduced

in our previous work [16]. In this approach, one
uses a supervised learning approach to train a
recurrent network, which can be deployed in an
experiment as it receives only the measurement
results as input. Supervised training is performed
by teaching this recurrent network to mimic the
output (i.e. the action sequences) produced by
the original network, which was fully trained via
the RL technique discussed here.

In order to avoid confusion, we note that for
our case, there is no distinction between "obser-
vation" and "state". Usually an observation can
be a partial representation of the state of the sys-
tem, in which case we have a partially observable
Markov decision process (POMDP), or it can con-
tain the full information about the system, and
in that case we have a standard Markov decision
process (MDP). We will use the density matrix
ρ̂ as observation, such that the two definitions of
state and observation coincide in this case. On
the technical level, the state s fed into the neural
network’s input layer is a vector of length 2N2

representing all the real and imaginary parts of
the entries of the cavity’s density matrix. Here
N is the cutoff in the Fock state basis of the cav-
ity that we use in our simulations.

The actions aj are the real and imaginary part
of the displacement drive applied to the cavity:
aj = [Re(β(tj)), Im(β(tj))].

Later, the actions will be extended to accom-
modate control of the measurement rate in the
various channels. The actions are predicted at
each timestep by a policy neural network, which
receives the current density matrix of the system
as its input.

In the version of continuous-action RL we are
using here, each neuron in the output layer rep-
resents the mean of a Gaussian distribution from
which the actions are extracted, while the vari-
ance stays fixed. After the predicted value is ex-
tracted, the actions get manipulated by the agent
according to the particular problem at hand. In
our case, the components of the action represent
the real and imaginary parts of the displacement
drive, but they are limited to a range [−1,+1].
We rescale them by a fixed factor βmult and the
resulting drive is applied to the system for the
current time step.

The reward function is a critical choice in RL
scenarios. It encourages the RL agent to find a
robust policy that, in our case, drives the physical
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Figure 4: Preparation of Fock state superpositions, via
additional measurement channel control. a) Example of
a trajectory for the |1〉+|3〉√

2 target state (probability distri-
bution, top, and drive, bottom). In the four lower plots,
the shaded traces represent the ON-OFF control of the
measurement channels corresponding to Fock states |0〉
to |3〉. The solid lines are a moving average over 10
timesteps. b) Average fidelities reached after the train-
ing for different superposition states. For each case, we
show the distribution of final fidelities (white histogram,
obtained from 50 trajectories) and the resulting average
fidelity. Above that panel, we show the comparison be-
tween the Wigner densities for the target state (top) and
the average state obtained from the strategy (bottom).
Smaller distance between the two states forming the su-
perposition can yield better results. c) Average Wigner
densities reached by RL, with different relative phases
between state |1〉 and |3〉. In all cases, we only control
the first M measurement channels, with M = 4.

system to the desired target state. In this work,
we chose as instantaneous reward a function of
the fidelity F (t), computed between the current
density matrix ρ̂(t) and the target state ρ̂target(t):

rt = |F (t)|θ (8)

where the usual definition of quantum fidelity

F (t) =
(
tr
[√√

ρ(t)ρtarget
√
ρ(t)

])2
is used. We

introduced an exponent θ > 1 because we want to
punish states which only have a moderately high
fidelity (e. g. F (t) = 1/2 when |ψ〉 = |n〉 and
|ψtarget〉 = 1√

2(|n〉+|m〉) ) in favour of states with
fidelity much closer to 1. In our numerical exper-

iments, it turned out that this modified reward
was crucial to the success of the algorithm. Un-
less otherwise specified, in the following we will
use θ = 8. As usual, the total return R of a
trajectory is then the sum of all instantaneous
rewards, i.e. R =

∑
t rt.

As mentioned before, the RL agent is modelled
with a neural network, which is trained in order
to maximize the cumulative reward in a trajec-
tory. We will refer to the network as Policy Net-
work. In actor-critic RL methods, such as the
one we will be using here, this network is supple-
mented by a Value Network, which is used to pre-
dict the expected cumulative reward if one starts
in the current state, serving as a baseline. Specif-
ically, as our RL approach we decided to use a
Proximal Policy Optimization (PPO) algorithm
[52], which is known to be a modern, general,
easy-to-implement and sample-efficient variant of
policy gradient techniques. This algorithm is
closely related to Trust Region Policy Optimiza-
tion (TRPO) [53] techniques, in the sense that
they rely on updating the current policy accord-
ing to some constraints, limiting sudden jumps in
the latter (see Fig.2 and the appendix for the gen-
eral layout of the algorithm). Even though this
is a time-dependent control problem, using recur-
rent neural networks, i.e. networks with memory,
is not necessary in our approach: knowing the
quantum state at any time gives the maximum
amount of information that is available and that
can possibly influence the choice of the next ac-
tion. The output of the Policy Network, for each
action, is a Gaussian distribution from which the
action is extracted. The deep RL agent, during
the training, learns the peak location of the Gaus-
sian while the standard deviation is kept fixed.
This strategy is useful during the training to ex-
plore the action space, and naturally deals with
stochastic environments, like the one in study.
RL techniques for efficient control with contin-
uous action spaces are a relatively recent devel-
opment. For the present work, we perform the
training of the RL agent using the Python library
Stable Baselines [54].

5 Results

Many different stochastic trajectories (or
"episodes"), all starting from the ground state
|ψ〉 = |0〉, are run in parallel, then the data are
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Figure 5: Analysis of the strategy discovered by deep
RL. a) Response of different neural networks trained on
target states |1〉 , |1〉+|3〉√

2 , |3〉, respectively. To visualize
the output of the neural network as a function of its in-
put, the input state is parameterized with two variables
(x, y): x |1〉+

√
1− x2 − y2 |2〉+y |3〉; thus the stars in

each plot represent the corresponding target state (up to
a global phase). For each panel, we show the real value
of the displacement drive β(t), while the imaginary part
is negligible (averaging the outputs of 7 different con-
verged networks). b) The measurement channel actions
discovered for the |1〉+|3〉√

2 target state, plotted in the
same way as before vs parametrized input state. c) Av-
erage final fidelity as a function of measurement rate
γmeas and maximum drive amplitude βmax (for the ex-
ample |ψtarget〉 = |3〉). Comparison between the greedy
strategy (see main text) and Reinforcement Learning.
RL is more robust in a wider range of physical parame-
ters of the system.

collected, and the two networks, the policy and
the value neural network, are updated. Unless
otherwise specified, in our numerical experiments
each trajectory is made up of 1000 timesteps.
At each timestep, the agent inputs the current
density matrix to the policy neural network,
it extracts real and imaginary parts of the
displacement, and it applies that displacement
drive to the cavity.

In Fig. 3, we show the main results for our RL
agent that was trained on reaching different Fock
states, from |ψtarget〉 = |1〉 to |ψtarget〉 = |7〉. All
of these results are still in the absence of decay
or dephasing, except for the unavoidable, intrin-
sic measurement-induced dephasing processes de-

scribed by the SME. We will later return to verify
the performance of the RL approach when this
restriction is relaxed.

Starting from the ground state, the network
learns to displace to reach higher energies. At
the same time, the measurement has two tenden-
cies: it introduces fluctuations but it also tries to
collapse onto some random Fock state (not nec-
essarily the desired target state!). The network
eventually finds a strategy to compete with and
exploit the measurement process, ending up in
the target state and stabilizing that state. The
RL agent reaches high fidelities successfully after
seeing only about 2000 trajectories, which is sur-
prisingly efficient in the context of deep RL. In
our case we explored quantum state preparation
until a target Fock state number 7 without any
noticeable loss of fidelity.

A typical feedback control scheme discovered
by the network is shown in Fig. 3b,c. The goal
is to reach a Fock state from the ground state.
At first the network applies a deterministic dis-
placement drive of maximal amplitude both in
the real and imaginary parts of the drive. This
is because that allows it to reach higher energies
of the cavity most quickly. After a while, when
higher excitations have been reached, the stochas-
tic outcomes of measurements force the agent to
respond in a way that depends on those outcomes
(giving rise to a stochastically fluctuating con-
trol trajectory). Finally, after the correct Fock
state has been reached, the control amplitude is
reduced to zero.

The resulting strategies obtained by the agent
surpass even the best benchmark strategy that
we could construct based on our physical intu-
ition, a greedy strategy sketched in Appendix
A. Essentially, this greedy strategy attempts, at
each time, to choose a displacement that would
maximize the overlap with the target state.

Now we move on to a more challenging prob-
lem, where the target states become superposi-
tions of Fock states. This is in principle incom-
patible with continuously active Fock state mea-
surements, because these will ultimately destroy
any such superposition. We therefore allow an
increase in capabilities for the nonlinear measure-
ment, enabling the RL agent to control the mea-
surement rates for the various channels. This is
possible in a real experiment by controlling the
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amplitudes of the microwave tones applied to the
system. In principle, the RL algorithm could han-
dle without any problems the extension toM ad-
ditional continuous actions, representing the mea-
surement rates. We decide to go for a simplified
approach, in order to better understand the re-
sulting strategy after the training: in this sim-
pler approach, χn of Eq. (1) can only be 0 or 1,
meaning that each of the firstM channels (corre-
sponding to state |0〉 to |M − 1〉 are respectively
either OFF or ON at any moment of time. There-
fore, in Fig. 4 the actions are M + 2 dimensional:
real and imaginary part of the displacement drive
and M ON-OFF measurement rates. In Fig. 4a
we visualize the strategy chosen by the RL agent,
for the target state (|1〉+ |3〉)/

√
2. In the begin-

ning of the trajectory, the values of the measure-
ment rates are not critical, so the agent just learns
to displace the ground state with the maximum
displacement available. Then, in the middle of
the trajectories, the strategy relies on a counter-
play between the measurement-induced collapse
of the state and the effect of the drive. The agent
finds out that the best strategy is to keep chan-
nels 0 and 2 ON (measurements on Fock states
|0〉 and |2〉) while keeping channel 3 completely
OFF. Instead, channel 1 is kept OFF when the
state has collapsed to the correct one, while on
average is ON in the middle of the trajectory,
possibly in order to avoid the broadening of the
state. In Fig. 4b, the final states reached are plot-
ted in comparison to the true target states. For
superpositions between Fock states that are fur-
ther apart, it is harder to reach large fidelities.
However, it is worthwhile to notice that only the
first 4 channels are controlled in these examples,
in addition to the already limited linear drive con-
trols. From this perspective, it is still remarkable
how well even superpositions can be produced (as
also evidenced by the Wigner densities).

6 Analysis and robustness of the net-
work

In order to analyze the behaviour of the trained
agent, we study the relation between input (state)
and output (action) that the policy network has
learned after the training is completed. Our first
analysis inquires how the network trained on a
particular target state behaves when it receives a
state which slightly differs from the target. In
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Figure 6: Robustness of the Reinforcement Learning ap-
proach vs. decay and dephasing (or measurement inef-
ficiency). The target state in this example is |3〉. a)
Average final fidelity vs either dephasing rate or decay
rate; the dashed line represents the fidelity without noise
(compare Fig. 3). Each data point represents the strat-
egy of a freshly trained neural network. b) Average fi-
delity when both decay and dephasing are present, in a
2D parameter sweep.

Fig. 5a we show the input-output relations of
three different trained neural networks, trained to
reach states |1〉 , |1〉+|3〉√

2 , |3〉 respectively. The real
part of the displacement is shown, plus the mea-
surement controls in the superposition case. As
expected, when the input corresponds to the tar-
get state, all neural networks output zero drive,
since the correct state has been reached. Inter-
estingly, when the target state is a pure Fock
state, the neural network decides to displace only
slightly (i.e. β(t) ∼ 0 ) when the input state
is a superposition between the target state and
another one. In Fig. 5a we show the measure-
ment strategy when the target is a superposition,
|1〉+|3〉√

2 . The network measures consistently state
|2〉, independently from the input state, matching
what was already shown in Fig. 4.

It is equally interesting to analyze the depen-
dence of the discovered strategy on the physical
parameters, i.e. the measurement rate Γmeas and
the maximum available drive strength βmax. The
results are displayed in Fig. 5c. While we sweep
through different parameter values, each network
is trained completely anew by our RL approach,
but in principle one could start from an already
trained network on a different set of parameters
and use that as initialization for the new training.
This strategy would save computation time but
its adoption would not change the results shown
in Fig. 5. We observe that the RL approach yields
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high fidelities once both the maximum allowed
drive and the measurement rate exceed a certain
threshold. Specifically, both the drive βmax and
γmeas need to be multiplied by the total time span
Tmax allowed for the control task, and the result-
ing dimensionless numbers need to cross a certain
threshold for each of these quantities, as seen in
the figure. In addition, we have compared the
RL results with the greedy algorithm (sketched
in Appendix A). It can be readily seen in Fig. 5b
that the RL algorithm can reach higher average
fidelities in a wider ranges of parameters, and per-
forms slightly worse only when the maximum dis-
placement allowed is quite small.

Finally, we turn our attention to check the ro-
bustness of the reinforcement learning strategies
to different kinds of noises. Specifically, we imple-
mented two different disturbances of the system:
decay and dephasing. The decay is modelled with
an additional term in the master equation (6) of
the form γdecayD[â]. Dephasing is covered by a
term γdephasing

2
∑
nD[P̂n]. We note that this addi-

tional dephasing can also be seen as describing an
inefficient measurement, without any correspond-
ing increase of information (this results in an im-
pure quantum state). The results of this analy-
sis are shown in Fig. 6, where the RL approach
has been used to discover strategies for different
amounts of decay and dephasing. The RL strat-
egy can perform well even when both kinds of
noises are present in the system, and it outper-
forms the greedy strategy. While the deleterious
influence of dephasing is comparatively small, the
effects of decay seem to be significantly more se-
vere (when comparing results at the same rate).
This insight provides an important guideline for
future experiments.

7 Conclusion

The present work has demonstrated the feasibil-
ity of using deep RL to compensate limited con-
trol by nonlinear measurements in an experimen-
tally relevant setting. However, it also has un-
derlined the importance of fundamental questions
about controllability under feedback: in our sce-
nario, under some circumstances, RL can only
reach a limited fidelity, but is this a necessary
consequence of the limited control or could it be
overcome by better strategies that the adopted
RL approach simply did not discover?

The experimental implementation of the
strategies discovered here, for quantum state
preparation in a cavity, will rely either on fast
on-chip processing to extract the quantum state
update from the observed measurement signal or
will exploit the general idea of two-stage learn-
ing, training a deployable network in a super-
vised fashion after RL discovery of the strategy
has succeeded. It would be equally interesting to
see whether direct RL training starting from the
measurement trajectories obtained in the experi-
ment could work, although that will likely require
improved algorithms.

In the future, the approach adopted here could
be applied to other scenarios such as cavities with
nonlinearities where the control consists either in
a drive (as in the present work), in a detuning, or
even in a time-dependent control of the strength
of the nonlinearity. These control strategies are
well suited to quantum error correction based on
bosonic codes [55], and could thus be instrumen-
tal in the development of a fault tolerant quantum
processor. The extension to quantum many-body
scenarios, like multiple coupled nonlinear cavities
or qubits, seems equally promising. In all these
cases, it would be hard to find suitable quantum
feedback strategies without the help of a tool as
powerful as deep RL.

8 Data availability

Data and code are available from the correspond-
ing author on reasonable request.
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Figure 7: Strong measurement-based strategy applied for first 7 Fock states. The probability of success is not
monotonic for the first two iterations, then decreases. The cut-off Fock state is |70〉, since we empirically proven
that the probability of displacing higher states to obtain a Fock state with n < 7 will basically converge to 0. It is
worth noticing that the cumulative sum of these probabilities, for each target Fock states, never goes above 0.91,
denoting a probability of not succeeding with this strategy in a finite time which is close to 9%.

Appendix A
In the Fock state basis, the displacement operator acts on |n〉 like [56, 57]:

D(α)|n〉 = exp
[
−|α|2/2

] ∞∑
k=0

αk

k!

n∑
j=0

(−α∗)j

j!

[ (n− j + k)!n!
(n− j)!(n− j)!

]1/2
|n− j + k〉. (9)

Ideally, to drive a system from |n〉 to |l〉, one wants to maximize:

〈l|D†αρDα|l〉 (10)
with ρ = |n〉〈n|. By introducing two identities:

〈l|D†αρDα|l〉 =
∑
l′,m′

〈l|D†α|l′〉〈l′|ρ|m′〉〈m′|Dα|l〉 (11)

So we need to compute 〈l|Dα|n〉 for a generic n and l.

〈l|Dα|n〉 = exp
[
−|α|2/2

] n∑
j=0

∞∑
k=0

αk

k!
(−α∗)j

j!

[ (n− j + k)!n!
(n− j)!(n− j)!

]1/2
δl,n−j+k︷ ︸︸ ︷

〈l|n− j + k〉 (12)

= exp
[
−|α|2/2

] n∑
j=max(0,n−l)

α−n+j+l

(−n+ j + l)!
(−α∗)j

j!(n− j)!
√
l!n! (13)

= exp
[
−|α|2/2

]√
l!n!α−n+l

n∑
j=max(0,n−l)

|α|2j

(−n+ j + l)!j!(n− j)! (14)

Plugging this into Eq. (11),and assuming ρ = |n〉〈n|:

∑
l′,m′

〈l|D†α|l′〉

δl′,n︷ ︸︸ ︷
〈l′|n〉

δn,m′︷ ︸︸ ︷
〈n|m′〉〈m′|Dα|l〉 = 〈l|D†α|n〉〈n|Dα|l〉 =

∣∣∣〈l|D†α|n〉∣∣∣2 (15)

Finally: ∣∣∣〈l|D†α|n〉∣∣∣2 =

∣∣∣∣∣∣exp
[
−|α|2

]
l!n!α2(l−n)

n∑
j=max(0,n−l)

|α|2j

(−n+ j + l)!j!(n− j)!

∣∣∣∣∣∣
2

(16)
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As example, we can compute this overlap with |ψi〉 = |i〉 = |0〉 and |ψf 〉 = |l〉 = |2〉, obtaining:

〈2|Dα|0〉〈0|D†α|2〉 = 1
2e
−α2

α4 (17)

We now can compute the optimal α that maximizes the overlap between any initial state |n〉 and target
|l〉, namely αoptim(n, l). After computing this table of values, we can develop a strategy to achieve a
particular target Fock state |l〉. The idea is is to start from n = 0 (i.e. the ground state) and then we
displace by the optimal αoptim(0, l). Then, we strong measure the evolved state, and this will collapse
to a particular Fock state |l1〉. If l1 = l, then the algorithm ends and the trajectory was successful. If,
instead, l1 6= l , we displace |l1〉 by the optimal αoptim(l1, l) and we iterate this project until we reach
|l〉 or the algorithm reaches a very high Fock state (discussed in Fig. 7). We use this strategy for each
target Fock state from n = 1 to n = 7, as shown in Fig. 7. We see that the probability of reaching the
target state is very high in the first few iterations, while it slowly decreases otherwise.

Now we will try to find an optimal strategy that doesn’t assume Fock states as target states This is
referred in the main text as "greedy strategy".
The system starts in the initial state |ψi〉. Then, this state is evolved through the master equation
describing the system in hand, but with every possible value of the displacement D(α). We discretise
the values of α in N possible values, therefore obtaining N different target states after evolving |ψ〉 (t)
to |ψ〉 (t + ∆t). Among these N states we take the one that maximises the fidelity with the target
state that we want, i.e. |ψf 〉. We then repeat this procedure for every timestep in a trajectory.
This strategy is referred to as "greedy", since the best possible strategy could not pass through local
optima, but in some cases an optimal strategy would rely in a completely different path.

Appendix B: PPO
PPO [52] is an on-policy algorithm, meaning that the policy is updated directly from the data and it
doesn’t need to collect them in order to update it, like off-policy algorithms do. This means that PPO
could be used directly attached to an experimental setup, as opposed to off-policy algorithms (like
Q-learning). The main idea behind PPO is a policy gradient method, which consists in computing an
estimator of the policy gradient and then plugging it in a stochastic gradient ascent algorithm. Such
estimator is defined as:

L(θ) = Êt
[
log πθ(at|st)Ât

]
(18)

where πθ(at|st) is the probability of choosing action at, given state st and according the policy pa-
rameters θ. Ât is called advantage function and estimates the value (i.e. the cumulative reward from
timestep t onwards) of action at. Ât is then composed of two terms:

Ât =
tmax∑
t′=t

γt
′−trt − V̂ (st) (19)

where the first one represents the (discounted) some of rewards (i.e. discounted return) from timestep
t and the second one a value function that estimates the discounted reward. If Ât > 0 this means
that action at would collect more reward as expected and the agents needs to select it more often in
future episodes. To estimate V̂ (st) we use a second neural network, which takes state st as input,
but one could use in principle only the policy neural network and branch the last layer and adding
one additional continuous-valued neuron, exploiting the already processed state after the first layers
of the network. The problem with estimator Eq. (18) is that multiple steps of optimization using the
same trajectory could bring to potentially too big policy updates. The idea of PPO is to optimize an
objective function that constrains its update. This objective function is defined as:

LPPO(θ) = Êt
[
min(rt(θ))Ât, clip(rt(θ), 1− ε, 1 + ε)Ât)

]
(20)
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where rt(θ) is defined as:

rt(θ) = πθ(at|st)
πθold(at|st)

, (21)

θold are the weights of the policy before the update and ε is an hyperparameter.
We implemented the PPO algorithm by using the library Stable Baselines [54]. The neural network

used is a multi-layer perceptron with two hidden layers of size 64 and tanh activation function. The
hyperparameters used for the PPO implementation are the following:

Parameter Value
gamma 0.99
n_steps 128

clip_param 0.2
ent_coef 0.0

learning_rate 0.00025
vf_coef 0.5

max_grad_norm 0.5
lam 0.95

nminibatches 4
noptepochs 4
cliprange 0.2

adam_epsilon 0.00001
optim_stepsize 0.001

optim_batchsize 64
timesteps_per_actorbatch 256
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