Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Efficient Gaussian process regression for prediction of molecular crystals harmonic free energies

MPG-Autoren

Krynski,  M.
Fritz Haber Institute of the Max Planck Society;
Faculty of Physics, Warsaw University of Technology;

/persons/resource/persons21421

Rossi,  M.
Fritz Haber Institute of the Max Planck Society;
Simulations from Ab Initio Approaches, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

s41524-021-00638-x.pdf
(Verlagsversion), 2MB

Ergänzendes Material (frei zugänglich)

41524_2021_638_MOESM1_ESM.pdf
(Ergänzendes Material), 3MB

Zitation

Krynski, M., & Rossi, M. (2021). Efficient Gaussian process regression for prediction of molecular crystals harmonic free energies. npj Computational Materials, 7(1): 169. doi:10.1038/s41524-021-00638-x.


Zitierlink: https://hdl.handle.net/21.11116/0000-0008-E4C5-8
Zusammenfassung
We present a method to accurately predict the Helmholtz harmonic free energies of molecular crystals in high-throughput settings. This is achieved by devising a computationally efficient framework that employs a Gaussian Process Regression model based on local atomic environments. The cost to train the model with ab initio potentials is reduced by starting the optimization of the framework parameters, as well as the training and validation sets, with an empirical potential. This is then transferred to train the model based on density-functional theory potentials, including dispersion-corrections. We benchmarked our framework on a set of 444 hydrocarbon crystal structures, comprising 38 polymorphs and 406 crystal structures either measured in different conditions or derived from these polymorphs. Superior performance and high prediction accuracy, with mean absolute deviation below 0.04 kJ mol−1 per atom at 300 K is achieved by training on as little as 60 crystal structures. Furthermore, we demonstrate the predictive efficiency and accuracy of the developed framework by successfully calculating the thermal lattice expansion of aromatic hydrocarbon crystals within the quasi-harmonic approximation, and predict how lattice expansion affects the polymorph stability ranking.