English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Optimal swimmers can be pullers, pushers or neutral depending on the shape

MPS-Authors
/persons/resource/persons268583

Daddi-Moussa-Ider,  Abdallah       
Department of Living Matter Physics, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons227787

Nasouri,  Babak
Department of Living Matter Physics, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons227773

Vilfan,  Andrej       
Department of Living Matter Physics, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons219873

Golestanian,  Ramin       
Department of Living Matter Physics, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Daddi-Moussa-Ider, A., Nasouri, B., Vilfan, A., & Golestanian, R. (2021). Optimal swimmers can be pullers, pushers or neutral depending on the shape. Journal of Fluid Mechanics, 922: R5. doi:10.1017/jfm.2021.562.


Cite as: https://hdl.handle.net/21.11116/0000-0008-E68E-5
Abstract
The ability of microswimmers to deploy optimal propulsion strategies is of paramount importance for their locomotory performance and survival at low Reynolds numbers. Although for perfectly spherical swimmers minimum dissipation requires a neutral-type swimming, any departure from the spherical shape may lead the swimmer to adopt a new propulsion strategy, namely those of puller- or pusher-type swimming. In this study, by using the minimum dissipation theorem for microswimmers, we determine the flow field of an optimal nearly spherical swimmer, and show that indeed depending on the shape profile, the optimal swimmer can be a puller, pusher or neutral. Using an asymptotic approach, we find that amongst all the modes of the shape function, only the third mode determines, to leading order, the swimming type of the optimal swimmer.