Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Eigenstate thermalization scaling in approaching the classical limit

MPG-Autoren
/persons/resource/persons145700

Haque,  Masudul
Max Planck Institute for the Physics of Complex Systems, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

2012.06361.pdf
(Preprint), 940KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Nakerst, G., & Haque, M. (2021). Eigenstate thermalization scaling in approaching the classical limit. Physical Review E, 103(4): 042109. doi:10.1103/PhysRevE.103.042109.


Zitierlink: https://hdl.handle.net/21.11116/0000-0008-EC23-7
Zusammenfassung
According to the eigenstate thermalization hypothesis (ETH), the eigenstate-to-eigenstate fluctuations of expectation values of local observables should decrease with increasing system size. In approaching the thermodynamic limit-the number of sites and the particle number increasing at the same rate-the fluctuations should scale as similar to D-1/2 with the Hilbert space dimension D. Here, we study a different limit-the classical or semiclassical limit-by increasing the particle number in fixed lattice topologies. We focus on the paradigmatic Bose-Hubbard system, which is quantum-chaotic for large lattices and shows mixed behavior for small lattices. We derive expressions for the expected scaling, assuming ideal eigenstates having Gaussian-distributed random components. We show numerically that, for larger lattices, ETH scaling of physical midspectrum eigenstates follows the ideal (Gaussian) expectation, but for smaller lattices, the scaling occurs via a different exponent. We examine several plausible mechanisms for this anomalous scaling.