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We address the ground-state properties of the long-standing and much-studied three-dimensional
quantum spin liquid candidate, the S = 1

2
pyrochlore Heisenberg antiferromagnet. By using SU(2)

DMRG, we are able to access cluster sizes of up to 128 spins. Our most striking finding is a robust
spontaneous inversion symmetry breaking, reflected in an energy density difference between the two
sublattices of tetrahedra, familiar as a starting point of earlier perturbative treatments. We also
determine the ground-state energy, E0/Nsites = −0.490(6)J , by combining extrapolations of DMRG
with those of a numerical linked cluster expansion. These findings suggest a scenario in which a
finite-temperature spin liquid regime gives way to a symmetry-broken state at low temperatures.

Introduction.— Frustrated magnets, on account of ex-
hibiting many competing low energy states, are a fertile
ground for exotic physics. A celebrated example is the
pyrochlore Heisenberg antiferromagnet, which resides on
a lattice of corner sharing tetrahedra, depicted in the
inset of Fig. 1. The classical Heisenberg model on this
lattice has a highly degenerate ground state [1], forming
a classical spin liquid [2] with an emergent gauge field [3].

In contrast, the ground state of the quantum py-
rochlore antiferromagnet remains enigmatic. While
recent experimental evidence in the approximately
isotropic S = 1 compound NaCaNi2F7 shows a liquid
like state down to low temperature [4], the S = 1/2 case
is still open both in theory and experiment.

Theory work on this prominent quantum spin liquid
candidate over the years has been formidable. Absent
a systematically controlled method, various approaches
have somewhat inevitably led to an array of possible sce-
narios. One strand of work has built on a perturbative
approach, in which half the couplings (those on one tetra-
hedral sublattice) are switched on perturbatively. This
has led to suggestions of a ground state which breaks
translational and rotational symmetries [5–7], a valence
bond crystal [8] or a spin liquid state [9]. On top of this,
the contractor renormalization method [10] finds antifer-
romagnetic ordering in a space of supertetrahedral pseu-
dospins, pointing to an even larger real-space unit cell.
To render the problem more tractable, all these theories
involve the derivation of an effective Hamiltonian, which
is per se not exactly solvable and hence solved by some
type of approximation, ranging from mean field theory
to classical Monte Carlo numerics. On a different axis
in theory space, parton-based theories yield an ordered
state with a chiral order parameter [15] or a monopole
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flux state [17], while the pseudofermion functional renor-
malization group suggests a spin liquid ground state [18].

In view of this relatively wide range of ground-state
candidates, a controlled and unbiased treatment of the
model is clearly desirable, if only to narrow the possible
location of the goalposts somewhat. Unfortunately, most
numerical approaches quickly reach their limits for frus-
trated magnets in d = 3. While exact diagonalization
is currently limited to ∼ 48 sites [19], possible alterna-
tives are series expansions such as the numerical linked
cluster expansion (NLCE) [20–36] or high temperature
expansions [37, 38], which can be pushed down to low
temperatures [36], although they do not provide access
to the ground state itself and are particularly challenged
by many competing low energy states.

To access the ground-state wave function directly, the
DMRG method — originally devised in one dimension
[39–43] has been pushed to two dimensions, in particular
for the two-dimensional cousin of pyrochlore, the kagome
antiferromagnet [44–48].

Here, we take DMRG one step further, by applying it
to the pyrochlore lattice in d = 3, and present a study
of periodic clusters with Nsites = 32, 48, 64, 108, 128.
This demonstrates that DMRG can treat clusters with
up to 128 sites reliably, significantly larger than previ-
ous exact diagonalization results of 36 sites [49]. Ex-
ploiting the SU(2) symmetry of the model [50–53], we
keep up to 20000 SU(2) states, (typically equivalent to
& 80000 U(1) states). We calculate the ground-state
energy, the spin structure factor and low-energy exci-
tations for these clusters, yielding an estimate for the
ground-state energy per site in the thermodynamic limit
of E0/Nsites = −0.490(6). The study of finite size clus-
ters is complemented by a high order NLCE calculation,
which excludes any scenario where E0/Nsites > −0.471.

Our main finding is that the ground state of the larger
(64-, 108- and 128-site) clusters we consider exhibits a
breathing instability, rendering up and down tetrahedra
(cf. inset of Fig. 1) inequivalent: one tetrahedral sublat-
tice exhibits a lower energy than the other. Amusingly,
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FIG. 1. Ground-state energies from various approaches. The
horizontal lines denote the predictions for the ground-state
energy per site (J = 1) in the thermodynamic limit: So-
bral and Lacroix −0.572 [11], Canals and Lacroix −0.56 [12],
Derzhko et al. −0.52 [13], Harris et al. −0.487 [5 and 14], Kim
and Han −0.459, [15], Isoda and Mori −0.4578 [8], Müller et
al. −0.4509 [16], Burnell et al. −0.4473 [17]. The solid red
points are our DMRG results for periodic clusters, extrapo-
lated to infinite bond dimension using a quadratic polynomial.
The thick blue line represents a robust upper bound for the
ground-state energy, obtained from converged NLCE results
at finite temperature, thus excluding the red hashed area.
The solid black line shows the extrapolated value of the con-
verged NLCE results to zero temperature (cf. Appendix D),
and the gray shaded area indicates the confidence interval of
this extrapolation. The inset shows the cubic unit cell of the
pyrochlore lattice, highlighting the two tetrahedral sublattices
in red and blue.

our estimate for the ground state energy is compatible
with that of the original perturbation theory with a sim-
ple mean field solution of the resulting effective Hamilto-
nian, where the inversion symmetry was maximally bro-
ken at the very outset of the calculation [5].

Model and methods.— We consider the pyrochlore an-
tiferromagnetic Heisenberg model with S = 1/2:

H = J
∑

〈i,j〉

~Si · ~Sj , (1)

where the spins sit on the sites i, j of the 3D pyrochlore
lattice and 〈i, j〉 denotes nearest neighbors. The lat-
tice is a face centered cubic lattice with lattice vectors
~a1 = 1

2 (1, 1, 0)T , ~a2 = 1
2 (1, 0, 1)T , ~a3 = 1

2 (0, 1, 1)T and a

tetrahedral basis given by ~b0 = ~0, ~b1 = 1
2~a1, ~b2 = 1

2~a2,
~b3 = 1

2~a3, such that each lattice point can be expressed

by ~Rα,n1,n2,n3
= n1~a1 + n2~a2 + n3~a3 + ~bα, with inte-

ger n1, n2, n3 and α ∈ {0, 1, 2, 3}. The model is ob-
viously SU(2) symmetric. Our DMRG calculations are
performed on finite size (N = 32, 48, 64, 108, 128) clus-
ters with periodic boundary conditions (cf. Tab. IV of
Appendix).

We apply the one- and two-site variants of SU(2)
DMRG to reach high bond dimensions necessary to ob-
tain reliable results in our three-dimensional clusters.
Since DMRG requires a one-dimensional topology, we
impose a one-dimensional “snake” path on the three-
dimensional lattice, which defines the variational man-
ifold. We use fully periodic clusters to reduce boundary
effects and confirm that using a snake path which mini-
mizes the bandwidth of the connectivity matrix improves
convergence [36, 54, 55].

For small bond dimensions (χ . 2000) we use the two-
site version of the DMRG, and switch to the one-site
variant to optimize the wave function for larger χ. Since
the truncation error is not well defined in the one-site
variant case (due to the subspace expansion [52]), we use
the reliable two-site variance estimation to extrapolate
towards the error-free case [56], because calculation of
the full variance would be impractical due to its cost.

It turns out that even the calculation of the two-site
variance becomes too costly for clusters with more than
∼ 100 sites and bond dimensions & 8000. In certain
cases, we revert to the usage of the two-site DMRG and
extrapolate as a function of the truncation error (cf. 108-
site cluster).

Ground-state energy.— Using DMRG, we calculate the
variational ground-state energy of finite clusters with
high accuracy. By systematically increasing the bond
dimension χ, we enlarge the variational manifold in a
controlled way, such that we can extrapolate, χ→∞, to
the exact limit using a linear extrapolation as a function
of the two-site variance (cf. Fig. 2). We use an esti-
mate of the systematic extrapolation error given by half
the distance between the extrapolated value and the last
DMRG point.

Fig. 1 shows the extrapolated energies per lattice site
of all finite clusters we considered in comparison with
the available predicted ground-state energies in the lit-
erature. Our results show a monotonic growth of the
ground-state energy as the number of sites is increased.

The periodic clusters we consider have either the full
cubic (32, 108) or an increased or reduced (48a, 48b,
48c, 48d, 64, 128) symmetry of the pyrochlore lattice
and represent the bulk due to the absence of a surface.
The energies per site of different clusters as a function
of inverse cluster size admit a fit to a quadratic poly-
nomial, which we use to obtain an extrapolation to the
thermodynamic limit. In order to get an estimate of the
extrapolation error, we use Gaussian resampling, using
the systematic DMRG error-bars as standard deviation.
This yields our best estimate for the ground-state energy
of E0/Nsites = −0.490(6). In this fit we considered only
the cluster 48d among the 48-site clusters, which appears
to be consistent with the other clusters, while other 48-
site clusters have lower ground state energies.

Our extrapolated (χ → ∞) cluster energies and gaps
are summarized in Table I. While the singlet gaps in the
most symmetric clusters (32, 48d) are very small, the
triplet gaps are sizable and roughly an order of magnitude
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FIG. 2. Variational ground state energy estimates of the clus-
ters 48b, 48c, 48d (top) and 64,128 (bottom) for different
bond SU(2) bond dimensions χ (indicated by the labels) as
a function of the two-site variance. Solid lines correspond to
linear extrapolations to the error-free limit, corresponding to
infinite bond dimension and zero variance. We estimate the
systematic extrapolation error as the half distance between
the last point and the extrapolated value.

larger. Since the 48d cluster does not obey all lattice
symmetries, a reliable extrapolation is not possible, but
our results are compatible with a scenario with a finite
triplet gap, in which case all low energy excitations would
be in the singlet sector as claimed in Refs. [6, 10].

Our finite temperature NLCE [20–36] provides a com-
plementary perspective. We have carried out this expan-
sion in entire tetrahedra up to eighth order (cf. [36] for
details, as well as Appendix D), obtaining convergence
for the energy per site in the thermodynamic limit as a
function of temperature for temperatures T & 0.2. Since
the energy is a monotonic function of temperature, the
converged part of E(T ) (cf. Fig. 8) provides an up-
per bound for the ground-state energy Enlce ≈ −0.471J ,
which is consistent with the DMRG data and extrapola-
tion. One can furthermore polynomially extrapolate the
finite temperature NLCE energies to zero temperature
(assuming an analytic behavior at low temperatures), see
Fig. 8, and obtain −0.495(15), which agrees remarkably
well with the DMRG extrapolation and lies within its er-
ror bar, serving as a further corroboration of the DMRG
energy. In light of these results we can confidently ex-
clude a ground-state energy per site larger than −0.47J .

Ground-state symmetry-breaking.— To investigate the
properties of the ground state in more detail, we calculate
the total spin, and hence total energy, of up and down
tetrahedra separately. This reveals an inequivalence of up
and down tetrahedra (cf. Fig. 6 in the Appendix), sug-
gesting a breaking of the inversion symmetry of the lat-
tice. In our DMRG calculations, the snake path does not
fully respect the symmetry between up and down tetra-
hedra, so we need to verify that this symmetry breaking
is intrinsic, and not due to a preference imposed by the

Cluster GS energy Singlet gap Triplet gap

32 −0.5168 0.0318 0.6872

48a −0.5161 0.2166(4) 0.6709(4)

48b −0.5077 0.027(2) 0.554(2)

48c −0.5060(1) 0.053(7) 0.42(2)

48d −0.5040(5) 0.06(3) 0.36(3)

64 −0.4972(25) — —

108 −0.4935(50) — —

128 −0.4928(10) — —

TABLE I. Ground-state energies per site and gaps within the
Stot = 0 sector (singlet gap) as well as to the Stot = 1 sector
(triplet gap) if available.
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FIG. 3. Extrapolation of tetrahedron spins for an explicit
breaking of lattice inversion symmetry, similarly to a “pin-
ning” coupling, for the 64 (left) and 108 (right) site clusters.
The whole Hamiltonian (1) is written as H = (1−ε)Hup+(1+
ε)Hdown, where the Hup and Hdown parts contain the terms
for the up and down tetrahedra, respectively.

snake path. We therefore introduce a small symmetry
breaking ‘breathing’ perturbation, where we modify the
couplings of up and down tetrahedra to be J = 1 ± ε,
equivalent to the standard technique of including pinning
fields.

Fig. 3 shows the results for the total spin of up and
down tetrahedra for opposite signs of the breathing per-
turbation in the 64 (108) site clusters as a function of
the two-site variance (inverse bond dimension), admit-
ting a linear extrapolation towards χ → ∞. The re-
sults reveal a clear selection of states with opposite sym-
metry breaking, as required for spontaneous symmetry-
breaking. The order parameters for the larger, 108-site,
cluster are slightly different for the two opposite pinning
fields (Fig. 3, right panel), but that difference is much
smaller than the extrapolated order parameter which dif-
fers only little between the two clusters. It is of course
always possible in principle that the symmetry breaking
vanishes when yet larger clusters are considered. Given
the scaling of the computational effort with system size,
the study of much larger clusters with the present method
is, however, out of reach. In Appendix A we provide
further evidence that the two symmetry-breaking states
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FIG. 4. Real space spin correlation Cij in the ground state
(Sz = 0) for N = 64 (left) and N = 128 (right) shown in the
cubic unit cell. The thickness of the red bonds corresponds
to magnitude of the correlation between neighboring sites.
The black lines indicate bonds between sites with negligible
correlations.

converge to the same energy after the pinning field is
removed.

We next consider nearest neighbor spin correlations of
the best (lowest-energy) wave functions |ψ0〉 obtained in
DMRG. For each pair of adjacent sites (i, j), we calculate

the correlation function Cij = 〈ψ0 |~Si · ~Sj |ψ0〉. We plot
the result for the clusters 64 and 128 in Fig. 4 (truncated
to the cubic unit cell for ease of visualization), with the
tube thickness proportional to the strength of the spin
correlations.

The correlation pattern reveals that one sublattice
(say, ‘up’) of tetrahedra contains more strongly corre-
lated bonds than the other. These are found on opposite
edges of ‘up’ tetrahedra. We note that the details of
this pattern still depend strongly on the cluster geom-
etry and we get opposite choices of correlated bonds in
the two clusters, presumably due to different symmetry
broken states picked by the different ‘snake’ paths in the
two clusters. Moreover, the periodic boundary condi-
tions impact the performance of the DMRG calculation.
In particular, finite-sized clusters with periodic bound-
ary conditions comprise winding loops which may be as
short as, or even shorter, than the ‘physical’ loops in the
bulk, whose minimal length is the circumference (6) of a
hexagon. Resonances along both loop types will there-
fore compete. The minimal length of winding loops for
N = 108 is 6 while it is 8 for N = 128. Indeed, we observe
considerably better convergence for the latter, inducing
a smaller error, see Fig. 1. The shortest periodic loop of
each cluster is shown in Tab. IV.

Ground-state structure factor.— The static spin struc-
ture factor for different clusters, accessible in neutron
scattering experiments, is obtained from the Fourier
transform of the spin correlations (factor 4/3 from nor-
malization 1/(S(S + 1)) for spin S = 1/2):

S( ~Q) =
4

3N

∑

ij

〈~Si · ~Sj〉c cos
[
~Q ·
(
~Ri − ~Rj

)]
, (2)

where ~Ri denote the real-space coordinates of sites and
the index c denotes the connected part of the correlation
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FIG. 5. Static spin structure factor for different clusters for
two cuts (Qx = Qy (top) and Qz = 0 (bottom)) through mo-
mentum space. The corresponding maximal bond dimensions
for the 32, 64, 108 and 128-site clusters are 20000,16000, 16000
and 12000 respectively.

matrix. The results for two cuts (Qx = Qy (top) and
Qz = 0 (bottom)) in the three-dimensional momentum
space are shown in Fig. 5.

One can readily recognize the bow-tie patterns, the
hallmark of pyrochlore magnets [3–5, 9, 16, 18, 36]. Note
that the 32- and 108-site clusters have full cubic symme-
try, while the 64-site cluster does not, hence the structure
factors looks slightly different in that case. The results
for the spin structure factor and the absence of sharp
Bragg peaks confirm that there is no long range mag-
netic ordering. The observed pattern for the Qx = Qy
cuts is very close to what is found at finite temperature in
the regime T . 1 [36], on the other hand the Qz = 0 cuts
exhibit a drastic change in the 108- and 128-site clusters
reflecting the symmetry breaking. While the pinch points
sharpen with increasing system size (and therefore mo-
mentum resolution), we are unable to extrapolate their
width reliably to the thermodynamic limit to extract a
correlation length. Note that for the largest clusters, ap-
parent lines in the spin structure factor in the Qx-Qy
plane become discernible, Fig. 4, raising the possibil-
ity of at least short-range spin correlations with spatial
anisotropy. A more detailed search for such symmetry
breaking is clearly warranted.
Concluding discussion.— Our DMRG study has found

the ground state of the SU(2) symmetric S = 1
2 Heisen-

berg antiferromagnet to discard lattice inversion symme-
try in favour of a ‘breathing’ pattern of strong (weak)
sublattices of up (down) tetrahedra. We extrapolate the
energy per lattice site to −0.490(6). The possibility of
such spontaneous symmetry breaking has been a central
question for this class of magnets, as several studies have
used an explicit such symmetry breaking as a starting
point of various perturbative schemes [5, 6, 10, 57]. As
the restoration of an explicitly broken symmetry in a
perturbative scheme is generically not to be expected, a
nonvanishing order parameter does not per se indicate
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spontaneous symmetry breaking.

Our results are thus important in that they provide
largely unbiased evidence for the existence of this spon-
taneous symmetry-breaking, subject only to finite-size ef-
fects which are much reduced in comparison to previous
studies. This also indicates that one of the prime Heisen-
berg quantum spin liquid candidates in three dimensions
in fact exhibits at least one form of symmetry breaking.

In closing, we note that our extrapolated ground-state
energy lies close to the estimate obtained in the pio-
neering work by Harris et al. [5], in the abovemen-
tioned scheme of coupling the up tetrahedra perturba-
tively through the bonds of the down tetrahedra. These
authors also found a long-range dimer ordering (cf. also
[6]) compatible with the correlation pattern we observe
in our calculations shown in Fig. 4. This first, simple
and quite uncontrolled, approach to this difficult prob-
lem thus may turn out to have been already quite close

to what will eventually be established as the final answer.
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Appendix A: Inversion-symmetry breaking
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FIG. 6. The extrapolation of the total spin squared as a
function of the two-site variance for the 64-site cluster.

The real space dimer correlation pattern shown in Fig.
4 suggests that the lattice inversion symmetry is bro-
ken in the ground state. In order to scrutinize this find-
ing, we analyze the square of the total spin (morally the
tetrahedron energy) of up and down tetrahedra in the
lattice separately. Fig. 6 shows the extrapolation to
the exact limit for the 64 site cluster. The extrapola-
tion clearly suggests an imbalance between up and down
tetrahedra, and confirms the finding from the real space
dimer correlations. This is further corroborated by a high
susceptibility towards inversion symmetry breaking per-
turbations, as discussed in the main text. In order to
determine whether the applied pinning, ε = 0.01 is suffi-
ciently small, we apply the following DMRG procedure.
For a given ordering of the sites, the symmetry-breaking
state involving the least entanglement, is preferred by
DMRG. Our strategy is as follows: we perform DMRG
calculations up to a certain bond dimension (with the
pinning appied), until the states are stabilized. Then
we switch off the pinning (ε → 0) and perform further
sweeping and increase the bond dimension. If the sym-
metry breaking is intrinsic, both of these energies should
agree with each other, and with the one without pin-
ning. We carried out this test for the 64-site cluster and
find that if the pinning is removed too early (for example
with 3000 states) DMRG converges back to the state pre-
ferred by the snake. However, the state becomes stable
at bond dimension 5000 and remains so for the further
increase of the bond dimension and sweeping. Obviously,
this problem is not present if the pinning as well as the
snake prefer the same state. Considering the energies, a
smooth linear extrapolation is possible (Fig. 7) and each
of them results in the same energy lying well within the
error bars.
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FIG. 7. The extrapolation of the energies after the pinning
field is switched off together with the one without the pinning
field for the 64-site cluster.

Appendix B: Other lattice symmetries

We further investigated various symmetries with re-
spect to our ground state correlations shown in Fig. 4
for the clusters with N = 64 and N = 128. As mentioned
in the main text, resonant loops across periodic bound-
ary conditions compete with the loops in the bulk. The
cluster with N = 108 exhibits loops across the boundary
of length 6 which compete with bulk hexagonal loops.
Therefore, the correlation pattern of the N = 108 ap-
pears defective in some regions if compared to the pattern
obtained for N = 128 with loops across the boundary of
length 8. For the N = 64 cluster, also boundary loops
of length 6 appear. The last column of table IV lists the
length of the shortest boundary loops in all clusters we
investigated.

To analyze the symmetries of the observed correlation
pattern, we start by coarse graining it. There are three
different types of bonds. First, we find six uniformly
weakly coupled bonds (A) on one type of the tetrahe-
dra. Second, the inverted tetrahedra exhibit two types
of bonds, two strong dimers (B) and four vanishing bonds
(C). The average correlation strengths of each bond type
are listed in Table II for N = 64 and N = 128. The sim-
plified nearest neighbor correlation pattern can then be
viewed as a graph with edges labeled by A,B, or C.

Each lattice symmetry is a permutation π ∈ SN of
nodes in this graph. The type X of an edge (i, j) is pre-
served under the symmetry transformation if (π(i), π(j))
is of the same type X. Applying all lattice symmetries to
the labeled graphs for our largest clusters, N = 64 and
N = 128, we can count how many edges preserve their
type under the symmetry and list the ratio the ratio c/t of
conserved edges c over the number of total edges t = 3N
in Table III for all lattice symmetries.

From this systematic symmetry analysis, it is clear that
the correlation pattern is fully symmetric for N = 128
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A B C

64 −0.14339314 −0.53707564 −0.00869636

128 −0.14484361 −0.53011351 −0.00968693

TABLE II. Averaged correlation strength of three types of A,
B and C observed in the real space correlations in Fig. 4
starting from the simplified picture. 12 of 192 bonds for the
N = 64 and none of the 384 bonds for N = 128 violate the
simplified picture.

64 128

3+
(x,x,x) 136/192 256/384

3−(x,x,x) 136/192 256/384

2(0,−y,y) 4/192 0/384

2(−x,0,x) 12/192 0/384

2(x,−x,0) 4/192 0/384

I(0,0,0) 10/192 0/384

3+
(x,x,x)I(0,0,0) 10/192 0/384

3−(x,x,x)I(0,0,0) 10/192 0/384

m(x,y,y) 152/192 384/384

m(x,y,x) 144/192 256/384

m(x,x,y) 136/192 256/384

T(1,0,0) 136/192 384/384

T(0,1,0) 136/192 384/384

T(0,0,1) 132/192 384/384

T(1,1,0) 132/192 384/384

T(1,0,1) 136/192 384/384

T(0,1,1) 136/192 384/384

TABLE III. Ratio of the number of conserved edges over
the number of total edges 3N for different symmetry oper-
ations. k±(x,y,z) describes a rotation by ±2π/k around the

axis (x, y, z), I(0,0,0) is the inversion around the center and
m(x,y,z) is a reflection. The second part of the table consid-
ers translations of the form T(a,b,c) which describes a shift by
a~a1 + b~a2 + c~a3.

under all fcc translations T(a,b,c), which means that each
tetrahedron shows the same orientation of strong dimers.
This leads to quasi decoupled planes of weakly coupled
tetrahedra connected by strong dimers in this cluster.

On the other hand, all symmetry operations matching
one type of tetrahedra to another (in particular inver-
sion) are robustly broken, since in both N = 64 and
N = 128 clusters the number of type preserved bonds is
essentially zero.

The N = 64 cluster confirms this picture. Due to the
competition of length 6 boundary loops with bulk hexag-
onal looks, the correlation pattern is slightly defective if
compared to N = 128, which leads to slightly imperfect
preservation of the pattern under symmetry operations.
The orientation of the strong bonds B seem to be arbi-
trary.

Appendix C: Finite-size clusters

We use the clusters 32, 48a, 48b, 48c, 48d, 64, 108, and
128 in our simulations, which are described by the cluster
vectors ~c1, ~c2, ~c3. The performance of the DMRG calcu-
lation is affected by loops winding across the periodic
boundaries. The key element is the length of these wind-
ing loops compared to resonant loops within the bulk
(predominantly hexagons). Therefore, Tab. IV lists the
length of the shortest loop connected via a periodic bond
for each cluster.

cluster ~c1 ~c2 ~c3 length

32 2~a1 2~a2 2~a3 4

48a ( 3
2
, 1
2
, 0)T (0, 1, 1)T (0, 1,−1)T 4

48b ( 3
2
, 1
2
, 0)T (0, 1

2
, 3
2
)T (0, 1,−1)T 4

48c ( 3
2
, 1, 1

2
)T (0, 1,−1)T (1,−1, 0)T 4

48d (1, 1, 1)T (1, 0,−1)T (1,−1, 0)T 4

64 (1, 1, 1)T (1, 1,−1)T (−1, 1, 1)T 6

108 3~a1 3~a2 3~a3 6

128 (2, 0, 0)T (0, 2, 0)T (0, 0, 2)T 8

TABLE IV. Cluster vectors ~c1,~c2,~c3 of the 8 clusters used in
this work and the length of the shortest periodic loop. The
clusters of size 32 and 108 respect all lattice symmetries.

Appendix D: Numerical linked cluster expansion

We apply a systematic high temperature series expan-
sion to obtain an upper bound for the ground state en-
ergy of pyrochlore lattice in the thermodynamic limit.
The numerical linked cluster expansion (NLCE) deter-
mines any extensive property P (such as the energy) in
the high temperature regime. It has been successfully ap-
plied to various geometries including frustrated systems
like the kagome or pyrochlore lattice [20–35].

A detailed description of the approach used here can
be found in our previous work [36]. It has been shown
that an expansion based on tetrahedra provides the most
efficient approach, yielding reliably converged energy re-
sults down to temperatures T & 0.2. Here, we include
all clusters with full exact diagonalization consisting of
up to 8 tetrahedra (i.e. up to 25 spins 1

2 ). These clusters
include crucial loops of 6 and 8 spins.

Since the energy decreases monotonously with temper-
ature, we are able use the converged part as an upper
bound for the ground state energy (Enlce ≈ −0.471J)
in the thermodynamic limit. Assuming an analytic be-
havior we used the converged part in the finite tempera-
ture regime to predict the zero temperature ground state
energy. Hence, we extrapolated the function using a
quadratic polynomial:

E(T ) = a+ bT + cT 2. (D1)
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The range of the best fit is between the convergence limit
at T ≈ 0.25 and T = 0.5, and we varied the range lim-
its randomly to estimate the systematic error of the fit,
yielding Eextra ≈ −0.495(15).

0.0 0.2 0.4 0.6 0.8 1.0

T

−0.7

−0.6

−0.5

−0.4
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NLCE, n = 7

NLCE, n = 8

Euler, n = 7

Euler, n = 8

extrapolation

Econv

Eextra=−0.495 ± 0.015

FIG. 8. Energy per site with NLCE expansion up 8th order in
combination with the euler series acceleration with k = 3[36].
The energy in the thermodynamic limit is converged down
to T ≈ 0.25 in units of J with a value of Enlce ≈ −0.471J .
This can be used as an upper bound for the ground state
energy. Additionally, we extrapolated the converged part with
a simple quadratic ansatz and received and an extrapolated
ground state energy of −0.495J .
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