Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Possible Inversion Symmetry Breaking in the S=1/2 Pyrochlore Heisenberg Magnet

MPG-Autoren
/persons/resource/persons258109

Hagymasi,  Imre
Max Planck Institute for the Physics of Complex Systems, Max Planck Society;

/persons/resource/persons244576

Schäfer,  Robin
Max Planck Institute for the Physics of Complex Systems, Max Planck Society;

/persons/resource/persons145694

Moessner,  Roderich
Max Planck Institute for the Physics of Complex Systems, Max Planck Society;

/persons/resource/persons229196

Luitz,  David J.
Max Planck Institute for the Physics of Complex Systems, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

2010.03563.pdf
(Preprint), 3MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Hagymasi, I., Schäfer, R., Moessner, R., & Luitz, D. J. (2021). Possible Inversion Symmetry Breaking in the S=1/2 Pyrochlore Heisenberg Magnet. Physical Review Letters, 126(11): 117204. doi:10.1103/PhysRevLett.126.117204.


Zitierlink: https://hdl.handle.net/21.11116/0000-0008-EE6C-4
Zusammenfassung
We address the ground-state properties of the long-standing and much-studied three-dimensional quantum spin liquid candidate, the S = 1/2 pyrochlore Heisenberg antiferromagnet. By using SU(2) density-matrix renormalization group (DMRG), we are able to access cluster sizes of up to 128 spins. Our most striking finding is a robust spontaneous inversion symmetry breaking, reflected in an energy density difference between the two sublattices of tetrahedra, familiar as a starting point of earlier perturbative treatments. We also determine the ground-state energy, E-0/N-sites = -0.490(6)J, by combining extrapolations of DMRG with those of a numerical linked cluster expansion. These findings suggest a scenario in which a finite-temperature spin liquid regime gives way to a symmetry-broken state at low temperatures.