
92

GhostCell: Separating Permissions from Data in Rust

JOSHUA YANOVSKI,MPI-SWS, Germany

HOANG-HAI DANG,MPI-SWS, Germany

RALF JUNG,MPI-SWS, Germany

DEREK DREYER,MPI-SWS, Germany

The Rust language offers a promising approach to safe systems programming based on the principle of aliasing
XORmutability: a value may be either aliased or mutable, but not both at the same time. However, to implement

pointer-based data structures with internal sharing, such as graphs or doubly-linked lists, we need to be able

to mutate aliased state. To support such data structures, Rust provides a number of APIs that offer so-called

interior mutability: the ability to mutate data via method calls on a shared reference. Unfortunately, the existing

APIs sacrifice flexibility, concurrent access, and/or performance, in exchange for safety.

In this paper, we propose a new Rust API called GhostCell which avoids such sacrifices by separating
permissions from data: it enables the user to safely synchronize access to a collection of data via a single permis-

sion. GhostCell repurposes an old trick from typed functional programming: branded types (as exemplified by

Haskell’s ST monad), which combine phantom types and rank-2 polymorphism to simulate a lightweight form

of state-dependent types. We have formally proven the soundness of GhostCell by adapting and extending

RustBelt, a semantic soundness proof for a representative subset of Rust, mechanized in Coq.

CCS Concepts: • Theory of computation→ Type structures; Separation logic.

Additional Key Words and Phrases: Rust, type systems, separation logics

ACM Reference Format:
Joshua Yanovski, Hoang-Hai Dang, Ralf Jung, and Derek Dreyer. 2021. GhostCell: Separating Permissions

from Data in Rust. Proc. ACM Program. Lang. 5, ICFP, Article 92 (August 2021), 30 pages. https://doi.org/10.
1145/3473597

1 INTRODUCTION
Most modern programming languages make a choice between safety and control: either they provide
safe high-level abstractions or they provide low-level control over system resources, but not both.

The Rust programming language [Matsakis and Klock II 2014] offers an exciting alternative: it

provides fine-grained control over resource management and data layout à la C/C++, but with a

strong ownership type system in place to ensure type safety, memory safety, and data race freedom.

The central tenet of Rust is that the most insidious source of safety vulnerabilities in systems

programming is the unrestricted combination of mutation and aliasing—when one part of a program

mutates some state in such a way that it corrupts the view of other parts of the program that have

aliases to (i.e., references to) that state. Consequently, Rust’s type system enforces the discipline of

aliasing XOR mutability (AXM, for short): a value of type T may either have multiple aliases (called

shared references), of type &T, or it may be mutated via a unique, mutable reference, of type &mut T,
but it may not be both aliased and mutable at the same time.

Authors’ addresses: Joshua Yanovski, MPI-SWS, Saarland Informatics Campus, pythonsq@mpi-sws.org; Hoang-Hai Dang,

MPI-SWS, Saarland Informatics Campus, haidang@mpi-sws.org; Ralf Jung, MPI-SWS, Saarland Informatics Campus,

jung@mpi-sws.org; Derek Dreyer, MPI-SWS, Saarland Informatics Campus, dreyer@mpi-sws.org.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2021 Copyright held by the owner/author(s).

2475-1421/2021/8-ART92

https://doi.org/10.1145/3473597

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 92. Publication date: August 2021.

https://doi.org/10.1145/3473597
https://doi.org/10.1145/3473597
https://doi.org/10.1145/3473597

92:2 Joshua Yanovski, Hoang-Hai Dang, Ralf Jung, and Derek Dreyer

A defining feature of Rust’s AXM discipline is that it ties permissions to data—that is, the permis-

sion to read or write an object through a reference is reflected in the type of the reference itself.

In so doing, Rust is able to effectively piggyback ownership and permission tracking on top of

automatic type checking, which is convenient and ergonomic for many systems programming

scenarios. However, it is not always what programmers want: there are also common scenarios in

which it would be much more natural to separate permissions from data—that is, to track permissions

separately from the data they govern.

In this paper, we will (1) motivate the need for separating permissions from data, (2) propose

a novel Rust API called GhostCell that addresses it, and (3) establish formally that GhostCell is
a safe extension to Rust. As we shall see in §1.2, our approach relies crucially on some old tricks

from typed functional programming, given new life in the context of Rust.

1.1 Motivation: Safely Implementing Data Structures with Internal Sharing
In Rust, the AXM discipline guides the design of not only the core type system but also data

structure APIs, in particular container data structures that manage user-controlled data. Typically,

containers will provide full mutable access to their content given a mutable reference of type

&mut Container, while providing thread-safe, read-only access given a shared reference of type

&Container (i.e., the data structure can be read from multiple threads concurrently). Thanks to

AXM, containers permit the creation of interior pointers that point directly into the data structure,

e.g., Vec hands out pointers pointing directly into the backing buffer that stores all elements of

the vector [Jung et al. 2021]. Interior pointers are an example of what Rust means by “providing

control over data layout”, and they are crucial to avoid unnecessary copying or pointer indirections.

As a result, performance of these data structures is on par with the equivalent data structures in

C++, mostly because the Rust code is doing essentially the exact same work as the C++ code—the

extra checks required for safety are almost entirely carried out at compile time.

When it comes to efficiently implementing these data structure APIs in Rust, the AXM discipline

works great for tree-like data structures—i.e., data structures that are acyclic and maintain at most

one pointer to any internal node. For tree-like data structures, a (unique) mutable reference to the

root of the data structure can be safely used to traverse and mutate the entire data structure, and

shared references to the data structure can be safely used by multiple threads to read it concurrently.

However, the AXM discipline is not such a good fit for implementing data structures with internal
sharing—i.e., data structures like graphs or doubly-linked lists, which may have cycles and/or

aliased nodes (nodes with in-degree greater than 1). For implementing such data structures, Rust’s

type system is overly restrictive because it does not allow aliased nodes to be mutated.

In order to still support mutation of data structures with internal sharing, Rust currently provides

two ways to work around the AXM discipline. The first is to simply “give up” and circumvent the

restrictions of Rust’s type system by employing unsafe features of the language (e.g., using raw

pointers, whose aliasing is untracked). For example, the LinkedList type in the standard library is

realized this way. Obviously, this approach is viewed as a last resort.

The second, safe alternative is to wrap aliased nodes in a “cell” type that provides so-called

interior mutability: the ability to mutate the underlying data indirectly via method calls on a shared

reference to the cell. One may wonder: this sounds like a flagrant violation of the AXM discipline—

how can it be safe in general? The answer is indeed, it is not safe in general, but it can be safe if

certain restrictions are placed on the type of data being aliased and/or if certain dynamic checks

are performed to ensure proper synchronization of read and write accesses.

For example, suppose we would like to implement a doubly-linked list in safe Rust, providing a

Rust-style API that includes the ability to take interior pointers into the list and perform concurrent

unsynchronized reads. In this case, since the nodes of the list are aliased by both their previous

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 92. Publication date: August 2021.

GhostCell: Separating Permissions from Data in Rust 92:3

and next neighbors, we must wrap them in some “cell” type if we want to be able to mutate them.

But the only thread-safe “cell” types that provide interior pointers are Mutex and RwLock (which of

these we choose depends on whether or not we want to allow nodes to be read concurrently). Both

of these types will have the effect of protecting each node in the list with its own lock (a mutex or

a reader-writer lock, respectively) to ensure all accesses to the node are properly synchronized.

The resulting implementation of the linked-list Node type is as follows:
1

1 struct Node<T> {

2 data: T,

3 prev: Option<NodeRef<T>>, // None for null pointers

4 next: Option<NodeRef<T>>,

5 }

6 type NodeRef<T> = &RwLock<Node<T>>;

This implementation achieves the goal of providing a thread-safe AXM-style API with support

for interior pointers, but performance when compared with C++ is abysmal! To enable a safe

implementation of the desired API, we had to resort to per-node locking, so even a simple immutable

iteration has to constantly acquire and release locks while traversing the list. As we will see in §5.1,

this (unsurprisingly) causes a massive slowdown.

As a result, the Rust programmer is caught between a rock and a hard place: they can either use

unsafe code and give up on guaranteed safety, or they can use interior mutability and give up on

good performance. This is unsatisfying because the whole point of Rust is to “have our cake and

eat it, too”: we do not want to make a compromise between safety and performance. There must be

a better way!

1.2 GhostCell: A Thread-Safe Zero-Cost Abstraction for Interior Mutability in Rust
In this paper, we show how to extend Rust to support the safe and efficient implementation of

data structures with internal sharing, using a new API we call GhostCell. In particular, unlike

all existing thread-safe interior-mutable APIs presently available in Rust, GhostCell is literally a

zero-cost abstraction: its methods consist simply of type casts, whose soundness we justify in this

paper but which are erased completely by the Rust compiler.

The design of GhostCell is rooted in the observation that Rust’s existing approaches to interior

mutability (e.g., wrapping each node of a linked list with a RwLock) incur unnecessary overhead

for data structures with internal sharing because they tie permissions to data. That is, they track

“permission state”—i.e., whether a single party has write permission or multiple parties have read

permission—at the too-fine granularity of individual aliased objects (e.g., the constituent nodes of
a linked list). In contrast, GhostCell separates permissions from data: it enables one to associate

a single permission state with a collection of objects (e.g., the collection of nodes in a linked

list). Whoever has read/write permission to the collection can read/write any object in it without

additional synchronization or dynamic checks, but the collection is merely a logical (or “ghost”)

mechanism, not a piece of runtime data.

Concretely, GhostCell introduces two types, GhostCell<'id, T> and GhostToken<'id>, with
the former representing some shared data of type T, and the latter representing the permission to

access that shared data. The key to the API is that we separate the cell and the permission to access

it into two different types, albeit with a common brand parameter 'id serving to connect them.

This separation is what enables a single GhostToken<'id> to act as the permission governing a

1
The actual definitions are more verbose: the types are also annotated with a lifetime 'arena, e.g., Node<'arena, T>
and type NodeRef<'arena, T> = &'arena RwLock<Node<'arena, T>>. This is due to our use of region-based memory
management; see §3.2. Here, we elide these lifetimes to simplify the presentation.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 92. Publication date: August 2021.

92:4 Joshua Yanovski, Hoang-Hai Dang, Ralf Jung, and Derek Dreyer

whole collection of GhostCell<'id, _>’s. Note that the brand 'id here takes the concrete form of

a Rust “lifetime”. Lifetimes in Rust are usually used to track the scopes during which mutable and

shared references are valid, but in the case of GhostCell and GhostToken, the brand lifetime 'id
is not actually used as a lifetime—rather, it merely serves as a static representative of the collection
to which all the nodes of type GhostCell<'id, _> belong.

Returning to our motivating example of a doubly-linked list, using the GhostCell API we

would parameterize the type of nodes in a list by a brand 'id representing the particular linked
list that the nodes belong to (i.e., the node type becomes Node<'id, T>), and we would share

references to nodes by wrapping them in a GhostCell, i.e., as &GhostCell<'id, Node<'id, T>>.
However, given just a &GhostCell<'id, Node<'id, T>>, one cannot do anything: to actually

access the node, we also need to show ownership of the GhostToken<'id>, which can be viewed

as a coarse-grained “proxy” permission to every node in the list with brand 'id. In other words,

ownership of GhostToken<'id> plays the role that in Rust is usually played by ownership of the

Container: given a mutable reference to the token, we can mutate the doubly-linked list; given a

shared reference, we can traverse it immutably in multiple threads at the same time.

Since GhostToken<'id> is a regular Rust type, we can compose it with existing Rust libraries

for ownership management. For instance, normally in Rust, to provide coarse-grained sharing of a

Container type, we could protect it with a single reader-writer lock (i.e., as RwLock<Container>).
To achieve the same for our doubly-linked list, we would use RwLock<GhostToken<'id>>. Note that
we don’t need to use a RwLock here. We could compose GhostToken<'id>with any synchronization
mechanism we want—be it message-passing (e.g., sync::mpsc), fork-join (e.g., rayon::join [Stone
and Matsakis 2017]), or something else. The GhostCell API is agnostic to which mechanism is

used because it decouples permission transfer from the data being shared.

There is a tradeoff here, of course: with fine-grained permission tracking (à la per-node RwLock)
it is possible for multiple threads to both read and write different nodes within a collection concur-

rently, whereas with GhostCell’s coarse-grained permission tracking, it is not. Furthermore, the

GhostCell API does not allow the user to mutate one GhostCell-wrapped node in a collection

while simultaneously holding interior pointers into other nodes from the same collection. Still, for

the common case where these restrictions are acceptable—e.g., the linked-list and graph operations

we present in §3—GhostCell eliminates the significant space and time overhead of fine-grained

permission tracking by avoiding the need to record and maintain extra state alongside each node.

The basic technique of branded types—using a static brand like 'id as a representative of some

dynamic, stateful data structure—is an old one, dating back at least to the work of Launchbury

and Peyton Jones [1995] on the ST monad in Haskell. It involves using a combination of phantom
types [Fluet and Pucella 2006] and rank-2 polymorphism [Kfoury andWells 1994] in order to simulate

a lightweight form of stateful, dependently-typed API, and has been explored more recently by

Kiselyov and Shan [2007] in the context of OCaml and Haskell, and by Beingessner [2015] in the

context of Rust. However, proving that the aforementioned APIs are sound is actually far from

straightforward because their implementations typically make use of potentially unsafe operations
(e.g., unchecked array accesses or type casts) to avoid unnecessary dynamic checks. In prior work,

it was claimed (and sometimes argued formally) that the unsafe operations used were nevertheless

safely encapsulated by their strongly-typed APIs—i.e., that the APIs were observably safe. However,

we know of no prior work that formalizes the soundness of this approach for abstractions that rely

crucially on the ownership-based (substructural) nature of the type system, as GhostCell does.

Our work makes two key contributions compared to the prior work on branded types:

(1) With GhostCell, we demonstrate a novel application of branded types to the problem of

building safe and efficient data structures with internal sharing in Rust.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 92. Publication date: August 2021.

GhostCell: Separating Permissions from Data in Rust 92:5

(2) We formally establish the soundness of our GhostCellAPI (as well as a variant of Beingessner
[2015]’s “unchecked indexing” API) by extending RustBelt [Jung et al. 2018a], a machine-

checked soundness proof for a core subset of Rust that is formalized in the Coq proof assistant.

Adapting RustBelt to handle these branded-types APIs turned out to be quite subtle, seeing

as they (ab)use Rust’s lifetime mechanism for a purpose for which it was not intended. In

particular, as we explain in §4, it required us to make a non-trivial change to the way that

RustBelt models lifetime inclusion.

The rest of the paper is structured as follows:

• §2: As a warmup, we explain some basic concepts of Rust by example, and we illustrate the

idea of branded types by reviewing Beingessner [2015]’s unchecked-indexing API.

• §3: We present our new GhostCell API, and show how to use it to make the safe implemen-

tation of a doubly-linked list data structure significantly more efficient. We also demonstrate

the flexibility of the API with a graph traversal implementation.

• §4: We briefly review RustBelt [Jung et al. 2018a] and then explain at a high level the salient

aspects of how we extended it to prove soundness of both the unchecked-indexing API and

GhostCell. Our proof of soundness is fully formalized in Coq [Yanovski et al. 2021].

• §5: We empirically evaluate the performance and expressiveness of GhostCell compared to

Rust’s existing interior-mutable types.

• §6: We conclude by comparing with related work.

2 BRANDED TYPES IN RUST
In this section, we introduce the idea of branded types using a simple example drawn from prior

work. In particular, we present the “unchecked indexing” API of Beingessner [2015], which shows

how we can eliminate dynamic bounds checks when accessing a vector with an index, and instead

achieve the in-bounds guarantee statically using Rust’s type system. However, as we do not wish

to assume prior knowledge of Rust on the part of the reader, we begin this section with a review of

Rust’s basic concepts of ownership, borrowing, and lifetimes.

2.1 Basic Rust with Vectors
First, let us see how to create a vector in Rust, along with some pointers (references) into it.

1 let mut vec: Vec<u8> = vec![0,1,2];

2 vec.push(3);

3 println!("{:?}", vec); // Prints [0, 1, 2, 3]

4 let v0: &u8 = &vec[0]; // an immutable reference into `vec`
5 println!("{:?}", v0); // Prints 0

6 let v1: &mut u8 = &mut vec[1]; // a mutable reference into `vec`
7 *v1 += 1;

8 println!("{:?}", vec); // Prints [0, 2, 2, 3]

Here, we create an 8-bit unsigned integer vector (Vec<u8>) with 3 elements (line 1) and push a new

element onto it (line 2). In line 4, we can create an interior pointer into the vector: in this case,

we specifically create a shared (immutable) reference v0 of type &u8 to the first element vec[0] of

vec. The shared reference v0 only gives us read permission to vec[0], which suffices for printing it

(line 5). We can also create a mutable reference v1, now of type &mut u8, to the second element

vec[1], which allows us to mutate that element (line 7)—the effect is made visible in line 8.

Although this is a very simple example, we can already see Rust’s ownership principle at work

here. In particular, in line 1, after the creation, we own the vector vec. Then, in line 2, to mutate

vec, push must mutably borrow the ownership of vec for the duration of the function call. This is

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 92. Publication date: August 2021.

92:6 Joshua Yanovski, Hoang-Hai Dang, Ralf Jung, and Derek Dreyer

expressed concretely in the type of push: fn(&mut Vec<u8>, u8) -> ().2 Then, in line 4, the

shared reference v0 is created by immutably borrowing the ownership of vec. Finally, once (after
line 5) the borrow by v0 has ended, the mutable reference v1 can be created by mutably borrowing

vec again in line 6.

The durations of borrows are determined by lifetimes, which Rust’s type system tries to infer

automatically. The Rust “borrow checker” makes sure that conflicting borrows do not overlap, so

as to uphold the AXM principle. To see this in action, let us look at another example, in this case

one that is rejected by the type system.

1 let v0: &/* 'a */ u8 = &vec[0];

2 // REJECTED: cannot borrow `vec` as mutable because it is also borrowed as immutable

3 vec.push(4);

4 // REJECTED: cannot borrow `vec` as mutable because it is also borrowed as immutable

5 let v1: &/* 'c */ mut u8 = &mut vec[1];

6 *v1 += 1;

7 println!("{:?}", v0); Lifetime 'a

Lifetime 'b

Lifetime 'c

Here, we annotate the implicitly inferred lifetimes for references to explain how Rust maintains

AXM with lifetimes. First of all, Rust’s type system infers that the immutable borrow of vec by v0
has lifetime 'a, spanning from line 1 to 7. Thus the type &'a u8 of v0 is implicitly tagged with the

lifetime 'a. Meanwhile, push needs to mutably borrow vec (line 3) for lifetime 'b, which is the

duration of the function call. The type system then rejects the call to push because 'a and 'b are
overlapping and conflicting: vec cannot be borrowed immutably and mutably at the same time in

line 3. Indeed this prevents a critical bug: if the code were allowed, push could have reallocated its

internal array, leaving v0 as a dangling pointer, in which case the type system would have missed

the memory error caused by the access to v0 in line 7. Similarly, the mutable borrow of vec by

v1 with lifetime 'c also conflicts with the immutable borrow by v0 with lifetime 'a, and thus is

also rejected. In this case, allowing the code would not actually lead to an AXM violation; it is

conservatively rejected because the Rust compiler makes no attempt to reason about vector indices.

2.2 Phantom Lifetimes and Unchecked Indexing
To ensure memory safety, Rust performs dynamic bounds checks on vector accesses. For example,

when the ith element of vec is accessed through vec[i], a runtime check is performed to see if

i is in bounds. If it is not, then the program will panic (i.e., clean up the program state and abort

the current thread). However, in many situations such runtime checks are unnecessary because

we know that the indices are always in bounds. We would like to avoid these checks but still

be guaranteed statically that such accesses are safe. In this section, we review a solution to this

problem in Rust, based on Beingessner [2015]’s “unchecked indexing” API, which in turn is a close

descendant of the idea of branded types [Kiselyov and Shan 2007].

2.2.1 An API for branded vectors. Let us enhance the vector type Vec<T>with an additional lifetime

parameter 'id to form a “branded” version BrandedVec<'id, T>. The key idea is that 'id is not
used as a normal lifetime which defines the duration of a borrow, but instead is used as a brand
that uniquely identifies a runtime vector value. In other words, for every concrete brand 'id, the
type BrandedVec<'id, T> is a singleton type, inhabited only by the vector (call it bvec) of type
BrandedVec<'id, T>. We then also have a type BrandedIndex<'id> describing integers that are

known to be valid indices for bvec, with which we can access bvec without runtime checks. Since

the lifetime 'id serves here as a brand rather than a normal lifetime, we call it a phantom lifetime.

2
Note that vec.push(3) here is syntactic sugar for Vec::push(&mut vec, 3).

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 92. Publication date: August 2021.

GhostCell: Separating Permissions from Data in Rust 92:7

1 // A vector branded with a phantom lifetime `'id`, holding an underlying vector `Vec<T>`.
2 struct BrandedVec<'id, T> { ... }

3 // A branded index into a vector with the same brand `'id`.
4 struct BrandedIndex<'id> { ... }

5 impl<'id> BrandedVec<'id, T> {

6 // Turns a regular `inner: Vec<T>` into a branded vector of type `BrandedVec<'id, T>`,
7 // then passes it to a closure `f`.
8 pub fn new<R>(inner: Vec<T>, f: impl for<'a> FnOnce(BrandedVec<'a, T>) -> R) -> R { ... }

9 // Pushes to the vector and returns the index of the pushed element.

10 pub fn push(&mut self, val: T) -> BrandedIndex<'id> { ... }

11 // Bounds-checks an index; inbounds indices are returned as `BrandedIndex`.
12 pub fn get_index(&self, index: usize) -> Option<BrandedIndex<'id>> { ... }

13 // Given an index with the same brand, returns a reference to that element in

14 // the vector without performing any bounds checks.

15 pub fn get(&self, index: BrandedIndex<'id>) -> &T { ... }

16 pub fn get_mut(&mut self, index: BrandedIndex<'id>) -> &mut T { ... }

17 }

The API of branded vectors let us create a branded vector from a standard vector with new
(line 8); then we can push a new element to the vector (line 10, where self refers to the vector

itself). With get_index we can perform bounds-checking on an index, and in case of success we

can now use that index with get and get_mut (line 15 and 16) without any further checks. We now

go over these operations in more detail.

Pushing to a branded vector. When pushing to a vector bvec: BrandedVec<'id, T> with

brand 'id, we will receive in return a new index i: BrandedIndex<'id> to that pushed element

with exactly the same brand 'id, which allows us to make references to the element later. With

get_index we can also turn a regular integer usize into a checked index—the method returns

None when the desired index is out-of-bound. Crucially, the vector does not have a pop operation,
because it can only be grown but not shrunk: monotonicity of the vector length is required to

ensure that an index, once checked, will always remain valid.

Unchecked indexing. Oncewe have an index i: BrandedIndex<'id>, we can create references
to the ith element of the branded vector bvec with the same brand 'id. Whether we can create

shared or mutable references depends on whether we can borrow bvec immutably or mutably,

respectively. Most importantly, these functions do not have to perform any runtime checks, and

they will always succeed (unlike with regular vectors, there is no Option in the return type).

Furthermore, accessing a branded vector with indices created for another vector will be rejected at

compile time by the type system, because it cannot unify the two different lifetimes (see below).

Creating a branded vector. The creation of a branded vector is a bit unusual. The function new
consumes the ownership of some standard vector inner: Vec<T> to create a branded vector, but

it also requires a closure f whose type universally quantifies over any lifetime 'a (with the syntax

for<'a>). This is an instance of rank-2 polymorphism: new is allowed to pick a fresh lifetime 'id to

brand the vector inner, and then it passes the branded vector to the client f. As f must work with

any lifetime it receives from new, it knows nothing about 'id except the fact that there exists such
a lifetime, and thus must treat the brand 'id opaquely.

To make this more concrete, let us look at how the API can be used in the following example.

1 let vec1: Vec<u8> = vec![10, 11];

2 let vec2: Vec<u8> = vec![20, 21];

3 BrandedVec::new(vec1, move |mut bvec1: BrandedVec<u8>| { // bvec1: BrandedVec<'id1, u8>

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 92. Publication date: August 2021.

92:8 Joshua Yanovski, Hoang-Hai Dang, Ralf Jung, and Derek Dreyer

4 bvec1.push(12); let i1 = bvec1.push(13); // i1: BrandedIndex<'id1> is an index into bvec1

5 BrandedVec::new(vec2, move |mut bvec2: BrandedVec<u8>| { // bvec2: BrandedVec<'id2, u8>

6 let i2 = bvec2.push(22); // i2: BrandedIndex<'id2> is an index into bvec2

7 *bvec2.get_mut(i2) -= 1; // No bounds check! Updates to 21

8 println!("{:?}", bvec2.get(i2)); // No bounds check! Prints 21

9 println!("{:?}", bvec1.get(i1)); // No bounds check! Prints 13

10 // println!("{:?}", bvec2.get(i1)); // Rejected: i1 is not an index of bvec2

11 }); // end of `bvec2`'s closure

12 }); // end of `bvec1`'s closure

Here, we have two standard vectors vec1 and vec2 which we turn into two differently-branded

vectors bvec1 (with brand 'id1) and bvec2 (with brand 'id2), by calling new in line 3 and 5,

respectively. The client of bvec1 is the closure from line 3 to 12, while that of bvec2 is the closure

from line 5 to 11. In line 6, we create i2 as an 'id2-branded index of bvec2 by push-ing to it. This

allows us to access bvec2 through i2 in line 7 and 8 without any bounds checks. Similarly, the

index i1 created in line 4 can also be used to access bvec1 in line 9. Crucially, however, one cannot

use the indices of one branded vector to access another: line 10 (if uncommented) would be rejected

by the type system, because it cannot unify the brand 'id1 of i1 (that is, the brand of bvec1) and
the brand 'id2 of bvec2. This is needed for safety, for as we can see, i1 is out of bvec2’s bounds.

2.2.2 Implementation of branded vectors. The implementation of the branded vector API needs to

satisfy two conditions: (1) branding must be truly static, so that it does not incur runtime cost, and

(2) brands must be unique, so that the type will reject the mixing of brands like in line 10 above.

This leads us to the following implementation:

1 // Phantom lifetime type that can only be subtyped by exactly the same lifetime `'id`.
2 struct InvariantLifetime<'id>(PhantomData<*mut &'id ()>);

3 struct BrandedVec<'id, T> { inner: Vec<T>, _marker: InvariantLifetime<'id> }

4 struct BrandedIndex<'id> { idx: usize, _marker: InvariantLifetime<'id> }

The types BrandedVec<'id, T> and BrandedIndex<'id> are simply newtype wrappers around

their underlying types (Vec<T> and usize, respectively), pairing them with the “phantom” type

InvariantLifetime<'id>. The exact implementation of InvariantLifetime<'id> is not so im-

portant to our discussion; what is relevant is its interaction with variance. In general, the Rust

compiler will automatically infer the variance of lifetime and type parameters such as 'id and T, and
here the type InvariantLifetime<'id> is carefully defined so that the compiler will infer the life-

time 'id to be invariant. This ensures that we cannot change the brand of a BrandedVec<'id, T>
or BrandedIndex<'id> via subtyping. In particular, it is guaranteed that indices of brand 'id can

only be used to access the vector with the exact same brand 'id, as desired. In addition, through

the use of the PhantomData constructor in its definition, InvariantLifetime<'id> will have size

zero, and thus be compiled away and incur no runtime cost.

As mentioned in the introduction, implementing this API requires unsafe operations (code

marked with an unsafe block) in the body of the get and get_mut functions, since they perform a

vector access without bounds checks. This implies that we, as the developer of the library, have

the obligation to prove that such accesses are actually safe under all possible interactions with

well-typed clients. We will present this proof in §4.

3 GHOSTCELL: ZERO-OVERHEAD, THREAD-SAFE INTERIOR MUTABILITY
In the previous section, we have seen how branding (encoded via phantom lifetimes) can be used

in Rust to achieve static guarantees and eliminate runtime checks for array indexing. This trick, of

course, is already well-known in the functional programming world. However, branding can be

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 92. Publication date: August 2021.

GhostCell: Separating Permissions from Data in Rust 92:9

generalized further in combination with Rust’s rich substructural type system to support separating
permissions from data.

In this section, we introduce GhostCell, a library that statically enforces Rust’s AXM discipline

on shared data via a separately tracked “ghost token” (§3.1). As described in the introduction,

GhostCell can be used to build data structures with internal sharing entirely in safe code without

making compromises that might impact performance. We demonstrate this with the implementa-

tions of a doubly-linked list (§3.2) and a graph (§3.3).

3.1 The API of GhostCell
The key idea of GhostCell is to separate the permission to access a data structure from the data
itself. As such, GhostCell introduces two types: GhostToken<'id> and GhostCell<'id, T>.

• GhostCell<'id, T> describes data of type T that is marked with the brand 'id. When

this “cell” type is shared, the data it contains can only be accessed by whoever holds the

corresponding GhostToken<'id>.
• GhostToken<'id> represents the permission to access all data in shared GhostCells marked

with the brand 'id.

The core API of GhostCell is as follows.

1 /// A single "branded" permission to access the data structure.

2 /// Implemented with a phantom-lifetime marker type.

3 struct GhostToken<'id> { _marker: InvariantLifetime<'id> }

4 /// Branded wrapper for the data structure's nodes, whose type is T.

5 struct GhostCell<'id, T: ?Sized> { _marker: InvariantLifetime<'id>, value: UnsafeCell<T> }

6

7 impl<'id> GhostToken<'id> {

8 /// Creates a fresh token that GhostCells can be tied to later.

9 fn new<R>(f: impl for<'new_id> FnOnce(GhostToken<'new_id>) -> R) -> R { ... }

10 }

11 impl<'id, T> GhostCell<'id, T> {

12 /// Wraps some data T into a GhostCell with brand `'id`.
13 fn new(value: T) -> Self { ... }

14 /// Turns an owned GhostCell back into owned data.

15 fn into_inner(self) -> T { ... }

16 /// Turns a mutably borrowed GhostCell to and from mutably borrowed data.

17 fn get_mut(&mut self) -> &mut T { ... }

18 fn from_mut(t: &mut T) -> &mut Self { ... }

19

20 // Immutably borrows the GhostCell with the same-branded token.

21 fn borrow<'a>(&'a self, token: &'a GhostToken<'id>) -> &'a T {

22 unsafe { &*self.value.get() }

23 }

24 /// Mutably borrows the GhostCell with the same-branded token.

25 fn borrow_mut<'a>(&'a self, token: &'a mut GhostToken<'id>) -> &'a mut T {

26 unsafe { &mut *self.value.get() }

27 }

28 }

GhostToken<'id> only has one method: a constructor GhostToken<'id>::new, using the same

pattern as we already saw with branded vectors. That is, new requires a client closure f that must

be able to work with a GhostToken with an arbitrary brand 'new_id. Thus new picks a fresh brand

'new_id, creates the GhostToken<'new_id>, and then passes it on to f.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 92. Publication date: August 2021.

92:10 Joshua Yanovski, Hoang-Hai Dang, Ralf Jung, and Derek Dreyer

Moving on to GhostCell, the first four methods here are rather simple. They allow one to

convert owned values between types T and GhostCell<'id, T>, as well as between mutable

references &mut T and &mut GhostCell<'id, T>. This reflects the fact that GhostCell<'id, T>
has an identical representation to T, and that a uniquely owned GhostCell<'id, T> carries the

same ownership as T and can be directly accessed without a GhostToken. This is common for

interior-mutable types in Rust, i.e., types that permit mutation of shared state: when the state is

not actually shared, exclusive mutable access works as usual (e.g., Cell also has these methods).

The more interesting part of the GhostCellAPI comprises the methods borrow and borrow_mut,
which allow access to the content T of a GhostCell<'id, T>. Both of these methods only require a

shared reference &GhostCell<'id, T>, which means this data can be subject to arbitrary aliasing.

To ensure that AXM and hence safety are nevertheless maintained, a GhostToken with the same

brand 'id is required. The GhostToken determines which kind of access is granted to the content T:
to return a &T, we require a &GhostToken<'id> (i.e., the token can be shared with others); to return

a &mut T, we require a &mut GhostToken<'id> (i.e., the token must be exclusively borrowed).

Thus, we delegate the management of borrowing the data T to the management of borrowing

GhostToken<'id>. Effectively, this separates the knowledge about the data structure from the

permission to access it: we track the knowledge via &GhostCell<'id, T> (which is a shared

reference and hence freely duplicable) and the permission via GhostToken<'id> (which is not).

Thread safety. Thanks to Rust’s borrow checker, GhostCell is naturally thread-safe. The borrow
checker ensures that GhostToken<'id> is subject to the AXM discipline, and because of the types

that we chose for borrow and borrow_mut, this implies that the contents of the GhostCell are

also complying with AXM. Hence, each GhostCell is either mutated by one thread or accessed
immutably by many threads at the same time.

As one would expect from a system where permissions are separate from data, multiple threads

can coordinate accessing GhostCells via ownership transfer of the corresponding GhostToken.
For example (see §3.2.3), the GhostToken can be put into a lock; in that case the thread holding the

lock has full access to all associated GhostCells. Other ownership transfer idioms such as message

passing are also supported.

Zero-cost abstraction. GhostCell<'id, T> is a zero-cost abstraction, meaning that it is merely

a newtype wrapper (around T), whose dynamic representation is the same as T’s. Correspondingly,
the methods borrow and borrow_mut do not actually do anything—they are just type coercions,

which can be erased during compilation. (In fact, this is true for all GhostCell methods.) As for

GhostToken<'id>, it is in fact a zero-space abstraction—i.e., it is implemented as a zero-sized type

with no runtime representation at all.

Of course, in case synchronization is actually required, GhostCell does not magically make

that cost disappear. As with other Rust data structures, the client has to pick an appropriate

synchronization mechanism (see §3.2.3). The point is that each client can make its own cost-

expressiveness tradeoff; GhostCell itself does not add any unavoidable costs here.

Coarse-grained sharing. Designed as it is, GhostCell does not support fine-grained sharing:

if we have multiple same-branded GhostCell<'id,T>’s for different nodes, we can only mutably
borrow one GhostCell at a time, because we can only mutably borrow GhostToken<'id> once at

a time. As we will see in the next section, we can still work with multiple nodes at the same time

and even mutate all of them; the only restriction is that we cannot hold an interior pointer to one

node while mutating another (since the type system has no way of ensuring that the “other” node

is in fact not an alias to the node we are holding a pointer to).

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 92. Publication date: August 2021.

GhostCell: Separating Permissions from Data in Rust 92:11

3.2 Implementing a Doubly-Linked List with GhostCell
In this section we demonstrate how GhostCell can be used to build efficient doubly-linked lists

in Rust. The goal is to build our doubly-linked list using only safe code or safely-encapsulated

libraries, so that we can benefit from the safety guarantees of the type system. At the same time,

we want to provide the kind of API that Rust programmers expect—i.e., we aim to support interior

pointers directly into the data structure as well as thread-safe read-only access.

The reason this is challenging is that doubly-linked lists inherently have internal sharing caused

by a node being referenced from both its predecessor and its successor. The AXM discipline usually

mandates that such shared nodes cannot be mutated. In the introduction, we have seen that existing

interior-mutable types such as RwLock can be used to work around that limitation, but this comes

at a steep performance cost due to per-node locking. With GhostCell, we can implement such a

doubly-linked list without any unnecessary runtime checks.

3.2.1 Node structure. A doubly-linked list data structure is rather simple: each node has some

data and two pointers prev and next which point to the previous and the next nodes, respectively.

For the case where there is nothing to point to (i.e., at the ends of the list), the pointers can be null,
which in Rust is represented with the Option type.

1 struct Node<'arena, 'id, T> {

2 data: T,

3 prev: Option<NodeRef<'arena, 'id, T>>,

4 next: Option<NodeRef<'arena, 'id, T>>,

5 }

6 type NodeRef<'arena, 'id, T> = &'arena GhostCell<'id, Node<'arena, 'id, T>>;

This should mostly match the usual expectations for what the definition of a doubly-linked list looks

like—all the subtleties are concentrated in the definition of NodeRef. As the name suggests, this type

describes references (pointers) to nodes, but this is also where we encode how the memory storing

the node and the associated permissions are handled: we use an arena for memory management

(which we will discuss immediately), so the reference has the lifetime 'arena of the arena; and

we use GhostCell to manage the permissions. GhostCell enables us to establish and exploit the

AXM discipline for Node even though the nodes themselves are subject to unrestricted sharing:

whoever holds the permission GhostToken<'id> has control over what happens to the list. The
brand parameter 'id and the arena lifetime have to be propagated everywhere, which is why they

show up as parameters of both Node and NodeRef.

Region-based memory management with arenas. TypedArena [Fitzgerald and Sapin 2020]

is a Rust implementation of region-based memory management [Grossman et al. 2002; Tofte et al.

2004]. Instead of individually managing the memory used for each Node, using an arena we can

efficiently allocate nodes in a growing region of memory managed centrally by the arena. All these

objects are deallocated together when the arena is destroyed. Hence all objects in the arena can use

the lifetime 'arena of the arena itself. This common lifetime makes arenas particularly suited for

managing cyclic data structures such as our doubly-linked list.

The downside of arenas is that individual nodes cannot be deallocated; if that is required,

reference-counting might be a more suitable form of memory management (but of course, that

will incur some runtime overhead). We have chosen arenas here since they lead to simpler code,

but GhostCell is agnostic about the underlying memory management mechanism and in our

supplementary material we also provide a doubly-linked list based on Arc, a reference-counting
implementation in the Rust standard library.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 92. Publication date: August 2021.

92:12 Joshua Yanovski, Hoang-Hai Dang, Ralf Jung, and Derek Dreyer

Note that in our Node implementation, the two lifetimes 'id and 'arena have distinct roles:

'id is just a phantom brand which uniquely identifies a related set of nodes, while 'arena is an
“actual” lifetime of the arena which restricts the lifetimes of all objects—some of which can be

differently-branded—allocated by the arena.

3.2.2 The API of doubly-linked lists. Our simple lists with GhostCell have five public methods:

(1) new wraps a value of type T to create an isolated node that is not yet linked to a list;

(2) iterate walks through the list starting from node and calls the function f with immutable

interior pointers to all the data fields;

(3) iter_mut is the mutable counterpart of iterate;
(4) insert_next inserts node2 immediately after node1 in the list;

(5) remove disconnects node from its adjacent nodes, which are then directly connected.

1 impl<'arena, 'id, T> Node<'arena, 'id, T> {

2 /// Create a new isolated node from T. Requires an arena.

3 pub fn new(

4 data: T, arena: &'arena TypedArena<Node<'arena, 'id, T>>

5) -> NodeRef<'arena, 'id, T> {

6 GhostCell::from_mut(arena.alloc(Self { data, prev: None, next: None }))

7 }

8 /// Traverse immutably.

9 pub fn iterate(node: NodeRef<'arena, 'id, T>, token: &GhostToken<'id>, f: impl Fn(&T)) {

10 let mut cur: Option<NodeRef<_>> = Some(node);

11 while let Some(node) = cur {

12 let node: &Node<_> = node.borrow(token); // immutably borrow `node` with `token`
13 f(&node.data);

14 cur = node.next;

15 }

16 }

17 /// Traverse mutably.

18 pub fn iter_mut(

19 node: NodeRef<'arena, 'id, T>, token: &mut GhostToken<'id>, mut f: impl FnMut(&mut T)

20) { ... }

21 /// Insert `node2` right after `node1` in the list.

22 pub fn insert_next(

23 node1: NodeRef<'arena, 'id, T>, node2: NodeRef<'arena, 'id, T>, token: &mut GhostToken<'id>

24) {

25 // Step 1: remove node2 from its adjacent nodes.

26 Self::remove(node2, token);

27 // Step 2: let node1 and node1_old_next point to node2.

28 let node1_old_next : Option<NodeRef<_>> = node1.borrow(token).next;

29 if let Some(node1_old_next) = node1_old_next {

30 node1_old_next.borrow_mut(token).prev = Some(node2);

31 }

32 node1.borrow_mut(token).next = Some(node2);

33 // Step 3: link node2 to node1 and node1_old_next.

34 let node2: &mut Node<_> = node2.borrow_mut(token);

35 node2.prev = Some(node1); node2.next = node1_old_next;

36 }

37 /// Remove the links of this node to and from its adjacent nodes and connect those nodes.

38 pub fn remove(node: NodeRef<'arena, 'id, T>, token: &mut GhostToken<'id>) { ... }

39 }

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 92. Publication date: August 2021.

GhostCell: Separating Permissions from Data in Rust 92:13

(0)

0 1 3 4 2 5

(1)

2 4 5

(2)

0 1 2 3

(3)

0 1 2 3

Fig. 1. A example run of insert_next.

Note how in new, we call alloc on the arena reference passed in by the client to perform alloca-

tion. This returns a &'arena mut Node, which we can convert to &'arena mut GhostCell<Node>
using from_mut; that mutable reference is implicitly coerced to &'arena GhostCell<Node> which
matches the return type.

Let us have a closer look at iterate and insert_next.

iterate. Since the function f only needs read-only access to the list, iterate only requires a

shared reference to the token, which represents the permission to read the whole list. As such, this

method can be called concurrently from multiple threads. iterate simply walks through every

node in the list following the next field (line 14). For each node, it uses token to immutably borrow

the actual node: borrow turns a &GhostCell<Node> into a &Node (line 12). With a shared reference

to the node, we can get a shared reference to its data field, which is sufficient to call f (line 13).

insert_next. Since insert_next needs to modify the structure of the list, it requires a mutable

reference to the token. We explain how the method works with an example run in Figure 1, where

node 2 is inserted into the list (0,1,3), immediately after node 1. (The nodes are presented in the

figure as vertically-stacked boxes, with names on top.) In this example run, node1 is the node 1,
while node2 is the node 2.

• At the beginning (Fig. 1(0)), node1 is linked to nodes 0 and 3, while node2 is linked to nodes

4 and 5. In Fig. 1, we draw next and prev pointers as solid and dashed arrows, respectively.

• In step 1 (line 26, Fig. 1(1)), node2 is removed from its adjacent nodes 4 and 5. In Fig. 1, we

highlight updated pointers as red arrows.

• In step 2 (line 28-32, Fig. 1(2)), node1’s next field and node 3’s prev field are updated to

point to node2. In this step, we first take out the current value (3) of node1.next into

node1_old_next to be used in step 3.

• In step 3 (line 34-35, Fig. 1(3)), node2’s fields are updated to point to node1 and node 3.

In insert_next, we need to update several nodes in the list, but we only need to update one

node at a time. For each node, we call borrow_mut using our token of type &mut GhostToken<'id>
(lines 30, 32, and 34, and also the call of remove in line 26). This relinquishes access to that token

until we stop using the reference returned by borrow_mut. Typically, we just mutate a single field,

so token is immediately available again to mutate the next node. Remember that borrow_mut is
just a type-changing identity function, so there is no performance cost to calling it many times.

Limitations. When compared with LinkedList from the standard library (implemented using

unsafe code), the API surface of our list is a lot smaller. Most of the missing functionality could be

added, but there is one key limitation that is not easily lifted: the API for mutable iteration over

a LinkedList cannot be safely implemented even with GhostCell. This API provides mutable

references to all nodes of the linked list at the same time—i.e., with the same lifetime—but it is also

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 92. Publication date: August 2021.

92:14 Joshua Yanovski, Hoang-Hai Dang, Ralf Jung, and Derek Dreyer

only sound for acyclic lists, since cycles would lead mutable iteration to generate multiple mutable

references to the same node (which would violate AXM). In contrast, our list API permits the

creation of cyclic lists through insert_next, but our iteration only provides mutable references to

the elements of a list one node at a time. Building on GhostCell, this is the best we can do—indeed,

it is unclear how to capture the non-local invariant of acyclicity (on which a safe implementation

of mutable iteration depends) in the Rust type system. (For read-only iteration, we did implement

an iterator providing references to all nodes at the same time. This works because, with shared

references, aliasing due to cycles is not a problem.)

3.2.3 A client of the linked list. To show the kind of usage patterns that are enabled by separating

permissions from data, we give a small program that performs concurrent accesses to the same list

in two ways: unsynchronized read-only access, and mutable access synchronized with a lock.

1 GhostToken::new(|mut token| { // We first need a token. Note that the lifetime 'id is implicit.

2 // Allocate a list of size 50.

3 let arena = TypedArena::with_capacity(50); // pre-allocate some space (for efficiency).

4 let list = init_list(&arena, &mut token, 50);

5 // Share the token with two threads immutably, without synchronization.

6 rayon::join(

7 || Node::iterate(&list, &token, |n| print!("{:?}, ", n)),

8 || Node::iterate(&list, &token, |n| print!("{:?}, ", n)),

9);

10 // Put the token into an RwLock to share it (mutably) across threads.

11 let lock_token : RwLock<GhostToken> = RwLock::new(token);

12 rayon::join(// fork two child threads

13 || { let token : &GhostToken = &lock_token.read().unwrap(); // acquire read lock

14 Node::iterate(&list, token, |n| print!("{:?}, ", n)); }, // print (old or new) content

15 || { let token : &mut GhostToken = &mut lock_token.write().unwrap(); // acquire write lock

16 Node::iter_mut(&list, token, |n| *n += 100); }, // add 100 to all nodes' data

17);

18 });

After creating a list (init_list can be implemented with insert_next), we use rayon::join to

spawn two threads and wait for their completion (lines 6 – 9). Both of these threads can iterate the

list and print its content without any synchronization, since we can just pass &GhostToken<'id>
to both of them without violating AXM. This is the kind of read-only thread-safety that (almost) all

Rust data structures provide.

To share a data structure across threads and mutate it, synchronization is of course required to

ensure absence of data races. If coarse-grained synchronization is sufficient, the usual approach is

to wrap the entire data structure with some kind of lock type. For example, to share a Vec<T> across
threads, we would use RwLock<Vec<T>>. Read-locks (resp. write-locks) could then be acquired to

obtain a shared (resp. mutable) reference to the vector.

For doubly-linked lists, however, which type should we put into the RwLock<_>? One might think

that we would end up with RwLock<NodeRef>, but NodeRef only represents a single node. Instead,

the type that represents “the list as a whole” is GhostToken, since it captures the permission that is

required to access and mutate the list. Thus, by putting the GhostToken into an RwLock (line 11),
we can provide exclusive mutable or shared read-only access to the whole list to any number of

threads, analogously to what RwLock<Vec<T>> would provide for a vector (line 12-16).

Considering that the GhostToken is just a phantom type holding no data, it may seem strange

to put “nothing” into the RwLock. However, what really happens here is that RwLock wraps the

permission instead of (as usual) the data. The nodes of the list may not seem like they are inside

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 92. Publication date: August 2021.

GhostCell: Separating Permissions from Data in Rust 92:15

the lock, but conceptually, they are. In that sense, the lifetime 'id in RwLock<GhostToken<'id>>
and GhostCell<'id, T> replaces the usual comments saying “this data is protected by that lock”.

Separating permissions from data lets us implement flexible locking disciplines such as protecting

different fields of a type by different locks (using multiple brand lifetimes)—and the compiler can

still statically enforce that we are using the locking discipline correctly!

Of course, using locks is just one way to perform synchronization. An alternative would be to use

message-passing to transfer ownership of the token from one thread to another; we could use any

Rust implementations of channels for this purpose. Again, no actual data is being transmitted, but

the mere signal that a message of type GhostToken<'id> has been sent suffices to ensure that the

next thread can pick up the token and access all the data it guards without further synchronization.

3.3 Implementing Graph Traversals with GhostCell
In this section, we briefly give a safe and efficient GhostCell-based implementation of the depth-

first search (DFS) algorithm on a possibly cyclic graph data structure that supports interior pointers.

3.3.1 Node structure. A graph node is a slight generalization of a linked list node: instead of having

just one incoming and one outgoing edge, a graph node can have multiple incoming and outgoing

edges. For simplicity, we store only the outgoing edges of each node, using an adjacency list.

1 struct Node<'arena, 'id, T> { data : T, uid : u32, edges : Vec<NodeRef<'arena, 'id, T>>, }

2 type NodeRef<'arena, 'id, T> = &'arena GhostCell<'id, Node<'arena, 'id, T>>;

Here, we also use arenas for memory management. The adjacency list is implemented as a vector

of references to the outgoing nodes. The field uid is a fixed unique identifier for a node, which is

used to efficiently implement DFS (see below). We also implement a Graph data structure whose
main jobs are to create nodes with unique identifiers and to create the DFS data structure.

1 impl<'arena, 'id, T> Graph<'arena, 'id, T> {

2 /// Create and assign a unique id to a node. Requires an arena.

3 pub fn add_node(&mut self, data: T, arena: ...) -> NodeRef<'arena, 'id, T> {...}

4 /// Create a DFS visitor data structure starting from the given root.

5 pub fn dfs_visitor(&self, root: NodeRef<'arena, 'id, T>) -> DFSVisitor<'arena, 'id, T> { ... }

6 }

3.3.2 DFS traversal. The DFS data structure manages the data for a traversal, which contains a

stack to maintain the depth-first order, and a visit map to track already-visited nodes.

1 struct DFSVisitor<'arena, 'id, T> { stack: Vec<NodeRef<'arena, 'id, T>>, mark: FixedBitSet }

We implement the stack as a vector of references to nodes, and the visit map as a bitset [fixedbitset

2021]—which relies on the unique identifiers of nodes. We could have implemented the visit map

as a hash-based set of references, but that is not as efficient as a bitset.

A DFS iteration that mutates the nodes’ data can be implemented as follows:

1 impl<'arena, 'id, T> DFSVisitor<'arena, 'id, T> {

2 /// Mark the node identified by uid as visited.

3 fn visit(&mut self, uid: u32) { ... }

4 /// Check if the node identified by uid is visited.

5 fn is_visited(&self, uid: u32) -> bool { ... }

6 /// A DFS visit that can mutate the data of each node (of type T).

7 pub fn iter_mut(&mut self, token: &mut GhostToken<'id>, mut f: impl FnMut(&mut T)) {

8 while let Some(node) = self.stack.pop() {

9 let node_mut: &mut Node<_> = node.borrow_mut(token); let uid = node_mut.uid;

10 if !self.is_visited(uid) {

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 92. Publication date: August 2021.

92:16 Joshua Yanovski, Hoang-Hai Dang, Ralf Jung, and Derek Dreyer

11 self.visit(uid); f(&mut node_mut.data); // mark the node as visited and apply f

12 let node: &Node<_> = node.borrow(token);

13 for child in node.edges.iter() { // push unvisited child nodes into the stack

14 if !self.is_visited(child.borrow(token).uid) { self.stack.push(child) }

15 }

16 } } }

17 }

The iter_mut function takes amutable reference to a DFSVisitor (&mut self), a mutable reference

to the GhostToken, and a function f that will be called on each node (in DFS order) and can mutate

the node’s data. The DFS implementation is straightforward: the function pops the stack for a

node (line 8), marks it as visited, applies the function f to the node’s data (line 11), then pushes all

un-visited children of node to the stack (line 14), and repeats.

The most important detail is how the GhostToken is borrowed twice to perform the task. First,

in order to mutate the node’s data, we need to get a mutable reference to the node (&mut Node)
by calling borrow_mut with token (line 9). Then, only after that mutable borrow has ended do

we get back the token so that we can immutably borrow the outgoing child nodes while holding
a reference to the current node (line 12 and line 14).

3
We need immutable (shared) borrows here

because we are holding references to two nodes (the current node and a child node) simultaneously

and, in case there is a self-loop, one of these child nodes could very well be the current node itself.

4 PROVING SOUNDNESS OF BRANDED-TYPES APIS IN RUST
In this section, we explain how to prove safety of branded types in general, and GhostCell
specifically. Our soundness proof is done within RustBelt [Jung et al. 2018a], a machine-checked

proof of safety for a significant subset of Rust called 𝜆Rust. RustBelt formally proves the soundness

of 𝜆Rust’s type system, and provides a framework to verify libraries that use unsafe features, such as
BrandedVec and GhostCell. In §4.1, we review the general structure of RustBelt, and in particular

the basic requirements for the verification of unsafe libraries. Then, in §4.2, we present a new

technique for associating lifetimes with logical (ghost) state, which plays a crucial role in the

soundness proofs of branded-types APIs, and we explain how it required us to make some changes

to the modeling of lifetime inclusion in RustBelt. In §4.3, as a warmup, we sketch the soundness

proof for a simplified version of BrandedVec, before proceeding in §4.4 with the one for GhostCell.

4.1 The Semantic Approach of RustBelt
Rust follows an extensible approach to safety: it enforces a sound ownership-based type system

with the AXM principle, but when that type system becomes too restrictive, developers can opt out

and use unsafe operations such as unchecked indexing and type casts in the implementation of

their libraries. It is then the developers’ obligation to show that, despite their use of unsafe features,
their libraries are actually observably safe, in the sense that they never exhibit any unsafe/undefined

behaviors (such as use-after-free or data races) when used by safe code.

The RustBelt work [Jung et al. 2018a] formalizes this approach with a semantic model. This model

defines a safety contract that each function needs to uphold: if the function is called on well-formed

arguments, it must be well-behaved (i.e., not cause any unsafety) and return a well-formed result.

The notion of “well-formedness” is given by the semantic interpretation of types, which (roughly

speaking) defines the representation invariant of the type. For safe functions, the safety contract is

upheld by construction, as established by the type safety proof of RustBelt. However, libraries that

internally use unsafe features need to have their safety contract proven manually. This is done

3
Note that in order to end the mutable borrow here within a conditional branch, we rely on Rust’s “non-lexical life-

times” [Matsakis 2016].

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 92. Publication date: August 2021.

GhostCell: Separating Permissions from Data in Rust 92:17

in two steps: (1) one first picks a semantic interpretation for the library’s types; and then (2) one

proves that the implementation satisfies the library-specific safety contract generated by the API.

We will later consider this contract in more detail for BrandedVec and GhostCell, but first we
briefly review RustBelt’s semantic interpretation of types, and we explain how that interpretation

needs to change to support branding.

Iris and the lifetime logic. The first key design decision of a semantic model is to pick the logic

that is used to express the safety contract. This logic determines the basic vocabulary of abstractions

that are available in the semantic model. The usual approach is to interpret a type as the set of values

that inhabit the type, which works great for simple languages but falls short for languages like Rust:

Rust types denote ownership of resources such as memory, so it is beneficial to pick a logic that comes

with built-in support for reasoning about ownership, such as a separation logic [Reynolds 2002].
Toward this end, RustBelt depends on Iris [Jung et al. 2015, 2018b], a framework for concurrent

separation logic with strong support for interactive proofs in Coq [Krebbers et al. 2017, 2018].

While Iris makes it easy to model the ownership that is implicit in Rust’s types, a semantic

model also has to account for the concepts of borrowing and lifetimes. RustBelt overcomes this

problem by introducing the lifetime logic. Here, we can only give an extremely high-level summary

of the lifetime logic; we refer the reader to the RustBelt paper [Jung et al. 2018a] and Jung’s PhD

thesis [Jung 2020] for further details.

The key idea of the lifetime logic is to extend separation logic with a proposition &
𝜅
full 𝑃 , called

a full borrow of 𝑃 , which expresses temporary ownership of 𝑃 for lifetime 𝜅. This is most clearly

reflected in the following (slightly simplified) central proof rule to create new borrows:

𝑃 &
𝜅
full 𝑃︸ ︷︷ ︸

ownership during 𝜅

∗
(
[†𝜅] 𝑃

)︸ ︷︷ ︸
ownership after 𝜅

This rule says that whenever we own some proposition 𝑃 , we can split 𝑃 into two pieces: a

full borrow &
𝜅
full 𝑃 , which grants access to 𝑃 while the lifetime 𝜅 is ongoing; and an inheritance

[†𝜅] 𝑃 , which grants access to 𝑃 after 𝜅 has ended.
4
(The connective is basically a fancy

version of the magic wand, i.e., a form of implication suitable for separation logic.) Even though both

of these pieces are about 𝑃 (i.e., they overlap in space), we can treat them as separate propositions

because they are disjoint in time: at any given point in time, only one of the two propositions can

be used to access 𝑃 . This justifies the use of a separating conjunction between the two pieces.

The other ingredient of the lifetime logic is the mechanism of lifetime tokens: [𝜅]𝑞 expresses

ownership of some fraction 𝑞 of lifetime 𝜅 . Ownership of the lifetime token reflects that the lifetime

𝜅 is currently still ongoing. This is required to get the 𝑃 out of &
𝜅
full 𝑃 . Ending a lifetime requires

ownership of the full token [𝜅]
1
. The lifetime token then turns into [†𝜅], which (as we already saw

above) serves as a witness that the lifetime has indeed ended.

RustBelt’s semantic interpretation of types. Asmentioned before, the semantic interpretation

of a type in RustBelt is an Iris predicate. However, it is not simply a predicate on values: (1) the

predicate is slightly more involved, and (2) we need two predicates, not just one. Regarding (1),

instead of just considering individual values, Rust types describe data as it is laid out in memory,

potentially spanning multiple locations. The predicate thus considers a list of values.5 Regarding (2),
sharing in Rust is extremely flexible: while most types treat shared data as read-only (following

4
To simplify the presentation, we omit the “later” modality ⊲ and the masks E, which are related to handling step-indexing

and to avoid reentrancy issues with Iris’s invariants, respectively. For further details, see [Jung et al. 2018b; Jung 2020].

5
The full model also requires a thread ID to reflect Rust’s ability to reason about whether a type is safe to send to another

thread, or safe to share across thread boundaries. To simplify the presentation here, we omit the thread IDs.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 92. Publication date: August 2021.

92:18 Joshua Yanovski, Hoang-Hai Dang, Ralf Jung, and Derek Dreyer

AXM), types that involve interior mutability actually use arbitrarily complex sharing protocols

to ensure soundness—from Cell, which ties the data to a particular thread, to RwLock, which
implements run-time checks in a fine-grained concurrent protocol. In order to support all these

types, RustBelt considers two predicates for each type: the ownership predicate governs values that
are uniquely owned, and the sharing predicate governs values that are shared.

J𝜏K.own ∈ List(Val) → iProp J𝜏K.shr ∈ Lft × Loc → iProp

Here, iProp is the type of Iris propositions. The ownership predicate, J𝜏K.own(v), defines whether
the list of valuesv is a valid owned inhabitant of 𝜏 . It is also used to define the semantic interpretation

of mutable references (&mut T). The sharing predicate, J𝜏K.shr(𝜅, ℓ), defines whether the location ℓ

is a valid shared reference to an inhabitant of 𝜏 (&T), borrowed for the lifetime 𝜅.

4.2 Key Idea: Associating Lifetimes with State
The key idea underlying the soundness proof of both BrandedVec and GhostCell is to associate
the brand phantom lifetime with some state, such as the current length of the vector or the current

state of the GhostToken (i.e., whether it is currently being used to access some GhostCell). In this

subsection we will discuss how this idea is reflected in our proofs, and how RustBelt had to be

adjusted so that the idea could be used in the soundness proof of a Rust library.

Before we can explain how a lifetime can be associated with state, we first need to explain how

state is handled in Iris. Iris has a very general built-in notion of ghost state, which is a purely logical

concept that is not tied to any actual program variables. As such, ghost state is governed by a set of

proof rules; we will see some examples of that shortly. Iris then uses invariants to tie this ghost

state to observably physical state such as the length of a vector; in RustBelt proofs, the semantic

interpretation of a type typically plays the role of that invariant. The details of how that works do

not matter yet; the key point is that given established Iris techniques, the one new ingredient we

need for proofs involving branding is to associate lifetimes with ghost state. As an example, we

consider the ghost state that will be required for the verification of BrandedVec.

Monotone counters. At the heart of the BrandedVec proof lies the fact that the length of the

vector is monotonically increasing, and hence any BrandedIndex is a lower bound on whatever

the current length is, even if that length has changed since the index has been bounds-checked. A

monotone counter can be constructed as ghost state in Iris with the following properties:

MonoInit

True ∃𝛾 .MonoVal(𝛾, 𝑛)
MonoIsLb

MonoVal(𝛾, 𝑛) ∗MonoLb(𝛾,𝑚) −∗𝑚 ≤ 𝑛

MonoUpdate

𝑛 ≤ 𝑚

MonoVal(𝛾, 𝑛) MonoVal(𝛾,𝑚)

MonoMakeLb

𝑚 ≤ 𝑛

MonoVal(𝛾, 𝑛) −∗ MonoLb(𝛾,𝑚)
Here, MonoVal(𝛾, 𝑛) expresses ownership of the counter named 𝛾 , which implies exact knowledge

of its current value 𝑛 and the ability to increase the counter via MonoUpdate.
6
A counter can be

allocated withMonoInit, which gives aMonoVal(𝛾, 𝑛) with a fresh name 𝛾 .MonoLb(𝛾, 𝑛) expresses
knowledge that the current value of the counter is at least 𝑛, as expressed by MonoIsLb.

7
Since

MonoLb is pure knowledge, it can be freely duplicated (we omitted this proof rule for space reasons).

6
The in these two rules indicates that applying these lemmas has the side-effect of updating the ghost state—but for the

purpose of our high-level tour of the soundness proof, the difference between and −∗ does not matter much.

7
It may seem like this rule consumes ownership ofMonoVal, but in fact that is not the case—in Iris, when the right-hand side

of a magic wand consists of statements like𝑚 ≤ 𝑛 and MonoLb(𝛾,𝑛) that are freely duplicable (in Iris lingo, persistent), it
can be applied without consuming the left-hand side [Jung et al. 2018b].

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 92. Publication date: August 2021.

GhostCell: Separating Permissions from Data in Rust 92:19

The ruleMonoMakeLb takes a “snapshot” of the current counter value and produces a corresponding

MonoLb; this snapshot may be weakened to any smaller value.

Notice how in these proof rules, the name 𝛾 of the counter plays an important role: rules like

MonoIsLb only work when a MonoVal and a MonoLb for the same counter are brought together.
When verifying branded types, what we need is a way for the phantom lifetime 'id to take the role
of that 𝛾—then we can have aMonoVal in BrandedVec<'id> reflecting the length, and a MonoLb
in BrandedIndex<'id>, and we would know that whenever the brand matches, both are actually

talking about the same underlying piece of ghost state. In other words, we need a way to map a
phantom lifetime to a ghost name.

Associating lifetimes with ghost names. To achieve this, we have extended the lifetime logic

with a new proposition GhostLft(𝜅,𝛾), a (freely duplicable) witness that the lifetime 𝜅 is associated

with some unique ghost name 𝛾 , where uniqueness is expressed by this key rule:

GhostLft(𝜅,𝛾1) ∗ GhostLft(𝜅,𝛾2) −∗ 𝛾1 = 𝛾2 (GhostLftLookup)

One way to think about this is to imagine a kind of “immutable heap” where lifetimes serve as

locations, and at each location we can store the corresponding ghost name. GhostLft then serves

as the equivalent of the usual points-to assertion of separation logic for this particular heap.

With GhostLft, we can now define syntactic sugar for a “monotone counter identified by a

lifetime” via MonoVal(𝜅id,𝑚) := ∃𝛾 .GhostLft(𝜅id, 𝛾) ∗MonoVal(𝛾,𝑚), and similarly for MonoLb.
Thanks to GhostLftLookup, most of the proof rules above still hold when using 𝜅id as an identifier

instead of a ghost name 𝛾 . Only the initialization rule MonoInit changes; it has to be tied to the

allocation of the brand lifetime 𝜅id itself.

To summarize, GhostLft and GhostLftLookup reflect the core power of branding: if we can make

sure that two types with the same brand lifetime 'id work on shared ghost state, we can use Iris to

establish arbitrary kinds of coordination between these two types.

However, before we sketch in §4.3 and §4.4 how this general approach is applied to the concrete

cases of BrandedVec and GhostCell, let us first discuss the technical challenges we had to overcome

in order to add support for GhostLft in RustBelt:

(1) Previously, in RustBelt, the lifetime logic made no guarantee that a newly allocated lifetime is

fresh—a property needed to perform the association with a ghost name in BrandedVec::new
and GhostToken::new. To minimize changes to the lifetime logic, we develop a “reservation”

system which separates the table that maps lifetimes 𝜅id to their associated 𝛾 from the rest of

the lifetime logic, while still making sure that the newly allocated lifetime is fresh in that

table. However, for space reasons, we elide further discussion of this reservation system here

and focus instead on the second, more conceptually interesting challenge.

(2) In the original RustBelt, lifetimes were treated extensionally (see below). However, the asser-

tion GhostLft(𝜅id, 𝛾) is inherently tied to the syntactic representation of the lifetime 𝜅id, so

we had to find a way to make RustBelt less extensional without unduly affecting the type

system or soundness proofs of other libraries. We will now explain this point in detail.

The extensional treatment of lifetimes. To explain the extensional treatment of lifetimes in

RustBelt, we consider the lifetime inclusion relation, 𝜅1 ⊑ 𝜅2, which says that 𝜅1 will end before 𝜅2
does.

8
Lifetime inclusion is crucial for subtyping; for example, reference types permit replacing

longer lifetimes by shorter ones:

𝜅1 ⊑ 𝜅2 ⊢ &𝜅2
mut 𝜏 ⊑ &

𝜅1
mut 𝜏

8
This is RustBelt terminology. In Rust lingo, one typically states this in reverse: “𝜅1 ⊑ 𝜅2” means “𝜅2 outlives 𝜅1”.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 92. Publication date: August 2021.

92:20 Joshua Yanovski, Hoang-Hai Dang, Ralf Jung, and Derek Dreyer

The symmetric closure of lifetime inclusion induces an equivalence relation, defined as follows:

𝜅1 ≡ 𝜅2 := 𝜅1 ⊑ 𝜅2 ∧ 𝜅2 ⊑ 𝜅1. RustBelt requires the subtyping of all types to respect this lifetime

equivalence relation ≡. For example, for BrandedIndex, we have to prove the subtyping property:9

𝜅1 ≡ 𝜅2 ⊢ BrandedIndex(𝜅1) ⊑ BrandedIndex(𝜅2) (BrandedIndexSub)

However, BrandedIndex cannot satisfy BrandedIndexSub! This is caused by the use ofGhostLft:
𝜅1 ≡ 𝜅2 does not imply GhostLft(𝜅1, 𝛾) ⇒ GhostLft(𝜅2, 𝛾), because lifetime inclusion is not

antisymmetric, i.e., 𝜅1 ≡ 𝜅2 ̸⇒ 𝜅1 = 𝜅2.

This lack of antisymmetry arises because lifetime inclusion (⊑) is defined by RustBelt semantically:
𝜅1 is included in 𝜅2 if one can always “trade” a token for 𝜅1 (witnessing that this lifetime is still

alive) for a token for 𝜅2. This “trade” may use Iris invariants and arbitrary ghost state protocols, so

it is “dynamic” in the sense that as the proof state evolves, the relation can grow to relate more

lifetimes with one another. The dynamic nature of semantic inclusion plays a crucial role in the

soundness proof of types such as RwLock.

Syntactic lifetime inclusion. Since GhostLft cannot be compatible with ≡, we have to change

RustBelt’s notion of lifetime inclusion so that BrandedIndexSub holds. To this end, we extend

RustBelt to provide a second, syntactic form of lifetime inclusion, 𝜅 ⊑syn 𝜅 ′
. Syntactic lifetime

inclusion is defined in terms of the lifetime intersection operation in RustBelt as follows:

𝜅 ⊑syn 𝜅
′
:= ∃𝜅 ′′. 𝜅 ′′ ⊓ 𝜅 ′ = 𝜅

In other words,𝜅 is syntactically included in𝜅 ′
if it can be written as the intersection of𝜅 ′

with some

other lifetime 𝜅 ′′
. Unlike semantic inclusion, syntactic inclusion is static: its structure cannot be

changed even as the proof state evolves.
10
And crucially, it enjoys antisymmetry. BrandedIndexSub

may thus assume proper equality 𝜅1 = 𝜅2, making the proof trivial.

To use syntactic lifetime inclusion for subtyping, we made the following changes to RustBelt:

• We adjusted the semantic interpretation of external lifetime contexts, a component of the

typing judgments that expresses assumptions about how the currently available lifetimes

are included in each other. In RustBelt, this was modeled with semantic inclusion; we had to

change this to use syntactic inclusion instead.

• This changed interpretation broke the proof of one typing rule called “lifetime equalization”.

We discuss the adaptation of that rule below.

• Furthermore, we had to redo the proof of a key lemma involved in calling functions and

ensuring that their assumptions about lifetime parameters do indeed hold. The old proof

exploited semantic lifetime inclusion in external lifetime contexts in a crucial step. The proof

was fixed by adjusting the semantic interpretation of the local lifetime context, which tracks

the lifetimes that were started inside the local function and can be ended using the appropriate

typing rule. This change affected the semantic interpretation of all judgments that have a

local lifetime context, but not in any fundamental way.

Except for this “lifetime equalization” rule, the type system is unaffected by these changes. The

remaining proofs (for the type system and the previously verified unsafe libraries) required barely

any updates. In particular, the changes to the semantic model did not affect soundness proofs that

internally relied on semantic lifetime inclusion, such as the one of RwLock: those lifetime inclusions

never end up in the syntactic lifetime contexts of the type system, so the soundness proofs can

proceed as before.

9
We use BrandedIndex as notation for the mathematical model of the Rust type BrandedIndex in RustBelt.

10
Technically, semantic inclusion is an Iris proposition iProp, while syntactic inclusion is a Coq proposition Prop.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 92. Publication date: August 2021.

GhostCell: Separating Permissions from Data in Rust 92:21

Lifetime equalization. The one typing rule that no longer holds under the new semantic model

is the “lifetime equalization” rule [Jung 2020, §9.4] (not presented in the RustBelt paper). This rule

makes two lifetimes equal by applying semantic lifetime inclusion to give up the “right to end” one of

the involved lifetimes. This is fundamentally incompatible with making lifetime inclusion syntactic,

and indeed a slight variant of this rule can be used to typecheck a program that breaks branding

(i.e., under this adjusted type system, branding would be unsound). The lifetime equalization rule

was originally added to typecheck Rust programs that the official Rust compiler does not actually

accept but that the Rust developers hope to accept in the future, with the next-generation borrow

checker Polonius [Matsakis 2018]. We replaced this rule by a weaker variant that is compatible with

syntactic lifetime inclusion and still sufficiently strong to typecheck the example motivating the

original rule (see the README.md in our supplementary material for a reference to the new rule).

4.3 Soundness of a Simplified Variant of BrandedVec
We are now ready to show soundness of (a simplified version of) BrandedVec by modeling that

type in RustBelt and verifying that it satisfies the safety contract determined by its public API.

To focus attention on the interesting part of the verification, we reduce the BrandedVec API to its
core functionality: ensuring that all values of type BrandedIndex are in-bounds of their associated

vector. Other aspects of BrandedVec, in particular actually storing the elements of the vector

somewhere, are completely orthogonal to the use of branding to avoid a dynamic bounds-check,

and have thus been omitted from our formalization. (For example, the type parameter T for the

element type disappears from our model.) Thus, in our core model, a BrandedVec is simply an

integer representing the current length of the vector, whose value is incremented by every push.
Correspondingly, the indexing methods get and get_mut simply get stuck if the given index is

out-of-bounds. Our safety proof then establishes that these stuck paths are unreachable, by showing

that a BrandedIndex<'id> is always in-bounds of the corresponding BrandedVec<'id>.

The interpretations of the types. The semantic interpretation of owning a BrandedVec<'id>
and a BrandedIndex<'id> crucially relies onMonoVal(𝜅id, 𝑛) andMonoLb(𝜅id, 𝑛), defined in §4.2:

JBrandedVec(𝜅id)K.own(v) := ∃𝑛.v = [𝑛] ∗MonoVal(𝜅id, 𝑛)
JBrandedIndex(𝜅id)K.own(v) := ∃𝑚.v = [𝑚] ∗MonoLb(𝜅id,𝑚 + 1)

In other words, owning a BrandedVec corresponds to ownership of a counter that reflects its

length,
11
whereas owning a BrandedIndex implies owning a witness that the length of the corre-

sponding BrandedVec is at least 𝑚 + 1—i.e.,𝑚 is an in-bounds index.

Soundness of get_mut. We are now ready to verify correctness of get_mut. As we have simpli-

fied the vector implementation to just storing its length, the type signature looks as follows:

fn get_mut<'id>(vec: &mut BrandedVec<'id>, idx: BrandedIndex<'id>)

In our simplified model, get_mut causes a stuck state (by dereferencing a bad pointer) if idx is not

in-bounds for vec.
To prove that get_mut is safe—i.e., it does not get stuck—the contract of get_mut gives us

ownership of the (borrowed) vector J&𝜅
mut BrandedVec(𝜅id)K.own(vvec) and ownership of the

index JBrandedIndex(𝜅id)K.own(vidx). Note that the vector argument is wrapped in a mutable

reference. The semantic model of mutable references in RustBelt is defined as follows:

J&𝜅
mut 𝜏K.own(v) := ∃ℓ .v = [ℓ] ∗ &𝜅

full
(
∃v ′. ℓ ↦→ v ′ ∗ J𝜏K.own(v ′)

)
11
To model the original BrandedVec, we would of course also need to account for ownership of the underlying data buffer.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 92. Publication date: August 2021.

92:22 Joshua Yanovski, Hoang-Hai Dang, Ralf Jung, and Derek Dreyer

That is, a mutable reference is a location ℓ , and the associated ownership is described using the &𝜅
full

connective of the lifetime logic: with the mutable reference comes temporary ownership of the data

v ′ that ℓ points to. Ownership is temporary in the sense that it has been borrowed for lifetime 𝜅.

However, we know that the associated lifetime 𝜅 is alive (RustBelt provides an appropriate lifetime

token), so we can access the borrowed resources for the duration of our proof. In our case, this

means we obtain ownership of the BrandedVec, i.e., we obtain JBrandedVec(𝜅id)K.own(v ′vec).
The remaining reasoning is summarized by the following lemma:

JBrandedVec(𝜅id)K.own(v ′vec) ∗ JBrandedIndex(𝜅id)K.own(vidx) −∗
∃𝑛,𝑚.v ′vec = [𝑛] ∗vidx = [𝑚] ∗𝑚 < 𝑛

The proof of this lemma follows directly from GhostLftLookup andMonoIsLb, and finally exploiting

that𝑚 + 1 ≤ 𝑛 is equivalent to𝑚 < 𝑛. From this lemma, it follows that get_mut indeed cannot get

stuck, which completes the proof.

Shared references and shared borrows. As a second example, we want to sketch the soundness

proof of get_index. This function takes as argument a shared reference &BrandedVec<'id>, so
before we can talk about its proof we need to discuss the sharing predicate of BrandedVec. As
already explained, the sharing predicate is how RustBelt accounts for the fact that Rust types have a

lot of freedom in how to justify correctness of the shared interactions offered by the type. However,

a few common patterns are enough to account for the sharing predicate of most Rust types, so

RustBelt provides some reusable reasoning principles for this purpose. For BrandedVec, the two
relevant kinds of sharing are captured by fractured borrows and atomic borrows.

The proposition &
𝜅
frac 𝜆𝑞.𝛷 (𝑞), called a fractured borrow, captures the idea that𝛷 (1) is borrowed

for some lifetime 𝜅, but there are many parties that have access to this borrow, so each party can

only get some fraction𝛷 (𝑞) of the overall resources. For this to work, we require that summing

fractions corresponds to separation conjunction, i.e.,𝛷 (𝑞1 + 𝑞2) ⇔ 𝛷 (𝑞1) ∗𝛷 (𝑞2).
Like fractured borrows, an atomic borrow &

𝜅
at 𝑃 is shared between many parties; unlike fractured

borrows, each party can get full access to the entire 𝑃—but only for a single step of computation;

nobody is allowed to “hold on” to 𝑃 for longer periods of time.

Sharing a BrandedVec. The sharing predicate of BrandedVec is now defined as follows:

JBrandedVec(𝜅id)K.shr(𝜅, ℓ) := ∃𝑛.
(
&
𝜅
frac 𝜆𝑞. ℓ

𝑞↦−→ 𝑛
)
∗ &𝜅

at MonoVal(𝜅id, 𝑛)

Here, we use a fractured borrow to manage ownership of the underlying memory where the length

of the vector is stored. The borrow gives access to some fraction of the ownership of that memory

location, which is good enough to perform reads, reflecting that the vector is indeed immutable

for as long as the sharing lasts. Meanwhile, the atomic borrow is used to provide everyone with

instantaneous access to the counter viaMonoVal(𝜅id, 𝑛). The counter value 𝑛 cannot be changed

(notice how it is existentially quantified outside the atomic borrow and tied to the value stored at

ℓ), but MonoMakeLb will let us take a snapshot of the current value, which is sufficient to create a

new BrandedIndex, as we will see next.

Soundness of get_index. The core of this proof is reflected by the following key lemma:

[𝜅]𝑞 ∗ JBrandedVec(𝜅id)K.shr(𝜅, ℓvec) (GetIndexCore)

∃𝑛, 𝑞′. ℓvec
𝑞′↦−→ 𝑛 ∗

(
∀𝑚.𝑚 < 𝑛 JBrandedIndex(𝜅id)K.own([𝑚])

)
∗(

ℓvec
𝑞′↦−→ 𝑛 [𝜅]𝑞 ∗ JBrandedVec(𝜅id)K.shr(𝜅, ℓvec)

)
Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 92. Publication date: August 2021.

GhostCell: Separating Permissions from Data in Rust 92:23

This lemma is a lot to take in, so let us go over it slowly. First, GetIndexCore takes the assumptions

that RustBelt’s interpretation of the type of get_index gives us: a shared instance of BrandedVec,
and some fraction of the corresponding lifetime token 𝜅 (witnessing that 𝜅 is alive).

Then GetIndexCore gives us ownership of some fraction 𝑞′ of the memory ℓvec where the counter’s

current length 𝑛 is stored, which allows us to read and compare the length with the input idx.
This part of GetIndexCore is proven by unfolding the sharing predicate and opening the fractured

borrow.

GetIndexCore also gives us ∀𝑚.𝑚 < 𝑛 JBrandedIndex(𝜅id)K.own([𝑚]), which says that

for any in-bounds𝑚 (strictly less than 𝑛), we can get a well-formed BrandedIndex<'id> for𝑚. So

if the input idx is indeed in-bounds, we can use this to construct the corresponding BrandedIndex
as the return value. This part of GetIndexCore is proven by accessing the atomic borrow, using

MonoMakeLb to take a snapshot of the length, and immediately closing the borrow again (satisfying

the requirement that atomic borrows can only be opened for a single step of computation).

Finally, GetIndexCore provides a way to close the fractured borrow again, which consumes

ownership of ℓvec in order to be able to give back the lifetime token.

The full soundness proof of our simplified variant of BrandedVec can be found in the Coq artifact

that is part of our supplementary material [Yanovski et al. 2021].

4.4 Soundness of GhostCell
Finally, we come to the soundness proof of GhostCell itself. As with BrandedVec, we need to

define the semantic interpretation of both GhostCell<'id, T> and GhostToken<'id>, and we

need to show that all public functions of the GhostCell API are safe under this interpretation. For

space reasons, we cannot discuss the interpretations and associated proofs in detail. Instead, we try

to give a high-level intuition for the structure of the proof, and for the key challenge: tying the

state of a GhostCell to the state of the associated GhostToken.

The interpretation of GhostToken<'id>. A ghost token is always in one of two possible states:

either it is currently owned (state StOwn), and can be used in a call to GhostToken::borrow_mut to
grant mutable access to some GhostCell, or it is currently shared (state StShr(𝜅), with 𝜅 denoting

for how long the sharing lasts), and can be used in any number of calls to GhostToken::borrow to

grant shared access to several different GhostCells. As we did for monotone counters, we use Iris

ghost state to manage this state of GhostToken. Its proof rules are as follows:

TokInit

True ∃𝛾 . TokState1 (𝛾, StOwn)
TokUpdate

TokState1 (𝛾, 𝑠) TokState1 (𝛾, 𝑠 ′)
TokState𝑞1+𝑞2 (𝛾, 𝑠) ⇔ TokState𝑞1 (𝛾, 𝑠) ∗ TokState𝑞2 (𝛾, 𝑠) (TokSplit)

TokState𝑞1 (𝛾, 𝑠) ∗ TokState𝑞2 (𝛾, 𝑠 ′) −∗ (𝑠 = 𝑠 ′) ∗ (𝑞1 + 𝑞2 ≤ 1) (TokCombine)

Here, TokState𝑞 (𝛾, 𝑠) says that the current state of the ghost token named 𝛾 is 𝑠 (which can be either

StOwn or StShr(𝜅)), and that we own fraction 𝑞 of that state. Owning the entire state (fraction 1)

lets us use TokUpdate to switch to a different state, and when multiple fractions of the state are

brought together, we learn that they must agree and cannot sum up to more than 1 (TokCombine).

As with BrandedVec, we will use GhostLft to tie the brand lifetime 𝜅id to the name 𝛾 of the ghost

state. We will write TokState𝑞 (𝜅id, 𝑠) as shorthand for ∃𝛾 .GhostLft(𝜅id, 𝛾) ∗ TokState𝑞 (𝛾, 𝑠), hiding
the indirection from lifetimes to ghost names. This is justified by GhostLftLookup.

Based on this, the ownership and sharing predicate of GhostToken are defined (essentially) as:

JGhostToken(𝜅id)K.own(v) := v = [] ∗ TokState1 (𝜅id, StOwn)
JGhostToken(𝜅id)K.shr(𝜅, ℓ) := ∃𝜅 ′. 𝜅 ⊑ 𝜅 ′ ∗ &𝜅′

frac 𝜆𝑞. TokState𝑞 (𝜅id, StShr(𝜅
′))

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 92. Publication date: August 2021.

92:24 Joshua Yanovski, Hoang-Hai Dang, Ralf Jung, and Derek Dreyer

The ownership predicate says that a token stores no data: the list v has to be empty. Moreover, it

appropriately reflects the fact that the GhostToken is fully owned with the ghost state StOwn.
Similarly, the sharing predicate says that when the token is shared for the lifetime 𝜅 , that fact is

reflected in the corresponding ghost state StShr(𝜅 ′) for some lifetime 𝜅 ′
that is at least 𝜅 (𝜅 ⊑ 𝜅 ′

).

The use of ⊑ allows subtyping with respect to lifetimes. As before, the use of a fractured borrow

implies that for the duration of 𝜅 ′
, anyone can borrow some fraction of this ghost state.

The interpretation of GhostCell<'id, T>. For GhostCell<'id, T>, the ownership predicate
is trivial—when the cell is not shared, it behaves exactly like T. This matches what RustBelt does for

Cell<T> and also makes it easy to verify the safety contract of all methods that work with owned

or mutably borrowed GhostCells (e.g., GhostCell::new, GhostCell::get_mut).

JGhostCell(𝜅id, 𝜏)K.own(v) := J𝜏K.own(v)

For the sharing predicate, we focus on the parts that interact with the ghost token state:

JGhostCell(𝜅id, 𝜏)K.shr(𝜅 ′, ℓ) := &
𝜅′
at

((
&
𝜅′

full (∃v. ℓ ↦→ v ∗ J𝜏K.own(v))
)
∨ (1)(

∃𝜅. (&𝜅
full TokState1 (𝜅id, StOwn)) ∗ . . .

)
∨ (2)(

∃𝜅. (&𝜅
frac 𝜆𝑞. TokState𝑞 (𝜅id, StShr(𝜅))) ∗ J𝜏K.shr(𝜅 ⊓ 𝜅 ′, ℓ) ∗ . . .

))
(3)

The sharing predicate of GhostCell is a big atomic borrow, corresponding to an invariant that

is maintained for the duration of the sharing (i.e., lifetime 𝜅 ′
). This invariant consists of three

possible states, somewhat similar to the three possible states of an RwLock—but unlike the state of a
reader-writer lock, the state of a GhostCell is purely logical! The three possible states are reflected

in a three-way disjunction: it is currently not accessed at all (1, corresponding to the lock being

unlocked), accessed mutably (2, “write-locked”), or accessed in a shared way (3, “read-locked”).

In case (1), the sharing predicate fully owns the (borrowed) content of the GhostCell at type 𝜏 .

Just like with a lock that is not held, ownership fully resides in the GhostCell, and there is

no interaction with the GhostToken. In case (2), that ownership of 𝜏 has been taken out of the

sharing predicate by a call to GhostCell::borrow_mut; in exchange, (borrowed) ownership of the

GhostToken that was passed to borrow_mut is held inside the sharing predicate, ensuring that the

token cannot be used by anyone else until the borrow ends. Similarly, in case (3), the GhostCell
sharing predicate holds ownership of a shared GhostToken—i.e., it borrows some fraction of the

token’s ghost state which has to be StShr(𝜅). Moreover, it holds a proof that the GhostCell content
is currently satisfying the sharing predicate of T (J𝜏K.shr(. . .)), for a lifetime that corresponds to

the intersection of the lifetime 𝜅 ′
for which the GhostCell is shared, and the lifetime 𝜅 for which

the corresponding GhostToken is shared. This is crucial because the sharing of the GhostToken
could end earlier than that of the GhostCell, in which case the GhostCell content needs to stop
being shared to be ready for another borrow_mut.
To see how the sharing predicate works in action, we consider what happens in the proofs of

borrow_mut and borrow, respectively.

borrow_mut. Here, we are given a shared GhostCell and a mutable reference to a GhostToken.
The function returns a mutable reference &mut T to the content of the GhostCell; the proof needs
to justify this by showing that the corresponding ownership can be obtained. We perform case

distinction on the current state of the GhostCell. If it is currently in state (1), i.e., “unlocked”, thenwe
“write-lock” it by transitioning to state (2). We can take out a full borrow of ∃v. ℓ ↦→ v ∗ J𝜏K.own(v),
which exactly corresponds to a mutable reference to T (the return type of borrow_mut), and we

put the mutable reference of the GhostToken into the invariant. If the state is currently (2) or (3),

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 92. Publication date: August 2021.

GhostCell: Separating Permissions from Data in Rust 92:25

i.e., “locked”, we can show a contradiction: the mutable reference to the GhostToken that we got as

an input lets us borrow ownership of TokState1 (𝜅id, StOwn), so nobody else can own any fraction

of this ghost state. And yet, in both (2) and (3), the GhostCell has at least some fraction 𝑞 of this

ghost state that can be borrowed. Combined with TokCombine, this leads to 1 + 𝑞 ≤ 1 for a positive

fraction 𝑞: a contradiction.12

borrow. Again, we perform a similar case distinction. Remember that we are given a shared

GhostCell and a shared GhostToken, and we have to prove that we can return &T, a shared

reference to the content of the GhostCell. If the GhostCell is currently in state (1), i.e., “unlocked”,
we transition to state (3), “read-locking” it. Again we can take out borrowed ownership of the

content at type T and initiate sharing of that T. If the GhostCell is in state (2) “write-locked”,

there is a contradiction, with arguments similar to the case of borrow_mut above. Finally, if the

GhostCell is in state (3), then it is already read-locked. The sharing predicate for T is stored in the

one for GhostCell, so we can successfully return a shared reference.
13

This completes the proof sketch for GhostCell. In our supplementary material [Yanovski et al.

2021], we provide the full formal proof in Coq.

5 COMPARISONWITH OTHER INTERIOR-MUTABLE TYPES
In this section, we briefly compare GhostCell with Rust’s existing types for interior mutability.

5.1 Micro-benchmarks
Conceptually, it is clear that GhostCell should perform better than the interior-mutable types of

Rust that do dynamic, fine-grained permission tracking. To validate such a claim, we set up two

micro-benchmarks for our doubly-linked list and graph examples.

The environment. We ran our benchmarks on a 3.3 GHz Intel Core i5 with 4 cores, running

Debian 9, using Rust 1.52.1. Measurement and data gathering were done by criterion [Heisler and

Aparicio 2020], a statistics-driven benchmarking library for Rust.

Doubly-linked lists. We compare our GhostCell-based linked list implementation against

those of the only other thread-safe interior mutable types that permit interior pointers: RwLock and
Mutex. We use a simple client similar to that in §3.2.3: we initialize linked lists of 100,000 integer

nodes with insert_next, then perform parallel immutable iteration on 4 threads using iterate.
In Figure 2, we report the median execution time as well as the median absolute deviation (MAD),

both in milliseconds (𝑚𝑠). The GhostCell version performs at least 10x better than the other two,

confirming the expectation that both Mutex and RwLock have prohibitive performance costs. It is

somewhat surprising that Mutex is faster than RwLock despite only RwLock permitting concurrent

reads; likely, this is caused by the fact that the critical section is tiny, so the overhead is dominated

by the lock implementation itself—and Mutex is simpler than RwLock.

DFS traversals on graphs. We compare our GhostCell-basedDFS implementation (§3.3) against

naive versions based on Mutex and RwLock. We initialize a cyclic graph with 100,000 nodes with

integer data and 400,000 edges, and then perform (1) singled-threaded immutable traversals, (2)

parallel immutable traversals with 4 threads, and (3) single-threaded mutable traversals. The results

are shown in Figure 3: again, GhostCell performs much better, for the same reason as before.

For a more realistic comparison, we also benchmark our implementation against an implementa-

tion using the Graph type of petgraph (version 0.5.1)—the currently most widely used Rust library

12
There is another case of the proof here that we are omitting: if the lifetime 𝜅 that is quantified in the GhostCell sharing

predicate has already ended, resources that we have omitted here can be used to transition to state (1) and proceed as before.

13
Again, to simplify matters, we omitted what happens in cases (2) and (3) when the lifetime 𝜅 has already ended.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 92. Publication date: August 2021.

92:26 Joshua Yanovski, Hoang-Hai Dang, Ralf Jung, and Derek Dreyer

Benchmarks (median time ± the median absolute deviation)

Data structure: Initialization (𝑚𝑠) 4-thread Parallel Iteration (𝑚𝑠)

Doubly-linked lists (100K nodes) (insertions) (immutable reads)

GhostCell 0.26 ±.001 0.14 ±.001
Mutex 10.4 ±.01 2.0 ±.03
RwLock 14.1 ±.02 3.3 ±.02

Fig. 2. Comparing doubly-linked list implementations: GhostCell vs. Mutex and RwLock.

Benchmarks (median time ± the median absolute deviation)

Algorithm: DFS

(100K nodes, 400K

edges)

Initialization

(𝑚𝑠)

1-thread Immutable

Iteration (𝑚𝑠)

4-thread Immutable

Iteration (𝑚𝑠)

1-thread Mutable

Iteration (𝑚𝑠)

GhostCell Vec 5.83 ±.02 1.11 ±.01 1.26 ±.004 1.18 ±.02
GhostCell List 1.33 ±.002 1.36 ±.001 1.58 ±.006 1.52 ±.003
petgraph’s Graph 2.11 ±.002 1.60 ±.003 1.73 ±.004 1.58 ±.004
Mutex 16.97 ±.02 5.09 ±.04 5.54 ±.02 5.07 ±.09
RwLock 21.86 ±.04 7.84 ±.06 11.54 ±.14 6.93 ±.07

Fig. 3. Comparing DFS implementations: GhostCell vs. Mutex, RwLock, and petgraph::graph::Graph.

for graphs [petgraph 2021]. petgraph uses a Vec-based representation, where nodes are stored in

a vector and the adjacency lists use indices into the vector to refer to child nodes. This permits an

efficient implementation in safe Rust, at the cost of an extra indirection through the node index.

The results in Figure 3 show that iteration on GhostCell is consistently slightly faster than on

petgraph’s Graph. We hypothesize that the difference may be due to petgraph’s need to perform

bounds checks when indexing into the nodes array. Initialization is slightly slower with “GhostCell

Vec”, which uses a Vec to store the list of edges (as in §3.3). Those arrays are stored outside the

arena on the regular heap, making allocation more costly. The “GhostCell List” version improves

initialization performance by implementing adjacency lists as a linked list stored inside an arena

(which is more comparable with petgraph, where an index-based linked list data structure is used

for the adjacency list).

Our results show that a GhostCell-based graph can achieve performance competitive with a

state-of-the-art production-grade Rust graph library.

5.2 Rust’s Interior-Mutable Types
We have focused our discussion in this paper on comparing GhostCell against RwLock, since
(together with Mutex) it is the only interior-mutable type available in Rust that offers interior

pointers and thread-safety. Here we briefly discuss why the remaining interior-mutable types of

Rust do not provide the desired API for the doubly-linked list.

(1) No interior pointers: Cell<T> and AtomicCell<T>14 provide a thin wrapper around a type

T, but only support operations to get and set the current value of type T as a whole. One

cannot make interior pointers into the underlying data T, so one cannot perform in-place

mutation, and passing the data around would require a full copy.

14AtomicCell is not part of the Rust standard library but provided a widely-used user library [crossbeam 2021].

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 92. Publication date: August 2021.

GhostCell: Separating Permissions from Data in Rust 92:27

(2) Not thread-safe: RefCell<T> is more flexible than Cell in that it supports interior pointers

and in-place mutation; however (like Cell) it is not thread-safe, so neither concurrent read-

only access, nor transfer of ownership between threads, are possible. It is also not zero-cost:

RefCell is a single-threaded reader-writer lock, and tracking that state incurs overhead.

To summarize, unlike GhostCell, none of the existing types for interior mutability in Rust is

able to combine support for interior pointers with a zero-cost implementation.

6 RELATEDWORK
In their development of the ST monad, Launchbury and Peyton Jones [1995] discovered that rank-2

polymorphic types [Kfoury andWells 1994]—in conjunction with a style of data type that later came

to be known as phantom types [Fluet and Pucella 2006]—could be used to simulate a lightweight

form of state-dependent types. Under this approach, the phantom type parameters of a type—

i.e., the type parameters that merely played a role in restricting the use of the type but did not

serve any actual syntactic function in its underlying implementation—could serve as brands: static
representatives of dynamically generated state. For example, with the ST monad, the type ST s t
refers to a monadic computation producing a value of type t, which may contain references into

a piece of state represented abstractly by the brand s. The use of rank-2 polymorphism enables

the API to enforce that clients work with an arbitrary, abstract brand. If a term inhabits the type

ST s t for an arbitrary brand s, its monadic computation cannot depend on any external state, so

the runST primitive allows one to safely escape the monad by executing the monadic computation

and producing a pure term of type t.
Kiselyov and Shan [2007] took this style of API further, showing how branded types could be used

(in the context of a standard functional language like ML or Haskell) to enforce protocols on the

use of a data structure, which could guarantee that accesses to the data structure were safe without

requiring run-time checks. They referred to this approach as “lightweight static capabilities”. Later,

Beingessner [2015] applied a similar idea to Rust in the development of her “unchecked indexing”

API, which we discussed in §2. In the Rust setting, it became necessary to represent brands using

phantom lifetimes, rather than phantom types, because Rust only supports rank-2 polymorphism

over lifetimes, not types. Although GhostCell is quite different in detail and application from

Beingessner’s API, the inspiration for it came directly from her work.

Some of the aforementioned approaches to branded types have been proven sound, to varying

degrees of formality. In their original work on the ST monad, Launchbury and Peyton Jones [1995]

argued that the runST mechanism preserves referential transparency, using relational reasoning

over a denotational semantics, but they did not connect this to a more realistic operational semantics

of mutable state with a global heap and in-place update. Moggi and Sabry [2001] subsequently

verified safety of runST against an operational semantics, and more recently, Timany et al. [2018]

extended their results to also establish equational properties in the presence of runST. They did

so formally in Coq using the Iris framework, which we have also used in this paper. Kiselyov and

Shan [2007] described a formal methodology for establishing the safety of branded-types APIs, but

they only applied this methodology to purely functional examples. To our knowledge, we are the

first to prove the soundness of branded-types APIs that make essential use of ownership-based

(substructural) typing. Moreover, our proof is fully formalized in Coq, as an extension to RustBelt.

QCell [Peters 2019] is an experimental Rust crate providing a library of alternatives to Cell.
One of the types in the library is LCell, whose API (as the author acknowledges) is directly derived
from an implementation of GhostCell that we posted online several years ago. However, QCell
also includes several other interesting interior-mutable types that decouple shareable cells from

their permissions. These cell types follow the style of GhostCell in distinguishing between a “cell”

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 92. Publication date: August 2021.

92:28 Joshua Yanovski, Hoang-Hai Dang, Ralf Jung, and Derek Dreyer

and a “token” type (the latter is called “owner” in QCell). The difference between the types is in

how they connect the cell and token types—i.e., how they represent the brand. In LCell, as with
GhostCell, the brand is represented as a phantom lifetime parameter. In TCell and TLCell, the
brand is represented as a type parameter, and uniqueness of brands is enforced dynamically using

a global type-indexed table of singleton token instances. This has the advantage of avoiding rank-2

polymorphism, but introduces new failure cases when the singleton is already in use elsewhere.

The last alternative is the eponymous QCell type itself, which represents the brand using an extra

integer field in both the cell and the token types. Accessing the contents of a cell using a token

incurs a dynamic check to make sure the integers match. This makes it easier to support a finer

granularity of permission tracking than is convenient with GhostCell, but it comes at the cost of

introducing new dynamic failure paths, additional space consumption, and dynamic brand checks.

The soundness of QCell, unlike GhostCell, has not been formally verified.

The core idea underlying GhostCell, namely separating permissions from data, also forms the

foundation of implicit dynamic frames [Smans et al. 2009; Jacobs et al. 2011]. Here, the accessibility

predicate acc(x.f) roughly corresponds to GhostToken. The technique of implicit dynamic frames

has been successfully applied in tools for automated program verification, most notably Viper [Leino

and Müller 2009; Müller et al. 2016]. The key novelty in our work is that we carry out this separation

of permissions from data in the context of a type system, via a user-defined library.

The API of GhostCell bears some resemblance to a number of earlier ideas from the literature

on substructural typing. In particular, adoption and focus [Fähndrich and DeLine 2002] is a type

system mechanism introduced to provide temporary exclusive access to shared data. The concept

of “nesting” [Boyland 2010] generalizes adoption and focus to managing arbitrary permissions.

Nesting is implemented in Mezzo [Balabonski et al. 2016] as an axiomatized library of operations

that are just type coercions, much like in GhostCell (but without a soundness proof). One minor

advantage of GhostCell over these prior approaches is that it leaves the choice of how to perform

memory management to the client; Mezzo relies on garbage collection for this, and the original

adoption needs some run-time tracking. However, the main advantage of GhostCell is expres-

sivity: adoption/nesting are irreversible operations, whereas GhostCell provides methods such

as into_inner and get_mut that build on Rust-style borrowing to support regaining full control

over ownership that was previously managed by some GhostToken. Thanks to Rust’s concept of a

shared reference with a lifetime, GhostCell also supports temporarily sharing the data for multiple

concurrent read-only operations via borrow, but with the ability to regain full exclusive control via

borrow_mut later on. Prior approaches do not offer that kind of flexibility.

Mezzo also supports a variant of adoption and focus that the authors dubbed “adoption and

abandon”. This mechanism has very different trade-offs than nesting or GhostCell: it supports
exclusive access to multiple distinct “adoptees” at the same time, at the cost of a runtime check

for each access to ensure that each individual adoptee is only accessed once (akin to a per-node

RwLock, but with less overhead). That makes it unsuited for zero-overhead data structures like

our doubly-linked list, but in other situations a runtime check might be acceptable or even truly

needed. We leave it to future work to write and verify a Rust version of Mezzo’s adoption and

abandon—as with GhostCell, we expect that the integration with borrowing and lifetimes could

give a significant boost to the expressivity of this mechanism.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their constructive suggestions for improvement. This

research was supported in part by European Research Council (ERC) Consolidator Grants for the

projects “RustBelt” and “PERSIST”, funded under the European Union’s Horizon 2020 Framework

Programme (grant agreements 683289 and 101003349, respectively).

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 92. Publication date: August 2021.

GhostCell: Separating Permissions from Data in Rust 92:29

REFERENCES
Thibaut Balabonski, François Pottier, and Jonathan Protzenko. 2016. The design and formalization of Mezzo, a permission-

based programming language. TOPLAS 38, 4 (2016). https://doi.org/10.1145/2837022

Alexis Beingessner. 2015. You can’t spell trust without Rust. Master’s thesis. Carleton University, Ottawa, Ontario, Canada.

John Tang Boyland. 2010. Semantics of fractional permissions with nesting. ACM Trans. Program. Lang. Syst. 32, 6 (2010),
22:1–22:33. https://doi.org/10.1145/1749608.1749611

crossbeam. 2021. crossbeam. https://crates.io/crates/crossbeam.

Manuel Fähndrich and Robert DeLine. 2002. Adoption and Focus: Practical Linear Types for Imperative Programming. In

PLDI. https://doi.org/10.1145/512529.512532

Nick Fitzgerald and Simon Sapin. 2020. The Typed-Arena library. https://crates.io/crates/typed-arena.

fixedbitset. 2021. fixedbitset. https://crates.io/crates/fixedbitset.

Matthew Fluet and Riccardo Pucella. 2006. Phantom Types and Subtyping. J. Funct. Program. 16, 6 (2006). https:

//doi.org/10.1017/S0956796806006046

Dan Grossman, J. Gregory Morrisett, Trevor Jim, Michael W. Hicks, Yanling Wang, and James Cheney. 2002. Region-Based

Memory Management in Cyclone. In PLDI. https://doi.org/10.1145/512529.512563

Brook Heisler and Jorge Aparicio. 2020. The Criterion library. https://crates.io/crates/criterion.

Bart Jacobs, Jan Smans, Pieter Philippaerts, Frédéric Vogels, Willem Penninckx, and Frank Piessens. 2011. VeriFast: A

Powerful, Sound, Predictable, Fast Verifier for C and Java. In NASA Formal Methods.
Ralf Jung. 2020. Understanding and Evolving the Rust Programming Language. Ph.D. Dissertation. Universität des Saarlandes.
Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. 2018a. RustBelt: Securing the Foundations of the

Rust Programming Language. PACMPL 2, POPL, Article 66 (2018).

Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. 2021. Safe Systems Programming in Rust. Commun.
ACM (April 2021).

Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Aleš Bizjak, Lars Birkedal, and Derek Dreyer. 2018b. Iris from the

Ground Up: A Modular Foundation for Higher-Order Concurrent Separation Logic. Journal of Functional Programming
28, e20 (Nov. 2018), 1–73. https://doi.org/10.1017/S0956796818000151

Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birkedal, and Derek Dreyer. 2015. Iris:

Monoids and invariants as an orthogonal basis for concurrent reasoning. In POPL. https://doi.org/10.1145/2676726.2676980
A. J. Kfoury and J. B. Wells. 1994. A Direct Algorithm for Type Inference in the Rank-2 Fragment of the Second-Order

𝜆-Calculus. In Proceedings of the 1994 ACM Conference on LISP and Functional Programming. 196–207.
Oleg Kiselyov and Chung-chieh Shan. 2007. Lightweight Static Capabilities. Electron. Notes Theor. Comput. Sci. 174, 7 (2007),

79–104. https://doi.org/10.1016/j.entcs.2006.10.039

Robbert Krebbers, Jacques-Henri Jourdan, Ralf Jung, Joseph Tassarotti, Jan-Oliver Kaiser, Amin Timany, Arthur Charguéraud,

and Derek Dreyer. 2018. MoSeL: A General, Extensible Modal Framework for Interactive Proofs in Separation Logic.

PACMPL 2, ICFP, Article 77 (2018), 77:1–77:30 pages. https://doi.org/10.1145/3236772

Robbert Krebbers, Amin Timany, and Lars Birkedal. 2017. Interactive proofs in higher-order concurrent separation logic. In

POPL. https://doi.org/10.1145/3009837.3009855

John Launchbury and Simon L. Peyton Jones. 1995. State in Haskell. LISP and Symbolic Computation 8, 4 (Dec. 1995),

293–341. https://doi.org/10.1007/BF01018827

K. Rustan M. Leino and Peter Müller. 2009. A Basis for Verifying Multi-threaded Programs. In ESOP.
Nicholas D. Matsakis. 2016. Non-lexical lifetimes: Introduction. http://smallcultfollowing.com/babysteps/blog/2016/04/27/

non-lexical-lifetimes-introduction/.

Nicholas D. Matsakis. 2018. An alias-based formulation of the borrow checker. https://smallcultfollowing.com/babysteps/

blog/2018/04/27/an-alias-based-formulation-of-the-borrow-checker/ Blog post.

Nicholas D. Matsakis and Felix S. Klock II. 2014. The Rust language. In SIGAda Ada Letters, Vol. 34. https://doi.org/10.1145/

2663171.2663188

Eugenio Moggi and Amr Sabry. 2001. Monadic encapsulation of effects: A revised approach (extended version). JFP 11, 6

(Nov. 2001), 591–627.

Peter Müller, Malte Schwerhoff, and Alexander J. Summers. 2016. Viper: A Verification Infrastructure for Permission-Based

Reasoning. In VMCAI.
Jim Peters. 2019. The QCell library. https://crates.io/crates/qcell.

petgraph. 2021. petgraph. https://crates.io/crates/petgraph.

John C. Reynolds. 2002. Separation logic: A logic for shared mutable data structures. In LICS. https://doi.org/10.1109/LICS.

2002.1029817

Jan Smans, Bart Jacobs, and Frank Piessens. 2009. Implicit Dynamic Frames: Combining Dynamic Frames and Separation

Logic. In ECOOP.
Josh Stone and Nicholas D. Matsakis. 2017. The Rayon library. https://crates.io/crates/rayon.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 92. Publication date: August 2021.

https://doi.org/10.1145/2837022
https://doi.org/10.1145/1749608.1749611
https://crates.io/crates/crossbeam
https://doi.org/10.1145/512529.512532
https://crates.io/crates/typed-arena
https://crates.io/crates/fixedbitset
https://doi.org/10.1017/S0956796806006046
https://doi.org/10.1017/S0956796806006046
https://doi.org/10.1145/512529.512563
https://crates.io/crates/criterion
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1145/2676726.2676980
https://doi.org/10.1016/j.entcs.2006.10.039
https://doi.org/10.1145/3236772
https://doi.org/10.1145/3009837.3009855
https://doi.org/10.1007/BF01018827
http://smallcultfollowing.com/babysteps/blog/2016/04/27/non-lexical-lifetimes-introduction/
http://smallcultfollowing.com/babysteps/blog/2016/04/27/non-lexical-lifetimes-introduction/
https://smallcultfollowing.com/babysteps/blog/2018/04/27/an-alias-based-formulation-of-the-borrow-checker/
https://smallcultfollowing.com/babysteps/blog/2018/04/27/an-alias-based-formulation-of-the-borrow-checker/
https://doi.org/10.1145/2663171.2663188
https://doi.org/10.1145/2663171.2663188
https://crates.io/crates/qcell
https://crates.io/crates/petgraph
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1109/LICS.2002.1029817
https://crates.io/crates/rayon

92:30 Joshua Yanovski, Hoang-Hai Dang, Ralf Jung, and Derek Dreyer

Amin Timany, Léo Stefanesco, Morten Krogh-Jespersen, and Lars Birkedal. 2018. A Logical Relation for Monadic Encap-

sulation of State: Proving Contextual Equivalences in the Presence of runST. PACMPL 2, POPL, Article 64 (Jan. 2018),

28 pages. https://doi.org/10.1145/3158152

Mads Tofte, Lars Birkedal, Martin Elsman, and Niels Hallenberg. 2004. A Retrospective on Region-Based Memory Manage-

ment. High. Order Symb. Comput. 17, 3 (2004), 245–265. https://doi.org/10.1023/B:LISP.0000029446.78563.a4

Joshua Yanovski, Hoang-Hai Dang, Ralf Jung, and Derek Dreyer. 2021. Coq development and supplementary material

accompanying this paper. https://plv.mpi-sws.org/rustbelt/ghostcell/.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 92. Publication date: August 2021.

https://doi.org/10.1145/3158152
https://doi.org/10.1023/B:LISP.0000029446.78563.a4
https://plv.mpi-sws.org/rustbelt/ghostcell/

	Abstract
	1 Introduction
	1.1 Motivation: Safely Implementing Data Structures with Internal Sharing
	1.2 GhostCell: A Thread-Safe Zero-Cost Abstraction for Interior Mutability in Rust

	2 Branded Types in Rust
	2.1 Basic Rust with Vectors
	2.2 Phantom Lifetimes and Unchecked Indexing

	3 GhostCell: Zero-Overhead, Thread-Safe Interior Mutability
	3.1 The API of GhostCell
	3.2 Implementing a Doubly-Linked List with GhostCell
	3.3 Implementing Graph Traversals with GhostCell

	4 Proving Soundness of Branded-Types APIs in Rust
	4.1 The Semantic Approach of RustBelt
	4.2 Key Idea: Associating Lifetimes with State
	4.3 Soundness of a Simplified Variant of BrandedVec
	4.4 Soundness of GhostCell

	5 Comparison with Other Interior-Mutable Types
	5.1 Micro-benchmarks
	5.2 Rust's Interior-Mutable Types

	6 Related Work
	Acknowledgments
	References

