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The first multimessenger observation attributed to a merging neutron star binary provided an enormous
amount of observational data. Unlocking the full potential of this data requires a better understanding of the
merger process and the early postmerger phase, which are crucial for the later evolution that eventually
leads to observable counterparts. In this work, we perform standard hydrodynamical numerical simulations
of a system compatible with GW170817. We focus on a single equation of state and two mass ratios, while
neglecting magnetic fields and neutrino radiation. We then apply newly developed postprocessing and
visualization techniques to the results obtained for this basic setting. The focus lies on understanding the
three-dimensional structure of the remnant, most notably the fluid flow pattern, and its evolution until
collapse. We investigate the evolution of mass and angular momentum distribution up to collapse, as well as
the differential rotation along and perpendicular to the equatorial plane. For the cases that we studied, the
remnant cannot be adequately modeled as a differentially rotating axisymetric neutron star. Further, the
dominant aspect leading to collapse is the gravitational wave radiation and not internal redistribution of
angular momentum. We relate features of the gravitational wave signal to the evolution of the merger
remnant and make the waveforms publicly available. Finally, we find that the three-dimensional vorticity
field inside the disk is dominated by medium-scale disturbances and not the orbital velocity, with potential
consequences for magnetic field amplification effects.
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I. INTRODUCTION

This work is motivated by the first multimessenger
detection compatible with the coalescence of two neutron
stars (NSs). The gravitational wave (GW) event
GW170817 detected by the LIGO/Virgo observatories
matches the inspiral of two compact objects in the NS
mass range [1,2]. After a delay around 1.7 s, the GW signal
was followed by short gamma ray burst (SGRB) event
GRB170817A observed by Fermi and INTEGRAL satel-
lites and attributed to the same source [3]. Later observa-
tions also revealed radio signals [4,5] that likely correspond
to the radio afterglow of the SGRB. The coincident GWand
SGRB events triggered a large observational follow-up
campaign [6]. Observations ranging from infrared to
ultraviolet revealed an optical counterpart AT2017gfo
with luminosity and spectral evolution compatible with a
kilonova [6–9].

The comparison of those observations to theoretical
expectations requires the modeling of many different
aspects of fundamental physics, such as general relativity,
hydrodynamics, nuclear physics, neutrino physics, and
magnetohydrodynamics. Modeling all potentially observ-
able electromagnetic counterparts also involves a large
range of timescales ranging from milliseconds to years.
There is however little doubt that the early evolution phase
up to tens of milliseconds after merger is of crucial
importance. This phase can be studied via brute force
three-dimensional numerical simulations and will be the
topic of this work.
For predicting the expected kilonova signal, the impor-

tant input from such studies are amount, composition, and
velocity of matter dynamically ejected to infinity and of
matter ejected from the disk. The latter is likely relevant
since the kilonova spectral evolution is best fitted by two or
more distinct ejecta components [7–9] with masses that
would be at tension with purely dynamical ejection
mechanism. Although the fraction of disk mass expelled
via winds is uncertain, the total mass of the disk poses an
upper limit. Numerical simulations suggest that the initial
disk mass depends strongly on the total mass of the system
in comparison to the maximum NS mass for the given
equation of state (EOS) and on the mass ratio.
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On timescales of 0.1 s, the evolution of the disk is strongly
influenced by the interaction with the remnant. In case of a
supra- or hypermassiveNS,matter can be transported into the
disk by different mechanisms. One is a purely hydrodynamic
consequence of a complicated internal fluid flow inside the
remnant [10,11]. Another potential mechanism is the ampli-
fication of magnetic fields inside the remnant and disk and
the resulting pressure [12]. Until collapse, a remnant NS also
irradiates thedisk and ejectawith neutrinos and therefore, has
an impact on the composition. In particular, the fraction of
lanthanides in the ejecta has a strong impact on the optical
opacity. For those reasons, the remnant lifetime is important
with regard to the kilonova signal.
Also with regard to the SGRB signal, the mass of the

disk and the delay before black hole (BH) formation are
likely to be very relevant parameters. Current models for
the SGRB engine require either a BH [13] or a magnetar
[14] embedded in a massive disk. The question which
scenario is viable, or if both are viable, is an active field of
research. Should it be the case that BH formation is
required before the SGRB, one obtains an upper limit
on the collapse delay after merger. Given the total mass of
the coalescing NSs as inferred from the GW signal, one
obtains an upper limit for the mass of the central NS
remnant at time of collapse (upper limit because of the
potential presence of ejecta and surrounding disk). A
remnant of this mass then has to collapse faster than the
SGRB delay. By comparing with the maximum mass of a
nonrotating NS, a robust but not very strict constraint on the
EOS was obtained from GW170817 [3]. Adding further
assumptions, e.g., that the remnant NS is hypermassive,
results in stricter limits [15–18]. It is therefore very
important to understand the stability criteria of the remnant.
For the simpler case of isolated uniformly rotating NS, the

stability conditions arewell understood. There is amaximum
mass that depends only on the EOS. In the supramassive
range, i.e., between themaximummasses of nonrotating and
uniformly rotating NS, a minimum angular momentum is
required. On timescales≲0.1 s however, one has to take into
account that the remnant is not uniformly rotating and that a
significant fraction of total mass and angular momentum can
be located in the disk outside the NS remnant.
For the important case of hypermassive NS remnants,

differential rotation is needed to prevent collapse. It is a
popular assumption that collapse is caused by the dissipation
of the differential rotation. Should this be the only important
aspect, then the collapse delay depends on the effective
viscosity, which is not well constrained as it may depend on
small scale magnetic field amplification. However, numeri-
cal simulations prove that merger remnants emit strong
GWs. Since short-lived remnants are close to collapse
already, collapse could be triggered by a relatively small
angular momentum loss. It might well be the case that the
collapse delay is mainly determined by such losses instead
of viscosity or that both aspects are relevant.

The overall rotation profile of merger remnants, which is
a key aspect for stability, has been studied in many
numerical simulations [10–12,19–23]. All these studies
find a relatively slow rotation of the core and a maximum
rotation rate in the outer parts of the remnant. The typical
mass distribution in the remnant core seems in fact to be
similar to that of a nonrotating NS [10,11,19,21]. This led
to the conjecture that the collapse occurs once the remnant
core density profile matches the one in the core of the
maximum-mass nonrotating NS [19]. This conjecture was
validated for a small number of examples [19,21] but
remains unproven in general.
The works above also revealed that the fluid flow can be

more complex than just axisymmetric differential rotation,
featuring secondary vortices (see [11,19,20]).However, those
results are restricted to the equatorial plane, and little is known
about the 3D structure. The analysis of fluid flow patterns in
numerical simulations is complicated because early merger
phase is not fully stationary. Remnants show strong oscil-
lations and can undergo a drift of compactness and rotation
rate within a few dynamical timescales. A further difficulty
arises from the coordinate choices in numerical simulations,
which are notwell suited for studying the remnant shape [10].
In this work, we focus on studying the three-dimensional

structure of merger remnants obtained when including only
the most basic ingredient of general relativistic hydro-
dynamics, while neglecting magnetic fields, effective
magnetic viscosity, and neutrino radiation transport. We
will analyze the outcome of two simulations compatible
with GW170817 in depth. For this, we develop novel
postprocessing and visualization methods. We also inves-
tigate the evolution of the angular momentum distribution,
using different measures.
For GW170817, all useful information about the post-

merger phase comes from the optical counterparts. No GW
signal could be detected after merger [24,25]. Future obser-
vations of similar events with third-generation GWantennas
[26,27] might also include direct detection of a postmerger
GW signal or strict upper limits. In order to support the
development of postmerger-GW data analysis methods (see,
e.g., [28–30]), we make the waveforms extracted from our
simulations publicly available [31] as a qualitative example.
This paper is organized as follows. Section II A describes

the standard numerical methods used for evolution of the
initial data, which is described in Sec. II B. The analysis
and postprocessing methods used to analyze the simulation
data are presented in Secs. II C and II D. The results are
described in detail in Sec. III and summarized in Sec. IV.

II. METHODS

A. Evolution

The general relativistic hydrodynamic equations are
evolved numerically using the code described in [32,33].
The code utilizes a finite-volume high resolution shock
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capturing scheme in conjunction with the Harten-Lax-van
Leer-Einfeldt approximate Riemann solver and the piecewise
parabolic method for reconstructing values at the cell
interfaces. We neither include magnetic fields nor neutrino
radiation, and the electron fraction is passively transported
along with the fluid. Our numerical evolution employs a
standard artificial atmosphere scheme, with zero velocity,
lowest available temperature, and a spatially constant density
cut of 6 × 105 g=cm3.
The matter equation of state is computed using a three-

dimensional interpolation table, where the independent
variables are density, temperature, and electron fraction.
For the simulations in this work, we employ the SFHO
EOS [34,35], which incorporates thermal and composition
effects. The EOS was taken from the CompOSE EOS
collection [36]. The table only contains temperatures above
0.1 MeV. In the context of a binary NS (BNS) merger
simulation, this is not problematic since the thermal
pressure at this temperature is negligible to the degeneracy
pressure except for very low densities. Although dynami-
cally ejected matter becomes diluted, it is also very hot and
therefore, not affected.
The spacetime is evolved using the McLachlan code

[37], which is part of the Einstein toolkit [38]. This code
implements two formulations of the evolution equation: the
BSSN formulation [39–41], and the newer conformal and
spatially covariant Z4 evolution scheme described in
[33,42]. Here, we use the latter because of its constraint
damping capabilities. We employ standard gauge condi-
tions, choosing the lapse according to the 1þ log-slicing
condition [43] and the shift vector according to the hyper-
bolic Γ-driver condition [44]. At the outer boundary, we use
the Sommerfeld radiation boundary condition.
The time integration of the coupled hydrodynamic and

spacetime evolution equations is carried out using the
method of lines with a fourth-order Runge-Kutta scheme.
Further, we use Berger-Oliger moving-box mesh refine-
ment provided by the Carpet code [45]. In total, we use
six refinement levels, each of which has twice the reso-
lution of the next finer one. The four coarsest levels consist
of a simple hierarchy of nested cubes centered around the
origin. The two finest levels consist of nested cubes that
follow each of the stars during inspiral. Near merger, those
are replaced by nonmoving nested cubes centered around
the origin. The finest grid spacing is 221 m. The outer
boundary is located at 950 km, and the finest level after
merger covers a radius of 28 km. Finally, we use reflection
symmetry across the orbital plane.
In this work, we do not carry out a multiresolution study

but rely on tests performed for different systems. For
general tests of the evolution code, we refer to [32,33],
which discuss the accuracy for evolving isolated NSs as
well as binary NS mergers, carrying out convergence tests
for GW signal, BH properties, mass density, lapse, and
metric. These tests do not investigate the fluid flow and

radial profiles that are studied here in detail. However,
those aspects were studied with our code in [20] for
different models, and the qualitative features were recov-
ered in [19], evolving one of the models (employing the
APR4 EOS) with a different code at three resolutions. The
latter study used the same numerical methods for the
hydrodynamic part but also included magnetic fields.
Since the resolution used here is the medium resolution
from [19], we are confident that the qualitative features
presented for the models in this work are robust as well but
do caution that only a full convergence test would allow
conclusive statements.

B. Initial data

In this work, we evolve binaries with a chirp mass of
Mc ¼ 1.187 M⊙, which is compatible with the very precise
measurement result of Mc ¼ 1.186þ0.001

−0.001 M⊙ for the GW
event GW170817 [2]. We consider the equal-mass case and
one unequal-mass system with a mass ratio q ¼ 0.9. The
NSs in our models are nonspinning; i.e., we use irrotational
initial data. However, note that spin can have an impact on
many aspects discussed here, as demonstrated, e.g., in
[20,46–48] for different systems. The characteristic proper-
ties of our models are listed in Table I.
As initial data EOS, we use the lowest temperature of

0.1 MeV that is available in the SFHO EOS [34,35].
The initial electron fraction for a given density is set
according to β equilibrium. This approximation to the zero-
temperature EOS breaks down at very low densities
because the thermal pressure contribution becomes impor-
tant and stays constant once it is dominated by the photon
gas. To avoid technical problems determining the NS
surface, we therefore replace the finite temperature table
at densities below 1.4 × 107 g=cm3 by a matching poly-
tropic EOS (with the adiabatic exponent 1.58).
The impact of tidal effects on the gravitational waveform

during coalescence is mainly determined by the effective
tidal deformability Λ̃ [49–51]. The individual and effective
deformabilities for our models are given in Table I (note

TABLE I. Initial data parameters: MB denotes the total bar-
yonic mass of the binary, Mc the chirp mass, M1 and M2 the
gravitational masses of the stars, q ¼ M2=M1 the mass ratio, Λ1

and Λ2 the dimensionless tidal deformability of the stars, and Λ̃
the effective tidal deformability.

Model Q10 Q09

MB½M⊙� 3.001 3.008
Mc½M⊙� 1.187 1.187
M1½M⊙� 1.364 1.438
M2½M⊙� 1.364 1.294
q 1.0 0.9
Λ1 396 280
Λ2 396 551
Λ̃ 396 396
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that Λ̃ depends very weakly on the mass ratio near q ¼ 1
for fixed chirp mass, such that the two cases agree within
three significant digits). The value of Λ̃ is compatible with
upper limits inferred for GW170817 under the assumption
of small NS spins [1,2,52–54]. The statistical interpretation
of the lower confidence bounds given in [2,53,54] is called
into question [55], but in any case, Λ̃ is well above those
limits for our models. We also note that the Bayesian model
selection study [18] does not rule out even the zero tidal
deformability case.
We note that our model is not compatible with the lower

limit Λ̃ > 450 derived in [56] using inferred ejecta mass
requirements for kilonova observation AT2017gfo.
However, this value is based on an invalid assumption
about the relation between disk mass and effective tidal
deformability. A first counterexample was found in [21],
and a systematic investigation [57] provided more. Revised
fitting formulas presented in [58] exhibit large residuals,
and the search for robust analytic modeling of ejecta masses
is an ongoing effort. In any case, the disk and ejecta mass is
computed in our simulations and will be compared to
values inferred from the kilonova directly.
In order to compute BNS systems in a quasicircular

orbit, we employ the LORENE code [59]. Since we are
mainly interested in the qualitative postmerger behavior, we
take no steps to reduce the residual eccentricity inherent in
the quasistationary approximation, and we chose an initial
separation of 59 km (proper distance between density
maxima) that corresponds to no more than six full orbital
cycles before merger.
Using the same EOS as for the initial data, we computed

the baryonic mass for sequences of NSs rotating uniformly
with a rate at the mass shedding limit (using the RNS code
[60]). We find that the maximum baryonic mass for a
uniformly rotating NS is 2.86 M⊙. Based on comparisons
in [11,61], we do not expect thermal contributions in the
heated merger remnant to significantly increase this maxi-
mum. The total baryonic mass of our BNS models is well
above the maximum allowed for uniformly rotating mod-
els. Even allowing for atypically large mass ejection of
0.1 M⊙, the remnant is therefore hypermassive; i.e., it
requires nonuniform rotation to delay collapse. We there-
fore expect BH formation within tens of ms after merger.

C. Coordinate systems

The standard 1+log and gamma-driver gauge conditions
used during evolution are well suited to prevent cata-
strophic gauge instabilities, but they are not designed to
recover axisymmetric coordinates when the spacetime
approaches a mostly axisymmetric stationary phase. The
coordinate system present after merger depends not on
the final mass distribution but on the whole history of the
evolution. Therefore, one cannot rely on the coordinate-
dependent quantities, e.g., multipole moments expressed in
coordinates, to measure any deviations from axisymmetry.

In [10], we developed a postprocessing procedure to
obtain a well-defined coordinate system in the equatorial
plane with the following properties: 1. The radial coordinate
is the proper distance to the origin along radial coordinate
lines. 2. The angular coordinate is based on proper distance
along arcs of constant radial coordinate. 3. On average, the
radial coordinate lines are orthogonal on the angular ones,
thus minimizing twisting. If the spacetime is indeed axisym-
metric (with axis orthogonal to the equatorial plane of the
simulation coordinates) then so are the new coordinates.
In this work, we also want to study the 3D structure of

the remnant. We therefore need to extend the coordinate
system above from the equatorial plane. However, the
metric was not saved in 3D in our simulations, which
precludes a generalization in the same spirit. Instead, we
use an ad hoc construction as follows. First, we apply the
same coordinate transformation as within the equatorial
plane to all planes with constant z coordinate. Using the
metric saved along the z axis during the simulation, we
transform the z-coordinate as z → z0ðzÞ such that on the z
axis, the new z coordinate is the proper distance to the
equatorial plane along the axis. Away from the axis, the
new z coordinate is only an approximation to the proper
distance to the equatorial plane.
The resulting 3D coordinate system allows us to judge

axisymmetry in the equatorial plane, and it allows us to
assess oblateness since distances along the z axis and
within the equatorial plane are exact proper distances. In
the meridional planes, a coordinate circle might still show
some deviations from a proper sphere, except on the z axis
and the equator. In the rest of this work, we refer to this
coordinate system as postprocessing coordinates to distin-
guish it from simulation coordinates.
From previous experience [11,19,20], we expect that the

remnant is changing only slowly when viewed in a coor-
dinate system rotating with a certain angular velocity, which
is also changing slowly (also compare the animations
provided in the supplemental material of [20]). In other
words, we expect an approximate helical Killing vector.
To extract the rotating pattern of mass distribution and

velocity field, we construct corotating coordinates as
follows. First, we perform a Fourier decomposition with
respect to ϕ (in postprocessing coordinates) in the equa-
torial plane. We then compute a density-weighted average
to get the phase of the dominantm ¼ 2 density deformation
as function of time. We further apply a smoothing by
convolution with a 2 ms long Hanning window function to
suppress high frequency contributions. We then apply the
opposite rotation to the 3D postprocessing coordinates at
each time to obtain postprocessing coordinates corotating
with the main deformation pattern.

D. Diagnostic measures

In order to extract gravitational waves, we decompose
the Weyl scalar Ψ4 into spin-weighted spherical harmonics
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of spin weight -2, using the methods described in [38], and
considering all multipole coefficients up to l ¼ 4. The
strain is computed by time integrating using the fixed-
frequency integration [62] method with a low-frequency
cutoff at 500 Hz. The fluxes of energy and angular
momentum are also computed using multipole components
up to l¼4. We use a fixed extraction radius Rex ¼ 916 km,
close to the outer boundary of the computational domain.
We do not extrapolate the signal to infinity as we expect the
finite resolution error to dominate the error due to finite
extraction radius. We use the maximum amplitude of the
l ¼ m ¼ 2 strain component to define the merger time
tmerger. When comparing gravitational wave features to the
evolution of the remnant, we also employ a retarded time
t − r⋆, where r⋆ is the tortoise coordinate computed using
the areal radius of the extraction sphere and the ADM mass
of the initial data (see [63]).
In order to detect BH formation, we search for apparent

horizons. To quantify mass and angular momentum of the
BH formed after merger, we employ the isolated horizon
formalism described in [64–67]. We also compute quasi-
normal mode (QNM) frequencies of Kerr BHs with the
same mass and angular momentum, by interpolating tables
based on [68,69], which are made publicly available by the
authors [70].
To describe the distribution of matter, we use the

baryonic mass density ρ, defined as baryon number density
in the fluid rest frame times an arbitrary mass constant (in
this work, 1.66 × 10−27 kg). Baryon number conservation
implies a conserved current uμρ, with u being the fluid four
velocity. The total baryonic mass within a volume can only
change by matter leaving the boundary, and is given by

MB ¼
Z
V
WρdV; dV ¼ ffiffiffi

γ
p

d3x; ð1Þ

where W is the Lorentz factor of the fluid with respect to
Eulerian observers, dV is the proper three volume element,
and γ is the determinant of the three metric. On the
numerical level, the baryonic mass definition is compli-
cated by the use of an artificial atmosphere. Our numerical
volume integrals of baryonic mass exclude any grid cell set
to atmosphere.
To obtain the mass of dynamically ejected matter, we

compute the time-integrated flux of unbound matter
through several coordinate spheres with radii between
73–916 km. For each sphere, we then add the volume
integral of residual unbound matter still present within the
same sphere at the end of the simulation. Matter is
considered unbound according to the geodesic criterion
ut < −1, where u is the four velocity, and the artificial
atmosphere is excluded. This criterion assumes force-free
ejecta and therefore, becomes more accurate at larger radii.
The combined measure for the ejecta mass alleviates

drawbacks of using flux or volume integrals only. When

using only the flux through an extraction sphere, one is
either restricted to small extraction radii to ensure that all
ejecta are accounted for or forced to evolve the system long
enough to allow all ejecta to reach the extraction radius.
When using only volume integrals, they have to be
computed before significant amounts of ejecta leave the
computational domain. Such integrals then include matter
at small radii where the geodesic criterion is unreliable and
miss ejecta that become unbound later. The combined
measure allows meaningful comparison over a larger range
of extraction radii. For the cases at hand, we find negligible
differences for radii ≳400 km and use the outermost radius
916 km for quoting ejecta masses.
We employ a similar approach for estimating the velocity

of escaping matter. In a stationary spacetime, the velocity
that a fluid elementwould reach after escaping the systemon
a geodesic trajectory is v2∞ ¼ 1 − u−2t . Again, we consider
both the ejecta leaving the system through a spherical
extraction surface during the simulation, and the unbound
matter still within the domain at the end. Both contributions
are filled into a mass-weighted histogram of v2∞. This way,
we account for the fastest components via the flux as well as
the slowest ones via the unbound matter at final time.
For technical reasons, we first combine all ejecta at a

given time within thin spherical shells Vs with a radius Rs
and thickness δRs. For those, we compute the volume
integrals,

Ws ¼
1

Ms

Z
Vs

utWρudV; Ms ¼
Z
Vs

WρudV; ð2Þ

where ρu is the density of unbound matter in the fluid rest
frame. From the above measures, we attribute an average
ejecta velocity v2s ¼ 1 −W−2

s to each shell. To compute the
above integrals at each time for each radius, we employ a
simple and robust technical implementation based on
creating histograms of all numerical grid cells, binned
by radius, and weighted by the integrands.
Another quantity relevant for our study is the Arnowitt–

Deser–Misner (ADM) mass of the system. This measure is
formally defined for the whole spacetime, as there is no
locally conserved energy in GR. It can be expressed either
via surface integrals at infinity, or three-volume integrals
over a spacelike hypersurface of a given foliation of
spacetime. When restricting either formulation to suffi-
ciently large but finite region, such that the outer boundary
lies in the weak field regime, then the ADM mass is not
constant but changes by the amount of energy carried away
by GW. We thus compute a time-dependent ADM mass
from the ADM mass of the initial data minus the integrated
GW energy flux.
As a heuristic measure of energy distribution, we

monitor the integrand of the ADM mass volume integral
as well. However, we stress that this is not gauge invariant
as it depends on the chosen foliation of spacetime.
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Our motivation is to split the total ADM energy into
contributions of the remnant NS and the surrounding disk.
We also need to consider the gravitational radiation still

inside the computational domain. As a practical measure,
we use the following: considering the region between
R0 < r < Rex, we define a GW energy at time t as the
integrated GW flux through Rex over the time interval
ðt; tþ Rex − R0Þ. We compute this measure for R0 as low
as 100 km (around the wavelength of a 3 kHz signal). In
other words, we associate an energy loss of the remnant at a
given time with the GW luminosity at a large extraction
radius at the time when the radiation from radius R0 has
reached the extraction radius. This can only provide a
qualitative picture, as the measure is built on concepts valid
in the weak field limit / wave zone.
For the angular momentum, we use the volume integral

formulation of the ADM angular momentum, similarly to
the ADM mass above. As for the mass, we compute the
GWangular momentum loss, at the same extraction radius.
For axisymmetric spacetimes, another angular momentum
definition is given by Komar. Since the system approaches
a roughly axisymmetric state after merger, it makes sense to
use the Komar angular momentum. We note that the Komar
measure is more closely related to the fluid in the sense that
there are no contributions of vacuum, horizons aside, and,
consequently, no contributions of GW radiation present in
the system. For exact definitions of ADM and Komar
quantities, we refer to [71].
The postmerger evolution is not exactly axisymmetric,

the postprocessing coordinates are not available during the
simulation, and we avoid storing all metric quantities as 3D
data. Therefore, we use an approximation to the Komar
angular momentum that is obtained by integrating the ϕ
component (in simulation coordinates) of Sϕ, the evolved
quasiconserved momentum density. This is trivial to
compute during the simulation but becomes exact only if
the ϕ coordinate is a Killing vector field.
Besides volume integrals over the full domain, we are

interested in the radial distribution of the integrands. For
this, we employ a numerical method developed in a previous
study [11]. This method allows an efficient computation of
volume integrals (i) within spheres of constant coordinate
radii as function of radius and (ii) within regions abovegiven
mass densities ρ as function of ρ. It works by adding the
integrand (including the volume element) in each numerical
cell into one-dimensional histograms binned in terms of
coordinate radius and density, respectively. The volume
integrals can then be obtained during postprocessing simply
by cumulative summation over the bins. Using this method,
we integrate the (i) proper volume, (ii) baryonic mass,
(iii) ADM mass, (iv) ADM angular momentum, (v) Komar
angular momentum approximation, and (vi) estimated mass
of unbound matter.
We note that the three-dimensional isodensity surfaces

in four-dimensional spacetime are gauge independent.

The corresponding volume integrals within a time slice
depend only on the time slicing but not on the spatial gauge.
In contrast, integrals over spheres of constant coordinate
radius depend on the spatial coordinates. In order to reduce
this dependency, we parametrize the spheres by the
enclosed proper volume. The only remaining gauge ambi-
guity (beside the time slicing) is given by the shapes of the
coordinate spheres but not their overall extent.
Similarly, we also parametrize the integrals within

isodensity surfaces by the enclosed proper volume.
Within the remnant NS, where the mass distribution is
roughly spherical, the two methods of defining radial mass
distribution should roughly agree. This is not the case for
the torus-shaped disk. For convenience, we will sometimes
express proper volumes in terms of the radius of Euclidean
spheres with same volume (“volumetric radius,” RV).
Based on the above integrals, we can define a measure

for the compactness of any volume as the baryonic mass
divided by the volumetric radius. The compactness of
isodensity surfaces as function of volumetric radius has
a maximum. We refer to the region within this maximum-
compactness surface as the “bulk.” We use the bulk
definition to divide the matter distribution after merger
into a remnant and a disk, but we stress that this is
somewhat arbitrary as there is a smooth transition.
Finally, we follow the methods developed in [10] to

compute the axisymmetric part of the rotation profile in the
equatorial plane. The method uses the postprocessing
coordinates described in Sec. II C to compute density
weighted averages in the ϕ direction of rotation rate as
seen from infinity and of the frame dragging contribution
given by the ϕ component of the shift vector, βϕ. We also
extract the Keplerian velocity profile (i.e., the test-particle
angular velocity in prograde circular orbit) from the metric
components, under the assumption of stationarity and
axisymmetry, using Eq. (9) from [10].

III. RESULTS

A. Overall dynamics

In the following, we provide a broad overview on the
merger outcome. Key quantities are summarized in
Table II. Qualitatively, both cases are very similar. For
the example of the q ¼ 0.9 case, we visualize the evolution
timeline in Fig. 1. The coalescing NS merge into a
hypermassive NS (HMNS), which collapses to a BH after
a delay on the order of ≈10 ms. The HMNS is embedded in
a massive debris disk created during merger. The disk is
strongly perturbed by interactions with the remnant and
settles to a more stationary state shortly after the BH is
formed.
Quantitatively, we observe some differences between the

two mass ratios. Most notably, the collapse delay is about
25% shorter for the unequal mass case. This can be seen in
Fig. 2 showing the evolution of the remnant density. We

W. KASTAUN and F. OHME PHYS. REV. D 104, 023001 (2021)

023001-6



stress that in general, the delay time for a given mass is very
sensitive to numerical errors, because the system is at the
verge of collapse (we will discuss the evolution leading to
collapse in later sections). However, since both simulations
employ the same resolution, grid setup, and numerical
method, we expect the difference of the delays to be more
robust than the absolute values.
For a remnant close to collapse, one can expect that small

changes of the initial parameters, mainly the total mass,
should lead to large changes of the delay. This is however
not a drawback. Any observational constraint on the delay
translates into a stronger constraint on the total mass. In this
context, the relevant numerical uncertainty is not the (large)
error of the delay for a given mass but the (smaller) error in
the total mass that leads to a given collapse delay.
We emphasize that our nonmagnetized simulations

exclude the possibility of effective magnetic viscosity
due to small-scale magnetic field amplification. Such
effects might reduce the collapse delay further. Since it
is difficult to predict the impact of mass ratio on magnetic
field amplification, we also cannot exclude an impact on
the relation between collapse delays and mass ratio. For
further discussion, see [72] and the references therein.
The HMNS is smoothly embedded within a debris disk.

The structure of the disk is shown in Fig. 3 for the example
of the q ¼ 0.9 case. The innermost part of the disk falls into

FIG. 1. Overview of the evolution phases for the q ¼ 0.9 case.
Time runs from lower right to upper left, while the other two
dimensions correspond to the orbital plane. The time coordinate
was compressed by a factor 0.05 with respect to the spatial
coordinates in geometric units, such that light cones would
appear almost orthogonal to the world tube of the remnant.
The transparent green surface corresponds to a fixed density of
5 × 1013 g=cm3, highlighting the evolution of the merged NS and
the coalescing NS shortly before merger. The solid red surface
corresponds to a density of 1011 g=cm3, as a proxy for the denser
parts of the disk. To avoid occlusion, one half-plane was cut
away. The blue surface marks the apparent horizon extracted
during the simulation. The glowing region serves as a rough
sketch of the shock heating during merger. It is the result of a
volume rendering of an optically transparent black body light
source with temperature proportional to the remnant temperature
(shifted into the visible spectrum) and intensity proportional to
mass density.

TABLE II. Key parameters ofmerger outcome.MBH and JBH are
black hole mass and angular momentum 5.0 ms after formation.
FBH is the l ¼ m ¼ 2, n ¼ 0 QNM frequency of Kerr BHs with
same mass and spin. Mblk and Rblk are bulk mass and bulk
volumetric radius, extracted 1.0ms before collapse. Rows fcenrot and
fmax
rot denote the remnants central and maximum rotation rates

computed 1.0 ms before collapse. fmerge is the instantaneous
frequency of the l ¼ m ¼ 2 GW strain component at the time of
maximum amplitude, fpm is the frequency of the maximum in the
postmerger part of the power spectrum of the same component.
Row Mdisk provides the baryonic mass outside the apparent
horizon, excluding unbound matter, at time 6.0 ms after collapse.
Mej is the estimate for the total mass of dynamically ejectedmatter,
v∞ refers to the median, 5th and 95th percentiles of the mass-
weighted velocity distribution of ejected matter.

Model Q10 Q09

MBH½M⊙� 2.55 2.57
JBH=M2

BH 0.66 0.67
FBH [kHz] 6.56 6.52
Mblk½M⊙� 2.56 2.59
Mblk=Rblk 0.31 0.31
fcenrot [kHz] 0.96 0.87
fmax
rot [kHz] 1.76 1.71

fmerge [kHz] 1.94 1.94
fpm [kHz] 3.38 3.35
Mdisk½10−2 M⊙� 5.5 4.6
Mej½10−2 M⊙� 1.7 0.8
v∞½c� 0.16þ0.08

−0.11 0.14þ0.09
−0.08

FIG. 2. Postmerger evolution of mass density in the remnant for
the equal mass case (top panel) and unequal mass case (bottom
panel). The solid curve shows the maximum baryonic mass
density in the fluid frame. The dotted curve shows an average
density given by bulk mass per bulk volume (see Sec. II D). The
time refers to coordinate time. For comparison, the horizontal
lines show the central density (dashed) and average bulk density
(dash dotted) of the maximum-mass spherical NS solution (we
note that the initial agreement with the maximum baryonic mass
density is a pure coincidence). The vertical lines mark the
retarded time of merger and the formation of an apparent horizon.
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the BH after the remnant collapses. After collapse, the
remaining disk mass is around 0.05 M⊙ (see Table II).
The disk contains enough matter to supply a wind that
could explain the red component of the kilonova
AT2017gfo observed after GW170817, with an inferred
mass ≈0.04 M⊙ [7]. It would, however, require an effective
mechanism in order to expel around 80% of the disk. The
structure of the disk after BH formation is shown in Fig. 4
for the q ¼ 0.9 example.
As a general trend, we expect that for fixed EOS and

mass ratio, systems with lower total mass possess a more
massive disk after merger (compare, for example, [56]). We
will further show that in our cases, some matter is migrating

from the remnant into the disk. This was already observed
for different models in previous studies [11,21]. Since the
remnant lifetime also increases with decreasing mass,
the final disk mass should depend even more strongly on
the total mass. Conversely, we expect a more massive disk
for a systemwith the same total mass but obeying a different
EOS for which the maximum NS mass is slightly larger.
We observe significant dynamical mass ejection during

merger and during the remnant lifetime. As shown in Fig. 5,
several independent mass ejections are launched, mostly
from radii ≲100 km. The individual ejected components
merge, because of their velocity dispersion, and leave the
system as a single ejecta component. It seems that the
pressure waves injected into the disk (see also Fig. 1) by
the HMNS also result in matter ejection from the disk.
The ejecta mass as extracted from the numerical results is

given in Table II. We stress that in general, ejecta masses
extracted from numerical simulations are affected compa-
rably strong by the numerical errors. Convergence tests
presented in [19] for simulations of a long-lived remnant
using a very similar numerical setup found a finite
resolution error of the dynamical ejecta mass around
20%. In our case, an additional—and likely dominant—
source of uncertainty is the dependence of dynamical ejecta
mass on the lifetime of the remnant. The latter can be
extremely sensitive to errors if the remnant is on the verge
of collapse. It is therefore difficult to estimate the error
without expensive tests with much higher resolutions, but
we suspect that the error could easily reach a factor of 2.
Comparing to other results in the literature, we find a

disk mass that is an outlier to the phenomenological fit of
disk mass in terms of effective tidal deformability that was

FIG. 3. Mass distribution in the meridional plane 2 ms before
apparent horizon formation, averaged over a time window
�1 ms. The color scale shows the baryonic mass density. The
contours mark densities for which the corresponding isodensity
surfaces contain selected mass fractions. We show the contours
for 99%, 98%, the mass swallowed by the BH within 1 ms after
formation, the maximum mass of uniformly rotating (“Max
Unif.”) and nonrotating NS (“Max TOV”). The contour labeled
“core” refers to the mass of the nonrotating NS best approxi-
mating the remnant core, which is defined in Sec. III C and almost
identical to the maximum nonrotating NS mass.

FIG. 4. Like Fig. 3, but showing the time 2 ms after apparent
horizon formation. The baryonic mass within the plotted density
contours (excluding the BH interior) is given in the label as
fractions of the total baryonic mass of the initial data.

FIG. 5. Radial distribution of unbound matter versus time after
merger. The color scale corresponds to unbound mass per radial
distance, where matter is considered unbound according to the
geodesic criterion. The horizontal lines mark the time of BH
formation.
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proposed in [56]. Other counterexamples were already
found in [21,57]. We also note that [73] performed a
simulation that corresponds almost exactly to our q ¼ 1
setup, except that it includes neutrino radiation. They quote
a lower ejecta mass ð2.8� 0.7Þ × 10−3 M⊙ as well as a
lower disk mass ð1.9� 0.7Þ × 10−2 M⊙ but also find a
remnant lifetime that is around 3 times shorter than for our
simulations.
Our results depicted in Fig. 5 show that mass is

continuously ejected during the HMNS lifetime. The
differences in lifetime could thus account for the tension
regarding the ejecta masses. Similarly, it might account as
least partially for the lower disk mass. The difference in
lifetime could be due to finite resolution errors alone, but it
is also possible that the inclusion of neutrino transport has
an influence on HMNS close to collapse. In any case, the
result that increasing the lifetime of a HMNS can lead to
larger disk, and ejecta masses suggests that fitting these
quantities in terms of the binary parameters as in [56,58] is
challenging for the parameter ranges resulting in short-lived
HMNS. We propose to include the lifetime as an unknown
in the fit, not just because of the sensitivity with regard to
total mass and numerical errors, but also because the
lifetime may be affected by physical effects such as
magnetic viscosity that are essentially unknown.
The spectral evolution of the kilonova depends strongly

on the ejecta velocity. Table II reports the median of the
velocity distribution extracted from our simulations as
described in Sec. II D, together with 5th and 95th percen-
tiles. The values refer to the outermost extraction radius, but
we also compared smaller ones. We find that the median
and 5th percentile are stable outside 400 km, whereas the
95th percentile continuously decreases and should be
considered as unreliable. Given that the fastest components
are those running into the artificial atmosphere, the decel-
eration is probably an artifact. Another source of uncer-
tainty is that an earlier collapse of the HMNS would result
in less ejected mass, but faster median velocity, because
ejecta launched at later times tend to be slower for the cases
at hand.
The mass and velocity found in our numerical results are

both about a factor of 2 lower than the estimates inferred by
[7] for the blue component of the kilonova AT2017gfo.
However, because of the uncertainties discussed above, we
cannot make a conclusive statement if the dynamical ejecta
mass for the SFHO EOS is compatible with the observed
kilonova.
Besides mass and velocity, kilonova models such as [7]

also predict a strong dependency on the composition of the
ejecta. The initial electron fraction of the neutron-rich
ejecta is strongly affected by neutrino radiation (see, e.g.,
[74]). Since those are not included in our study, we refrain
from discussing the ejecta composition, but note that once
again the lifetime of the HMNS has a direct impact on an
observable.

It should also be noted that disk evolution and ejecta
might be sensitive to magnetic field effects, which are not
included here. For the example of a system with large initial
magnetic field that was studied in [12], the entire disk was
driven to migrate outwards (but not necessarily ejected). On
the other hand, a reduction of remnant lifetime by magnetic
viscosity might result in less dynamical ejecta and a less
massive disk.

B. Gravitational waves

In this section, we present the GW signals extracted from
the simulations as described in Sec. II D. We compare the
dominant l ¼ jmj ¼ 2 strain component with predictions
from theoretical waveform models, produce a hybrid
waveform combining analytical inspiral data with the result
from our numerical simulations, and quantify the initial
eccentricity of our simulations through the GW frequency.
Figure 6 shows the plus polarization of the GW from

three data sets: our numerical simulations together with
analytical models for binary BH (BBH) and BNS mergers,
respectively. The purple line is the result extracted from the
numerical simulation. Three characteristic phases are
clearly identifiable. During the inspiral, the amplitude
and frequency gradually increase until the maximal ampli-
tude of the complex strain, h ¼ hþ − ih×, is reached at
t ¼ tmerger. The following postmerger oscillation is char-
acterized by an overall slowly decaying amplitude. Figure 7
shows the instantaneous frequency, F ¼ ð2πÞ−1dϕ=dt,
where ϕ is the GW phase extracted as the argument of
the complex strain h. It exhibits a characteristic modulation,
with an initially large but rapidly damped amplitude. As we
will show in Sec. III C, this modulation is an imprint of the
remnant’s radial oscillations. Such an imprint might be
exploited in observations with next-generation instruments.
Apart from the modulation, the frequency also shows a
slow drift towards higher frequencies. This correlates with a
change in remnant compactness that will be investigated in
Sec. III C. Once the BH is formed, the signal amplitude
decays quickly while the frequency reaches the value that is
expected for a BH with the mass and spin found in our
simulations (this can only be observed briefly as the
amplitude quickly becomes too small for numerical study).
The other two curves shown in Fig. 6 are predictions

from waveform models commonly used in the LIGO and
Virgo data analysis. We generate the model waveforms
with zero spins, using the same masses and, where
applicable, tidal deformabilities as in our numerical sim-
ulations. In order to visually compare them to the numerical
simulations and hybridize the waveforms, we aligned each
model with the respective signal from our numerical
simulation using the following procedure. First, we align
the signals in time by minimizing the L2 norm of the
difference between the phase velocities ω ¼ 2πF, taken
over the time interval where ω ∈ ½3850; 6000� rad=s.
Second, we adjust the phase offset in the model such that
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the average phase difference between the numerical data
and the models vanishes in the interval specified above.
The only free choice in this procedure is the interval used
for the alignment. It has to be chosen small enough to align
the waveforms in the “early” inspiral of the numerical
simulation. On the other hand, the size of the interval has to
be large enough so that the frequency evolves significantly
[79]. Otherwise, the time shift would only be weakly
constrained. The range defined above is an empirically
found compromise that is shown as a shaded band in Fig. 6.
One model used for comparison is the BBH model

IMRPhenomD [76,77] that does not incorporate tidal,
finite-size effects of NSs. We would therefore not expect
it to accurately describe the late inspiral and merger of a
BNS. However, the tidal effects for the cases at hand are
small in the frequency range used for the fitting, quite likely
within the numerical error of the simulations. We stress that
the aim of our study is not the accurate modeling of the
inspiral phase, which would require very high resolution
(see, e.g., [80]).
Just before merger, the BH model and NS simulation

start to diverge significantly. A BBH with the same masses,
following the alignment of the model and simulations used
here, would perform about 1.5 orbits more than the BNS
before merging. The most striking difference then, of
course, is that the BBH forms a remnant BH immediately
at merger, whereas our BNS mergers each form a short-
lived HMNS, which emits strong GWs until it collapses to a
BH. During merger, the signal shows an amplitude mini-
mum accompanied by a phase jump that is characteristic to
BNS mergers [20], but we observe none of the secondary
minima/phase jumps which can sometimes be present. We
will revisit this point in Sec. III D.
The mass of the final BH that would result from the

analogous BBH case can be computed using the fit to

FIG. 6. The GW signals extracted from our simulations (blue) as observed face on at a distance of 40.7 Mpc. We extend the inspiral
with the BNS model IMRPhenomD_NRTidalv2 [75] (orange), aligned with the numerical data over the grey shaded region. For
comparison, we also include the BBH model IMRPhenomD [76,77] (gray dashed lines).

FIG. 7. Left panels: evolution of GW frequency (with respect to
retarded time) fGW in comparison to twice the maximum rotation
rate fmax

rot . We also show the radial oscillation frequency, fradial,
and the rate of the modulation of the GW frequency, fvibrato (see
Sec. III C). Vertical lines mark time of merger and apparent
horizon formation. For comparison, we show the inspiral GW
frequency fmodel according to the IMRPhenomD_NRTidalv2
waveform model. Further, fBH denotes the l ¼ m ¼ 2, n ¼ 0
QNM frequency of Kerr BHs using mass and angular momentum
extracted from the BH in the simulation, as function of time (see
Sec. II D). Horizontal lines mark the frequency at merger
(maximum GW amplitude) and the main peak of the spectrum.
Right panels: Power spectrum of the l ¼ m ¼ 2 component of the
GW signal, at distance 40.7 Mpc, in terms of Fh̃ðFÞ, where
h̃2ðFÞ ¼ h̃2þðFÞ þ h̃2×ðFÞ. For comparison we show the design
sensitivity curves for various detectors, taken from [78].

W. KASTAUN and F. OHME PHYS. REV. D 104, 023001 (2021)

023001-10



nonprecessing NR simulations by Varma et al. [81]. The fit
predicts that BBH mergers in the mass ratio 0.9 and 1 case
produce remnants with mass 2.60 M⊙ and dimensionless
spins of 0.68 and 0.69, respectively. Somewhat surpris-
ingly, this agrees within a few percent with the parameters
of the BH formed in the BNS case, shown in Table II.
Waveform models that include tidal deformations of the

NSs and the resulting effect on the binary’s orbit are more
appropriate for the systems we simulate here. As an
example of current state-of-the-art models, we employ
the IMRPhenomD_NRTidalv2 model [75] that adds
an NR-informed description of the tidal dephasing on
top of the BH model [82]. The model is also shown in
Fig. 6. While visually there is no difference to the BH
model over the fitting region, the effect of the tidal phase
corrections becomes visible as a gradual dephasing in the
earlier inspiral. The impression that the dephasing between
BH and tidal model seems to increase as one moves to
earlier times is an artifact of aligning the models in the
late inspiral. IMRPhenomD_NRTidalv2 does not
attempt to model the merger and postmerger accurately;
it simply decays rapidly beyond the contact frequency of
the two NSs.
We use IMRPhenomD_NRTidalv2 to construct

hybrid waveforms that cover the GW signal from the very
early inspiral starting at 20 Hz to the end of what was
simulated numerically. We smoothly blend the inspiral
model and the NR data over the same region that we used
for aligning the signals in Fig. 6. The boundaries of this
interval ½t1; t2� inform a Planck taper function [83],

T ðtÞ ¼

8>><
>>:

0; t ≤ t1h
1þ exp

�
t2−t1
t−t1

þ t2−t1
t−t2

�i
−1
; t1 < t < t2

1; t ≥ t2

; ð3Þ

which we use to construct a C∞ transition of the form,

XhybðtÞ ¼ T ðtÞXNRðtÞ þ ½1 − T ðtÞ�XinspðtÞ: ð4Þ

Here, XðtÞ stands for the amplitude or phase of the complex
strain, which are hybridized individually. The form of the
taper ensures that the hybrid reduces exactly to the inspiral
model for times t < t1 and returns unaltered NR data
for t > t2.
The hybrid waveforms are publicly available [31], both

in plain text format and a format compatible with the LIGO
Algorithm Library [84,85]. They might facilitate explor-
atory data analysis studies, although we caution that the
accuracy of both the inspiral and NR data may not be
sufficient for high-accuracy applications. Nevertheless,
they may be used to estimate the order of magnitude at
which differences in waveforms become measurable. As an
example, we calculate the mismatch between the hybrids
and the analytical waveforms shown in Fig. 6.

The mismatch quantifies the disagreement between two
signals akin to an angle between vectors. We employ the
standard definition of the mismatch,

Mðh1; h2Þ ¼ 1 −max
δϕ;δt

hh1jh2i
kh1kkh2k

; ð5Þ

hh1jh2i ¼ 4Re
Z

f2

f1

h̃1ðfÞh̃�2ðfÞ
SnðfÞ

df; ð6Þ

where h̃ðfÞ is the Fourier transform of hðtÞ, � denotes
complex conjugation, SnðfÞ is the power spectral density of
the assumed instrument noise, and the mismatch is mini-
mized over relative time (δt) and phase (δϕ) shifts between
the two signals. khk2 ¼ hhjhi is the norm induced by the
inner product. As examples, we calculate mismatches using
the noise curves provided in [78] for Advanced LIGO [86],
LIGO Voyager [87], and the Einstein Telescope [88]. For
simplicity, we use the starting frequency of the hybrid,
f1 ¼ 20 Hz in our calculations. Note that the assumed
instruments are sensitive to lower frequencies, but as we
mainly want to illustrate the effect of the merger and
postmerger, our results are meaningful even for this
artificially chosen starting frequency.
As we can see from the results in Table III, the hybrids

disagree significantly more with the BBH model than with
the tidal NS model.MBBH is dominated by the tidal effects
of the inspiral; i.e., it reflects the difference between the
tidal inspiral model chosen for hybridization and the BBH
model. Note, however, that the mismatch is larger than it
would be in a real parameter estimation study, where the
masses and spins are not fixed, such that the BBH model
could partly mimic tidal effects at the expense of biasing
these parameters. On the other hand, by comparing the
hybrids with the same inspiral waveform used for hybridi-
zation, we can quantify the effect of the merger and

TABLE III. Comparison of our hybrid waveforms with either
the BBH model (IMRPhenomD) (second row) or the tidal
inspiral model (IMRPhenomD_NRTidalv2) (following rows).
We present mismatches M assuming instrument noise curves for
aLIGO’s second observing run O2, aLIGO design sensitivity,
LIGO Voyager, and the Einstein Telescope [78]. The last two
rows indicate at what SNR the hybrid and the tidal inspiral model
would be distinguishable at the 90% credible level (see text), and
at which distance this SNR would be achieved for optimally
oriented binaries.

aLIGO Future instruments

O2 aLIGO Voyager ET

q 0.9 1.0 0.9 1.0 0.9 1.0 0.9 1.0
MBBH½10−4� 52 52 116 115 49 49 95 96
MBNS½10−4� 0.8 1.2 3.0 3.6 0.7 1.1 1.8 2.3
SNR90 128 108 67 61 136 111 86 76
D90 [Mpc] 19 22 71 77 151 184 559 632
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postmerger that is only present in the hybrid. Those
mismatches for all assumed instruments are Oð10−4Þ.
This might seem surprising at first, given that, e.g., the
Einstein Telescope is more sensitive than aLIGO. However,
because the mismatch is based on the normalized inner
product, its value is determined by the relative weight
between low and high frequencies as given by the noise
spectral density, and not by the instrument’s overall
sensitivity. Choosing the same lower cutoff frequency
f1 ¼ 20 Hz for all instruments exaggerates this effect.
We can appropriately account for the actual detector

sensitivity by relating measurability of a difference
between two signals with the signal-to-noise ratio
(SNR). Following the derivation in [89,90], one finds that
the difference between the hybrid and the inspiral model is
indistinguishable at the p-probability level if

khhyb − hBNSk2 < χ2kðpÞ; ð7Þ

where χ2kðpÞ is a number derived from the χ2 distribution
with k degrees of freedom at which the cumulative
probability is p. Here, we consider the question at what
SNR the waveform differences are distinguishable at a 90%
level for a one-dimensional distribution. Using the corre-
sponding values p ¼ 0.9, k ¼ 1 results in χ2kðpÞ ¼ 2.71.
Expanding the left-hand side of Eq. (7) for small M, we
finally obtain

min
khBNSk

khhyb − hBNSk2 ≈ 2khhybk2M < χ2kðpÞ; ð8Þ

which allows us to estimate the critical SNR (khhybk)
required to distinguish the two signals given their mismatch.
The result is shown in the third row of Table III. Further
assuming an optimally oriented source overhead the detec-
tor, we can calculate the luminosity distance at which the
critical SNR is achieved. This last row in Table III follows
the expected trend: more sensitive, future-generation instru-
ments would be able to measure the difference between our
hybrid and the inspiral tidal model out to a greater distance.
We note that the SNR contained in the hybrid waveform
beyond the merger frequency accounts for most of the
mismatch we calculate, i.e.,

khhybðf > fmergerÞk2
khhybk2

∼ 2M ∼Oð10−4Þ: ð9Þ

While themismatch and overall SNRmay be affected by our
choice of lower cutoff frequency f1, the distancewe quote is
dominated by the postmerger and largely independent of the
specific choice of f1. Hence, it defines the volume in which
the specific postmerger signal from our simulations is
distinguishable from the tidal model without the postmerger
contribution. A study of similar questions was published in
[91]. We stress that we do not address the more complicated

question at which distance the presence of an unknown
postmerger signal can be observed.
As a final application of our waveform comparison, we

use the inspiral data to estimate the eccentricity of our NR
simulations. We do this by comparing the frequency
evolution ωðtÞ ¼ dϕ=dt of the NR data with the quasicir-
cular data of the IMRPhenomD_NRTidalv2 model. The
residual difference,

eω ¼ ωNR − ωcirc

2ωcirc
; ð10Þ

can be fit by a sinusoidal oscillation added to a small linear
drift that absorbs any inaccuracies in the alignment. The
amplitude of the oscillatory part of eω characterizes the
eccentricity of the NR simulation [92]. We find initial
eccentricities 0.010 and 0.009 for the equal-mass and mass
ratio 0.9 simulation, respectively.

C. Radial remnant profiles

We begin our discussion of the remnant structure with
the average radial mass distribution shortly before the onset
of collapse. For this, we use the measure introduced in
Sec. II D. Figure 8 shows the profile of baryonic mass
contained within isodensity surfaces versus the proper

FIG. 8. Total baryonic mass contained inside surfaces of
constant density (blue curve) versus proper volume contained
within the same surfaces. The top panel shows the remnant for the
equal mass case, the bottom panel for the unequal mass system,
both at a time 1 ms before apparent horizon formation. The dot
marks bulk mass and bulk volume of the remnant (see Sec. II D).
For comparison, we show bulk mass versus bulk volume (green
line) for the sequence of nonrotating NS following the same EOS
as the BNS initial data, starting at mass 0.9 M⊙ up to the
maximum bulk mass. The intersection with the remnant mass-
volume curve defines the core equivalent TOV model, for which
we show the mass-volume relation as well (dashed red curve).
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volume within the same surfaces. We also mark the bulk
region defined in Sec. II D. As shown in Fig. 3, there is a
smooth transition between remnant core and surrounding
disk. This is also reflected in the mass-volume profile.
It is instructive to compare this profile to those obtained

for nonrotating NS with same EOS as the initial data. In a
previous work [11], we introduced a method to find a
nonrotating NS model (with same EOS as the initial data)
for which the profile of the core resembles the one of the
remnant. Nonrotating NS correspond to the 1-parametric
family of solutions to the TOV equations [93,94]. Finding
the bulk for a given solution involves a simple root finding
problem [11]. By doing this for the whole sequence of
solutions, we obtain a relation between bulk mass and bulk
volume. To find a good match to the remnant core, we
simply find the intersection with the remnant mass-volume
profile, provided that it does intersect.
The sequence is shown in Fig. 8 and just barely intersects

the remnant profile, near the maximum mass NS model.
The figure also shows the mass-volume profile of the
corresponding NS model, which we refer to as core-
equivalent TOV model. It agrees remarkably well with
the merger remnant profile within the whole bulk of the NS.
Close to the NS surface, the two profiles naturally start to
deviate, with the merger remnant profile smoothly extend-
ing to the debris disk.
The time evolution of the core equivalent mass is shown in

Fig. 9,whereas the evolution of the bulkdensity is depicted in
Fig. 2. We find large initial oscillations, which are almost
completely damped until collapse. Simultaneously with the
damping, we also observe a drift towards larger equivalent
core mass and larger bulk density.
At some point, the remnant bulk density exceeds the

maximum bulk density of TOV solutions, and also no core
equivalent NS can be found anymore. Collapse sets in
within less than 1 ms after this point. This behavior agrees
well with earlier results [19,21] obtained for different
systems. The mounting number of simulation results with-
out any counterexample adds weight to the conjecture that a
HMNS collapses as soon as it does not allow for a core
equivalent TOV model anymore.
It should however be mentioned that the above con-

jecture is disregarding brief violations due to oscillations.
For the q ¼ 1 case, the core is slightly too compact to allow
a stable TOV core equivalent for a very brief time already
during the first oscillations after merger (this is hardly
visible in the figure).
Currently, it is up to speculation if one should expect

collapse when this limit is briefly exceeded dynamically.
Our original conjecture for the collapse criterion is moti-
vated by quasistationary systems. It is however worth
noting an example where the limit was almost reached
during the initial oscillations without any collapse, pre-
sented in [19]. The mass of this model was known to be just
below the estimated threshold for prompt collapse for the

given EOS (APR4). It seems likely that the merger studied
here is also very close to prompt collapse.
Next, we turn to study the time evolution of the radial

mass distribution. Since the average radial distribution in
the late core is very close to the one of the maximum mass
spherical NS, it is natural to subtract the latter. Fig. 10
shows the resulting differences in density profile in a time-
radius diagram. As one can see, the deviations from the
maximummass TOV profile are larger at first, up to 60% of
the maximum density, and also show large oscillations. A
noteworthy property of the oscillations is that the density in
the core does not significantly exceed the TOV model until
shortly before collapse.
To further investigate the oscillations, we also show the

volumetric radius of surfaces containing fixed amounts of
baryonic mass in Fig. 10. The oscillation of the occupied
proper volume provides a definition for an average radial

FIG. 9. Evolution of masses for the equal mass case (top panel)
and the unequal mass case (bottom panel). The dashed red curve
shows the bulk baryonic mass, the solid blue curve the bulk
baryonic mass of the core TOVequivalent (see Sec. III C), and the
horizontal dash-dotted line the maximum bulk baryonic mass of
nonrotating NS following the same EOS as the BNS initial data
(SFHO). The solid black curve shows the gravitational mass of
the BH (Sec. II D) and the vertical line, the time of first apparent
horizon detection. The solid olive curve shows the total baryonic
mass present in the computational domain up to BH formation
and a constant afterwards. The dashed black curve shows the
baryonic mass swallowed by the BH. The latter is computed by
first adding the mass inside the domain, excluding the interior of
apparent horizons, to the cumulative mass loss by ejecta, and then
computing the difference to the time directly before BH for-
mation. The green curve shows the ADMmass, where the shaded
area is the contribution attributed to the energy of GW radiation
within the computational domain (see Sec. II D).
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displacement associated to those oscillations. Again, we
see a strong damping of the oscillations.
In order to compute the frequency fradial of the radial

oscillation, we determine the extrema of the bulk density
shown in Fig. 2, after subtracting a quadratic fit to remove
the drift. We then compute frequencies from the time
between adjacent pairs of maxima as well as pairs of
minima. The result is shown in Fig. 7. We find that the
radial oscillation frequency decreases when approaching
collapse.
We recall that for a nonrotating NS, collapse occurs

when the square of the frequency of the radial quasinormal
mode crosses zero. Under the assumption that the collapse
mechanism for the merger remnant is the same, one would
expect the radial oscillation frequency to approach zero as
well. The evolution in Fig. 7 is compatible with this picture,
although we cannot determine the oscillation frequency
arbitrary close to the collapse (since we measure the
oscillation frequency by distance between extrema).
Angular momentum conservation suggests that the radial

oscillation should cause a modulation of the overall
rotation, and therefore, of the GW frequency. Indeed, the
GW frequency shown in Fig. 7 shows minima and maxima

that correlate with those of the bulk density. We note that
the GW frequency aligns perfectly with the remnant
density, but there is a small ambiguity in the time. In
the figure, we used the tortoise coordinate r⋆ for retardation
of the GW signal, whereas using the coordinate radius
would lead to a small but noticeable time shift around
0.1 ms. The modulation frequency fvibrato obtained from
minima and maxima of the GW frequency agrees very well
with the radial oscillation frequency obtained from the
density, as shown in Fig. 7, and the modulation strength
decreases with the radial oscillation amplitude.
As shown in Fig. 10, the volume occupied by isodensity

surfaces containing fixed baryonic masses shows a slow
decrease in the core. In this sense, the core is shrinking.
Besides the core, Fig. 10 also shows the transition zone
between remnant and disk. Here, the figure clearly shows
an expansion of the isodensity surfaces of fixed mass. Even
though the isodensity surfaces for the disk are not spherical
anymore, our measure tells us that they occupy more space.
This rules out mass accretion onto the remnant as a cause
for the increasing compactness of the core.

D. Three-dimensional remnant structure

After studying the average radial mass distribution, we
now turn to investigate the overall structure of the 3D fluid
flow inside the remnant. Conceptually, we decompose the
dynamics into a rotation with slowly drifting angular
velocity, a quasistationary flow pattern, and subdominant
contributions such as quasiradial oscillations.
To extract the quasistationary part of the flow in the

rotating frame, we employ a complex postprocessing chain
as follows. First, we select a time window for averaging.
For each of the 3D data sets saved during the simulation at
regular intervals within the window, we first load 3D mesh-
refined simulation data. These data are resampled onto a
regular grid uniform in simulation coordinates that is
covering the region of interest. Next, we apply the
coordinate transformation into the corotating postprocess-
ing coordinates described in Sec. II C. During this step, we
resample again onto a regular grid, this time uniform in the
postprocessing coordinates. We also compute the Jacobian
of the transformation in order to transform vectors cor-
rectly. To account for the time-dependent transformation of
spatial coordinates, we further compute a new shift vector
with the corresponding corrections. In this fashion, we
compute the quasistationary density ρ̄ and fluid velocity
with respect to the corotating postprocessing coordi-
nates, w̄i.
For visualization purposes, we compute the integral

curves of the coordinate velocity w̄i. If the flow pattern
were truly stationary, those curves would correspond to
fluid trajectories. Because the structure is slowly changing
and because we average out oscillations, the integral curves
do not agree exactly with trajectories. That said, they do

FIG. 10. Evolution of radial mass distribution in the merger
remnant for the equal mass case (top panel) and unequal mass
case (bottom panel). The solid black curves show the time
evolution of the proper volume within isodensity surfaces
containing fractions 0.1,0.5,0.9,0.97, and 0.98 of the total
baryonic mass. The volume is given in terms of volumetric
radius RV , the radius of an Euclidean sphere of equal volume. We
further compare the remnant to the spherical NS solution of
maximum bulk mass. For both, we compute the density as
function of proper volume within isodensity surfaces. The color
scale represents the difference of density at given volumetric
radius, normalized to the maximum density of the spherical NS.
The volumetric surface radius of the latter is shown as dashed
vertical line.
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represent a good measure for the overall structure of the
fluid movement.
Figure 11 shows the integral curves together with two

isodensity surfaces of ρ̄ around 7 ms after merger for the
unequal mass case. A prominent feature visible in the figure
is the presence of two secondary vortices. Such vortices
seem to be a generic feature, which we have observed in
previous works [11,19,20] that studied the fluid flow within
equatorial plane. The 3D results shown in Fig. 11 dem-
onstrate how those vortices extend above and below the
equatorial plane. We find that the direction of the fluid flow
has negligible vertical components, except for the region
within the secondary vortices. Even there, the absolute
velocities are small. This suggests that mixing of matter in
the vertical direction can probably by neglected.
The figure also shows that the inner fluid flow is still

strongly nonaxisymmetric.We recall that our coordinates are
constructed such that a physically axisymmetric system
would also appear axisymmetric in the postprocessing
coordinates. The deformation of the fluid flow correlates
with a strong elliptical deformation of the inner isodensity
surface shown in the figure. The isodensity surface outside
the secondary vortices is deformed less strongly but exhibits
some bumps that seem to be related to the secondary vortices.

Notably, the bumps in the outer regions are oriented
nearly orthogonal to the deformation of the core. This is
relevant for the GW signal, since the corresponding
quadrupole moments in the rotating frame have different
sign. The resulting GW signal is then the difference of two
contributions. This might explain why numerical simula-
tions sometimes exhibit pronounced secondary minima in
the postmerger signal that are accompanied by a phase
jump, as discussed in [20]. The relative amplitudes of the
two contributions can change, which might result in a zero
crossing of the quadrupole moment in the rotating frame.
We reserve the quantitative discussion of this effect for
future work but point out that, even though the deformation
of the outer regions seems less pronounced and is located in
less dense regions, this might be compensated by the
quadratic radial factor in the quadrupole moment and the
cubic radial factor from the volumes involved.
In Fig. 12, we compare the remnant structure at a time

shown in Fig. 11 to times shortly after merger and shortly
before collapse. Although there are some differences, the
nonaxisymmetric deformation and the secondary vortices
stay prominent right until collapse. This corresponds to a
large GW amplitude sustained until collapse, which was
shown in Sec. III B.

FIG. 11. Quasistationary part of the remnant structure, in the frame corotating with m ¼ 2 density perturbation of remnant. The
visualization represents the average over a timewindow 7� 1 ms after merger (2 ms before collapse) for the q ¼ 0.9 case. The inner and
outer surfaces (cut open) mark mass densities 0.3 and 0.01 of the maximum density, respectively. The wires represent integral lines of the
averaged velocity field, shown inside the dense region enclosed within the outer surface. The top left rendering shows the remnant from
a perspective along the rotation axis, the bottom left one from the side, along the longer axes of the deformed core, looking onto a
meridional plane that cuts through the secondary vortices.

NUMERICAL INSIDE VIEW OF HYPERMASSIVE REMNANT … PHYS. REV. D 104, 023001 (2021)

023001-15



E. Differential rotation

We now discuss the rotation profile of the remnant.
Although the fluid flow is decidedly nonaxisymmetric, it is
instructive to study the axisymmetric part obtained by
averaging in the azimuthal direction. We start with the
rotation profile in the equatorial plane. The azimuthal
average with respect to the postprocessing coordinates is
depicted in Fig. 13. The profile shows the same generic
behavior found for many different systems [10–12,19–23].

The rotation of the core is comparatively slow with respect
to infinity, and it is rotating very slowly with respect to the
local inertial frame. Further out, the rotation rate exhibits a
maximum.
As in previous works, we find that this maximum

average rotation rate agrees well with half of the instanta-
neous GW frequency. This agreement has already been
observed before [10–12,19,20,22], and we are not aware of
a counterexample. Although it is too early to generalize, the
indications accumulate that this relation might be typical.
The evolution of maximum rotation rate and half the GW

frequency is shown in Fig. 7. The frequencies do not just
coincide at the time shown in Fig. 13. Clearly, they agree
well throughout most of the postmerger phase. However, a
few ms after the time tmerger of peak GW amplitude, the
system is still in the process of merging. The computed
maximum rotation rate is not meaningful during this period
because during this phase, it corresponds to the shear
component near the origin. Consequently, the correlation to
the GW frequency is not present.
At larger radii, the rotation rate slowly approaches the

Kepler rate as the remnant transitions into the disk. Since
there still is a pressure gradient in the disk, the rotation is
slightly slower than the orbital velocity. For comparison,
we also plot the orbital velocity profile for the BH present
shortly after collapse (mass and spin are given in Table II).
Naturally, it agrees well with the orbital velocity before
collapse. Surprisingly, the orbital frequency of the inner-
most stable circular orbit agrees with the maximum rotation
rate and half GW frequency before collapse. We are not
aware of any reason why this should be the case, and it
might well be a numerical coincidence.
Figure 13 also shows the radius and rotation rate for two

sequences of uniformly rotating supramassive NS with
same EOS as the initial data. One sequence is given by the
models at mass shedding limit, and the other by models
with the minimum angular momentum required to allow
stable solutions. We find that the radius of the maximum
mass model is very close to the innermost stable circular
orbit of the final BH. We also observe a close match
between the rotation rate of the maximum mass model and

FIG. 12. Remnant structure visualized as in Fig. 11, but for three different time windows. From left to right: 3� 1 ms after merger,
5� 1 ms after merger, and 7� 1 ms after merger (2 ms before collapse). The camera distance remains constant to allow size
comparison.

FIG. 13. Rotation profile of the merger remnant 1 ms before
collapse, for mass ratios q ¼ 1 and q ¼ 0.9, in the equatorial
plane, versus circumferential radius. The filled curves show the
angular velocity as seen from infinity and the frame dragging
contribution (see Sec. II D). The data have been averaged in ϕ
direction and over a time window �0.5 ms. For comparison, we
show the angular velocity of test particles in prograde circular
orbit (dashed curve), and the same for particles orbiting the
spinning BH formed after collapse (solid green curve). The solid
black curves show the rotation rate and surface radius of
uniformly rotating supramassive NS, either at mass shedding
limit (right curve) or at minimal angular momentum (left curve).
The vertical line marks the radius where the ϕ-averaged mass
density in the equatorial plane falls below 5% of the central value.
The horizontal line marks half of the GW angular frequency.
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the maximum of the remnant rotation rate profile. This
might be a coincidence. Nevertheless, it should be noted
that such a relation would be extremely useful, since it
would allow to predict the GW frequency of a HMNS
directly before BH formation from the EOS alone, without
even using the total mass of the system.
We now turn to the rotation profile outside the equatorial

plane. The left panel of Fig. 14 shows the azimuthal
average of the rotation rate as function of the distance d
to the z axis and of the z coordinate. The rotation rate is
computed with respect to a straight rotation axis orthogonal
to the equatorial plane. The centers of rotation on each
plane parallel to the equatorial plane nearly coincide with
this line but do not form a perfectly straight line. This
misalignment is visible in the plot as artifacts close to
the axis, even though the underlying velocity field is
smooth.
The rotation rate in the corotating postprocessing frame

is mostly negative. The region with zero rotation in this
frame corresponds to the maximum rotation rate in the
inertial frame (compare Fig. 13). Inside the remnant core,
we find that the profile mainly depends on d and less on z.
Along the axis, we also observe some differential rotation
in the z direction outside the dense regions.
From the 3D visualization Fig. 11, we already know

that the fluid flow shows pronounced deviations from
axisymmetry. This can also be seen in the middle and
right panels of Fig. 14. Those show the rotation rate in two
meridional planes orthogonal to each other, one of which
(right panel) is passing through the secondary vortices
visible in Fig. 11.
The vortices themselves are stationary in the rotating

postprocessing frame, and their own rotation is prograde
with respect to the remnant. The local rotation rate (with
respect to the inertial frame) inside the vortices exceeds the
rotation rate of the dominant density perturbation on the
vertex side opposite to the remnant center. The meridional
plane crossing the vortices exhibits stronger gradients of
rotation rate than the orthogonal meridional plane shown in
the middle panel.
The local deviation of the flow from axisymmetry

correlates with a nonaxisymmetric perturbation of the
density. This can be seen in the overlaid isodensity contours
in Fig. 14. The right panel depicting the cut through the
vortices shows a slightly prolate core. Further out, the
isodensity contours are not simple ellipsoids but exhibit an
equatorial bump. In contrast, the same density contour in
the middle panel is nearly ellipsoidal, and the core is
slightly oblate.

F. Disk vorticity

Besides the fluid flow inside the hypermassive NS, we
are also interested in the dynamics of the surrounding disk.
As already shown in Fig. 1, the disk is subject to continuous
strong perturbations until the BH is formed. We have also

shown in Fig. 10 that matter migrates from the NS into the
disk. One can therefore expect an impact on the fluid flow,
causing deviations from a quasi-Keplerian disk.
The velocity field in the disk is dominated by the quasi-

Keplerian velocity profile shown in Fig. 13. In order to get a
more detailed picture, we compute the fluid vorticity in
three dimensions, which, being a differential expression, is
more sensitive to local deviations. We recall that the most
appropriate vorticity measure in the relativistic case is given
by ∂iðhvjÞ − ∂jðhviÞ, where h is the relativistic enthalpy
and vk the three velocity of the fluid. However, since the
three metric and enthalpy are not saved as 3D data in our

simulations, we instead compute the ordinary curl ∇⃗ × w⃗,
where wi ¼ αvi − βi is the fluid advection speed with
respect to the simulation coordinates, α the lapse function,

βi the shift vector, and ∇⃗ refers to the ordinary partial
derivatives. We also do not use our usual postprocessing
coordinates because they are not available after BH for-
mation. This simple vorticity measure is sufficient for the
following qualitative discussion of local shear but not
suitable for a study of vorticity conservation.
For visualization purposes, we compute integral curves

of the instantaneous vorticity. We do not average the
velocity field in time, because here the focus is on the
impact of disturbances, not on the overall average fluid
flow. The result is shown in Fig. 15. We find that the
vorticity field within the disk is quite irregular. Using an
interactive rendering of the figure, we observed many
closed vorticity lines. Our cursory visual inspection did

FIG. 14. Two-dimensional differential rotation profile of the
remnant for mass ratio q ¼ 0.9, averaged over the time window
7� 1 ms after merger. The color scale denotes the rotational
frequency in the coordinate system corotating with the perturba-
tion pattern. Negative values signify that (in the inertial frame) the
fluid is rotating more slowly than the pattern. The left panel
shows the average in ϕ direction versus cylindrical radius and z
coordinate. The right panel shows a cut in ðy; zÞ plane, the y axis
being roughly aligned with the secondary vortices shown in
Fig. 11. The middle panel shows the ðx; zÞ plane instead. The
solid curves mark isodensity contours (in the left panel with
respect to ϕ-averaged density). Radial distances in the equatorial
plane and distances along the z axis are both proper distances,
allowing us to asses the oblateness of the remnant.
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not reveal any linked loops. Overall, the nonradial compo-
nents dominate the vorticity.
Comparing the disk before and after merger, we observe

that the density quickly becomes more axisymmetric after
the NS collapses, as it ceases to inject spiral waves into the
disk. This can also be seen in Fig. 1. The vorticity structure
on the other hand does not become regular; i.e., the
numerous small-scale vortices continue to dominate the
local shear until the end of the simulation.
Our findings suggest a possible interpretation as follows.

The rotating nonaxisymmetric deformation and the radial
oscillations inject a complicated pattern of waves into the
disk that stir up the matter. The resulting perturbations
dominate the vorticity on medium and small length scales.
As long as vorticity is conserved (which is not necessarily
the case in hot matter and also not expected to hold exactly
when using the curl as vorticity measure), one can expect
the disturbances to manifest as closed vorticity lines. Since
vorticity lines are dragged along the fluid, the differential
rotation of the disk stretches small vorticity loops, resulting
in a predominantly nonradial orientation. Another possible
interpretation would be turbulence.
Whether the fluid is turbulent in the strict fluid dynamics

sense or just exhibits a very irregular looking flow, our
results suggest that treating the flow inside the disk as
laminar might not be sufficient for all applications. Most
notably, properties of the magnetorotational instability are
often predicted in terms of rotation rate around the origin,
density, and magnetic field strength. However, since the
local shear is dominated by essentially random and time-
dependent perturbations, this might not be justified. On the
other hand, a magnetic field of sufficient strength might
have a dampening impact on local vortices.

G. Angular momentum and energy

We now discuss the distribution of mass and angular
momentum using the various measures discussed in
Sec. II D. Our main interest is whether the remnant
collapses because of angular momentum transport within
the fluid or because of angular momentum loss via GW
radiation. We will answer this for the numerical results but
emphasize that angular momentum transport is most likely
not captured correctly. The lack of effective magnetic
viscosity might lead to underestimation of the dissipation
of differential rotation, while the unavoidable numerical
viscosity might lead to overestimation in case of low actual
viscosity.
First, we establish how much angular momentum and

energy is lost via GW. The total ADM energy is shown in
Fig. 16 as function of total angular momentum. We mark
the values at merger and collapse to visualize the loss
during the postmerger phase (the BH ringdown is negli-
gible). However, it would be wrong to directly associate
this loss to the changes in the remnant, for the following
reason. At the time when the merger signal reaches the
extraction radius, the space between remnant and extraction
radius contains strong GW radiation from the early post-
merger phase (compare to Fig. 9). We find that the radiated
energy and angular momentum corresponding to this part
of the signal constitutes a significant fraction of the total
loss. To get a better handle on the energetics of the remnant,
we computed the total energy and angular momentum at
times when the wave front passing a smaller sphere at time
of merger reaches the extraction radius. In the same way,
we treat the time of collapse. This is similar to using a small
extraction radius but avoids extracting GW in the strong

FIG. 15. Vorticity lines inside the disk 2 ms before (left) and 5 ms after BH formation (right), for the q ¼ 0.9 case. The black surface in
the right panel marks the apparent horizon. The cut-open solid surfaces in the left panel mark densities 4.0 × 1010, 2.2 × 1011,
1.7 × 1013, and 5.0 × 1014 g=cm3, in the right panel 1.5 × 1010 and 8.1 × 1010 g=cm3. Vortex lines are cut off outside the outermost
surface and beyond a length cutoff in order to limit cluttering. The color indicates the vorticity magnitude, where lighter color
corresponds to larger values. The camera distance is the same in both panels.
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field zone. The resulting values for energy and angular
momentum, which are also shown in Fig. 16, should be
more closely related to the changes within the remnant. We
therefore think of those as energy and angular momentum
of the remnant and disk.
For comparison, Fig. 16 also shows the ranges possible

for uniformly rotating NS with the initial data EOS, as well
as the curve for extremal Kerr BH. Clearly, both the total
energy and the total angular momentum of remnant and
disk (see above) are always larger than the maximum
values for uniformly rotating NS. For the energy, this can
be expected since the total baryonic mass is in the hyper-
massive range. The comparison to the Kerr curve shows
that energy and angular momentum of remnant and disk
could be realized by a BH at any time, while the inner core
exceeds the extremal Kerr angular momentum initially, but
not in the later stages.

As an additional cross check, Fig. 16 includes an
analytic approximation for energy and angular momentum
during inspiral, which agrees well with the initial data and
numerical evolution. In detail, we use the post-Newtonian
expression for the quasicircular inspiral of nonspinning
binary black holes taken from [95], including terms up to
fourth order.
The actual values for the final BH are shown in Fig. 16 as

well. The BH energy and angular momentum shown are
computed using the isolated horizon framework and would
correspond to the ADM values for an isolated BH.
However, the final BH is still surrounded by a massive
disk, which accounts for the difference to the total ADM
energy and angular momentum in the computational
domain. The figure also contains the values shortly after
BH formation. The differences to the final values are
mainly due to matter not in stable orbits falling in during
the first few ms. The early BH is interesting because it
corresponds more closely to the part that actually collapsed.
In order to get an estimate of the angular momentum

transport inside the remnant, we study the integrands of the
ADM volume integrals. At each time, we compute the
contributions to ADM energy and angular momentum
integrals within coordinate spheres as function of the
sphere’s coordinate radius. Figure 16 shows the resulting
curves at five different times. In addition, we show the time
evolution for coordinate spheres with time-dependent
radius chosen such that the baryonic mass within the radius
stays constant. The time evolution of angular momentum
and energy within those spheres is thus proportional to the
average angular momentum and energy per baryonic mass.
The largest radius plotted is the one of the sphere that
contains exactly the amount of baryonic mass that is
swallowed by the BH within 1 ms of apparent horizon
formation (but not exactly the same matter, as the swal-
lowed region is nonspherical).
From the shape of the resulting grid, we deduce that the

angular momentum loss dominates the angular momentum
redistribution within the remnant, although the latter is not
negligible. This can be seen by comparing the maximum
angular momentum loss of the fixed-mass surfaces (well
inside the core) to the loss of the outermost surface shown
(which contains the same amount of mass as ending up in
the BH). The difference corresponds to internal angular
momentum redistribution, while the (larger) total change
corresponds to total angular momentum loss. Furthermore,
the angular momentum loss from within the outermost
surface in the plot is comparable to the total loss by GW.
Figure 16 therefore suggests that the angular momentum
transport into the disk is subdominant to the loss by GWs in
this case.
We recall that the integrands in theADMvolume integrals

are gauge dependent quantities that depend on the time
slicing. The use of coordinate spheres we used above also
introduce a dependence on the spatial coordinates used in

FIG. 16. Evolution of energy and angular momentum for the
equal mass system (top panel) and the q ¼ 0.9 case (bottom
panel). The solid blue curve shows total ADM energy versus
angular momentum, and the dashed black line a post-Newtonian
approximation (see Sec. III G). The blue circles represent energy
and angular momentum excluding the amount attributed to GW
radiation outside r ¼ 100 km, at times 1 ms after merger and 1ms
before collapse. The black and red dots mark energy and angular
momentum of the BH at the end of the simulation and 1 ms after
apparent horizon formation. The diagonally oriented red curves
show the contributions within spheres of constant coordinate
radius to the ADM volume integrals, at regular intervals from
1 ms after merger to 1 ms before apparent horizon formation. The
horizontally oriented red curves show the time evolution of the
contributions within spheres containing different fixed amounts
of baryonic mass, ranging up to the baryonic mass swallowed by
the BH within 1 ms after formation. Time increases monoton-
ically from right to left. The shaded region is bounded by the
mass shedding limit and smallest possible angular momentum of
stable uniformly rotating NSs. The green horizontal line marks
the maximum mass of nonrotating NS. The dotted line shows the
angular momentum of extremal Kerr BHs.
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the simulation. It is therefore advisable to compare with
other measures.
One comparison we can do is between the ADM angular

momentum and an approximation of Komar angular
momentum (see Sec. II D). The latter is dependent on
the spatial gauge as well but in a different manner. The
comparison might reveal gauge dependencies of the results,
but an agreement is no conclusive proof that gauge effects
are negligible. The two measures are shown in Fig. 17 for
the time shortly before collapse. We find that the Komar-
type angular momentum measure matches the ADM
angular momentum almost exactly, as would be expected
for an axisymmetric spacetime.
Another simple comparison is between the ADM quan-

tities computed within coordinate spheres and those com-
puted within the isosurfaces of mass density. The latter
surfaces are independent on the spatial gauge. Although the
density distribution is not spherically symmetric, we find
that the two measures match well. Our comparisons
indicate that the qualitative picture we derived from
Fig. 16 is not simply an artifact of gauge effects.
For comparison, Fig. 17 also shows the allowed region

for uniformly rotating NS. Somewhat surprisingly, the
remnant profile passes right through the uniformly rotating
model of maximum mass. We are unaware of a reason to
expect such behavior, which might well be a numerical
coincidence.

We are lead to the conclusion that the remnant studied in
our simulations is driven to collapse mainly by angular
momentum loss via GW, whereas angular momentum
transport into the disk or within the remnant are less
important factors. We stress that our findings do not
necessarily generalize to all HMNS. For even longer lived
remnants, the angular momentum transport can definitely
become more important, as was shown in [73].

IV. SUMMARY

In this work, we present a possible scenario for the fate
of the merger remnant of GW170817. We employ standard
numerical simulation techniques and focus on the most
fundamental hydrodynamic processes, ignoring magnetic
fields and neutrino radiation. The main motivation is a
better qualitative understanding of hypermassive merger
remnants. To this end, we create novel postprocessing and
visualization tools to analyze the numerical results. Those
methods provide a more detailed view on three key aspects
of the simulated mergers.
First, we find that the merger remnants are not merely

differentially rotating axisymmetric systems deformed by
some oscillation modes known from linear perturbation
theory. The flow and the density deformation are best
described in a rotating frame, where they form a pattern that
remains stable until the remnant collapses to a BH. A
prominent feature of the flow pattern are secondary vortices
in the outer layers. Such vortices were already observed in
earlier studies restricted to the equatorial plane [11,19,20].
Here, we visualized how they extend outside the equatorial
plane. The density deformation pattern in the aforemen-
tioned rotating frame is not a simple ellipsoidal deforma-
tion either. Instead, we find that the perturbation in the core
is oriented nearly orthogonal with respect to the deforma-
tion near the transition zone to the disk. The latter
deformation seems related to the secondary vortices, which
are located at radii between the two regimes.
The deformation of the remnant is directly related to the

GW signal. As in earlier studies [10–12,19,20,22], we find
that the GW frequency is twice the maximum rotation rate.
The maximum rotation rate is modulated by a decaying
quasiradial oscillation, which matches exactly a modulation
of the GW frequency. Another noteworthy aspect is that the
spatial phase shifts mentioned above imply cancellation
effects in the quadrupole moment and therefore, the GW
amplitude. Moreover, the shape of the deformation under-
goes a slow drift, such that cancellation effects become time
dependent.
One may speculate whether this effect can become

pronounced enough to cause zero crossings of the quadru-
pole moment in the rotating frame. Such crossings would
explain secondary minima and phase jumps in addition to
those occurring during merger, which are sometimes
observed in numerical simulations of postmerger GW

FIG. 17. Distribution of angular momentum at time 1 ms before
collapse for the equal mass system (top panel) and the q ¼ 0.9
case (bottom panel). The solid red curve shows the contribution to
the ADM angular momentum within isodensity surfaces as
function of the baryonic mass within the same surfaces. The
green dot marks the position of the remnant bulk (see Sec. II D).
The solid green line shows the same for spherical surfaces
(spherical with respect to simulation coordinates). It is hidden
behind the dashed yellow curve, which shows an estimate of the
Komar angular momentum (see Sec. II D). The shaded area
shows the values possible for uniformly rotating NS.
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signals (e.g., [20]). For the examples studied here, no
secondary phase jumps were observed, however.
Second, we find at any time that the overall radial mass

distribution in the remnant core is well approximated by
profiles of a nonrotating isolated NSs. This fits well to the
relatively slow rotation rate in the core, as was already
observed in many earlier works [10–12,19–23]. A key
observation about our results is that the profile directly
before the onset of collapsematches the profile in the core of
the maximummass nonrotating NS. In earlier work [19,21],
we proposed that, for generic hypermassive remnants,
collapse sets in exactly when the core reaches this critical
density profile, which depends only on the EOS. The new
examples add further support to this conjecture.
Third, we identify the mechanism responsible for the

drift of the density profile leading towards the eventual
collapse. By studying the radial distributions of mass and
angular momentum and their time evolution, we rule out
internal angular momentum transport within the HMNS as
dominant cause. We also rule out angular momentum
transfer into the surrounding disk as dominant cause and
demonstrate that there is no mass accretion onto the
HMNS. Instead, the main effect is the angular momentum
carried away by the strong GW emitted until collapse.
We have to stress, however, that small scale magnetic

field amplification effects, which are not taken into account
in our simulations, might lead to a large effective viscosity.
This might increase the angular momentum transport to a
degree such that it becomes dominant over the impact of
angular momentum loss via GW. Nevertheless, considering
only the latter in a simulation may provide an upper limit
for the collapse delay of systems with larger effective
viscosity. We emphasize that the above statements refer to
the systems studied here, which form a hypermassive NS
that emits a strong GW signal and collapses within tens of
milliseconds. Our results cannot be generalized to longer-
lived remnants, which are not ruled out by the observational
data for GW170817.
Another avenue for future research is the impact of

neutrino radiation transport on the nonaxisymmetry of the
remnant. As in the earlier work [11], we observe that the
overall thermal evolution in the corotating frame has a
nonaxisymmetric, slowly changing structure. It is unknown
how important the corresponding thermal pressure pertur-
bations are for maintaining the nonaxisymmetric remnant
perturbation. Since the latter are the cause of the postmerger
GW signal, one can speculate on a relation between
neutrino cooling and the decay of the GW amplitude.
Last but not least, we investigate the disk surrounding the

remnant and matter ejected from the system. The mass of
the disk present in our simulation after BH formation is
sufficient to allow the massive wind component (red
component) inferred from kilonova AT2017gfo, although
this would require an efficient mechanism for expelling
matter. The dynamical mass ejection in our results is

insufficient to explain the blue component inferred from
the kilonova.
Making conclusive statements on the compatibility of our

models with AT2017gfo, however, would require a conver-
gence study with much higher resolutions. In fact, there is
some tension with published results [73] evolving our equal-
massmodel, including alsoneutrino radiation.This studydoes
evolve our model with three resolutions but does not discuss
convergence of ejecta and disk masses. Those simulations
predict less dynamical ejecta and less massive disks.
Noteworthy, they also result in shorter lifetimes of theHMNS.
In our case, we find that matter is migrating into the disk

from the HMNS, a result we also found in earlier work of
different systems [11,21]. This effect might further increase
when taking into accountmagnetically drivenwinds from the
HMNS remnant (see, e.g., [12]).We also find that theHMNS
is strongly perturbing the disk, which apparently causes part
of thedisk tobecomeunbound. For the cases at hand, the tidal
ejection during merger is insignificant in comparison.
The above observations suggests that the lifetime of the

HMNS remnant—which is extremely sensitive to the total
mass and to numerical errors because the system is close to
collapse—is indeed one of the main uncertainties regarding
disk mass and mass ejection. It could prove difficult to find
analytic fits to the parameters of the binary, and it might be
advisable to treat the lifetime of HMNS as a free (albeit
constrained) parameter in such fits.
The perturbation of the disk by the HMNS also has an

effect on the velocity field in the disk, as shown by novel
3D visualizations of the vorticity field both before and after
BH formation. We observe an irregular vorticity field
instead of the ordered structure that would be present for
a Keplerian velocity profile. This indicates that the shear on
medium length scales is dominated by the disturbances
originating from the remnant.
The irregular vorticity structure is relevant with regard to

estimates for the time and length scales of magnetorota-
tional instabilities, because the analytic models used for
such predictions are based on disks with an orderly flow.
Although the density perturbations quickly settle down
after BH formation, we find that the vorticity remains
irregular until the end of the simulation.
In this work, we focused on two examples only and

refrained from costly high-resolution studies. Those two
examples paint a qualitative picture of the HMNS structure
and evolution. As a future step, the analysis developed in
this work needs to be applied to more simulations in order
to determine which parts of this picture are generic. This
will also benefit the development of more realistic models
for HMNS created in mergers. Such models are needed for
the analysis of future observations of a postmerger GW
signal, since performing a large number of brute force
merger simulations is computationally too expensive. As
qualitative examples for calibrating such models, we
provide the GW data from our simulations [31].
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