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The anticipated enhancements in detector sensitivity and the corresponding increase in the number
of gravitational wave detections will make it possible to estimate parameters of compact binaries
with greater accuracy assuming general relativity(GR), and also to carry out sharper tests of GR
itself. Crucial to these procedures are accurate gravitational waveform models. The systematic
errors of the models must stay below statistical errors to prevent biases in parameter estimation
and to carry out meaningful tests of GR. Comparisons of the models against numerical relativity
(NR) waveforms provide an excellent measure of systematic errors. A complementary approach is to
use balance laws provided by Einstein’s equations to measure faithfulness of a candidate waveform
against exact GR. Each balance law focuses on a physical observable and measures the accuracy of
the candidate waveform vis a vis that observable. Therefore, this analysis can provide new physical
insights into sources of errors. In this paper we focus on the angular momentum balance law,
using post-Newtonian theory to calculate the initial angular momentum, surrogate fits to obtain
the remnant spin and waveforms from models to calculate the flux. The consistency check provided
by the angular momentum balance law brings out the marked improvement in the passage from
IMRPhenomPv2 to IMRPhenomXPHM and from SEOBNRv3 to SEOBNRv4PHM and shows that the most
recent versions agree quite well with exact GR. For precessing systems, on the other hand, we find
that there is room for further improvement, especially for the Phenom models.

I. INTRODUCTION

The next generation of gravitational wave detectors
with much higher sensitivity are on the horizon [1–5].
We can expect detection of compact binaries with or-
ders of magnitude higher signal to noise ratio than cur-
rent measurements. Consequently it will allow unprece-
dented precision in the tests of general relativity in the
highly nonlinear regime. Moreover it will allow high pre-
cision parameter estimation of the compact binary. How-
ever to carry out these procedures, it is essential to have
accurate waveform models whose systematic errors are
smaller than the measurement errors.

Gravitational wave observations allow several families
of tests of general relativity(GR) [6–8]. Many such tests
can be done without waveform models, such as param-
eterized tests of post-Newtonian (PN) theory [9–13] or
tests with the quasinormal ringdown frequencies [14–16].
However these tests rely on the analytic solutions from
the perturbative regimes. For testing the highly nonlin-
ear merger regime, waveform models are indispensable.
For example one can perform the residual test, where the
difference between the data and the best fit waveform ob-
tained from a model is tested for consistency with being
purely noise[7, 8]. Some tests can combine many events
to have increasing stringency. However it has been shown
that accuracy requirements of models also increase for
such tests, and that current models may not be suffi-
ciently accurate to perform such tests using detections
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made so far [17].

Waveform models are created using a diverse range
of innovative ideas. However to obtain any model it is
necessary to make approximations, and the ensuing sys-
tematic errors are unavoidable. A useful way to measure
the error is by computing the mismatch of the models
against numerical relativity (NR) waveforms using a de-
tectors noise spectrum. If the mismatch M between NR
and the model satisfies M ≤ 1/ρ2, where ρ is the de-
tector signal to noise ratio of an event, then the model
will not have significant biases in parameter estimation
[18, 19]. Although it has been argued that this sufficient
condition can be relaxed in practice [20], nevertheless the
mismatch requirement must still scale as 1/ρ2. In these
analyses one takes NR to be a proxy for the exact GR
waveform. Therefore, the accuracy for NR must increase
for future detectors as well [21].

On the other hand there are additional tools to mea-
sure errors of waveform models from GR: Balance laws.
The balance laws don’t depend on NR and can thus be
used at any point in parameter space, especially where
NR simulations are sparse. Moreover the balance laws
may provide new insights into sources of errors. Exact
GR in asymptotically flat spacetime has a large asymp-
totic symmetry group: the Bondi-Metzner-Sachs (BMS)
group [22, 23]. This group gives rise to infinitely many
balance laws [24, 25]. In addition to the more familiar en-
ergy, momentum, and the Poincaré angular momentum
balance laws, there is an infinite family of supermomen-
tum balance laws. Application of the supermomentum
balance law to test waveform systematics was discussed
in [26, 27]. The application of the 3-momentum balance
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laws has also been discussed more recently in [28].
In this paper we will focus on using the angular mo-

mentum balance law. There is an important subtlety
with angular momentum in asymptotically flat GR: The
angular momentum suffers from an ambiguity, that arises
from supermomentum. However, a detailed analysis [29]
has shown that this contribution leads to a correction
term that is at most O(v2) in compact binary coales-
cences, where v is the kick velocity. Since this effect is
too small for the level of accuracy of interest to this pa-
per we will neglect it. Therefore, for our purposes, the
angular momentum balance law can be stated simply as

Jk(tf ) = Jk(ti) + Fk , (1)

where Jk denotes angular momentum vectors, i = 1, 2, 3,
and ti and tf are the initial and final times. Here Fk
is the flux between ti and tf , and can be expressed in
terms of the gravitational strain h◦ = rh = r(h+ − ih×),
where r is the luminosity distance to the source. We
have, [24, 25]

Fk =
i

32π

∫ tf

ti

dtdΩ ð̄r̂k
(
ḣ◦ðh̄◦ + ˙̄h◦ðh◦ − 2ð(ḣ◦h̄◦)

)
+ c.c. (2)

with r̂k = (sin θ cosφ, sin θ sinφ, cos θ). For the definition
of ð and all other conventions we follow the Moreschi-
Boyle conventions (See Appendix B of [30]).

The idea is to test the accuracy of a candidate wave-
form vis a vis exact general relativity by checking how
well it satisfies the balance law (1). This requires us to
evaluate each term in Eq. (1). The flux in Eq. (2) can
be evaluated directly from the strain given by the can-
didate waveform model. But to evaluate the initial and
final angular momentum, one needs additional inputs.
For the initial angular momentum we can resort to post-
Newtonian theory, provided the initial time is chosen to
be early enough that the PN expressions are sufficiently
accurate. For the final spin, we will use fits to the di-
mensionless spin ~χf and mass Mf of the remnant black
hole, provided by the surrogate fit NRSur7dq4Remnant
[31]. However ~χf gives just the intrinsic angular momen-
tum of the remnant. Since we work in the rest frame
of initial binary, generically the remnant is not at rest,
whence the total final angular momentum has to be ob-
tained by applying a boost to the intrinsic angular mo-
mentum. Nonetheless, the discrepancy between the in-
trinsic and total angular momentum is typically of order
10−5[29, 32]. This is smaller than the accuracy levels con-
sidered in this paper and thus we assume Jk(tf ) = M2

fχ
k
f .

Therefore we can calculate all the ingredients of Eq. (1)
and can evaluate the violation of the equality not only for
different waveform models, but also for numerical simu-
lations.

The plan for the rest of the paper is the following. In
Sec. II we shall expand on the various ingredients that

are needed to test the angular momentum balance. Us-
ing these ingredients, Sec. III tests the waveform mod-
els listed in Table I as well as NR simulations. Finally
Sec. IV concludes with a discussion of the results and pos-
sible future applications. We use units with G = c = 1.

II. METHODOLOGY

To measure the violation of Eq. (1) in a candidate
waveform for binary black holes, we calculate the rem-
nant dimensionless spin of the black hole using two tech-
niques and compare them. As mentioned in the intro-
duction we work under the approximation [32]

Jk(tf ) ≈M2
fχ

k
f , (3)

where we have ignored terms ∼ 10−5 linear in kick veloc-
ity. Using Eq. (3), the initial spin Jk(ti) provided by the
PN expression, and the flux F calculated from Eq. (2)
using the candidate waveform, the balance law provides
the final dimensionless spin ~χbal:

χkbal =
1

M2
f

(
Jk(ti) + Fk

)
. (4)

On the other hand, we can also get the remnant dimen-
sionless spin ~χfit from the NRSur7dq4Remnant fit. There-
fore by comparing ~χfit to ~χbal we can measure the devi-
ation from the balance law in Eq. (1).

A. Flux

To calculate the flux of angular momentum in Eq. (2),
we need the strain between an early time ti and a late
time tf . We can either use waveforms from NR, or from
models. There is a wide variety of models, and we will use
the state-of-the-art models, as well as some older models
for comparison. While several models have been left out
for brevity of presentation, they can be analyzed using
similar techniques. Ideas behind these models and de-
tails of how they are implemented can be found in the
references; a discussion of this diverse material is beyond
the scope of this paper.

Three families of models have been extensively dis-
cussed in the literature. First is the Effective-one-
body(EOB) models [33–41]. See [42] for a review. The
specific EOB models used in this paper are SEOBNRv3
[35, 36, 40] and SEOBNRv4PHM [41]. The second fam-
ily is the Phenom models [43–50] and its cousin, the
family of PhenomX models [51–53]. Specifically we use
IMRPhenomPv2[48–50] and IMRPhenomXPHM [51] models.
Finally there is the family of surrogate waveform models
[31, 54–57], from which we use the NRSur7dq4[31] model.
See [58] for a review.

All these waveform models first produce the strain in
the coprecessing frame [59], and then apply a ‘twisting
up’ procedure to return the strain in the inertial frame.
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Waveform model Coprecessing modes included
SEOBNRv3 (2,±2), (2,±1)

SEOBNRv4PHM (2,±2), (2,±1),
(3,±3), (4,±4), (5,±5)

IMRPhenomPv2 (2,±2)

IMRPhenomXPHM (2,±2), (2,±1),
(3,±3), (3,±2), (4,±4)

NRSur7dq4 All modes with ` ≤ 4

TABLE I. The waveform models used in the paper and the
modes of the waveform they include in the coprecessing frame
of the binary black hole. For precessing systems the copre-
cessing frame is ‘twisted up’ into the inertial frame to obtain
the final waveform.

In the coprecessing frame different waveform models in-
clude different modes in their modelling. Omission of
modes can introduce significant modelling errors to the
flux. Table I shows the lists of modes included in the
waveform models considered in this paper.

Once we obtain the strain, to evaluate Eq. (2) we find it
useful to expand the strain in terms of the spin-weighted
spherical harmonics. The spherical harmonics are eigen-
vectors of the angular derivative ð, simplifying the calcu-
lations. We also express r̂k in terms of spherical harmon-
ics. Then the integrand of Eq. (2) turns into a product
of spin weighted spherical harmonics, and the angular
integration can be evaluated using the formula for the
integral of their triple product. Finally we perform the
time integral numerically to obtain the flux.

B. Post-Newtonian angular momentum

Critical to our analysis is to have an expression of the
initial angular momentum of the system. We resort to
post-Newtonian theory, see [60–62] for reviews. The an-
gular momentum is traditionally split into the orbital and
spin angular momentum, Lk and Sk respectively, such
that

Jk = Lk + Sk, (5)

with Sk = m2
1χ

k
1 + m2

2χ
k
2 . Here we are interested in the

center of mass frame description of binary black holes
that are in quasicircular orbits. Let the orbital frequency
of the binary at the initial time be Ωorb. For quasicircu-
lar orbits we can expand PN expressions in the gauge
invariant dimensionless parameter x = (GMΩorb)2/3.
This parameter allows us to connect with the waveform
models, where their start times are specified in terms of
Ωorb or the frequency of the coprecessing (2, 2) mode,
f22 ≈ Ωorb/π [63]. Thus we would like a PN expression
of the orbital angular momentum Lk(m1,m2, ~χ1, ~χ2, x)
for a quasicircular binary in the center of mass frame.
However the spin-spin interaction terms starting at 2PN
order cause quasicircular orbits to radially oscillate at the
orbital timescale, complicating calculations [64]. If only

linear in spin terms are kept, an expression for the angu-
lar momentum in the desired form is given in Eq. (4.7) of
[65] up to 3.5PN. We use this expression for the angular
momentum in our work. (See the Appendix for details
on how we apply the PN formula.) Thus, we make two
approximations in the calculation of Jk(ti): truncating
of the PN expansion at 3.5 order and ignoring all the
nonlinear spin contributions. While we do not estimate
systematic errors due to nonlinear spin interactions, as
is common in the literature, we estimate the truncation
errors by comparing the 3.5PN and 3PN results.

C. Remnant angular momentum

To obtain the final angular momentum we use fits to
NR values of the remnant final mass and dimensionless
spin. In NR the values are typically calculated using
quasi-local measures [66] on the horizon. But it has
also been calculated asymptotically [32] for 13 simula-
tions and agreement with the horizon values is excellent.
In our analysis we use the horizon values since they are
reported by all simulations. These values can then be
interpolated across parameter space using a catalog of
numerical simulations. While there are several such fits
in the literature, we use the NRSur7dq4Remnant [31, 67]
fit. This fit provides us with the remnant mass and the
dimensionless spin vector (as opposed to just the magni-
tude), as well as an estimate of their respective errors.1

Thus we are able to obtain the remnant angular momen-
tum using Eq. (3).

There is a subtlety with using the fit for precessing
systems: The spins precesses over time, thus the same
system can be labelled by different spins at different ref-
erence times. For various applications it is useful to have
the ability to use the fit with the spins specified at arbi-
trary times. This is done in NRSur7dq4Remnant by imple-
menting a model for the spin evolution to evolve them to
a standard time of 100M before the peak of the strain,
where M in the total mass of the system. The spins
at 100M are now used for the interpolation of the rem-
nant quantities. However the spin evolution introduces
new errors to the fit. These errors are harder to estimate
and are not accurately provided by the model, as already
noted when the fit was introduced in [31]. Thus the error
estimates returned by NRSur7dq4Remnant must be taken
with a grain of salt.

In Section III we will find that these estimates are too
small compared to the actual errors, as calculated from
comparisons to NR. So instead of using the error esti-
mates from the fit, we use the comparison with NR to
provide us with an estimate of the errors involved.

1 Note that the calculation of ~χfit in NRSur7dq4Remnant is indepen-
dent of the waveform model NRSur7dq4, and thus the satisfaction
of the balance law for the surrogate wave form is not tautological;
it is a non-trivial consistency check.
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III. RESULTS

We now apply the methods discussed to waveform
models as well as to NR simulations. To test the wave-
form models across parameter space we select random
points in parameter space and check violations of the
balance law. We divide our study of the models in two
parts: precessing and non-precessing systems. For both
these families we restrict the parameter space to a fi-
nite compact region. Since we are dealing with binary
black holes that are initially in quasicircular orbits, the
parameter space is described by the mass ratio q and the
dimensionless spins ~χ1, ~χ2. We restrict these parameters
to be within range of applicability of NRSur7dq4. Addi-
tionally, since NRSur7dq4 only models waveforms for fi-
nite time, we would like the NRSur7dq4 waveforms to be
long enough so that we can use PN methods at its start.
While NRSur7dq4 goes up to mass ratio 4, the wave-
forms start at higher frequencies with increasing mass
ratio. Therefore to be able to safely use PN expressions,
initially we restrict the mass ratio to q ≤ 2. This al-
lows us to safely use waveforms starting at 5.8 × 10−3

in dimensionless units. Additionally we also restrict spin
magnitudes to be less than 0.8 to be within the training
data range of NRSur7dq4, as well as the remnant data fit
NRSur7dq4Remnant that we use.

For the NR simulations we use the publicly available
SXS catalog [68] of NR simulations. But we restrict con-
sideration to numerical simulations that lie in the param-
eter range considered above.

A. Non-Precessing systems

In this section we test satisfaction of the balance law
for randomly selected 20,000 non-precessing points in the
parameter space. The spins are in the z-direction with
χz1 and χz2 uniformly and independently distributed in the
interval [−0.8, 0.8]. We obtain the distribution of mass
ratio q indirectly from the distribution of masses m1 and
m2 to replicate commonly chosen priors. We take masses
m1 and m2 to be independent and uniform, subject to
constraints 1/2 < m1/m2 < 2 and 20 < m1 +m2 < 160.
Then for each of these points, we will test how well the
balance law is satisfied.

We first calculate the spin of the remnant black hole
~χbal using the balance law, from Eq. (4). For non-
precessing systems, by symmetry we have that ~χbal =
abalẑ. We can compare this to the remnant spin ~χfit =
afitẑ obtained from the fit NRSur7dq4Remnant. Mismatch
between χbal and χfit provides us the desired measure of
accuracy of the waveform model under consideration. In
Fig. 1 we plot the distribution of abal − afit across the
random points in parameter space. To help identify the
errors coming from waveform modelling, we also show an
estimate of the errors from the fit. We obtain this by
taking the 90% interval of the error estimates provided
by NRSur7dq4Remnant for the samples of points consid-

−0.01 0.00 0.01 0.02 0.03

abal − afit

0

100

200

300

400 IMRPhenomPv2

IMRPhenomXPHM

SEOBNRv3

SEOBNRv4PHM

NRSur7dq4

Fit error

FIG. 1. Non-precessing systems: The distribution of the dif-
ference (abal − afit) between the magnitudes of the remnant
spin calculated by using the angular momentum balance law
and using the fit NRSur7dq4Remnant. The distribution is cal-
culated for different waveform models using the same sample
points. The shaded region shows the error estimate of the fit.

ered. Similarly we estimate the PN truncation error by
using the 90% interval of the distibution of the difference
between the 3.5PN and 3PN terms. Although the PN
trunction error is not shown in the plot, it is 65% of the
fit error, but it does not include the errors from ignoring
spin-spin interaction terms.

Fig. 1 shows that, overall, the agreement between abal

and afit is of order 10−2. Moreover we see clear evidence
for the improvement of SEOBNRv4PHM over SEOBNRv3 and
of IMRPhenomXPHM over IMRPhenomPv2. The surrogate
model has the best performance, with all the balance
law violation consistent with solely coming from the fit
and PN truncation errors. By comparison, although the
mismatch is only at a 10−2 level for EOB and Phenom,
the modelling errors are significantly larger than those
coming from the fit and PN truncation errors; thus there
is room for further improvement.

Note also that for SEOBNRv4PHM the plot has an in-
teresting double hump. We find that these humps are
correlated with the effective spin parameter χeff defined
as

χeff =
m1χ

z
1 +m2χ

z
2

m1 +m2
. (6)

The correlation –shown in Fig. 2– brings out the sharp
difference between distributions for χeff < −0.1 and
χeff > −0.1. This illustrates the power of the balance
law to identify regions of parameter space where errors
are higher, thereby providing guidance for further im-
provements of the waveform model.

B. Precessing systems

As in Sec. III A, we randomly select 20,000 points in
parameter space, but now using precessing systems, and
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−0.015 −0.010 −0.005 0.000

abal − afit

0
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120 Total

χeff > −0.1

χeff < −0.1

Fit error

FIG. 2. The distribution of balance law violation for
SEOBNRv4PHM from Fig. 1. Here we have split the points in
parameter space in two, with χeff < −0.1 and χeff > −0.1.
This split separates the double hump in SEOBNRv4PHM, and
shows us that the balance law violation is larger for negative
χeff .

evaluate the violation of the angular momentum balance
law for them. The spins are sampled independently with
an isotropic distribution. The spin magnitude is taken
to be uniformly distributed in [0, 0.8]. The mass ratio is
sampled from the same distribution as in Sec. III A.

The remnant spin is now arbitrarily oriented. There-
fore to compare ~χbal with ~χfit, we are led to compare
their magnitudes abal and afit, and also to calculate the
angle ∆θ between them. However there is a difference in
the calculation of error estimates because, as discussed
in Sec. II C, for precessing systems the fitting procedure
complicated by evolution of spin with time. This is ac-
counted for by using a spin evolution model, which intro-
duces further errors in afit and ∆θ. The reported error
estimates from the fit NRSur7dq4Remnant do not include
these errors. Therefore we will estimate these errors by
a direct comparison with NR simulations. The NR simu-
lations are taken from the SXS public catalog [68] of NR
simulations. We choose quasicircular binary black hole
simulations that are long enough to include our choice of
starting frequency and have parameters that lie within
the range under consideration in this paper. We also drop
the first 337 older simulations. We are then left with
672 precessing NR simulations. For these simulations
we compute the remnant spin using the fit and compare
to the actual NR value. The result is shown in Fig. 3,
where we see that the error quoted in NRSur7dq4Remnant
is much smaller than the actual error. We thus use the
90% interval from these 672 simulations as the error esti-
mate instead. However because the fit is trained against
these simulation, the errors might in fact be larger for re-
gions of parameter space with a scarcity of simulations.
Nonetheless for the rest of this paper we use these error
estimates, keeping in mind that they are not meant to be
sharp.
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Quoted error
estimate
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s

Quoted error estimate

FIG. 3. Comparison of the remnant spin from 672 pre-
cessing NR simulations that lie in the parameter range
and starting frequency considered in the paper, to the fit
NRSur7dq4Remnant. The shaded region shows the error es-
timate provided by the fit model. However as noted in [31],
this estimate doesn’t include errors from the spin evolution.
The upper plot shows the difference in the magnitude of spins,
and the lower plot shows the angle between them. We see that
for the parameters we consider and for the starting frequency
we use, the real errors are much larger than the estimates. We
use error estimates obtained from these 672 NR simulations
for the rest of the paper.

Using the error estimates discussed above, let us exam-
ine the violations of the angular momentum balance law.
In Fig. 4 we see the waveform models continue to perform
well, albeit with larger errors than in the non-precessing
case. For comparisons of the magnitude of the remnant
spin, NRSur7dq4 again has the best performance, and its
balance law violations are completely consistent with the
error estimates. The PN truncation error is only 9% of
the fit error here. The accuracy of the latest EOB and
Phenom models, SEOBNRv4PHM and IMRPhenomXPHM, are
very similar to each other. Furthermore, we can clearly
see the improvement of these EOB and Phenom models
over their older versions. On the other hand, we see dif-
ferent results for the error in the angle in the lower plot
of Fig. 4. Here the fit errors are larger. The surrogate
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−0.01 0.00 0.01 0.02 0.03 0.04 0.05

abal − afit
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IMRPhenomPv2

IMRPhenomXPHM

SEOBNRv3

SEOBNRv4PHM

NRSur7dq4

Estimated fit error

0.00 0.02 0.04 0.06 0.08 0.10

∆θ (radians)
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80 IMRPhenomPv2

IMRPhenomXPHM

SEOBNRv3

SEOBNRv4PHM

NRSur7dq4

Estimated fit error

FIG. 4. Precessing systems: The distribution of angular
momentum balance law violation across the parameter range
considered in the paper, using various waveform models. The
upper plot shows the difference between the magnitudes of
the remnant spin abal, computed from the balance law, and
afit, computed using the fit NRSur7dq4Remnant. The lower
plot shows the angle ∆θ between the remnant spin computed
using the two different methods. We also show in the shaded
region the error estimate obtained from direct comparison
with NR in Fig. 3, as opposed the quoted error estimate in
the fit.

and EOB models have violations within the fit errors.
The PN truncation error is negligible, only 0.7% of the
fit error. However the Phenom models show violations in
the angle that are much larger than the errors. Thus, our
analysis again provides pointers for further improvement.

C. Lessons from and for NR

We now apply the angular momentum balance law di-
rectly to NR simulations and discuss its implications.
The procedure is almost identical to the one we used for
waveform models, but uses the NR waveform instead of
the model waveform. More precisely, each NR simulation

10−6 10−5 10−4 10−3 10−2 10−1

|∆a|
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S
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u
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ti
on

s

|abal − aNR
|

|abal − aLowRes
bal |

FIG. 5. The violation of angular momentum balance law for
the 131 non-precessing numerical simulations described in the
text. The solid blue curve shows the difference abal − aNR

between the magnitudes of the remnant spin computed using
the balance law, and of the horizon spin. The dashed grey line
represents the numerical convergence error, i.e., the difference
between the spin magnitudes, abal and aLowRes

bal , computed
using the highest and a lower resolution NR simulation.

provides us with the waveform to calculate the flux ~F ,
and is labelled by the masses, spins, orbital frequency and
separation of the two progenitors at the starting time.
Using these parameters and the 3.5 PN truncation dis-
cussed in section II B, we calculate the initial angular

momentum ~J(ti) that is needed in the expression (4) of
~χbal. For the remnant spin ~χ

NR
, however, there is a key

difference. We do not need the fit since we can directly
use the remnant spin computed in the NR simulation at
the horizon. The difference ~χbal− ~χNR

measures the vio-
lation of the balance law. There is, however, a subtlety:
Since the binary system in NR may not be in the same
reference frame in numerical simulations as in the frame
we use for the PN expression, we must perform a rotation
to match the frames. For details see the Appendix.

We use the subset of simulations from the SXS public
catalog [68] described in Sec. III B. However we further
restrict ourselves to simulations where a lower resolution
run is included, allowing us to analyze numerical errors.
There are 131 such non-precessing NR simulations and
550 such precessing simulations. For all these simulations
we calculate the remnant spin ~χbal from Eq. (4) with the
highest resolution run available. Then we take the second
highest resolution waveform to compute ~χLowRes

bal . Finally,
by comparing ~χbal to ~χLowRes

bal we obtain an estimate of
the numerical convergence errors, and by comparing ~χbal

to the horizon spin ~χ
NR

we obtain a quantitative measure
of the violation of the balance law.

In Fig. 5 the solid (blue) curve shows the violation
of the angular momentum balance law for the non-
precessing simulations. While the limited number of sim-
ulations makes a direct comparison with Fig. 1 difficult,
it is clear that overall the errors are manifestly smaller.
However there is one outlier simulation SXS:BBH:1134
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with an error of order 10−1. On closer inspection we
found that the orbital frequency is erroneous in the meta-
data file for that simulation, and computing the orbital
frequency using the code scri[59, 63, 69, 70] from the
waveform, |abal − aNR| is brought down to ∼ 1.5× 10−3

from ∼ 0.2. This is a concrete illustration of checks that
balance law considerations can provide on NR simula-
tions themselves.

Aside from the outlier, we also see that the numerical
errors are too small to account for the level of violation of
the balance law shown in Fig. 5. We also find that the PN
truncation error obtained by comparing 3.5PN to 3PN is
less than 3.5 × 10−4 for all these simulations, which is
insufficient to account for the violation we found. What
then is the main source of the violation? While in princi-
ple this discrepancy could be due to systematic errors in
NR, it is much more likely that its origin lies primarily
in the assumption that non-linear spin-spin interaction

terms can be neglected in the PN calculation of ~J(ti).

Fig. 6 shows the degree of violation of balance law –
as measured by the mismatch of abal and a

NR
, and by

the angle between ~χbal and ~χ
NR

– as well as the conver-
gence error for precessing systems. Overall, the numeri-
cal convergence errors are larger than those in the non-
precessing case shown in Fig. 5 and match the scale of
balance law violations. However several individual simu-
lations still have balance law violations much higher than
their respective numerical errors. The PN truncation er-
ror obtained by comparing 3.5PN to 3PN is less than
3.8×10−4 for the magnitude and 3.7×10−4 for the angle
for all simulations. We also see an outlier simulation in
the upper plot of Fig. 6. This is the run SXS:BBH:1131.
Unlike the previous outlier, we were not able to iden-
tify why the error is high nor were we able to ascertain
anything special about the parameters. Therefore this
simulation warrants attention of the NR community.

There are also lessons from NR simulations. That the
violations of the balance law in NR simulations are so
small provides considerable confidence in the overall pro-
cedure. Furthermore, the remaining discrepancies pro-
vide a useful bound on the errors that come from the
underlying assumptions and approximations. Notably we
learn that the non-linear spin-spin interaction terms that
have been ignored in the PN angular momentum calcula-
tion can indeed be neglected at the current accuracy level
of the waveform models. Secondly, the implicit assump-
tion about the correspondence of PN and NR parameters
is also tested here. The masses and spins, and especially
the direction of the spin, are defined using distinct proce-
dures in NR and PN. The direction of the spin is in fact
not even a gauge invariant quantity in PN [65] or NR[71].
Therefore, a priori we do not have a reliable estimate on
the discrepancies between the NR and PN assignments
of these parameters. Again, the accuracy to which the
balance law is satisfied serves to provide assurance that
the discrepancies are small for the level of accuracy of
the current waveform models.
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FIG. 6. The angular momentum balance law violation for the
550 precessing numerical simulations described in the text.
The upper plot shows the violation in the magnitude of the
spin, and is the same as Fig. 5 but for the precessing simu-
lations. The lower plot in the solid blue line shows the angle
∆θ between ~χbal, the remnant dimensionless spin computed
using the balance law, and ~χNR computed from the horizon.
The dashed grey line represents the numerical convergence
error, and is computed as the angle ∆θ between ~χbal and the
same quantity computed using a lower resolution numerical
simulation, ~χLowRes

bal .

IV. DISCUSSION

Different observables in full, non-linear general rela-
tivity can be used to test different aspects of the accu-
racy of candidate waveforms. In this paper we focused
on the angular momentum of black hole binaries. The
angular momentum balance law brings together diverse
ideas: post-Newtonian theory, numerical relativity, wave-
form modelling and calculations of the mass and spin of
the remnant using surrogate fits. It is rather remarkable
that all these ingredients come together in a consistent
and precise manner. This overall coherence provides us
some non-trivial checks. For example, we found that the
spins measured from the horizon in NR matches very
closely to the PN definition of spin, even though the di-
rection of this 3-vector is gauge dependent in the PN
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and NR analysis. We also found that the waveform mod-
els capture the physics of radiated angular momentum
quite well as the system evolves from the inspiral, to the
merger, and then ringdown, although some models cap-
ture it better than others.

The balance law provides us a new measure to test the
accuracy of binary black hole waveform models, comple-
mentary to comparisons against NR. It allows us to not
only compare the performance of different models, but
identify regions of parameter space where errors are large
without directly using numerical simulations. We use PN
methods to get the initial angular momentum, and the
waveform to obtain the flux of angular momentum. Then
the balance law in Eq. 4 gives us the remnant spin ~χbal.
(Here we ignored the kick velocity and supertranslation
corrections as they are much smaller than the level of
accuracy of interest to this paper.) We then compared
this ~χbal to the spin ~χfit obtained by the remnant fit
NRSur7dq4Remnant (which is conceptually independent
from the waveform model NRSur7dq4).

We first applied this procedure to waveform models
with non-precessing parameters and presented the results
in Fig. 1. We found that the surrogate model NRSur7dq4
performs exceptionally well, in that the modelling er-
rors are at most the same order as errors from PN or
from the fit to the remnant spin. The SEOBNRv4PHM and
IMRPhenomXPHM models are close behind. The balance
law test also provided a sharp measure of the improve-
ments over the older EOB and Phenom models, in part
because, as Table I shows, they incorporate modes that
their previous versions did not. Finally we also found
that SEOBNRv4PHM has higher errors for parameters that
correspond to negative effective spin χeff , as illustrated in
Fig. 2. This difference illustrates the utility of using the
balance law to identify regions of parameter space with
higher errors, on which efforts for future improvements
could focus. A more fine-grained study could reveal more
such regions.

For precessing systems, as discussed in section III B,
the remnant fit NRSur7dq4Remnant has to model the spin
evolution of the individual black holes. It was noted in
[31] that this evolution code introduces new errors. These
errors are difficult to estimate accurately and were not in-
cluded in NRSur7dq4Remnant. As Fig. 3 shows, for the
typical spin evolution in our parameter space the errors
quoted by this fit are much smaller than the ‘real errors’,
obtained by comparison with NR. We used the compari-
son to NR simulations to get a better error estimate for
precessing systems. However, as we emphasized in sec-
tion III B, this estimate is not as precise as it is for the
non-precessing systems.

With this caveat in mind, we applied the balance law
to a distribution sample points in the parameter space de-
scribing precessing systems. For these systems the rem-
nant spin need not be along the z-axis. Therefore, we
could measure the violations in the magnitude of angular
momentum, as well as the direction. As seen in Fig. 4, for
errors in magnitude we found that NRSur7dq4 again has

the best performance, with violations within the error
scale. However, SEOBNRv4PHM and IMRPhenomXPHM are
not far behind, and are very close to each other. They
also showed clear improvements over their older versions.
The situation turned out to be quite different for errors
in angle. The fitting errors in the angle are large, but the
surrogate and EOB models show violations only within
the scale of this error and their predictions are almost
identical to each other. So, for these models the fitting er-
rors dominate and these models pass the balance law test
within the accuracy we can consistently demand. How-
ever the Phenom models perform poorly in comparison,
and there has been no improvement over its older ver-
sion. This suggests that there is room for improvement.
Since Phenom performs well for non-precessing systems,
it seems likely that the likely culprit is the twisting up
procedure used in this model.

We also applied the the balance law to NR simula-
tions. As one would expect, the simulations perform
better than the models. The high accuracy to which the
balance law is satisfied provides considerable confidence
in the overall procedure, including the use of the approx-
imation in which non-linear spin-spin interaction terms
are neglected. However, we also found that numerical
convergence errors do not by themselves account for the
violation of the balance law. Thus, there is room to im-
prove the accuracy of the additional ingredients that went
into the procedure. Finally, the use of the balance law
enabled us to find two outliers in the NR simulations. We
were able to identify the underlying problem in the first,
SXS:BBH:1134, as having faulty metadata. However we
do not know why SXS:BBH:1131 has significantly larger
errors; we hope it will receive further scrutiny from the
NR community.

This work can be extended in several ways. In this
paper we restricted the parameter space under consider-
ation to include NRSur7dq4 in the analysis. While the
model can go up to mass ratio 4, the starting frequency
becomes higher with increasing mass ratio, and the use
of PN results becomes less reliable. However the remnant
fit NRSur7dq4Remnant can be used with any starting fre-
quency. Thus if we use only the EOB and Phenom mod-
els, the analysis can be extended to higher mass ratios.
The starting frequency can also be lowered to reduce PN
truncation effects. This enlarged parameter space has
fewer NR simulations, and thus it would be interesting
to identify regions where the models perform poorly us-
ing the balance law. Furthermore although the remnant
fits can be used to spin magnitudes above 0.8 as well, the
errors cannot be controlled then because of the scarcity
of NR simulations. But this issue doesn’t prevent us from
comparing different models at higher spins. A different
application of the balance law could be to discriminate
between choices made during modelling. For example,
one could compare the consistency of different choices
of extrapolation made by models outside the parameter
range of NR. From the perspective of future detectors
with significant enhancement in sensitivity, it is also im-
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portant to reduce the main sources of error we encoun-
tered by including the spin-spin interaction terms in the
calculation of Jk(ti) and using a more accurate method
to evolve the spins of the two black holes.

To summarize, we have shown that the angular mo-
mentum balance law can be a valuable tool. It al-
lows one compare models across all points in parameter
space; enables one to identify –without the need of NR
simulations– parameter ranges in which errors are higher
in specific models; provides guidance to waveform mod-
els for further improvements; informs us on the accuracy
of the match between NR and PN parameters that are
used to label the waveforms; and, even offers checks on
the numerical simulations themselves.
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Appendix: Post-Newtonian angular momentum

Here we describe in brief how to use the angular mo-
mentum formula from Eq. (4.7) in [65], also reproduced
below in Eq. (A.4), is used to get the initial angular mo-
mentum. To be consistent with [65] we use boldface to
denote vectors, m = m1 + m2 to denote the total mass
and restore factors of G and c in this section. The post-
Newtonian formula is an expansion in the gauge invariant
dimensionless PN parameter x = (GmΩorb/c

3)2/3, where
Ωorb is the orbital angular frequency of the binary. We
relate Ωorb at the beginning of the waveform to the start-
ing frequency fstart of the (2, 2) mode of the waveform

model by Ωorb = πfstart. Thus x can be calculated from
the starting frequency, and is ≈ 0.012 for the dimension-
less starting frequency of 5.8× 10−3 used in this paper.

The conventions for the axes followed by the waveform
models used in this paper are that at the reference time
(taken to be the starting time of the waveform), the bi-
nary is separated along the x-axis, and instantaneously
orbits counter-clockwise in the x, y plane. However for
NR simulations at the reference time –i.e. at a time when
most of the junk radiation has passed through the outer
boundary [68]– the frame is arbitrary in general. Thus
we perform a rotation to bring NR into the same frame
conventions as the waveform models at its reference time.
We solve for the rotation that brings the coordinate sep-
aration between the black holes be along the x-direction,
and the angular velocity as defined in [63] along the z-
direction. Note that the separation of the black holes is
in general a gauge dependent quantity. However it is still
an essential ingredient of specifying the system that is in-
tegral to any comparison of the waveform against PN or
a waveform model. Once we have fixed the frame, unit
vectors along the x, y, z directions at the start time are
denoted n,λ, ` respectively. Note that this is only at the
reference time and in general n,λ, ` evolve with time.

The spin variables convenient to use for the PN ex-
pressions are

S = Gm2
1χ1 +Gm2

2χ2 , (A.1)

Σ = Gmm2χ2 −Gmm1χ1 . (A.2)

The x, y, z components of these vectors are Sn, Sλ, S` and
Σn,Σλ,Σ`. It is also convenient to use the parameters
total mass m, symmetric mass ratio ν = m1m2/(m1 +
m2)2 and δm = m1 − m2. Finally, the total angular
momentum J is given by

J = L + S/c , (A.3)

where L is the orbital angular momentum and for quasi
circular binaries. Keeping only terms in the 3.5 PN ex-
pansion that are linear in spin, L is given by [65]:
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L =
Gm2

c x1/2
ν

{
`

[
1 + x

(
3

2
+

1

6
ν

)
+ x2

(
27

8
− 19

8
ν +

1

24
ν2

)
+x3

(
135

16
+

[
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144
+

41

24
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31

24
ν2 +

7
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+
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+
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+
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[(
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ν +
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(

1

c8

)}
. (A.4)

Thus, given the masses and spins of the two black holes in the binary and the initial orbital frequency, one can
use Eq. (A.4) to obtain the initial angular momentum.
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Mroué, H. P. Pfeiffer, M. A. Scheel, and B. Szilágyi,
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X. Jiménez Forteza, and A. Bohé, Phys. Rev. D 93,
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