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ABSTRACT

In this thesis, structure-preserving model order reduction for dynamical systems is studied.
The particular focus lies on mechanical systems described by differential equations with
second-order time derivatives. Different system classes are considered such as linear,
bilinear and general nonlinear systems. Starting with the linear system case, existing
theory from modal truncation and dominant poles is used to derive a new structure-
preserving dominant pole algorithm for the special case of modally damped mechanical
systems. Error bounds are proposed for this new method and an extension is suggested
for further improvement of the approximation quality. In the sense of model order
reduction with localized approximation behavior, structure-preserving extensions of the
frequency- and time-limited balanced truncation methods for linear second-order systems
are developed. Further approaches are discussed to counter the arising problem of stability
preservation, and numerical methods are outlined to apply the model reduction methods to
systems with large-scale sparse matrices. Moreover, the class of bilinear systems involving
the multiplication of state and control variables is considered. Mainly motivated by the
mechanical system case, a representation of structured bilinear systems in the frequency
domain is developed. Considering the structured subsystem transfer functions as main
object of interest, an interpolation framework is proven for structure-preserving model
order reduction of these special nonlinear systems. Thereafter, this framework is extended
to the case of structured parametric bilinear systems. Tangential interpolation can be
used in case of linear multi-input/multi-output systems to carefully steer the resulting
dimensions of constructed reduced-order models in contrast to the approach of matrix
interpolation, which depends on the input and output dimensions of the original system.
Based on different motivations, a similar theory for tangential interpolation is developed
for structured bilinear systems. Structured systems with more general nonlinearities
are considered last, where the process of quadratic-bilinearization is used to rewrite the
systems into a form with easier manageable nonlinearities. Similar to the bilinear system
case, a particular nonlinear mechanical system example is used to derive structured
representations of quadratic-bilinear systems in the frequency domain. Based on that, a
variety of transfer function interpolation results are developed for structure-preserving
model reduction of quadratic-bilinear systems. Numerical experiments are used for all



introduced model reduction approaches to validate the developed theoretical results and
compare them to known model reduction methods from the literature.
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ZUSAMMENFASSUNG

Die vorliegende Arbeit befasst sich mit strukturerhaltender Modellordnungsreduktion fiir
dynamische Systeme. Dabei liegt der besondere Schwerpunkt auf mechanischen Systemen
mit Zeitableitungen zweiter Ordnung. Es werden verschiedene Systemklassen wie z.B. lin-
eare, bilineare und Systeme mit allgemeineren Nichtlinearitdten betrachtet. Beginnend mit
dem linearen Systemfall wird ein neuer strukturerhaltender Dominant-Pole-Algorithmus
fiir modal gedampfte, mechanische Systeme entwickelt. Dieser basiert auf bekannter
Theorie tiber modales Abschneiden und dominante Pole. Es werden Fehlerschranken fiir
diese Methode bewiesen und eine Erweiterung vorgeschlagen, um das Approximationsver-
halten weiter zu verbessern. Im Sinne von Modellordnungsreduktion mit lokalisierter
Approximation werden frequenz- und zeitbeschréanktes balanciertes Abschneiden zu struk-
turerhaltenden Methoden fiir lineare Systeme zweiter Ordnung erweitert. Um dem Verlust
der Stabilitdtserhaltung entgegenzuwirken und um die Modellreduktionsmethoden auch
im Fall von groflen, diinnbesetzten Systemen zweiter Ordnung anwenden zu kénnen
werden weitere Anséatze diskutiert und numerische Verfahren skizziert. Des Weiteren wird
die Klasse der bilinearen Systeme, welche das Produkt aus Zustands- und Steuerungsvari-
ablen enthalten, betrachtet. Hauptsachlich motiviert durch den mechanischen Fall wird
eine Darstellung von strukturierten, bilinearen Systemen im Frequenzbereich entwickelt.
Zur strukturerhaltenden Modellreduktion dieser speziellen nichtlinearen Systeme wird ein
Interpolationsansatz hergeleitet, bei welchem die strukturierten Ubertragungsfunktionen
als zu interpolierende Objekte betrachtet werden. Darauffolgend wird dieser Ansatz auf
den Fall von strukturierten, parametrischen, bilinearen Systemen erweitert. Tangentiale
Interpolation bietet im Fall von linearen MehrgroBensystemen die Moglichkeit, die Dimen-
sionen des konstruierten, reduzierten Modells besser zu kontrollieren, welche beim Ansatz
der Matrixinterpolation an die Anzahl der Ein- und Ausgénge gebunden sind. Basierend
auf verschiedenen Motivationsbeispielen wird eine &hnliche Theorie fiir strukturierte,
bilineare Systeme entwickelt. Den Abschluss bildet die Betrachtung von Systemen mit
allgemeineren Nichtlinearitdten. Es wird die Methode der quadratischen Bilinearisierung
benutzt, um diese Systeme in eine Form umzuschreiben, welche einfachere Nichtlinear-
itdten beinhaltet. Ein spezielles nichtlineares, mechanisches Beispiel wird verwendet um
ahnlich zum bilinearen Fall strukturierte Darstellungen im Frequenzbereich herzuleiten.
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Es wird eine Vielzahl von Ergebnissen zur Ubertragungsfunktionsinterpolation entwickelt,
welche der strukturerhaltenden Modellordnungsreduktion von quadratisch bilinearen
Systemen dienen. Numerische Experimente werden fiir alle entwickelten Modellreduktion-
smethoden benutzt um sowohl die theoretischen Resultate zu validieren, als auch diese

neuen Methoden mit anderen bekannten Modellreduktionsmethoden aus der Literatur
zu vergleichen.
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1.1 Motivation

Almost all real-world phenomena and processes are nowadays described by systems of
partial differential equations (PDEs), which relate physical quantities to their partial
derivatives with respect to time and space. The most common approach to use these
mathematical descriptions of the real world in computer-aided design processes and
numerical experiments is a spatial discretization, usually via methods like finite elements
or finite differences/volumes, leading to systems of ordinary differential equations (ODEs)
or, in the presence of additional physical constraints such as conservation laws, to systems
of differential-algebraic equations (DAEs). The resulting systems, which describe the
time evolution of processes, are known as dynamical systems. In the presence of external
forcing (inputs) and the observation of certain quantities of interests (outputs), dynamical
systems can formally be written as

(1.1)
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with the solution trajectory x: R>y — R"* described by a system of differential equations
with the state-evolution function f: R>o x R" x R™ — R™ and mass matrix E € R™>*™.
The inputs u: R>o — R™ are used to influence the internal behavior of the system from
the outside and the outputs y: R>g — R” model observations of the quantities of interest
via an algebraic output equation using the function g: Ry x R" — RP. Note that the
spaces, in which these functions exist, strongly depend on the final definitions of u, f
and ¢, and, therefore, are omitted here.

The complexity of a dynamical system (1.1) reflects the difficulties that come along
with the computation of the solution x(¢). This can amount to different meanings,
for example, systems that are described by a linear state-evolution function f are less
complex than systems with a nonlinear f. However, an important measure for complexity
is the number of differential equations n; used to describe the system. With a constantly
increasing demand for modeling accuracy also the number of differential equations in
dynamical systems grows fast, which makes the systems harder to evaluate in numerical
computations such as simulations, optimization procedures or the design of controllers.
Even with continuously increasing computational capabilities of modern computers, the
demand of large-scale dynamical systems (n; Z, 10%) for computational resources, such
as time and memory, easily becomes unmanageable for a growing number of differential
equations. Observing that in practice the numbers of inputs and outputs in (1.1) are
often very small compared to the number of differential equations, m, p < ny, motivates
the assumption that not the full solution x(¢) of the differential system is needed to
describe the system’s input-to-output behavior. The process of model order reduction
is the construction of a surrogate system for (1.1) that is described by a much smaller
number of differential equations r; < ny. This makes the surrogate model a lot easier to
evaluate than the original system in computations. To actually use the reduced-order
model as a surrogate, it needs to approximate the input-to-output behavior of the original
system, i.e., for the same input given to the full- and reduced-order models, the output
signals are close to each other:

ly =l < e fJull, (1.2)

with the output of the reduced-order model 7, in some appropriate norm, for a suitable
tolerance € and all admissible input signals w.

Depending on the underlying physical phenomena, dynamical systems (1.1) can inherit
certain structures in the differential equations. The main concern in this thesis are
mechanical systems. These usually result from the modeling process of mechanical
structures such as bridges, buildings, or vehicles, and describe the time evolution process
by differential equations involving second-order time derivatives. For example, linear
time-invariant mechanical systems are given by

Mi(t) + Ei(t) + Kz(t) = Byu(t),

y(t) = Cox(t) + Cyi(t), (1.3)
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with the system matrices M, E, K € R™*"2 the input matrix B, € R"*™ and the
two output matrices C,, Cy, € RP*™2. In principle, it would be possible to rewrite (1.3)
into the more classical form (1.1) using substitution variables such that only differential
equations with first-order time derivatives are used. However, this replacement process is
often undesired. It doubles the number of differential equations describing the system,
which increases the computational workload produced in the evaluation of the dynamical
system. Over the last decades, a lot of computational tools for dynamical systems were
extended to directly handle (1.3) in its original second-order form. In the context of
model order reduction, it is desired that the computed surrogate models provide exactly
the same structure as (1.3), since:

 this allows the use of the same computational tools as for the original systems,

o structure-preserving reduced-order models often yield a higher accuracy than
unstructured variants with the same number of differential equations, and

o the system quantities of the structure-preserving reduced-order model could yield
a physical reinterpretation, which gives further computational advantages or new
insights into the modeling process.

The preservation of the system structure in the model reduction process is referred to
as structure-preserving model order reduction. Besides the linear system case (1.3), also
other classes of mechanical systems involving special nonlinearities will be treated in this
thesis. However, these will be further explored in the corresponding chapters.

1.2 State of the art

The problem of structure-preserving model order reduction for linear mechanical systems
is basically as old as the topic of linear model reduction itself. This amounts to the
relevance of mechanical systems in practical applications. Modal truncation, as one of
the oldest model reduction methods [75], got quickly extended to the second-order setting
in various ways [73,105,125]. Even nowadays, structure-preserving modal truncation is
the preferred approach for model reduction in engineering sciences due to its generality
and computational simplicity [60]. However, a general problem of related approaches is
the selection of appropriate system modes to approximate the original dynamics. The
dominant pole algorithms [138] were developed as remedy to this problem, which in
recent years were extended to large-scale sparse systems [161, 162] as well as to the
general case of second-order systems like (1.3); see, for example, in [48,163]. In practice,
the modeling of internal damping of mechanical systems is often simplified to the use of
combinations of the mass and stiffness terms of the system leading to so-called modally
damped mechanical systems. This subclass of linear mechanical systems holds several
advantageous properties that are currently not considered in theory or implementations
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of structure-preserving dominant pole algorithms. This point will be discussed in this
thesis, while also treating other problems of modal truncation concerning bounds for the
approximation error and the limited approximation quality. Further details on modal
truncation methods for linear first- and second-order systems can be found in Section 3.2.

A different question arising in model reduction is regions of approximation. Not
always the complete frequency axis or infinitely long time simulations are needed in
practice. Consequently, it is enough for surrogate models to only approximate frequency
or time ranges of interest. For first-order linear systems, this led to the development
of the frequency- and time-limited balanced truncation methods [47,90, 130]. These
methods were recently re-considered for structure-preserving model reduction for second-
order systems (1.3) in [107,108]. The authors selected only two ideas from the zoo of
second-order balanced truncation methods [69, 143, 159] to transfer the ideas of limited
model order reduction. Besides that, there is a general misconception regarding the
problem of stability preservation when using second-order balanced truncation methods,
and also the problem of applicability of the methods to the large-scale sparse system
case. A more general transition from second-order balanced truncation to limited model
order reduction is done in this thesis, discussing the problem of stability preservation
and proposing numerical methods for the application in the large-scale sparse system
setting. An introduction to (limited) balanced truncation and further details are shown
in Section 3.4.

Another current research topic in model reduction is the approximation of nonlinear
systems. In case of general nonlinearities, time simulations are usually used to gain
information about the underlying system dynamics. This is, for example, the case in
proper orthogonal decomposition (POD) or in the empirical Gramian framework; see,
e.g., [71,112,114,128,133,165, 186]. Besides strongly depending on the chosen control
signals and time discretization schemes, also the nonlinearities need to be approximated
in this setting. This usually amounts to some type of hyper-reduction method like the
(discrete) empirical interpolation method ((D)EIM) [20,71,77]. Against this background,
the focus of research changed in the last years to systems with specially structured
nonlinearities, like bilinear and quadratic-bilinear systems [63,95, 145, 146]. For these
systems, intrusive model reduction methods were constructed that do not involve time
simulations or the additional use of hyper-reduction methods. For overviews about
developed model reduction methods for bilinear and quadratic-bilinear systems see the
introductions of Chapters 5 and 6. However, all those newly developed approaches
only cope with the case of first-order systems without any further internal structures of
the differential equations. In other words, systems with internal structures such as the
second-order time-derivatives from the mechanical system case or, for example, systems
with internal time delays, cannot be handled by those methods. An important point in
this thesis will be to close this gap and to develop model order reduction methods for
systems with general internal structures involving bilinear and quadratic nonlinearities.
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Figure 1.1: Design of the butterfly gyroscope [61,149].

1.3 Motivating examples for mechanical systems

In this section, three motivating examples with underlying mechanical systems are used
to illustrate the necessity of structure-preserving model order reduction in practical
applications.

1.3.1 Butterfly gyroscope

The butterfly gyroscope is an open benchmark example for model order reduction methods
from the Oberwolfach Benchmark Collection [61, 149]. It models a vibrating micro-
mechanical gyroscope for the use in inertial navigation applications. The design of the
chip itself is illustrated in Figure 1.1. The displacement field is described by linear three-
dimensional partial differential equations from elastodynamics involving second-order
time derivatives. Using a spatial finite element discretization yields a linear mechanical
system of the form (1.3) described by ny = 17361 ordinary differential equations. The
states are excited by a single input (m = 1) and measuring the displacement of the four
wings in the three spatial directions gives p = 12 outputs. The internal damping behavior
of the gyroscope is modeled by Rayleigh (or proportional) damping F = oM + SK, with
the coefficients o = 0 and 3 = 1075,

In the practical process of improving the butterfly gyroscope, the mechanical system
needs to be simulated a lot of times with different input signals to analyze the system’s
behavior with respect to important physical phenomena, for example, its sensitivity
to shocks and vibrations. To perform the design process in a reasonable amount of
time, it is essential to improve the simulation efficiency of the system. A remedy is the
reduction of the number of describing/defining ordinary differential equations by model
order reduction techniques. Thereby, the second-order system structure needs to be kept
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(a) Transparent sketch. (b) Fluid chambers in relaxed and pressurized state.

Figure 1.2: Design and actuation principle of the artificial fishtail [168].

for the analysis process, and it is even more beneficial if additional mechanical properties
like the symmetry and definiteness of the system matrices are preserved. Therefore,
structure-preserving model reduction methods are required, here.

1.3.2 Artificial fishtail model

Autonomous underwater vehicles are an important and essential tool in environmental
observation tasks [119]. The classical thruster-driven approach has been proven to be
mostly inefficient and expensive [83], especially compared with the agile, fast and efficient
locomotion that fish naturally developed by evolution [168]. For the construction of
fish-like underwater vehicles, the artificial fishtail model was developed [168, 174, 175].
Three-dimensional partial differential equations are used to describe the deformation
of a fishtail-shaped silicon structure; see Figure 1.2a. For the fish-like locomotion, the
fluid elastomer actuation principle is used [137]. Therefore, the fishtail consists of two
symmetric, ripped chambers, as shown in Figure 1.2a, which are alternately put under
pressure; see Figure 1.2b. This bends the fishtail alternately into the corresponding
directions leading to the typical “flapping” behavior that fish use for locomotion.

The fishtail has a complicated geometric structure, which is expressed in the discretiza-
tion of the describing partial differential equations. Using the finite element method, the
discretized equations are given by a linear mechanical system (1.3) with ny = 779232
ordinary differential equations. A single input (m = 1) is used to describe the pressure
flow between the inner chambers and the displacement of the fishtail’s tip is observed in
all three spatial directions (p = 3). The internal damping behavior is modeled via the
Rayleigh approach with F = aM + BK, where a = 107% and 3 = 2 - 10~*. The size of
the resulting system leads to a tremendous amount of computational resources needed



1.3 Motivating examples for mechanical systems

2

/7.

7.

/7.

— amnm amnm 25

t 77

U,( ) 7.
A
rd

Figure 1.3: Schematic idea of the Toda lattice model with ns particles.

to perform simulations, e.g., the simulation of 2s of the fishtail’s behavior easily takes
around 45 min of real-world computation time on the hardware described in Section 2.4.1.
The full-order system is simply unbearable when it comes to real-time applications or
the use of not so powerful hardware for computations, like an onboard chip. Therefore,
structure-preserving model reduction is needed here to provide a suitable surrogate model
described by only a few differential equations.

1.3.3 Toda lattice model

The Toda lattice [180] is a model that is used in solid-state physics to describe the motion
of particles in a one-dimensional crystal structure; see Figure 1.3; by modeling the system
as a single chain oscillator with “exponential springs” [70]. The dynamical system is
classically given by considering the particle masses with nearest-neighbor interaction and
the nonlinear Hamiltonian

no 2 no—1 Jk;(zj—xj41) kngZn ng
q efi\Zi—T; efinatng 1
H(z;q) = 72] + > ’ 3 —z1— ) PR
=1 4y =1 j na j=1"j

where z;(t) is the displacement of the j-th particle from its initial position in the lattice,
¢;(t) the corresponding momentum, and ny the overall number of particles. Mass and
stiffness coefficients m; and k; can be used as parametrization of different particle types
and their interactions. To get the system description in terms of ordinary differential
equations, the Hamiltonian needs to be differentiated with respect to displacement and
momentum, which yields
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for all j =1,...,ns, in case of the momenta, and
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for the displacements. The equations of motion

) = G, de) =~ (550),

together with some additional internal damping, with coefficients v, > 0, results in a
nonlinear mechanical system of the form

Mi(t) + Ea(t) + f(w(t)) = g(t), (1.4)

with initial conditions x(0) = #(0) = 0 and external forcing ¢(t), which models the
excitation of the particles. The system matrices are then given by

my 7
M = and F =

Mny Tna
and the nonlinear function in (1.4), which models the nonlinear springs, is

M eki(@i(t)—=2() _ 1 T
ek2(@2(t)—z3(t)) _ pki(z1(t)—z2(t))

f(I(t)) = | gkili(t)—zita (1) _' eki—1(zio1(t)—zi(t))

o s () _ g1 (Eng1 ()= (1)

Usually, only a small amount of the particles in the model is of actual interest, which
adds an algebraic output equation to (1.4), for example,

y(t) = Cya(t), (1.5)
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with C, € RP*™ to observe p linear combinations of the velocities of the particles of
interest.

In practical applications with large crystal structures, the number of involved particles
quickly increases, which makes the nonlinear system (1.4) arbitrarily large and, conse-
quently, complicated to evaluate. When approximating the system (1.4) by a surrogate
model, the approximation should preserve the mechanical system structure, i.e., the
second-order time derivatives. Besides reinterpretation of the approximation, in presence
of the nonlinearities in (1.4), it might turn out to be beneficial to preserve as many
physical properties of the system as possible to provide, at the end, a suitable surrogate.

1.4 OQutline of the thesis

This thesis is structured as follows. In Chapter 2, the basic mathematical theory and
notations are introduced. It starts with concepts from linear and multilinear/tensor
algebra, followed by notional conventions from functional analysis. Thereafter, a compact
overview about linear systems theory is given with focus on first-order systems and
extensions to the second-order case. For systems with bilinear and quadratic nonlinearities,
different frequency domain representations are introduced before the chapter concludes
with the setup for numerical experiments. This includes an introduction of the MORscore
for the comparison of model reduction methods used in the numerical experiments of
this thesis.

Chapter 3 introduces basic ideas of state-of-the-art model order reduction methods for
linear systems that are needed later in this thesis. The chapter starts with the projection
framework as the main construction approach for reduced-order models in first- and
second-order form, here. Thereafter, three different types of model reduction methods
are introduced. The first approach is modal truncation, where beside basic ideas for first-
and second-order systems also the dominant pole algorithm is discussed. It follows an
introduction of interpolation-based (moment matching) model reduction, including a
short historical overview, the idea of tangential interpolation for model reduction and
extensions to, not only, the case of second-order systems, but also linear systems with a
more general internal structure. The last discussed type of model reduction methods is
based on the balanced truncation approach. There, frequency- and time-limited variants
for first-order systems are outlined, and a collection of formulas for structure-preserving
second-order extensions of the classical (unlimited) balanced truncation method is shown.

In Chapter 4, new model reduction methods for linear second-order systems are
discussed. Section 4.1 contains a structure-preserving extension of the dominant pole al-
gorithm for modally damped second-order systems. A structured pole-residue formulation
is developed and used to define dominant pole pairs of modally damped second-order sys-
tems. These ideas are then used to derive a structure-preserving dominant pole algorithm
for which error bounds in the H..-norm are derived. A structure-preserving strategy to
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overcome weaknesses in the approximation quality is proposed using structured interpola-
tion. The new dominant pole algorithms are then tested using two benchmark examples
and compared to other established structure-preserving model order reduction methods.
On the other hand, Section 4.2 is concerned with the question of structure-preserving
model reduction for second-order systems with localized approximation behavior in
frequency and time domain. A structure-preserving extension to second-order systems
for the frequency- and time-limited balanced truncation methods is proposed. To over-
come problems with the preservation of stability in the reduced-order model, alternative
approaches are discussed. To handle the arising large-scale sparse matrix equations,
numerical procedures such as large-scale matrix equation solvers, an a-shift strategy and
hybrid model order reduction methods are outlined. For two benchmark examples, the
different resulting limited structure-preserving model reduction methods are computed.
The results are compared to each other and to the classical approaches with global
(unlimited) approximation behavior.

Inspired by bilinear mechanical systems, in Chapter 5, model order reduction for bilinear
systems with a more general concept of internal structure is discussed. First, the frequency
representation of bilinear systems, namely the subsystem transfer functions, is extended
to the general structured setting using two different example structures as motivation. A
new structure-preserving interpolation framework for these structured transfer functions
of bilinear systems is then introduced. This includes results on matching interpolation
conditions in explicit as well as implicit ways. For the case of single-input /single-output
systems, numerical experiments are used to compare structured reduced-order models to
unstructured ones. The interpolation theory is then extended to the case of structured
parametric bilinear systems. Last, the idea of tangential interpolation is used to tackle
structured bilinear multiple-input/multiple-output systems. Via different motivations, a
unifying framework is developed that covers various ideas of tangential interpolation for
bilinear systems at the same time. In numerical experiments, the different tangential
interpolation methods are compared to each other, as well as to the alternative approach
of matrix interpolation.

Chapter 6 is motivated by nonlinear mechanical systems but considers more general
structures similar to the bilinear system case. The process of quadratic-bilinearization is
used to derive structured quadratic-bilinear systems. Frequency representations in terms
of subsystem transfer functions of quadratic-bilinear systems are then extended to the
structured setting, and afterwards, a structure-preserving model reduction approach is
proposed based on the interpolation of structured transfer functions. The Toda lattice
model is used as a nonlinear mechanical system example to test the developed theory in
numerical experiments.

This thesis is concluded in Chapter 7 with a summary of the results and an overview
of open questions and research perspectives.

10



CHAPTER 2

LMATHEMATICAL BASICS AND GENERAL SETTING

Contents

2.1 Basic linear algebra concepts and notation . . . . .. ... ... ..... 12
2.1.1 Tensor algebra . . . . . . ... 12
2.1.2 Notion from vector calculus . . . . ... .. ... ... ...... 14
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2.3.2.2  Symmetric subsystem transfer functions . . . . ... .. 26
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In this chapter, the mathematical preliminaries are summarized and the notation
of this thesis is fixed. First, some basic terms and notation from tensor algebra and
functional analysis are introduced in Section 2.1. Afterwards in Section 2.2, basic system-
theoretic notion and concepts are considered for linear systems in first- and second-order
form. Frequency representations of systems with special nonlinearities are discussed in
Section 2.3. The chapter is concluded in Section 2.4 by the hardware and software setup
used in all numerical experiments of this thesis, and by an introduction of the MORscore
used for the comparison of model reduction methods.
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2 Mathematical Basics and General Setting

2.1 Basic linear algebra concepts and notation

2.1.1 Tensor algebra

Before discussing tensors and some algebraic results for these, the following definition
gives two important operations for matrices. Similar introductions to tensor algebra can
be found in [63,95].

Definition 2.1 (Vectorization and Kronecker product [91]):

Let X = [3:1 an} € C™*™ be an arbitrary matrix with columns z; € C™, for
7 =1,...,n9. The vectorization of X is defined as the row concatenation of the columns
of X:
T
T2
vec(X) = | . | e CM"2
Ty

Given another matrix Y € C™*"  the Kronecker product of X with Y is defined to be

ZL'HY e l’anY
X ® Y — e Cn1n3><n2n4. <>

Tp1Y o TpyneY

Results and properties following from Definition 2.1 can be found in standard linear
algebra textbooks, e.g., in [91,115]. Additionally, the Hermitian transposed of a matrix
X € Cm*2 will be denoted by X" := X' € Craxm

In the last decades, tensors received more and more attention by different mathematical
and engineering communities [98, 123, 127], especially in the application of low-rank
approximations [97]. Formally, a tensor X is a multi-linear description that relates
algebraic objects corresponding to vector spaces. It is usually interpreted as a number
array of order d with its elements indexed by a product index set

IT=1 x...x1y,

with |Z;| = n; and often assumed to be Z; = {1,2,...,n;}, for j = 1,...,d. For
example, X € C"**" ig a d-th-order tensor with entries from C and dimensions
ny,...,ng. While tensors are often a good way to represent certain types of data, they
are problematic when computations need to be performed. These are usually done via
matrix representations of the tensors. While there are various ways of flattening tensors
into matrices [98,122], only the following definition will be of interest in this thesis.

12



2.1 Basic linear algebra concepts and notation

Definition 2.2 (Tensor p-mode matricizations [123]):

The p-mode matricization X ™ e Crexm-mu—1muii-na of g tensor X € C™*+*"d with
1 < p < d, is defined to be the mapping of tensor indices (i1, s, ...,7y) onto matrix
indices (i,,7) with

d k—1
j=1+ Z (i — 1)Jg, where Jj, = H n O
k=1, ku (=1, t£k

As illustration of Definition 2.2, consider the third-order tensor X € C?*2*3. Then,
the matricizations of X read as follows

x0 _ [Xawy Xazn Xaiy Xaz Xaiy Xazp
Xeiy Xe2n Xeiz Xe22 Xeis Xe23)’

X1y Xewy Xaiy Xeiy Xais) (2,1,3)

X2y Xeon Xao2 Xeg2 Xaz2z Xe23)|’

X1y Xenny Xazny Xe2n

X® = 1X0110 Xoi2 Xao22 X292

X113 X3 Xazz Xe23)

o

x 2 —

As one can already see by this example, in case of third-order tensors, all matricizations can
easily be converted into each other using matrix operations. Let a tensor X € Cr1*m2xn3
be given with its 1-mode matricization

XW=[X; Xy .o Xy,
where X; € C"*™2 for all j = 1,...,n3. Then, the other two matricizations can be
written as
-
X = |xT Xx] .. XTTZB] and X® = {Vec(Xl) vec(Xy) ... Vec(Xng)} :

Note that even with the elements of X to be from C, the matricizations are only
rearrangements of these and, therefore, involve only the transposed instead of the
conjugate transposed operation.

An important point when working with matricizations of tensors is the multiplication
with other matrices. Given a third-order tensor X € C™*"2*"3 and three matrices
UeCmxm Ve Cmm W e C™ ™3 then if the tensor Y € C"1*™2X™3 {g given by
its 1-mode matricization such that

YW = xWwev), (2.1)

equivalently Y can be computed by

YO =VIXOWeU) =VviXOWaeU), (2.2)

YO =XV el =WX®VeU), (2.3)

13
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see, e.g., [123]. In other words, the product of matrices with a tensor matricization
is equivalently described by other matricizations of the resulting tensor. This allows
formally to change the order of multiplications.

Another property of third-order tensors that is often used in the context of model
order reduction approaches, e.g., in [4,30,92], is symmetry.

Definition 2.3 (Symmetric tensors [123]):
A tensor X € C"*"™*" is called symmetric if X 2 — x©) hoelds. O

For a symmetric tensor X € C**m*n

see by using (2.1) and (2.2) that

and two arbitrary vectors u,v € C”, it is easy to

XVuev)= ("X (ue In)>T = ("X (ue In))T = XY u) (2.4)

holds. But usually, the occurring tensors are not given in symmetric form. Since
in [4,30,92], they are used in quadratic systems to be multiplied only with a vector in
Kronecker product with itself, X (1)(0 ® v), it is possible to symmetrize the underlying
tensor since this will not change the application of its 1-mode matricization on (v ®v). A
tensor X € C™™*" can be symmetrized by computing a new tensor X € C"*"*" such
that

T ;<X<2> +X®),

2.1.2 Notion from vector calculus

Due to its heavy use in this thesis, an abbreviation for partial derivatives is introduced

ajl+-~~+jkf
0 jl...sik f(zb cee 7Zk) =

= (%), 2.5
¥ o) (2.5)

denoting the differentiation of a function f: C¥ — C’ with respect to the complex

variables si, ..., s, and evaluated at z1,..., 2z € C. In the sense of (2.5), the Jacobian
of f will be denoted by
Vi(z,ooo,2) = {@Slf(zl, coy2k) e Os f(z1, . ,zk)} , (2.6)

to be the column concatenation of all partial derivatives.

In terms of the notation of general functions, this thesis will not involve any inverse
functions, i.e., for a given f: z — y the function f~! will not denote the inverse mapping
y — z but the inversion of the resulting object of the function f. As example, consider
the matrix valued function K: C — C™*" which maps a complex variable onto an
n-dimensional square matrix. Then

K=K (2.7)

14
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denotes the inverse of the n-dimensional square matrix in the frequency points in which
IC is invertible.

These two types of abbreviations (2.5) and (2.7) will also occur combined. For example,
given a second matrix-valued function B: C — C™*™ the partial derivative of the product
with the inverse of IC will be denoted by

alerjz]C(.)*lB(.)

J1 9 oJ2
881 882

83;‘1812 (IC_IB)(Zl, ZQ) = (Zl, Zg).

1 °2

Further on, the usual misuse of notation from systems theory and numerical analysis
will be applied in this thesis.

2.2 System-theoretic concepts for linear systems

This section is concerned with basic concepts for linear time-invariant systems. The
points presented here are mainly taken from [9] but can also be found in other standard
textbooks about systems theory or model order reduction; see, e.g., [10,34, 113,154, 177].
This section itself is additionally separated into the classical first-order systems and
(mechanical) second-order systems.

2.2.1 First-order systems

Before the special case of mechanical (second-order) systems is considered, some properties
of first-order linear time-invariant (LTI) systems are needed first. These systems have
the form

G - {E)’((t) = Ax(t) + Bu(t), 28)

y(t) = Cx(2),

with E,A € R"*™ B e R™*™ C € RP*"; E invertible, if not stated otherwise, and
initial condition x(¢y) = xo with xg € R™. Default assumptions for (2.8) in model order
reduction are x(tp) = 0 and ¢y = 0 to neglect the initial value’s influence on the system’s
behavior. These assumptions are also made through-out this thesis. As in the general case
of dynamical systems (1.1), the behavior of (2.8) is given via the three time-dependent
functions: u: R>y — R™, the inputs that are used to control x: R>y — R™, the internal
states, to get the desired outputs y: R>o — RP.

Remark 2.4 (Feed-through terms):
A common modification of (2.8) in systems and control theory is the addition of a
feed-through term D € RP*™ to the output equation such that

y(t) = Cx(t) + Duf(t).

15
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This feed-through term will not play any role in this thesis, but all developed model
reduction theory can be transferred to systems with feed-through term by preserving the
original term in the reduced-order system D=D.

In some applications, the case D = D is of particular interest. This can be treated in cer-
tain model reduction approaches, like interpolation methods, by additional modifications
of the construction formulae; see, e.g., [24, 84]. O

The first-order system (2.8) can be found under different names in the literature, usually
depending on the specific realization of the E matrix. The system (2.8) is called a standard
state-space system in case of E = I,,, and it is called a generalized state-space system if E is
invertible but not the identity, i.e., when the states are described by a system of ODEs with
a mass matrix. In case of E singular, (2.8) contains DAEs and is referred to as descriptor
system. Furthermore, the system (2.8) is called single-input/single-output (SISO) in case
of m = p =1 and multiple-input/multiple-output (MIMO) otherwise. Since E is assumed
to be invertible, the state of (2.8) is analytically given via the wvariation of constants
principle with

t
x(t) = eF Ao + /eE_lA(t_T)E_lBu(T)dT. (2.9)
to
Subsequently, the system output of (2.8) can be written as

¢
y(t) = CeE Mixg —f—/CGE_lA(t_T)E_lBU(T)dT. (2.10)

to

Definition 2.5 (System realizations and order [9, Definition 4.2]):

The quadruple G, = (A, B, C,E) € R™*™ x R™M*™ x RP*"™ x R™*™ ig called a realization
of the system (2.8). The order of (2.8) is defined to be the dimension of the corresponding
state-space n;. O

In general, the realization of a system is not unique in the sense of its input-to-output
behavior, i.e., the same system can be described by different realizations. A system
realization (2.8) is called equivalent to another realization G, = (A, B, C, E) if and only if
there exist (invertible) transformation matrices Z, T € C™*™ such that

E=Z"ET, A=ZHAT, B=2"B, C=CT. (2.11)

Therein, the matrix 7T yields a coordinate transformation x = Tx and Z transforms the
describing equations. The change of one system to an equivalent one in the sense of (2.11)
is referred to as generalized state-space transformation.

The following definition introduces some important system properties.
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Definition 2.6 (Basic system properties [9, Definitions 4.2, 4.6, and 4.19]):
The system (2.8) is called:

(a) asymptotically stable or c-stable, if all eigenvalues of the matrix pencil \E — A i.e.,
all A € C such that det(AE — A) = 0, have negative real parts.

(b) controllable in [ty, t¢], if any initial state x(¢y) can be steered to any final state x(t)
by an appropriate input signal w(t) with finite energy.

(c) observable in [to, t¢], if the set of states such that y(t) = Cx(t) = 0, for all ¢ € [to, t¢],
contains only the zero state x(t) = 0. O

Controllability and observability are important concepts in model order reduction to
characterize system components that do not contribute substantially to the input-to-
output behavior of the system. It can be shown that a system (2.8) is minimal, i.e., has
the smallest possible order to describe exactly the input-to-output behavior, if and only
if it is controllable and observable. There are a variety of different equivalent definitions
and criteria for the system properties in Definition 2.6. Some can be found, for example,
in [9, Chapters 4 and 5].

A useful tool to deal with systems of differential equations is the Laplace transformation.
For a time domain function f: Rso — R", its Laplace transform is defined to be

F(s) = L{f(0} () 1= [ Flt)eat, (2.12)

if the integral exists, with the complex frequency variable s € C. Applying now (2.12)
to the linear system (2.8) results in an equivalent description in the complex frequency
domain via algebraic equations rather than differential ones

sEX(s) — Exg = AX(s) + BU(s),

Y (s) = CX(s), (2:13)

where X: C — C", U: C — C™, and Y: C — CP are the Laplace transforms of the
equally named time domain functions x, u and y, respectively. With the assumption that
xg = 0, the input-to-output behavior of (2.8) in the frequency domain can be directly
described by

Y(s) = (C(sE—A)'B)U(s)
=: G(s)U(s),

where the complex, matrix-valued function

Gi(s) = C(sE — A)"'B (2.14)
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is called the transfer function of (2.8).

In model order reduction, the input-to-output behavior of (2.8) is approximated via a
surrogate model of smaller order. For an analysis of the approximation quality, norms
for dynamical systems are needed. The following definition states two commonly used
system norms.

Definition 2.7 (System norms [9, Section 5.1.3]):
Assume (2.8) to be asymptotically stable with its transfer function (2.14).

(a) The Ho-norm is defined as

17 ,
IGulls =57 [ 16Dl

(b) The H..-norm is defined as

IGL[[3#.. := sup||Gr(wi)]2. O
weR

While most of the time, the norms in Definition 2.7 are sufficient for studying stable
systems, it should be noted that an important expansion of the H,,-norm for systems
with anti-stable parts, i.e., where eigenvalues of AE — A have positive real parts, is the
L -norm. This norm is analogously to the H..-norm defined as

|GL][zo = sup|GL(wi)|l2.
weR

The norms in Definition 2.7 are defined using the system’s transfer function in the
frequency domain. Results from Parseval, Plancherel and Payley-Wiener give links
between the time and frequency domain description of (2.8) in terms of norms and
spaces [9, Proposition 5.1]. Roughly speaking, the approximation behavior of the transfer
functions in the frequency domain is equivalent to the input-to-output approximation
behavior in the time domain, i.e., the better the transfer function is approximated
the smaller the time domain input-to-output error will be. In fact, the following two
inequalities can be shown to hold in time domain (and also in frequency domain with
accordingly changed functions and spaces):

ly = 9llL, < [IGL — GL 3o Ul 2,
1y = 9l < ||GL — G2 ||w]| L,

for u and y — ¢ in the appropriate spaces, and where ¢ is the output signal of an
approximating system corresponding to Gp. The two norms used above are the time
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domain Ls- and L.,-norms, which are defined by

(2.15)

2]l = sUD [[2(8)]]oc, (2.16)

tE[to,ts]

for a time domain function z: R5y — R".

2.2.2 Second-order systems

The main interest of this thesis lies in mechanical systems. In the LTI case, these systems
are usually described by differential equations with second-order time derivatives of the
form

G {My’é(t) + Ei(t) + Ka(t) = Bau(t), 2.17)

y(t) = Gpa(t) + Cyic(t),

with M, FE, K € R™ "™ B, ¢ R"™ (,,C, € RP*™; M invertible, if not stated
otherwise, and the initial conditions z(ty) = xp0, ©(to) = v, With z,0,2v0 € R™.
Systems of the form (2.17) are further on referred to as second-order LTI systems. The
system matrices M, E/, K are thereby known as mass, damping and stiffness matrices.
Conform with the previous section, the default assumptions for systems like (2.17) will
be zero initial conditions z, ¢ = 2y = 0, with ¢y = 0. The Definition 2.5 is extended
appropriately for (2.17). The order of (2.17) is the corresponding state-space dimension
ng, and the tuple

GL = (M7E>K7 Bu7cpacv)

is a realization of (2.17). In case of mechanical systems, M and K are usually symmetric
positive definite, and E + ET symmetric positive semi-definite. Often also E itself is
symmetric positive semi-definite.

In principle, the theory of linear first-order systems (2.8) can be directly transferred
to the second-order case by reformulating (2.17) as a first-order system. There exist
infinitely many first-order realizations of (2.17). The most commonly used ones are
summarized in the following; see, e.g., [151,159].

The first companion form realization can be obtained by introducing the first-order
state vector x! = {xT :if;T}. Reordering the lower-order dynamics to the right-hand side
yields an equivalent description of (2.17) by a first-order system of the form (2.8), with
the system matrices

. ch 0 o 0 ch _ 0 —
EfC — [0 M‘| ) Afc - [_K —E‘| ) BfC — [Bu‘| ) Cfc - [Cp C'V:| ) (2]‘8)
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where Ji. € R™*"2 ig an arbitrary invertible matrix. The input-to-output behavior
of (2.17) and the first-order system (2.8) with the matrices (2.18) is identical. A classical
choice for the invertible matrix is Ji = I,,. In case of M, E, K symmetric and K
invertible, another suitable choice for the invertible matrix is Ji. = — K, since thereby Eg
and Ag. become symmetric. If additionally B, = CT and C,, = 0 hold, the first companion
form realization is also state-space symmetric.

A different realization is obtained by moving only the state without time derivative to
the right-hand side. The second companion form realization of (2.17) is then given by

E M ~K 0 B, B
ESCZ[JSC 0], ASC:[O J] BSC:[O], C = [Cp G, (2.19)

with Ji. € R"2%"2 an arbitrary invertible matrix. The default choice for Jg in (2.19), if
M is invertible, is Ji. = M. Then, in case of M, F, K symmetric, the first-order system
matrices Eg. and Ay, become symmetric, too. Also, the second companion form realization
becomes state-space symmetric if additionally B, = C’g and C, = 0 hold.

Since (2.18) and (2.19) are both realizations of the same second-order system, i.e.,
they are equivalent, the question of the corresponding transformation matrices in (2.11)
arises to switch between the two realizations. One can easily prove that (2.18) can be
transformed into (2.19) using the transformation matrices

TpT T gT
ZfCQSc - [Jf}nZE' JfCOJSC‘| and ch25c = [[82 IS;| = Iana (220)

i.e., it holds
sc fc2sc =fed fe2scs sc fc2scMMce4 fe2scs sc fc2sc Pfes sc fc L fc2sc-

Note that the reverse transformation from second to first companion form is given by
the inverse transformation matrices

ZfZZISC - [JS;-OFJ;{ _J:—:'IZ'ET‘| and Tf;2150 = ]2n2- (2‘21)

In practice, while both companion forms have different advantages, they can quickly run
into numerical problems during computations due to the indefiniteness of the first-order
system matrices. Therefore, a third first-order realization is mentioned here for later use.
Assuming K to be invertible, the strictly dissipative realization of (2.17), as introduced
in [151], is given by

Esd - [K 7M17 Asd - [_’VK K_P)/E‘|7

M M -K M—-F
VB K (2.22)
Bsd - |;}/B u] 3 Csd = [Cp CV} )
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with the parameter 0 < v < Apin (E(M%—iEK*lE)*l). It was shown in [151] that in case
of mechanical systems with M, E, K symmetric positive definite, this realization is strictly
dissipative, i.e., Eyq is symmetric positive definite and Ayq + Al is symmetric negative
definite. Using the realization (2.22) gives numerical advantages in computational
methods that work with projected spectra of AE — A rather than directly with the
second-order system matrices. But applying (2.22) comes with the cost of increased
computational complexity as there are no zero blocks in the matrix structure to make
use of in computational operations, in contrast to (2.18) and (2.19).

As before, the strictly dissipative realization (2.22) is equivalent to the other two
realizations (2.18) and (2.19) such that again the question of appropriate transformation
matrices to switch between the realizations need to be answered. While in [151] only the
transformation into (2.18) with a specific choice for Ji., namely Ji. = K, was shown, it
can be observed that with

JfZTKT VJf;TMT

ch =
fc2sd ,y]nQ In2

and Theasa = 127127 (223)

the more general case holds
Ew = Z4¢ 0 Es T, Ay = 21, AT, Ba = Zf.4Bte, Caq = CiT,
sd — Zfc2sd et fe2sd s sd — 4fcosdMNMet fe2sd sd — 4fc2sd Ples sd — ‘“fcd fc2sd-
The inverse transformation is given by

(K —=M)"TJ,  —y(K—~*M)""MT

—y(K —2M)TJL (K —+2M) KT and  Tipg = Ian,-

-1
ch2sd -

with the additional assumption that K — ~2M is invertible. The transformation of the
strictly dissipative realization into the second companion form realization follows then
by applying (2.20) or (2.21) to the transformations above.

As in the first-order system case, realizations of second-order systems are an important
point for the application of model reduction methods. In general, the realizations of two
second-order systems Gy, and Gy, are equivalent if and only if there exist Z, T € C™*™
with ny = 2ns, such that corresponding first-order realizations of G, and G, are equivalent.
This equivalence is in a certain sense unhandy due to the resulting difficult conditions on
the transformation matrices to preserve the second-order structure. A more applicable
special case of second-order system equivalence is given in the next definition.

Definition 2.8 (Restricted system equivalence, e.g., [159]):
Two second-order systems

Gr= (M,E,K,B,,C,,C,) and Gy = (M,E,K,B,C,,C,)
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are called restricted equivalent, if there exist transformation matrices Z,T € C"2*"2 such
that

M=2z"MT, E=Z"ET, K=Z"KT, B,=Z"B,,

~ ~ (2.24)
c,=C,T, C,=0C,T

hold. The change between two second-order system realizations in the sense of (2.24) is
called restricted state-space transformation. O

It can be shown that the restricted system equivalence is a special case of the general
equivalence of second-order systems by observing that (2.24) is obtained by setting
= |Zu 0 = |T 0
2B wa 7=[1 Y
as a generalized state-space transformation (2.11) to the first companion form realiza-
tion (2.18), where Z;; € C"*"2 is an arbitrary invertible matrix.

Analogously to the first-order case, second-order systems can be equivalently described
in the frequency domain. Applying the Laplace transformation (2.12) to (2.17) yields

s*MX(s) — sMzpg — Mayg = —sEX(s) + Exyo — KX (s) + B,U(s),

Y(s) = CoX(s) + sCo X (s) — Cyrpp. (2.25)

Using the assumption z,9 = Mz,p = 0 and reordering the terms to get a direct
input-to-output relation in the frequency domain results in the second-order transfer
function

Gr(s) = (Cy + sC,)(s*M + sE + K) ' B,, (2.26)

with the complex variable s € C. Note that equivalently, inserting any first-order
realization of (2.17), e.g., (2.18), (2.19), and (2.22), into the first-order transfer function
formulation (2.14) also results in (2.26).

While most system properties of second-order systems are only characterized for
their first-order form, e.g., controllability and observability, the concept of asymptotic
stability easily transfers to the second-order case: A second-order system (2.17) is
asymptotically stable (c-stable) if and only if all eigenvalues A of the quadratic matrix
pencil \2M + AE + K, i.e., all A € C such that det(A\>M + AF + K) = 0, have negative
real parts.

2.3 Frequency domain representations of special
nonlinear systems

The second part of this thesis is concerned with model order reduction of structured
systems with special nonlinearities, namely bilinear and quadratic-bilinear systems.
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Therein, the idea of frequency domain representation of these two system classes is
needed. This will be discussed in this section for the case of unstructured first-order
systems. The concepts presented here are based on the work in [166].

2.3.1 Bilinear control systems in frequency domain

The first system class discussed are first-order (unstructured) bilinear control systems of
the form

Ex(t) = Ax(t) + JZ:,: Nx(£)u; (1) + Buft), (2.27)

y(t) = Cx(t)

with E,A,N; € R">*™ for j =1,...,m, B € R"*™ C e RP*™; E invertible, if not stated
otherwise, and the initial condition x(ty) = 0 with ¢y = 0. Bilinear control systems (2.27)
form a special class of nonlinear dynamical systems as they only involve the multiplication
of control and state variables, where the inputs are written as

u(t) = [un(t) wlt) ... wal®)]

i.e., these systems are linear in state and control separately, but not in the multiplication
of both [145]. Therefore, bilinear systems are an important link between linear systems
and systems with stronger nonlinearities.

The general idea to make (2.27) more open to known model reduction techniques is to
convert (2.27) into a series of linear-like systems using the Volterra series expansion [166].
Assume the input signal u to be one-sided, i.e., u(t) = 0 for ¢ < 0, then the internal state
of (2.27) can be rewritten into a series of states

x(t) = ’ixk(t), (2.28)

where the new states x,(t) are given by a sequence of coupled linear subsystems

Exi(t) = Axq(t) + Bu(t),

Exi(t) = Axg(t) + i Njxe_1 (H)u;(t), for k> 1. (2.29)

The subsystem outputs are then given by multiplying the new states in (2.29) with the
output matrix C and, for the overall system (2.27), by multiplying (2.28) with C. The
first subsystem (k = 1) in (2.29) resembles the classical linear case (2.8). All further
subsystems (k > 1) are also linear in their differential states but come with new (artificial)
input signals depending on the state of the previous subsystem and the entries of the
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original input. In that sense, those systems (2.29) can be treated like in the linear case
and solved for the states via the variation of constants formula (2.9). Using (2.9) and
(2.10) for (2.28) and (2.29) yields the Volterra series expansion of (2.27) to be given by

y(t):i// /_gB,k(th---,tk) (u(t—zj:ti)éi)---@u(t—tl)) dt -+ - dt;. (2.30)

k=1 i=1

The time-dependent multivariate functions gg j, for & > 1, are the regular Volterra kernels
of (2.27), with

k—1
gB,k’(tla Ce ,tk) = CeEilAtk (H (Imj71 (024 E_lN)([mj X eElAtk_j)) (2 31)

J=1

x (Ie-1 @ ET'B),

where the bilinear terms were concatenated into N = {Nl . Nm].

In the linear system case (2.8), the classical Laplace transformation (2.12) is used
to transform the kernel in the variation of constants formula (2.10) into the transfer
function (2.14) to describe the input-to-output behavior of the system in the frequency
domain. In case of bilinear systems, the Volterra kernels (2.31) play this role and together
with the multivariate extension of the Laplace transformation [166] yield the regular
subsystem transfer functions of (2.27) to be given by

k—1
G(s1, -y s6) = CskE = A) T | [T (Zi—+ @ N)(1s @ (s5—;E — A)7H)
i (2.32)
X (]mkfl & B),
with the complex variables sy, ..., s, € C. The compact expression (2.32) is actually the

collection of the different combinations of multiplications of the linear dynamics with the
m bilinear terms, i.e., by multiplying out the Kronecker products, (2.32) resembles the
column concatenation of the multiplications with the different bilinear terms

Gp (51, 5%) = [C(skE — A) !Ny -+ Ny (s, E — A) 7B,
C(SkE — A)ilNl ce NQ(SlE — /A\)ilB7

(2.33)
C(skE — A) "INy -+ N, (s,E — A) !B,

C(skE = A) !Ny -+ Ny (s1E — A)'BJ.
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In case of SISO bilinear systems, m = p = 1, only a single bilinear term is present N = Nj.
Then, the multivariate transfer functions (2.32) simplify essentially to

k—1
GB,k(Sh RPN Sk) C(SkE A (H N Sk ]E A) ) B (234)

7j=1

since all the Kronecker products become simple matrix multiplications. Note that (2.32)
and (2.34) can also be formulated in case of a singular E matrix if the matrix pencil
corresponding to the linear system part is regular, i.e., there exists a A\g € C such that
ME — A is invertible.

2.3.2 Quadratic-bilinear systems in frequency domain

The second system class to be discussed are quadratic-bilinear systems. These can be
seen as an extension of bilinear systems by adding a quadratic nonlinearity:.

2.3.2.1 Volterra series expansion of quadratic-bilinear systems

First-order (unstructured) quadratic-bilinear systems have the form

Ex(1) = Ax(1) + H(x(t) @ x(1)) + Z Nyx(8)u (1) + Bu(®), (2.35)

y(t) = Cx(1),

with E,A,N; € R™*™ for j =1,...,m, H € R™*"i B € Rm>*™ C € RP*™ . Similar
to the linear and bilinear system cases, the E matrix is assumed to be invertible, if not
stated otherwise, and the initial condition of (2.35) is assumed to be x(¢y) = 0 with
to = 0.

To get a frequency domain representation of (2.35) in terms of transfer functions,
similar to the bilinear system case, the Volterra series expansion can be used [166].
Following the idea in [101], a scaled input signal au(t), with scaling factor 0 < a € R, is
applied to (2.35) and the state is assumed to have an analytic representation in terms of
a power series

= i_oj axp(t), (2.36)

where x;, are auxiliary states from linear subsystems. Now, inserting (2.36) into (2.35)
yields a representation of the states x; in terms of coupled linear subsystems by sorting
the emerging components with respect to the power of the scaling factor a they are
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multiplied with. The first three coupled subsystems are then given by

Exi(t) = Axq(t) + Bu(t),

Exa(t) = Axa(t) + H(xa () @ xa (¢ )+ZNX1
E>'<3(t):Axg(t)+H(x1(t)®x2(t)+x2( ® xq(t )—i—ZN Xo(t

Applying the variation of constants formula (2.10) to the coupled linear subsystems and
reordering the variables yields a Volterra series expansion of (2.35) with

y(t):i//~~ / gquilty, - te) (ult — 1) @ @ult — ty))dty -t (2.37)

The functions gq (1, . . ., tx) are the Volterra kernels of the corresponding Volterra series
representation, e.g., symmetric kernels are used in (2.37). Applying the multivariate
Laplace transformation [166] to (2.37) results in a frequency domain representation
of (2.35). Depending on the chosen kernels in the Volterra series (2.37), there are
different transfer function representations of (2.35) known in the literature. In the
following, the three most commonly used types are described.

2.3.2.2 Symmetric subsystem transfer functions

Historically, the first concept to represent quadratic-bilinear systems in the frequency
domain are the symmetric transfer functions [30,101]. In case of MIMO systems (2.35),
these transfer functions can, in general, be written as

GQ,sym,k(Sh ey Sk) = CSQ,Sym,k(Sla R ,Sk), (238)
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with the complex variables sq,...,s; € C and k > 1, following the recursion

Sqsym,1(s1) = (s1E — A)7'B,

~1
1 k
SQ,sym,k(Sl, SRR Sk) = E ((Z Sk) E— A)

x | H Z SQ.sym,j(Says - - - ,saj)

7j=1 1<ar<...<a; <k
1§O¢j+1<...<ak§k‘
a;F#oy for i£L

® SQ,Smef—j (Saj+17 s 7sak)

1<p1<...<Br-1<k

+ N ([m & ( Z SQ,sym,k71<5517 S 755k1>>)

(2.39)

For illustration of (2.38) and (2.39), the first three symmetric subsystem transfer functions
of (2.35) for the SISO case are given by

GQ7Sym,1(51) = CSQﬂsym,l(Sl)’
GQ,sym,Q(Slv 32) = CSQ,sym,2<31, 52)7

GQ,sym,S(Sla 52, 53) = CSQ,sym,?)(Sh 52, 33)7
with the recursive terms

Squeym(s1) = (s1E — A)7'B,
1 -1
SQ,sym,Z(sla 82) = 5 ((81 + 82)E - A) (H (SQ,sym,1(S1) X SQ,sym,l(SQ)
+ SQeym,1(52) ® SQ,sym,l(Sl))

+ N(Sauma(s1) + Sqama(s2)) ):
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for the first two subsystems, and

1 -1
SQ,sym,S(Sh 52, 33) = 6 ((51 + 89 + SS)E - A) (H (SQ,sym,l(Sl) & SQ,sym,2(527 33)

+ SQ,sym,l(SQ) ® SQ,Sym,Q(Sh 53) + SQ,sym,1<S3> & SQ,sym,Q(Slv 52)

+ SQ,sym,Q(Sla 52) X SQ,sym,l(SS) + SQ,sym,Z(Sh 83) ® SQ,sym,l(SQ)
+ SQym2(52, 53) ® SQ,sym,1(81))
(

+ N (SQ,sym,2(51> 32) + SQ,sym,2 S1, 33) + SQ,sym,2(527 83)))7

for the third one. A general advantage of symmetric subsystem transfer functions is
that, by construction, their evaluation is independent of the ordering of their frequency
arguments. For example, the second symmetric subsystem transfer function always
satisfies

GQ,sym,Z(Ula 02) = GQ,sym,2(0-27 01)7

for all o1, 09 € Cin which Gq gym,2 is defined. On the other hand, a drawback of symmetric
transfer functions is the exponentially growing number of frequency-dependent terms in
the recursion formula (2.39). This leads to high computational costs for the evaluation
of higher-level symmetric subsystem transfer functions.

2.3.2.3 Regular subsystem transfer functions

The second type of transfer functions to be discussed was developed to compete with the
problem of the exponentially growing number of frequency-dependent terms in symmetric
transfer functions. Introduced in [4], the regular subsystem transfer functions of (2.35)
for MIMO systems can be written as

GQJ‘eg,k(sh R Sk) = CSQ,reg,k(Sh ceey 5k); (240)
with the complex variables si,...,s; € C and k > 1, following the recursion

SQ,reg,l(Sl) = (81E — A)_IB7
S50, 55) = (5 — A)!

k=1
X (H (Z SQreg,i(Sk—j+1 = Sk—js - - -+ Sk — Sk—j)

j=1

(2.41)
X SQ,reg,kfj (81, Ce 75kj>)

+ N(Im & SQ,reg,kfl(sla R Skl))) .
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For illustration of (2.40) and (2.41), and comparison to the symmetric transfer function
case, the first three regular subsystem transfer functions of (2.35) for the SISO case are
given by

GQreg,1(51) = CSqreg,1(51),
GQ,reg,2<317 52) = CSQ,reg,2(51> 32)7

GQreg,3(51, 52, 53) = CSq reg,3(S1, S2, 53),
with the recursive terms

SQureg1(s1) = (s1E—A)7'B,
SQureg2(51,52) = ($26 — A)~! (H (SQ,reg,1(82 —51) ® SQ,reg,1<Sl>> + NSQ,rng(Sl));
SQ,reg,?:(Sla S92, 33) = (83E - A)_l (H (SQ,reg,1(83 - 82) X SQ,reg,Z(Sh 32)

+ SQ,reg,2(82 — 81,83 — 31) ® SQ,reg,l($1)> + NSQ,reg,2($1a 82)> .

In comparison to the symmetric subsystem transfer functions, the regular case has less
recursive terms and is therefore easier to evaluate, while still corresponding to a Volterra
series representation of (2.35) in terms of regular Volterra kernels. Also, note that the
regular subsystem transfer functions of quadratic-bilinear systems are a direct extension
of the regular transfer functions of purely bilinear systems (2.32).

2.3.2.4 Generalized transfer functions

Taking a closer look at (2.39) and (2.41) reveals that both transfer function types
contain linear combinations of similarly structured terms, which are multiplications of
the matrices from the linear, bilinear and quadratic system parts. In that sense and
inspired by the purely bilinear system case (2.32), where the transfer functions are
only products of the matrices from the linear and bilinear components, the authors
of [92] suggested a generalized transfer function concept for quadratic-bilinear systems.
These generalized transfer functions are restricted to using only multiplications of the
different system terms. A simplification of this approach was used in [39] for systems with
polynomial nonlinearities. Some reformulations of the ideas in [92] allow the extension of
the generalized transfer functions to MIMO systems. Let the following function model
the recursive application of the linear dynamics to the matrices corresponding to the
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input, bilinear or quadratic system components:

if vy=(B
(s;E — A)'B, ity =(B)
and k=1,
_ if 7= (N772)
F<7751;---,Sk) = (SJE_A) 1N<]m®F(727817"'7Sk—1))7 and k > 2 (242)
(5;E = A)TH(T (2, 501+ 501) it v = (H, 79, 75)
@ I'(y3,51,- - - ,85—1)) and k > 3,
with the complex variables si,...,s, € C and v, a nested tuple with the possible

elements H, N and B, and tuples of these. The number ¢ in the quadratic case is uniquely
determined by the two sub-tuples 75 and 3. With (2.42), the generalized transfer
functions of (2.35) are given by

G’(s,gen,k(sla R Sk) = CF(P% Sty e 7Sk)- (243)

As in previous sections, the first three generalized transfer functions are considered for
the SISO case as illustration and comparison to the other concepts. Note that due to the
choice of 7, there may exist several different k-th-level generalized transfer functions. As
in the symmetric and regular cases, the first transfer function is unique and resembles
the linear system case

Ggéen,ﬂﬁ) = C(s;E — A)—1|3,
Also, the second transfer function is uniquely given by
D05 = Cls - A) N~ A,

which is also the second regular subsystem transfer function of bilinear systems (2.27).
For the third level, two different choices of transfer functions are possible depending on
the nested tuple ~:

GRLNN (5, 55, 55) = ClsaE — A)IN(5:E — A)'N(s;E — A) B,
G (5, 5, 55) = C(s5E — A)'H((52E — A) "B ® (s1E — A)'B).
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2.4 Setup for numerical experiments

To further illustrate the role of the nested tuple v, consider as example the SISO transfer
function with v = (H, (N, (B)), (H, (B), (B))), which yields

Goun LB EN (5, - s6) = CD((H, (N, (B)), (H, (B), (B))), 51, - - , 55 56)
= C(s6E — A)""H(T'((N, (B)), 54, 55)
® T'((H, (B), (B)), s1, 52, 53))

Remark 2.9 (Transfer function levels):

The transfer function levels of the symmetric and regular cases do not necessarily
correspond to those of the generalized transfer functions due to the additional freedom
of choosing two unrelated frequency arguments for the quadratic term. For example,
the second generalized transfer function is uniquely determined with only the bilinear
terms involved, while in the symmetric and regular cases the quadratic term is already
concerned in the second subsystem transfer functions. O

2.4 Setup for numerical experiments

Numerical experiments will be performed in this thesis for demonstration and comparison
of the developed model order reduction techniques. To ensure proper, fair and reproducible
computations and comparisons, the following two sections state hardware and software
used in the computations as well as the basic idea of the MORscore used for the
comparison of different model reduction methods.

2.4.1 Hardware and software environments

All experiments reported in this thesis have been carried out on nodes of the compute
cluster mechthild at the Maxz Planck Institute for Dynamics of Complex Technical
Systems, Magdeburg. The fundamental hardware and software specifications of the two
types of compute nodes used for the experiments are listed in Table 2.1.

Each experiment was executed on a single node of either standard or big-memory type,
depending on the demand for main memory of the experiment. It should be mentioned
that large parts of the experiments could also be executed on less powerful hardware, e.g.,
with smaller amounts of main memory. In other words, the quantities in Table 2.1 are
not necessarily the required computational resources for the evaluation of the dynamical
systems or the computation of reduced-order models in the experiments. For the reason
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2 Mathematical Basics and General Setting

Table 2.1: Hardware and software environments for numerical experiments.

CPU 2x Intel® Xeon® Silver 4110 (Skylake) @ 2.10 GHz (3.0 GHz Turbo)
Cores 2x8
RAM 192 GB DDR4 with ECC (standard)

384 GB DDR4 with ECC (big-memory)

OS CentOS Linux release 7.5.1804
Platform x86_64 (64 Bit)
MATLAB  9.7.0.1296695 (R2019b) [139]

of comparability and reproducibility, nevertheless, all computations were performed on
the same mentioned hardware.

Furthermore, the following free, publicly available open-source MATLAB packages

were used in the computations:
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M-M.E.S.S. version 2.0.1 [44,167], for solving large-scale sparse matrix equations,

MORLAB version 5.0 [55,56], for model reduction methods and matrix equation
solvers for medium-scale dense systems, and evaluation of linear systems in time
and frequency domain,

SOLBT version 3.0 [58], for solving large-scale sparse Lyapunov equations with
right-hand side matrix functions arising in limited balanced truncation methods,
and

SOMDDPA version 2.0 [59], for the second-order modally damped dominant pole
algorithm.

Code availability
The source codes and scripts used to compute the results presented in this thesis
can be obtained from

under the BSD-2-Clause license, and the computed results are available at

under the CC BY 4.0 license. Both are authored by Steffen W. R. Werner.

doi:10.5281/zenodo.4650402

doi:10.5281/zenodo.4650422
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https://doi.org/10.5281/zenodo.4650422

2.4 Setup for numerical experiments

2.4.2 Comparison of model reduction methods in the MORscore

To evaluate the performance of model reduction methods, a common approach is the
comparison of model reduction errors for varying orders. Nevertheless, a one-by-one
comparison for multiple different model reduction methods quickly becomes too cum-
bersome or too complex to extract proper decisions about the performance. Inspired
by the so-called minimal realization profiles from the optimization community [74], the
MORscore was introduced in [111] to compress the performance of model reduction
methods in various measures into scalar values.

Definition 2.10 (MORscore [111]):

Given a graph (r,e(r)) € Ny x (0, 1] relating a reduced order r to a relative output error
g(r) of a model reduction method, the normalized error graph (¢,, ¢.()) is determined
via the two mappings:

log,o (e(r
,and Qe e(r) = 10( ( ))

Qp: T = U —
Tmax Uogm (Emach )J

with a maximum reduced order 7., € N and the used machine precision €yae, € (0, 1].
The MORscoreis then defined to be the area under the normalized error graph (¢, @e(r)).O

The normalized error graph in Definition 2.10 is a mapping of the relative model
reduction error varying with the reduced order into the unit square such that the
MORscore will be a value in [0, 1]. Note that in contrast to [111], Definition 2.10 actively
includes the case of reduced-order models of order 0 with the corresponding relative
approximation error of 1 as starting point of the error graphs. The maximum reduced
order 7., should be a reasonable small number compared to the full system order,
Tmax << N, since first, usually it is too computationally costly to compute all possible
reduced-order models up to the original system size, and second, the MORscore would
not show much difference if the minimal relative error for the model reduction methods
is attained earlier than for the full order. In computations using double precision, the
machine epsilon is given with €. & 2.22 - 1071% such that [log;(€macn)| = —16. The
normalized error graph in Definition 2.10 assumes the relative error to be smaller or
equal to 1. This is not always the case, for example, when using a time domain measure
for an unstable performing reduced-order model, or when approximations are simply too
bad. In these cases, the relative model reduction error is restricted to 1 as this becomes
a 0 in the normalized error graph. In practical implementations, the MORscore can
easily be computed using the trapezoidal rule (in MATLAB trapz). In general, a larger
MORscore belongs to the better model reduction method. It can be interpreted as a
faster decay of the considered error measure.

For the comparison of model reduction methods in this thesis, only approximate norms
will be used for computational reasons. In time domain, approximations of the Lo- and
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2 Mathematical Basics and General Setting

Lo-norms from (2.15) and (2.16) are used. Therefore, let y be the output signal of the
original system and ¢ the output of the reduced-order model, the absolute error in the
approximate Lo-norm is then given by

ly = 9llz. = V7 l[vec(yn — dn) 2, (2.44)

where y, € RP*" and g, € RP*" are the discretized output signals of the full and
reduced-order models, respectively, in the time interval [tg, t;] and with step size 7. The
absolute error in the approximate L..-norm is then given by

1y = 9l = [Ivec(yn = Gu)lloo; (2.45)

see, e.g., [111]. In frequency domain, the absolute error in the approximated Hoo/Loo-
norm will be used with

1G = Gl /en = max||G(wii) — Gwri)|l2. (2.46)

for the full- and reduced-order transfer functions G and ?, and discrete frequency
evaluation points wy € [Wmin,Wmax)- For a more diverse notation in this thesis and
since Hoo- and L,.-norms have the same definition, both will be denoted by H., in the
upcoming numerical experiments. Note that here only absolute errors are depicted for
illustration of the approximate norms. For the MORscore, these absolute errors still
need to be divided by the approximate norms of the output signal or transfer function
of the full-order model (FOM). For example, in upcoming MORscore tables, columns
denoted by L, correspond to the approximate L.,-norm measure (2.45) such that in the
underlying error graphs, the approximate relative L..-error is used with

1y — 0l 2o ~ lvec(yn — U)o
Y]l Lo [[vec(yn) oo

Adjustments and presentation of the approximate norms will be explained when needed
in sections with numerical experiments.
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LBASICS OF LINEAR MODEL ORDER REDUCTION
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This chapter is used to introduce basic ideas and concepts from the literature for model
order reduction of linear first- and second-order systems. In Section 3.1, the projection
framework for model reduction is established as the main construction approach for
reduced-order models in this thesis. Thereafter, state-of-the-art methods in modal
truncation, structured interpolation and balanced truncation for first- and second-order
systems are presented.
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3 Basics of Linear Model Order Reduction

3.1 Model reduction by projection

In general, model order reduction describes the process of simplifying dynamical systems
by reducing the internal state-space dimension and number of differential equations,
leading to easier-to-evaluate models that can be used as surrogates in applications. For
linear first-order systems

G - {E)’((t) = Ax(t) + Bu(t),

y(1) = Cx(1), (28)

the model order reduction problem is given as the construction of reduced-order systems
of the form

(3.1)

with E, A€ Rrxr Be Rrxm C € R?" and a much smaller number of internal states
and differential equations r; < ny. The new system (3.1) is constructed to approximate
the input-to-output behavior of the original system (2.8) in the sense of (1.2).

A commonly used approach for the construction of (3.1) is the projection framework.
Therefore, let V' € C™"*™ be a basis matrix of the underlying right projection space
span(V') such that x ~ Vx. Choosing a left projection space span(WW) with a corre-
sponding truncation matrix W € C™*"  the reduced-order model (3.1) is computed
by

E=W"EV, A=w"AV, B=W"B, C=cCV. (3.2)

This is further described in, e.g., [9,184]. In the context of finite element methods,
span(V’) would be known as the ansatz space and span(WW) as the test space.

In principle, second-order systems (2.17) can be rewritten into first-order form, e.g.,
using one of the first-order realizations in Section 2.2.2, and then reduced by a model
reduction method for first-order systems. This results in a reduced-order system of the
form (3.1), which usually cannot be transformed back into second-order form. This
yields certain disadvantages, as missing physical interpretation of the reduced-order
system quantities, lesser approximation accuracy for the same reduced order or the
change of tools used in applications for the system class. The main goal in this thesis
is the construction of structure-preserving reduced-order models, i.e., given the original
second-order system

G {M:i(t) + Ei(t) + Ka(t) = Bau(t), 2.17)

y(t) = Cpx(t) + Cyi(t),
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3.2 Modal truncation and dominant poles

the task is to compute a reduced-order model of the same form
[ Mi@) + Ea(t) + Ka(t) =
G{ )+ Bit) + Ra(o) .

g(t) =
with ]\//\[,E,[? € Rm™x"2 B, € Rr2xm C’\p,é’\v € RP*™ and ry < ny. Therefore, the
projection framework (3.2) is extended in the sense of the restricted state-space transfor-

mation (Definition 2.8) for the construction of (3.3). Choosing two truncation matrices
V,W € C™*"2 the reduced-order model (3.3) is then constructed by

=
=)
I
Q=
T
ey
=
=)
I
=
T
=
=
o9)
=
I
=
T
o
g

(3.4)

M=wHM
Co=0CV, C,=
The following sections contain model reduction methods for first-order systems from

three major methodologies and their existing extensions to second-order systems. All of
these methods will use the projection frameworks (3.2) and (3.4).

3.2 Modal truncation and dominant poles

The modal truncation approach is one of the oldest ideas for model order reduction and
based on the eigenvalues of the system matrices. It was first mentioned in [75] for the
approximation of standard first-order LTI systems (E = I,,). The following sections will
give a short overview about the idea of the modal truncation method and an important
extension considering the poles of the underlying system’s transfer function.

3.2.1 Modal truncation method

In contrast to the original reference [75], consider here the case of generalized first-order
systems (2.8). The classical modal truncation method from [75] belongs to the projection-
based model reduction approaches. Thereby, the crucial point is the construction of the
reduction bases V and W. In modal truncation, these matrices are chosen as parts of
the eigenvector bases of the matrix pencil AE — A. For simplicity, it is assumed that
AE — A is diagonalizable. Let 0 # x; € C™ and 0 # y; € C™ be right and left eigenvectors
of AE — A for the same eigenvalue \; € C, respectively, i.e., it holds

Ax; = MEx; and y"A = A\yPE. (3.5)
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3 Basics of Linear Model Order Reduction

Assuming also the scaling yHEx; = 1, the full eigenvector bases can be used for a
state-space transformation (2.11) of (2.8), which yields

A bH
x(t) = X(t) + E
A,y b

i) =& .. &)%),

ult), (3.6)

The input and output matrices have been transformed and partitioned according to the
diagonal structure of the system matrix with by, ..., Bnl € C™ and ¢4,...,Cy € CP. Due
to the diagonal structure, the transformed system (3.6) decouples into n; independent
subsystems, from which r; are chosen to build the reduced-order model. In other words,
eigenvalues Aj,..., A, from the original matrix pencil are chosen (with appropriate
re-ordering of the indices) to remain in the reduced-order model such that the truncation

matrices are set to be the corresponding eigenvectors with W = [yl ym} and

V= [xl e xm] Other variants of the modal truncation method utilize, for example,
bases of invariant subspaces corresponding to the chosen eigenvalues; see, e.g., [50].

For second-order systems (2.17), there have been a lot of different attempts for the
extension of the modal truncation method. Overviews about developed techniques can
be found in [60,125]. Methods like static condensation (Guyan reduction) [105] or the
Craig-Bampton method [73] belong to the class of modal truncation approaches by
making use of the known structure of models resulting, e.g., from finite element methods.
These methods are in need of a certain engineering expertise during the model reduction
process and, therefore, not suited for automatic reduction in the sense that a common
user applies the methods directly to the data. Both approaches and related techniques
are not further discussed in this thesis.

In general, modal truncation methods for second-order systems can be related to the
underlying quadratic eigenvalue problem of (2.17) (or parts of it). In that sense, the
linear eigenvalue problems in (3.5) from the first-order case are replaced by the quadratic
eigenvalue problems

(MM +NE+ K)z; =0 and gl (MM + ME+ K) =0, (3.7)

which need to be solved as before for left and right eigenvectors, and the corresponding
eigenvalues. This shows the main advantage of modal truncation approaches as they can
easily be generalized to other internal system structures by adapting the corresponding
eigenvalue problem, and they are also very compatible in a computational sense since
only eigenvalue problems have to be solved.

Some changes to the first-order case need to be noted. While (3.5) provides exactly
ny eigenvalues, the quadratic eigenvalue problem (3.7) has 2n, eigenvalues. Also, the
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3.2 Modal truncation and dominant poles

quadratic matrix pencil A>M + AE + K is generically not diagonalizable, which means,
out of the 2ny eigenvalues only r5 can be chosen to remain guaranteed in the reduced-
order model. The missing ro eigenvalues can in principle be unrelated approximations,
resulting from the truncation of the matrix pencil. As discussed in, e.g., [134], or used
n [174], often the problem (3.7) is simplified by neglecting the damping term E for the
computation of the model reduction basis. Assuming M and K to be symmetric positive
definite, only the generalized eigenvalue problem

Kv; = w?Muv; (3.8)

is solved for the stiffness coefficients w;. The generalized eigenvectors v; in (3.8) are
then used to set up the model reduction bases W =V = ['01 o vm] This can yield
good results and be very advantageous in terms of computational costs in case of special
damping matrices F.

3.2.2 Dominant pole algorithms

A crucial problem in modal truncation methods is the choice of eigenvalues to remain in
the reduced-order model. Note that the eigenvalues of AE — A are the potential poles of
the corresponding system’s transfer function. With the right and left eigenvector bases X
and Y as in (3.6), it holds

YPEX =1, and YMAX = A,

where A = diag(Aq,..., Ay, ). Then, the transfer function of (2.8) can be rewritten in its
pole-resiude form
Gr(s) = C(sE—A)"'B
= C(sY ™ UX! -y "AX™H™'B
= CX(s[m —AN)'YHB
(C HB
_ Z ) yk ). (3.9)

The problem is now to identify those poles of (3.9) that contribute most to the transfer
function’s behavior. This leads to the following definition.

Definition 3.1 (Dominant poles [138,161]):
A pole \; € C of (2.14) is called dominant if

I(Cx) VB2 _ [1(Cxi) (v;'B)ll2
[Re(Ax)] [Re(A;)]

holds, for all j # k. O

(3.10)
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3 Basics of Linear Model Order Reduction

The idea of dominant pole algorithms is now to compute the reduced-order model with
modal truncation by choosing the r; most dominant poles with respect to the dominance
measure (3.10) such that

(Cx)( ka> ~
2:: s — A NGL(S)a

where the poles )\ are assumed to be ordered with respect to (3.10). The method was
originally developed in [138] and then extended to large-scale sparse systems in [161,162].
Other dominance measures to alter the behavior of the constructed reduced-order models
are suggested, for example, in [185] for Hy-like norms or in [182] to match the low
frequency behavior.

In case of second-order systems, a structure-preserving extension of the dominant
pole algorithm was developed in [163] for SISO systems and in [48] for the MIMO case.
In principle, the extensions consider the second-order system (2.17) in first-order form,
e.g., (2.18), for which the pole-residue form can be written with 2ny terms, i.e.,

Gr(s) = (Cp + sC)(s*M + sE + K) ' B,
& (Cxx)(yi'B)

—Z

11
— (3.11)

where C and B are here the output and input matrices of the chosen first-order realization,
and x; and y; the right and left eigenvectors of the corresponding linearized eigenvalue
problem (3.5). The structure-preserving dominant pole algorithm is then used to compute
the ro most dominant poles in (3.11) with corresponding eigenvectors such that the
reduced-order model is given by

Zcxk Yk)+rzw

S—)\k k=1 S—/\k

)
k=1

where )\, are new poles introduced by the truncation of the quadratic eigenvalue problem.
In case of complex conjugate poles and the original system being real, some of the A\, are
set to be the complex conjugates of the dominant poles ;.

3.3 Interpolation and moment matching methods

A different approach is based on the idea of considering the system’s transfer function
as the object of interest to approximate. Inspired by the observation that in the cases
of first- and second-order systems the transfer functions (2.14) and (2.26) are rational
functions in the complex variable s, a lot of model reduction techniques and approaches
were based on the construction of rational interpolants for the transfer functions. See [10]
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for a general introduction to interpolatory model order reduction techniques and related
realization methods. In the following sections, the basic ideas for first- and second-order,
as well as for even more generally structured systems are recapped.

3.3.1 From moment matching to rational Krylov subspaces

The origins of interpolatory model reduction root in the theory of Padé approxima-
tions [18], i.e., the construction of rational approximants. Given a function G: C — C,
which is analytic in 0 and has the power series expansion

G(s) =Y _m;s,
j=0

the coefficients m; € C are called the moments of G. The unique, rational function R(s),
with

ap+ars+ ... +ayst &
R(s) = 5 .y 3.12
) = T st by jz%mjs (3.12)

is called a Padé approximation of G, if m; = m; holds for 7 = 0,..., 71 + j2. In other
words, a Padé approximation is a Hermite interpolating rational function in 0 of minimum
degrees in nominator and denominator. The idea of Padé approximation was then first
related to the standard case of SISO first-order systems (2.8) resulting in construction
formulae for the coefficients in (3.12); see, e.g., [67,173]. Based on this, in the last
decades, the idea of rational interpolation got extended further and further, e.g., to the
interpolation at oo in the partial realization problem [9,96], to the interpolation in other
and more frequency points than 0 also known as shifted Padé approximation [100,184], or
to efficient computational approaches in the projection framework (3.2) by Lanczos and
Arnoldi methods, e.g., in [14,87,100]. Besides Padé approximation, the idea of rational
interpolation of transfer functions for model order reduction is referred to as moment
matching or Krylov subspace methods in the literature.

The construction of a rational interpolation for (2.8) can be efficiently done in the
projection-based framework (3.2) by computing the truncation matrices V and W as
bases of rational Krylov subspaces. For example, let o1,...,0, € C be interpolation
points in which the transfer functions of the full-order system Gy, and of the reduced-order
system Gr,, computed by (3.2), exist. Then one can show that if either

span ( [(alE —A)B ... (oxE— A)_lB} ) C span(V) (3.13)

span ([(01E — A)HCT .. (o4E — A)7HCT] ) C span(1V) (3.14)
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holds, the interpolation of the full-order transfer function follows

Gu(o1) = Gr(o1), ..., Gu(ox) = Gp(ow).

This approach can be extended to match additional Hermite interpolation conditions
in an implicit or explicit way. For a more detailed inside of the theory about rational
interpolation by projection for first-order systems see, e.g., [100].

As the previous example shows, big advantages of this approach and related methods
are the cheap computational costs and the loose assumptions, since only a few shifted
linear systems need to be solved and the transfer function must exist (or be complex
differentiable in the Hermite interpolation case) in the interpolation points. This makes
interpolatory methods a good alternative to other model order reduction techniques with
stronger assumptions on the original system. On the other hand, a drawback of this
approach is that interpolation by projection lacks stability preservation in many cases,
which might lead to undesired results in time domain simulations while the approximation
in the frequency domain can still be good due to the interpolation.

A crucial part for the approximation quality of the interpolating reduced-order models
is the choice of interpolation points. This question was tried to be answered in different
system norms leading in case of the Hs-norm to the iterative rational Krylov algo-
rithm (IRKA) [103,104,189] or to greedy approaches in the H.-norm case [6-8,11,80,82].

Transfer function interpolation does not only work in the frequency argument but can
also be extended to the parametric system case

E(u)x(t) = A(u)x(t) + B(p)u(t),
y(t; 1) = Clu)x(2),
where 1 € R? is a vector of parameters, constant in time, allowing for different config-
urations of the system. Then, E(u), A(u), B(i) and C(u) are matrix-valued functions

depending on the parameter configuration. In frequency domain, this gives the parametric
equivalent to (2.14) with

Gr(s, ;1) = C(u)(sE(n) — () B(n),

such that interpolation can be done in the frequency and parameter arguments leading
to the additional choice of interpolation points in the parameter domian; see, e.g., [21].

3.3.2 Tangential interpolation for MIMO systems

In case of MIMO systems, the transfer functions are matrix-valued such that the cor-
responding interpolation problem changes from scalar to matrix interpolation. The
interpolation of matrix-valued functions can be interpreted as classical (scalar) interpola-
tion in each entry of the matrix-valued functions, i.e., it yields additional interpolation
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conditions for the entries of matrices and results in larger reduced-order models to
match these. The tangential interpolation problem instead considers the interpolation
of matrix-valued functions along selected directions and can be interpreted as adding
constraints to the matrix interpolation problem [19]. For given interpolation points
o1,...,0, € C, given function values y;,...,y, € CP and right evaluation (tangen-
tial) directions by, ..., br € C™, the task of right tangential interpolation is to find an
interpolating function L: C — CP*™ such that

L(a;)b; = yj (3.15)

holds for 7 = 1,..., k. The left and two-sided tangential interpolation problems are
defined in a similar way using left tangential directions.

It was then mentioned in [19] and utilized in [89] to use tangential interpolation for
the purpose of model order reduction of linear unstructured MIMO systems. Therefore,
the interpolant in (3.15) is restricted to a rational matrix-valued function and the
function values are the system’s transfer function evaluations into certain directions. The
tangential interpolation problems in model reduction are formulated as follows: Given
the original system’s transfer function (2.14), the goal is to construct a reduced-order
model with Gp,(s) = C(sE—A)~'B such that for given interpolation points oy, ..., 05 € C,
right directions b, ... b*) € C™ and left directions ¢V, ..., ¢® € CP, the following
interpolation conditions hold

Gy, (0)bY) = G ()b,
-\ H A\ Ha
() 6L(0j) = (V) Giloy), o (3.16)
(C<j>)“GL(Jj)b(j> _ (cU))HGL(aj)bU),

for j = 1,...,k. It has been proven in various examples that tangential interpolation
can be used to construct very accurate and smaller reduced-order models compared
to the matrix interpolation approach. Also, it allows for a more dedicated choice of
the reduced-order system size independent of the input and output dimensions. The
tangential interpolation problems (3.16) were then extended to structure-preserving
Hermite interpolation in [24] as discussed later in Section 3.3.4.

3.3.3 Extensions to second-order systems

As for other model reduction approaches, the extension of interpolation-based techniques
to the second-order system case (2.17) got a lot of attention. Starting with Padé ap-
proximation methods for second-order systems [14,87,88], other concepts as rational
Krylov subspaces [16], moments of transfer functions [152] and general rational interpola-
tion [23,169,170] got extended as well. The same holds for related algorithms such as
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choosing interpolation points, e.g., in case of second-order IRKA variants [188] or the
modified iterative rational Arnoldi (MIRA) algorithm [62]. In principle, all those results
boil down to replace the rational Krylov subspaces for first-order systems (3.13) and
(3.14) by second-order variants: Given interpolation points o1, ..., 0 € C, for which the
full-order transfer function (2.26) and the reduced-order transfer function Gy, computed
by (3.4), exist. Then if either

span ( [(O'%M +0E+K)'B, ... (6IM +oxE + K)_lBu} ) C span(V)
or
span ( [(O‘%M + 01 E+ K)™Cy, + a0 )" ... (03M + 0 E+ K)™M(C, + akCV)H} )
C span(WV)

holds, the full-order system’s transfer function is interpolated by a structure-preserving
reduced-order model such that

GL<01>:GL(01), ceey GL(Uk):@L(Uk>.

More recently, the idea of structured optimality conditions got also extended to second-
order systems [22, 144]. For brevity, those results are omitted here. The following section
gives a more general framework for the interpolation of structured linear systems, which
automatically encloses most of the above mentioned results for systems with first- and
second-order structures.

3.3.4 Structured interpolation via rational Krylov subspaces

Consider for a moment the first-order unstructured system case (2.8). With the Laplace
transformation, the dynamical system is described via two algebraic systems of equations
in the frequency domain (2.13). The first one describes the input-to-state relation and the
second one the state-to-output relation of the system. Inspired by much richer structured
systems than (2.13), for example, such as (2.25), a general framework for structured
systems and transfer functions was introduced in [24]. Therein, the authors consider the
two linear systems of equations

(3.17)

with matrix-valued functions £: C — C**", B: C — C"™ and C: C — CP*", as
description of the input-to-state and state-to-output relations of linear dynamical systems
in the frequency domain. Note that (3.17) contains (2.13) and (2.25) as particular
instances. Assuming the problem to be regular, i.e., there exists an s € C for which the
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3.3 Interpolation and moment matching methods

matrix functions are defined and C(s) is full-rank, the equations in (3.17) lead to the
general formulation of structured transfer functions

GL(s) = C(s)K(s) ' B(s), (3.18)

describing the input-to-output behavior of a structured linear system in the frequency
domain. The goal of structured interpolation is to construct an interpolant for (3.18)
that has the same internal structure.

Considering the two system classes mentioned so far, the transfer functions of linear
first-order systems (2.8) are given in the structured setting by

C(s)=C, K(s)=sE—A, B(s)=B,
or, in case of second-order systems (2.17), the matrix-valued functions are set to be

C(s) =C,+sC,, K(s)=s"M+sE+ K, B(s) = B,.

3.3.4.1 Structured-preserving model reduction by projection

For the construction of structured linear reduced-order models, the projection approach
as in (3.2) and (3.4) is generalized for systems described by (3.18). Given two full-rank
truncation matrices W,V € C"*", reduced-order models of (3.18) are constructed by

C(s) =C(s)V, K(s)=WHNK(s)V, B(s)=WHB(s). (3.19)

The structured reduced-order linear system Gy, is then given by the underlying reduced-
order matrices from (3.19) and provides the corresponding structured reduced-order
transfer function

~ ~

Gi(s) = C(s)K(s) ' B(s). (3.20)

In general, model reduction by projection (3.19) is structure-preserving. Every matrix-
valued function can be affinely decomposed with respect to its arguments, e.g., in case of
the frequency-dependent term KC(s), it can be written as

K(s) = % hic(s)K;, (3.21)

with scalar functions hAx;: C — C depending on frequency and constant matrices
IC; e C™ for j =1,...,nk. The choice of the scalar functions hx; in (3.21) encodes
the internal structure of the system. In the worst case scenario, the number of terms
in (3.21) would be nx = n?, where K; are elementary matrices with only a single non-zero
entry in each matrix. However, for common structured examples the number of terms
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3 Basics of Linear Model Order Reduction

in (3.21) is comparably small with nx < n. Otherwise, there are other approaches like
the discrete empirical interpolation method (DEIM) to approximate the matrix-valued
functions [34]. Using (3.21), the corresponding reduced-order matrix function is then
given by

nic nK
K(s) =WHE(s)V =D b j(s)WHKC,V = by j(s)K5, (3.22)
J=1 j=1

where I/Cj € C™" are small constant matrices. Since the scalar functions hy ;(s), which
encode the structure of the system, do not change between (3.21) and (3.22), the internal
structure of the matrix function and consequently the system structure is preserved in
the reduced-order model. This works analogously for the other matrix-valued functions
in (3.19). For first- and second-order systems, this directly resembles the previously used
projection approaches (3.2) and (3.4).

3.3.4.2 Structured interpolation

The goal in structured interpolation is now to construct the truncation matrices V' and
W in (3.19) such that

Gu(0;) = Gu(o;) (3.23)

holds, for j = 1,...,k, and given interpolation points oq,...,0, € C. The following
proposition gives conditions on the projection spaces span(V') and span(WW) associated
with the truncation matrices to satisfy not only (3.23) but also Hermite interpolation
conditions.

Proposition 3.2 (Structured linear interpolation [24]):

Let Gy, be a linear system, described by (3.18), and G the reduced-order linear system
described by (3.20) and constructed by projection (3.19). Let the matrix functions C,
K1, B and K~! be complex differentiable in the point o € C, and let k,0 € Ny be
derivative orders.

(a) If span (asj(lC_lB)(o)) Cspan(V), for j =0,...,k, then
0siGr(0) = agng(U)
holds for 7 =0,..., k.
(b) If span (85j(lC_HCH)(J)) C span(W), for i = 0,...,6, then
05GL(0) = 8,GL(0)
holds for ¢ = 0,..., 0.

46



3.3 Interpolation and moment matching methods

(c) If V.and W are constructed as in Parts (a) and (b), then, additionally, it holds
05GL(0) = 05 GL(0),
for j=0,....k+0+1. O

The original version of Proposition 3.2 was directly formulated for the case of tangential
interpolation, i.e., with the multiplication of B with an input direction b € C™ and of
C with an output direction ¢ € CP. The matrix interpolation results follow from [24,
Theorem 1] by concatenating the resulting projection spaces such that b = I,,, and ¢ = I,
are used. The underlying idea in the proof of Proposition 3.2 is the construction of
appropriate projectors onto the underlying projection spaces span(V') and span(W) by
using the basis matrices V and W, and parts of the transfer function. For the notation
in upcoming proofs let

Py(s) := VIWHK(s)V)'WHK(s)  and (3.24)
Pyw(s) := WIVHK(s)V)"VHKC ()M, (3.25)

with s € C, denote special frequency-dependent projectors onto span(V') and span(W),
respectively. In consequence, given vectors v € span(V') and w € span(W), it holds

v=Py(s)v and w = Py(s)w, (3.26)

for all s € C for which P, and Py exist.

As for the first- and second-order system cases, the choice of interpolation points is
crucial for the quality of the computed approximation. An idea that was developed lately
is related to the computation of the H.,-norm via structure-preserving interpolation [6—
8,172] leading to an H.,-norm minimizing selection of interpolation points for model
order reduction [26,27]. Alternatively, instead of approximating the exact H.-error,
estimators can be used for the same purpose [82]. There is no extension of the IRKA
method compliant with the general structured system case (3.18), except for some
special cases [22,144,155-157,188]. Nevertheless, the idea of constructing Hp-optimal
reduced-order models was extended to general transfer functions in [25] with the transfer
function iterative rational Krylov algorithm (TF-IRKA). The method uses the Loewner
framework from [140] to construct an unstructured interpolating first-order system (2.8)
from frequency data and iterates this in an IRKA-like algorithm. It has been shown
to be very efficient in practice to use TF-IRKA for (3.18) to obtain good interpolation
points, which then can be used for structured interpolation via Proposition 3.2.

Remark 3.3 (Averaging subspaces):
A common drawback of interpolation methods is their error behavior. While being
exact in the interpolation points (and possible derivatives), the error away from these
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3 Basics of Linear Model Order Reduction

points can increase a lot depending on the actual transfer function behavior. A quite
often used approach to counter that was lately reformulated for the computation of
minimal realizations of linear structured parametric systems via dominant subspaces [41].
The general idea is to solve the linear systems in Proposition 3.2 for a large amount of
interpolation points. Then, a rank-revealing orthogonalization method, like pivoted QR
or the singular value decomposition (SVD), is used to obtain orthogonal basis matrices
with appropriate ordering of the basis contributions. Finally, these bases are truncated
to the desired reduced order. In principle, this method approximates the full projection
spaces corresponding to the interpolation conditions by lower-order ones and tries to fetch
the most important features. Therefore, the approximation results depend on the chosen
rank-revealing orthogonalization method and will likely not satisfy any interpolation
conditions anymore. O

3.4 Balanced truncation approaches

The introduction to balanced truncation presented here is mainly taken from [57].
Balanced truncation is a projection-based model reduction approach for first-order sys-
tems (2.8) using energy considerations to identify parts of the state only contributing
marginally to the input-to-output behavior of the system. Originally it was developed
in [147] for the standard system case, with E = I,,,. The extension of the balanced trun-
cation method to descriptor systems (E non-invertible) was done in [179]. Assuming (2.8)
to be asymptotically stable and E to be invertible, the system Gramians of (2.8) are
defined by

“+o0o +00
1 B )
P 1= o= /(wiE — A)'BBT(~wiE — A)Tdw = / (ETAEIBRTE TAE Tty
T
. /
17 oo
E'QuE = 7 / ET(—wiE — A)"TCTC(wWiE — A)'Edw = / A ETICTCeE A gy,
m
. /
(3.27)

with P, the infinite controllability Gramian, and ETQE, the infinite observability
Gramian. Due to the integration up to infinity, the Gramians are equivalently defined
in frequency and time domain. It can be shown that the two matrices P, and Q.
from (3.27) are also given as the unique, symmetric positive semi-definite solutions of
the two dual Lyapunov equations

AP E" + EP. AT + BB" =0,

3.28
ATQ.E+ETQ.A+C'C=0. (3.28)
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Algorithm 3.1: Balanced truncation square-root method.

Input: System matrices E, A, B, C from (2.8).
Output: Matrices of the reduced-order system E, K, @, C.
1 Compute Cholesky factorizations P, = ROORIO, Qs = LOOL:';O of the solutions of the
Lyapunov equations (3.28).
2 Compute the singular value decomposition

T _ 2 T
LTER = [U1 Uy l 21] lT; :

with 3y = diag(s, ..., ) containing the r; largest Hankel singular values.
3 Construct the projection matrices

_1 _1
V=R,T:12;? and W =L U%,; 2.
4 Compute the reduced-order model by

E=W'EV=1,, A=W'AV, B=W'B, C=CV.

A measure for the influence of states to the input-to-output behavior of the system are
the Hankel singular values. These are defined to be the positive square roots of the
eigenvalues of the multiplied system Gramians P, ETQ.E. The main idea of balanced
truncation is to balance the system such that the Gramians are equal and diagonal

S1
G
P. = ETQ.E = : ,
Sniq

with the Hankel singular values ¢; > ¢ > ... > g,, > 0, and then to truncate states
corresponding to small Hankel singular values [147]. The complete balanced truncation
method using the square-root balancing formula is summarized in Algorithm 3.1.

The balanced truncation method provides an a-priori error bound in the H,.-norm

ny
IGL — GLllme <2 > (3.29)

k=r1+1

where Gy, is the transfer function of the original model (2.14) and Gy, of the reduced-order
model computed by Algorithm 3.1. The bound (3.29) depends only on the truncated
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3 Basics of Linear Model Order Reduction

Hankel singular values, which allows an adaptive choice of the reduced order with respect
to the resulting H..-error. Also, this method preserves the stability of the original model,
i.e., since Gy, was asymptotically stable also Gy is.

The application of the balanced truncation method to large-scale sparse systems is
possible by approximating the Cholesky factors of the Gramians via low-rank factors
Po ~ Zr.Zg_, E'QE = E"Z,_Z] E, with Zg, € R"** 7, € R™*kw and
kr.., kL, < ny; see, e.g., [187]. The approximation of the Gramians is reasonable due to
a fast singular value decay that occurs due to the low-rank right-hand sides [17]. For the
computation of those factors, appropriate low-rank techniques are well developed [51].

3.4.1 Frequency-limited balanced truncation

Often due to physical limitations, only localized approximations of the system’s behavior
in time or frequency domain are needed. A suitable method to localize the approximation
behavior of the balanced truncation method in the frequency domain is the frequency-
limited balanced truncation method [90]. The idea is based on restricting the frequency
representation of the system Gramians (3.27) to the requested range of interest on the
frequency axis. The frequency-limited Gramians of (2.8) are then defined to be

1
Po = o /(wiE — A)'BBT(~wiE — A)Tduw,
m
Q

3.30)
1 (
ETQqE = o / ET(—wiE — A)TCTC(wiE — A)'Edw,
T
Q

with the frequency range of interest {2 = [—ws, —w| U [wy,ws] C R. It can be shown that
the left-hand sides of (3.30) are also given by the unique, symmetric positive semi-definite
solutions of the two dual Lyapunov equations

APGE" + EPGAT + BoB' + BBY, = 0,
ATQE + E"QoA + C{,C + CTCq = 0.

The new right-hand side matrices By := EFgB and Cq := CFqE contain the frequency-
dependent matrix function

(3.31)

FQ = Re (1 In ((A + WﬂE)_l(A + UJQIE))> E_1
" (3.32)
=E'Re (; In ((A + wolE) (A + wliE)_1)> ,

with In(.) the principal branch of the matrix logarithm. Note that in case of w; = 0, i.e.,

) = [—wa, we), the matrix function (3.32) can alternatively be simplified to
_ i = U -1 _ -1 oo e ,
Fo = Re <W1n< E-'A w21]m>> E'=E'Re <7T In (—AE w2um)> ,
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3.4 Balanced truncation approaches

Algorithm 3.2: Frequency-limited balanced truncation square-root method.
Input: System matrices E, A, B, C from (2.8), frequency range of interest (.
Output: Matrices of the reduced-order system E, K, @, C.

1 Compute Cholesky factorizations P = RQR-{), Qq = LQLB of the solutions of the
frequency-limited Lyapunov equations (3.31).
2 Follow the Steps 2—4 in Algorithm 3.1.

see, e.g., [47]. The frequency-limited Gramians can be extended to an arbitrary number
of frequency bands, i.e., for

= O <[—Wzk,w2k—1] U [WQk_1,W2k]>,

k=1

with 0 < wy < ... < wy. In this case, the matrix function (3.32) needs to be modified to

. l
Fo = Re (; In (H(A T iE) (A + w%iE))) £

k=1

: L
=E~ 1R€ (hl(H A+w2k1E A+WQk 11E) ))

See [47] for a more detailed discussion of the theory addressed above. The extension of
this method to the large-scale system case can also be found in [47] and an extension to
descriptor systems in [117]. The resulting frequency-limited balanced truncation method
with square-root balancing is summarized in Algorithm 3.2.

3.4.2 Time-limited balanced truncation

The counterpart of the frequency-limited balanced truncation in time domain is the time-
limited balanced truncation method [90]. This approach aims for the approximation of
the system in a limited time interval © = [to, t¢], where 0 < ¢y < t;. Basis is the limitation
of the time domain representation of the system Gramians (3.27). The time-limited
Gramians of (2.8) are then defined to be

te

Po = / ETIAME-IBRTE-TAE 1y,
to
te

ETQoE := / ATETECTCE ALy

to

(3.33)
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3 Basics of Linear Model Order Reduction

Algorithm 3.3: Time-limited balanced truncation square-root method.

Input: System matrices E, A, B, C from (2.8), time range of interest ©.
Output: Matrices of the reduced-order system E, A, B, C.

1 Compute Cholesky factorizations Pg = Rg R@, Q@ = L@L of the solutions of the
time-limited Lyapunov equations (3.34).

2 Follow the Steps 2—4 in Algorithm 3.1.

It can be shown that the left-hand sides of (3.33) are also given via the unique, positive
semi-definite solutions of the two following dual Lyapunov equations

APoE" + EPoAT + B, B} — BthIf =0,

ATQ@E + ETQ@A + Cl—octo — C:;th =0, (3.34)
where the new right-hand side matrices By, = EcE "Alo/fE-1B = ¢AE Mo/t B and Cio)r =
CeF "Atot contain the matrix exponential. In case of ty = 0, the right-hand sides of (3.34)
simplify to By = B and Cy = C. A more detailed discussion of the time-limited theory,
especially for the large-scale sparse system case, can be found in [130]. The extension
of the theory to descriptor systems is given in [106]. It can be noted that considering
more than one time interval at once [to1, 1] U -+ U [toy, ] is not practical. Usually,
one cannot expect a good approximation behavior in the intermediate time intervals
since the time simulation strongly depends on the initial values at the beginning of each
interval, which might be badly approximated. Instead, it is common to take the smallest
and largest time points in the intervals to construct a new overarching time interval
[to,mim tf’maXL where tO,min = min{tm, . ,to’g} and tO,max = max{tm, R ,tf’[} such that

14
U to kvtfk tOmlnatfmax] =0.

Note that with the same argumentation, it is not recommended choosing t, different
from the actual initial time point of the full time simulation. The resulting time-limited
balanced truncation method is summarized in Algorithm 3.3.

3.4.3 Second-order balanced truncation approaches

Over time, there have been many attempts for the generalization of the classical balanced
truncation method to second-order systems [69, 143, 159]. The goal was to provide
a structure-preserving model reduction technique with the benefits of the balanced
truncation method in terms of stability preservation and an a-priori error bound. All of
those attempts for a second-order balanced truncation method are based on the same
first-order realization of (2.17), namely the first companion form realization (2.18).
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Table 3.1: Second-order balanced truncation formulas [57]. The % denotes factors of the
SVDs not needed, and thus not accumulated in practical computations. The
notation uses (3.36).

Type SVD(s) Transformation Reference
v USTT=IL MRy, W =L U5 %, V=R Ti%;* [159]
fo *XT" = LI JieRoop W=V, V=Ry,T'%,? [143]

vpm  UST" = I JuRey W =MTJI L Ui5 %, V=R 15,2 [159)
_1 _1
pm  USTT = LY JieRoop W =M TJ Lopylh 2, %, V =Ry, 1%, ° [159]
1 _1
pv USTT =LL MRy, W =Ly %%, V =Ry, [159]
*XTT = LIO pJfCROO)V, _1 _1 _
up ’ W = Lo U122, V=R /1%, 2 [159]
U % * = LIO’VZWROQVlp
*ETT:LIODJfCROOp’ _1 _1 _
p : ’ W = Lo Ur5) %, V = Ro ) Ti5; 2 [159]

Usxs=L, MRy,

T _ 7T ~2 o
UprTp — LOO’pJfCROO,IN Wp — Loo,pUp,lzp?? Vp = Roo,pr,lsz) [6()]
UVEVTV = LIo,VMROO,V WV = L007VUV712;7?’ ‘/v - ROO7VTV712;1§

Consider the first-order system Gramians (3.27), alternatively given by (3.28), using
the first companion form realization (2.18) for the second-order system (2.17). Then, the
Gramians are partitioned according to the block structure in (2.18) such that

P — [Pm,p Poo,l? JfIQoo,pch J;‘EQOO,IQM

Pz—)ro,12 Poo,v MTQIoJQch MTQoo,vM ’ (335)

] and E'Q.E =
where Py p, JfEQoqufC are the so-called infinite position Gramians of (2.17) and Pa ,
M QoM the infinite velocity Gramians. Due to P, and Q. being symmetric positive
semi-definite, also the matrices defining the position and velocity Gramians are symmetric
positive semi-definite and can be written in terms of their Cholesky factorizations

Poo,p = Fioo,pfgT Poo,v = Pgoo,vfiT Qoo,p = Loo,pLT Qoo,v = Loo,le—o,v-

o0,p? oo,V o0,p?

(3.36)
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Algorithm 3.4: Second-order balanced truncation square-root method.
Input: System matrices M, E, K, By, C,, C, from (2.17).
Output: Matrices of the reduced-order system M, E, I?, B, é\p, C.,.

1 Compute Cholesky factorizations P, = ROORIO, Qs = LOOL:';O of the solutions of the
first-order Lyapunov equations (3.28), where the realization (2.18) is used.

2 Partition the Cholesky factors according to the first-order formulation

JR— Roo7p JR— Loo7p
Re = [Rm,V] and Lo = le7V] .
3 Compute the SVDs and transformation matrices as in Table 3.1.

4 Compute the reduced-order model by either (3.4) for the methods p, pm, pv, vp,
vpm, v and fv, or by (3.37) for so.

Based on these, the different second-order balanced truncation methods are defined by
balancing certain combinations of the four second-order Gramians. For most of the
approaches, the resulting balanced truncation is computed as second-order projection
method (3.4), where the different choices for W and V' can be found in Table 3.1. Therein,
the different transformation formulas are summarized and denoted by their type as used
in the corresponding references. The subscript 1 matrices denote the part of the SVDs
corresponding to the ry largest singular values.

In contrast to the balancing methods that describe the reduced-order model by (3.4),
the second-order balanced truncation (so) from [69] computes the reduced-order model

by

-~

0=sWIMV,)s™, E=5(WIEV,)S™, K=5(WIKV,),

_ _ . (3.37)

B, =S (WJB.), C, = CV,, C,=CV,57,

where S = W, JiV, and the transformation matrices Wy, Wy, V,,, V, are given in the

last row of Table 3.1. This type of balancing can be seen as a projection method for the

first-order realization (2.18) with a recovering of the second-order structure afterwards.
The general second-order balanced truncation square-root method is summarized in

Algorithm 3.4.

Remark 3.4 (Second-order vs. classical balanced truncation methods):

In contrast to the first-order balanced truncation described in Section 3.4, none of the
second-order balanced truncation methods provides an error bound in the H,,-norm
or can guarantee stability preservation in the general case. A collection of examples
for the stability issue is given in [159]. In case of mechanical systems with M, E, K
symmetric positive definite and C, = 0, it can be shown that the position-velocity
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balancing (pv) as well as the free-velocity balancing (fv) are both stability preserving.
Note that the position-velocity balancing also belongs to the class of balanced truncation
approaches, which define the system Gramians as integral in the frequency domain using
relations of the underlying transfer function (2.26). These balancing approaches have
been generalized in [64] for systems with integro-differential equations. O

Recently, a new approach for the model reduction of passive second-order systems
was suggested in [76]. This method is based on the positive-real balanced truncation
and makes use of structure recovery rather than structure preservation, since first an
unstructured reduced-order model is computed and then modified into the second-order
form. This approach will not be further considered in this thesis.
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This chapter is concerned with newly developed model order reduction techniques
for linear second-order systems (2.17). First, an extension of the idea of dominant
pole algorithms (Section 3.2.2) is presented in Section 4.1 for an important subclass of
linear mechanical systems. Afterwards in Section 4.2, the limited balanced truncation
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methods (Sections 3.4.1 and 3.4.2) are extended in a structure-preserving fashion to the
second-order system case.

4.1 Second-order modally damped dominant pole
algorithm

An important problem in the work with mechanical systems is the modeling of the
damping term. A common choice for the internal damping behavior of the system is to
use combinations of the stiffness and mass matrices. This results in modally damped
mechanical systems; see, e.g., [148,183]. In the following, the structured pole-residue
form of modally damped systems is developed to get a new dominance measure and a
structure-preserving dominant pole algorithm for modally damped mechanical systems.
Also, error bounds in the H,-norm are proposed as well as a structure-preserving
approach to improve the approximation quality. The resulting algorithms are then tested
using two benchmark examples. The general ideas presented here and Algorithm 4.1 are
published in [27,168].

4.1.1 Structured pole-residue form

Modally damped mechanical systems are a special subclass of mechanical second-order
systems (2.17) of the form

Mi(t) + Ex(t) + Kz(t) = Buu(t),
y(t) = Coa(t),

with M, E, K € R"2*"2 symmetric positive definite, B, € R"*™ and C}, € RP*"2, where
the damping and stiffness matrices commutate with respect to the inverse mass matrix,
i.e., it holds

(4.1)

EM 'K =KM'E. (4.2)
The transfer function of (4.1) is given by
Gr(s) = Cp(s°M + sE + K) ' B,. (4.3)

The modal damping approach is a common method to model the internal damping
behavior of mechanical systems due to its convenient properties and wide understanding.
Often applied special cases are, for example, Rayleigh (or proportional) damping with

By = aM + BK, (4.4)
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4.1 Second-order modally damped dominant pole algorithm

where «, f € Ry, as used in the introductory examples (Sections 1.3.1 and 1.3.2), or a
scaled version of critical damping

Eow = 26M2\ M3 KM~3M?,

with 0 € Ryo; see, e.g., [52,53, 181].

While in general the pole-residue formulation of second-order systems (3.11) can
be obtained using a first-order realization, modally damped systems yield a specially
structured pole-residue form. This structured pole-residue form of (4.3) was used in [22]
to derive Hy-optimality conditions for modally damped second-order systems. Here, it
will be the basis for a dominant pole algorithm (cf. Section 3.2.2). To get the structured
pole-residue form of (4.3), consider first the generalized eigenvalue problem

2
Kz, = wi Mz,

for the eigenvalues w?, with wy € Rsg, and eigenvectors 0 # zp € R™. Due to the
symmetry of M and K, the left and right eigenvectors are identical, and both matrices
are simultaneously diagonalizable. Collecting all eigenvalues and eigenvectors into
matrices yields

KX = MXQ?,
where Q0 = diag(wy,...,wn,) and X = |z ... z,,|. By appropriately scaling the
eigenvector basis, one gets
XTMX =" and XTKX =0Q. (4.5)

With the modal damping assumption (4.2), the damping term can be diagonalized using
the same eigenvector basis, i.e.,

XTEX = 2%, (4.6)

with = = diag(&y, . . ., &, ), the damping ratios. Then using (4.5) and (4.6), the structured
pole-residue form of (4.3) is given by

Gi(s) = C,(s°M + sE + K) ' B,
=Cp(PXTQIX T 42X TEX T XTTQX ) TB,
=CX(s*QU !+ 252+ Q)X B,
_ f: wi,(Cpap) (2} Bu)
=R CEPYSICEPA

k=1

(4.7)
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4 Linear Mechanical Systems

where the eigenvalues of the underlying quadratic eigenvalue problem (3.7) (the potential
poles of (4.3)) can be determined as pairwise solutions of quadratic equations using

Ap = —wl Ly /EE — 1, (4.8)
fork=1,...,no.

The most important difference between the structured pole-residue form (4.7) and the
unstructured variant (3.11) is the number of summed terms. While the unstructured
version for (4.1) has 2n, terms corresponding to the single poles and residues, the struc-
tured version has only ny terms due to the pairwise appearing poles (3.7) corresponding
to single residues each.

Next, the idea of dominant poles (3.10) needs to be extended to the structured pole-
residue form (4.7). A first extension idea was used in [168]. The approach therein
considered

lw (Cpr) (2 Bu)l2
Re(Ay) Re(Ay)
as measure for dominance. This can be seen as an easy straight-forward extension
of the dominance measure from the first-order system case (3.10), as it considers the
distance of the poles to the imaginary axis individually. Looking back to the origins of
dominant pole algorithms [138], the idea of the dominance measure is to identify those
pole-residue terms in the sum (3.9), which have potentially the biggest influence on the
transfer function behavior in an H., sense. Considering a single term of the structured
pole-residue form (4.7) in the H-norm shows

wi(Cpr)(@pBa) | _ sup wi(Cprr) (24 Ba)
(s = A5 = M) g rer ([ (i = A (A = Ap)
. 1
= lea(CozilaBullle (r?gﬂ%{ |(fi = N (fi = /\E)|>

1
i i—NO)(fi— A,
T}lelﬂgﬂ(f WS il
For the remaining minimum in the denominator, one has to remember that the modally

damped system (4.1) was considered to be real, i.e., its poles can only occur in either
real or complex conjugate pairs. With that in mind, it is easy to show that

argmin|(fi — A7)(fi = A¢)l = £Im(A]) = FIm(A,), (4.9)
feR

= lwr(Comn) (x Bu) |12

holds, i.e., the H,,-norm of a single pole-residue term is given by
we(Cprr) (@i By) | Nlwon(Cozi) (@i Bl llwr(Corn) (5 Bu) 2
(s = A (s = A, Re)ImADT = A1 [(Tm(Ag )i = AL Re(Ay )]

This leads to the following definition of dominant pole pairs.
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4.1 Second-order modally damped dominant pole algorithm

Definition 4.1 (Modally damped dominant pole pairs):
A pole pair (A, \;,) of the modally damped second-order system (4.1) is called dominant
if, with the corresponding eigenvectors 0 # xzy, x; € R™ scaled as in (4.5), it holds

lwe(Comr) @i Bu)lla_ |lwi(Coy) (@} Bu)llo
[Re(A)(Im(AD)i = A0)| ™~ [Re(A7)(Im(A])i — A7)

for all j # k. O

Note that the new dominance measure in Definition 4.1 and the idea in [168] are, in
fact, identical in case of real pole pairs but not for complex conjugate ones.

A new dominant pole algorithm can now be developed, which computes the r, most
dominant pole pairs of (4.7) such that the reduced-order model is given by

~ "2 we(Coxs) (2] By
) = 3 R 2y GO

k=1

using an appropriate ordering in (4.7) with respect to Definition 4.1. The preserved
structure in the pole-residue form enforces the reduced-order model to be also a modally
damped second-order system.

4.1.2 Computing dominant pole pairs

After introducing the definition of dominant pole pairs and the structured pole-residue
form of modally damped second-order systems, an algorithm for the computation of
dominant pole pairs and reduced-order models is needed. The algorithmic ideas presented
here are based on [48, Algorithm 1] leading to the dominant pole algorithm for modally
damped second-order systems as summarized in Algorithm 4.1. The resulting algorithm
can be found similarly in [168].

All dominant pole algorithms are based on observing the transfer function behavior
close to system poles. For (4.3), it holds

1

g(s) == oo Gl — 0, (4.10)

when s approaches a pole of Gy,. Here, 0y, (X) denotes the largest singular value of a
matrix X. In principle, dominant pole algorithms apply a Newton scheme to (4.10) to
find the zeros of g(s), i.e., the poles of the transfer function. The convergence behavior
of this Newton scheme is analyzed in [164]. It resembles an iteration over solutions of
linear systems of the form

(0*M +0E+ Kw=1 and (¢°M +oE + K)Mw =g, (4.11)
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4 Linear Mechanical Systems

for the solution vectors v, w € C"2, the shift ¢ € C and right-hand side vectors 4,y € C"2.
The Newton scheme would additionally involve an update of the solutions v and w
as suggested in [163], but it is mentioned in [48] that in case of deflation with the
system’s input and output vectors, the Newton update becomes obsolete. In general,
the right-hand sides in (4.11) would consist of the system’s input and output matrices.
But following the ideas in [48,162], a tangential approach is used in (4.11) to compress
multiple input and output vectors in case of MIMO systems. This tangential approach
sets

= Byu, and y = Cpy,

with v and y pre-selected directions, usually chosen to be singular vectors corresponding
to the largest singular value of the transfer function for selected shifts. Overall, this gives
Step 4 in Algorithm 4.1.

In [48], the solutions of the linear systems, here (4.11), are collected into left and
right projection bases W and V. These bases are then used for the subspace acceler-
ation approach. For modally damped systems (4.1), one-sided projection, i.e., setting
V =W in (3.4), preserves the modal damping property in intermediate reduced-order
models. Assume that only a single basis V' € R"2*" is given, the subspace acceleration
approach [162] truncates the original system (4.1) to get an intermediate reduced-order
model

G.=(M,E,K,B,,C,,0), (4.12)
with
M=V'MV, E=V'EV, K=V'KV, B,=V'B,, C,=C,V.

The truncated system (4.12) is small, namely of dimension r < ng, and has exactly

the same structure and properties as the original system, i.e., M, F, K are symmetric
positive definite and EM 'K = KM~'E holds. Therefore, the formulae (4.5), (4.6),
and (4.8) can be used to compute all poles of (4.12) in pairs with their corresponding
eigenvectors. The pole pairs of (4.12) are approximations to the pole pairs of (4.1) and
by back-projection, also the corresponding eigenvectors are approximated. Consequently,
the pole pairs and residues of the full-order system can be approximated.

The intermediate structure-preservation is an important point in the application of
the theory of dominant pole pairs of modally damped mechanical systems. Step 5 in
Algorithm 4.1 suggests the concatenation of the left and right projection bases from [48]
to preserve input and output information of the original system (4.1). Two different
special cases, and their combination, can occur here:

(i) Real shifts o lead to Im(v;) = Im(w;) = 0, which results in only Re(v;) and Re(w;)
extending the projection space.
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4.1 Second-order modally damped dominant pole algorithm

(ii) As observed in [48], close to exact poles v; — w; holds, i.e., the real and imaginary
parts of v; and w; provide the same information to the subspace. Consequently,
only v; or w; should be used.

It is necessary to take care of the different occurring special cases in an implementation
of Algorithm 4.1.

Afterwards, the approximation quality is evaluated for the most dominant pole pairs
of (4.12) by computing the corresponding residuals. While in theory, the residuals for
both poles of a pair are identical, they can differ in finite arithmetic. If the newly found
pole pair with corresponding eigenvector is exact enough, it is deflated using one of the
approaches in [163] with an underlying first-order realization of (4.1). Otherwise, the
most dominant approximation of a pole pair is chosen as shifts in (4.11) in the next
iteration step.

The complete second-order modally damped dominant pole algorithm (SOMDDA ) is
summarized in Algorithm 4.1. In the context of model reduction, the eigenvector matrix
X from the output of the algorithm is then used as basis of the projection spaces, i.e.,
reduced-order models are computed by (3.4) with W =V = X. The latest version of an
implementation of Algorithm 4.1 in MATLAB is published in [59].

Remark 4.2 (Alternative dominance measures):

While Definition 4.1 is the recommended measure for choosing dominant poles, different
alternatives can be used in Algorithm 4.1 to get other desired results or to change the
practical convergence behavior of the algorithm. The following measures are implemented
in [59]:

|| R |2

(i) dominance in the H.-sense (Definition 4.1): —
[Re(A) (Im(A)i = Ay )]

R
(ii) product of real parts as in [168]: Re()\’lf)]}!Z()\k)’
R
(iii) the absolute value of the rightmost pole: ||| )\lﬂ:z,
k
R
(iv) distance to the imaginary axis of the rightmost pole: ” k|L2 ,
[Re(A)]
R
(v) product of pole pair: | +k Hf ,
Ryo

where Ry, = wi(Cpzy)(xfBy) is the residue corresponding to the pole pair (A\f,A;). ¢

While the first two measures were discussed before, the measures in Parts (iii) and (iv)
in Remark 4.2 correspond to the classical definition of dominant poles (Definition 3.1)
with taking only the component into account, which is potentially closer to the imaginary
axis. The last measure in Remark 4.2 combines the ideas of (ii) and (iii).
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Algorithm 4.1: Second-order modally damped dominant pole algorithm.

B W N =

10
11

12
13

Input: System matrices M, E, K symmetric positive definite with

EM'K =KM™E, B,, C, from (4.1), initial shift oy, residual tolerance

0 < 7 < 1, number of requested pole pairs kyant.
Output: Eigenvector matrix X, dominant pole pairs \* = {/\%E

Initialize V =X =[], N =[], k=0,j = 1.

-

Compute the left and right singular vectors yo and uy of Tpax(GrL(07)).

while k < ky.n do
Solve the linear systems of equations

Expand the projection basis
V = orth ({V Re(v;) Im(vj) Re(w;) Im(wj)D :

Compute the most dominant eigentriple (9;7, 0;,7;) of

GL = (VIMV,VTEV,VTKV,VTB,, C,V,0),

using (4.5), (4.6) and (4.8).
Compute the corresponding eigenvector and residuals

.fll'j = Vﬂ?j,

o+ ((9;?)2M +OTE + K> z;,

J

2
rT = ((ej) M +0;E + K> ;.
if max(||r;“||2, ||r]_||2) < 7 then

Set k=k+1and X = [X xj}, At = [)\i eﬂ.

Deflate newly found eigentriple.

J

Set 0j41 =0 and j = j+ L.
Restart if necessary.

Update right and left singular vectors y and uy of opay (H (67

(ajz-M +o;F+ K)vj = Byu; and (5?M +0,E + K)wj = ngk.

))-
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4.1 Second-order modally damped dominant pole algorithm

4.1.3 Bounding the approximation error in the H.-norm

In practical situations, it is advantageous to be able to guarantee a certain approximation
quality of the computed reduced-order model in a given system norm (Definition 2.7). In
the unstructured first-order case (2.8), with the assumption of diagonalizability, the error
in the Ho-norm for modal truncation methods can be bounded by rewriting (3.6) into

=T a) ] + [ o
OB H ,

where the subscript-1 matrices belong to the reduced-order model, with A; containing
the r; chosen eigenvalues, and the subscript-2 matrices are the truncated parts. Then,
the Ho-approximation error can generally be bounded by

[Ball2]|Call2

min |Re(\)|’
AEA(A2)

IGL — Ll < (4.13)

see [50,99]. A similar bound can be derived for the modal truncation of modally
damped second-order systems. Consider the matrix of appropriately scaled eigenvectors
X from (4.5) and (4.6) such that the transfer function (4.3) can be written with diagonal
system matrices

00 = 0] [ o]\ '[B

_ 2 |4 1 1 1
owr=io [ o 2)+05 2B
Again, the subscript-1 matrices belong to the reduced-order model and subscript 2 are
the truncated parts. Then, the H-error can be bounded by

1GL, — G |3, = §u£1\02(—f292_1 + 2fiZ5 4+ Qo) ' Bolf2
c
| Call2| Ba||2
min [Re(At)(Im(AH)i — A7)|
D)

AEEA(Q2,252,0;5

<

(4.14)

where A€y, 255, Q51 is the set of all truncated eigenvalues, i.e., the set of all eigenvalues
of the quadratic eigenvalue problem using the truncated system matrices

(N2, + 205, + Qyz = 0.

The general problem of both bounds (4.13) and (4.14) is that for the norm of the truncated
parts of input and output matrices, the full eigenvector basis is needed. This is usually
not computable for large-scale systems.
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An alternative to (4.14) can be found using the structured pole-residue form (4.7),
where the poles are ordered with respect to Definition 4.1. Using the triangle inequality
and (4.9), one obtains

G —G _ & wi(Coay)(z} B 2 wk (Cory, (a:kB )
IGL L7 f}elg kgl(f MO (fi — g D (fi— ) )
_ & Wk(c x)(T) )
_i’}elg k%ﬂ (fi = NO(fi=Ap) )
& ||wi(Cozr) (xf Bu)ll2
= 2 = A=A
S [wi(Cprr) (g Bu)ll2
k=ra+1 fg@(ﬁ — A0 (i = A0
2 llwn(Come) (23 Bu) 2 i
2 RO (O )i~ A ) (4.15)

where ry is the order of the reduced-order model and the number of preserved dominant
pole pairs. As for the previous bound (4.14), the new bound (4.15) would, in principle,
need the computation of all truncated pole pairs of the modally damped system (4.1),
which is infeasible in practice. This issue can be overcome by using the ordering of the
pole pairs with respect to the H..-based dominance measure (Definition 4.1), i.e., it holds
that

o (Cow) (@ Bulll2 . llwi(Cos) (] Bu)l2
[Re(A¢)(Im(AD)i = A0)| ™ [Re(AS)(Im(A))i = A7)|

for all 5 > k. This can be used to over-estimate the dominance measure of non-computed
pole pairs. Therefore, assume that k., = 79 pole pairs were computed via Algorithm 4.1,
then one can bound the H., error by

k T

N want ||wk(Cpxk)(kau)H2
GL—G <
IGL — Grlla., < ) IRe(A\))(Im(Af)i — ML)

k=ro+1

(4.16)
||wkwant (C kaant ) (x—lli‘—want Bu) H2

[Re(Ag, ) (TN OE = A,

In contrast to (4.15), the new bound (4.16) is computable in practice, under the assump-
tion that the most dominant poles were computed correctly. Also, the new bound (4.16)
becomes sharper if more pole pairs are computed since (4.16) approaches (4.15) for
kwant — Mo. It is a common approach in modal truncation to compute more poles than
actually needed to increase the chance for sparse eigenvalue solvers to actually compute

+ (n2 - kwant)
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4.1 Second-order modally damped dominant pole algorithm

the desired eigenvalues. The gap between (4.15) and (4.16) depends on the decay of
the dominance measure, as well as the size of the original system ny and the number
of computed dominant pole pairs kyan. It will become larger if kya, << no and the
dominance measure continues to decay after the computed k.t pole pairs. In practice,
the constant multiplied with the last dominance measure term will be dominated by the
size of the original system, which results in a vast overestimation of the H.,-error in
cases where the dominance measure of the last computed pole pair is not small enough
but could decay further for upcoming pairs.

In general, the bounds (4.15) and (4.16) imply that the dominant pole algorithm for
modally damped second-order systems provides good approximations if the dominance
measure (Definition 4.1) decays fast. On the other hand, a slow decay, or even stagnation,
of the dominance measure indicates difficulties in approximating the original system via
its pole pairs.

4.1.4 Basis enrichment via rational Krylov subspaces

While modal truncation approaches are known to well approximate input-to-output
behavior related to single system poles, i.e., peaks in the frequency response behavior,
they usually fail to approximate “flat” regions or behavior that is determined by clusters
of poles. Therefore, it is recommended for model order reduction methods to enrich
the modal truncation basis with additional basis vectors to improve the approximation
quality especially in those regions, where the behavior of the system poles is less dominant.
An efficient model reduction approach to improve the approximation behavior of the
reduced-order model in desired frequency regions are interpolatory methods (Krylov
subspace methods); see Section 3.3.

First, consider the first-order system (2.8). Let Vi, and Wy, be right and left basis
matrices for modal truncation, i.e., it holds

x; € span(Viye) and y; € span(Wyy) (4.17)

for 1 <i <ry and x;, y; from (3.5) corresponding to the chosen eigenvalues );. Because
of (4.17), reduced-order models computed by (3.2) preserve the chosen system poles if
span (Vi) and span(Wy,) are contained in the final projection spaces. Given now two
other truncation bases V5 and W, e.g., constructed by transfer function interpolation,
the final truncation bases can be constructed via the underlying projection spaces such
that

span(V') D span ({th VgD and span(W) D span ([Wmt WQD (4.18)

hold. Since (4.17) translates into (4.18) by construction, reduced-order models constructed
by projection (3.2) with the basis matrices as in (4.18) also preserve the chosen poles
from the modal truncation approach, independent of the second chosen model reduction
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basis. While a lot of projection-based model order reduction methods could be used
for the construction of V5 and W5, interpolation-based methods are the recommended
choice. They have cheap computational costs and, in contrast to many other methods,
the interpolation property is given via subspace conditions in Proposition 3.2, i.e., the
interpolation conditions satisfied by V5 and W5 are inherited in (4.18) such that also the
final reduced-order model fulfills the same interpolation conditions.

The modal truncation method with basis enrichment via rational Krylov subspaces
was used in [178] for second-order systems to accelerate simulations of machine tools via
reduced-order models. Therein, only the undamped second-order system with £ = 0:

Mi(t) + Ka(t) = Bau(t),

is considered for the generation of the modal and Krylov bases. But the idea of basis
enrichment can similarly be used for modally damped second-order systems (4.1). A
suitable structure-preserving projection method for the basis enrichment is given using
the theory from Section 3.3.3 and Proposition 3.2. The resulting structure-preserving
dominant pole algorithm with basis enrichment is summarized in Algorithm 4.2. The
following remarks give some ideas for an explicit implementation of the algorithm.

Remark 4.3 (Number of dominant pole pairs):

As mentioned in Section 4.1.3, the second-order modally damped dominant pole algorithm
is comparably cheap in computational costs and can be run for more than the desired
number of dominant pole pairs, resulting in the choice of the k,,; most dominant poles
to remain in the reduced-order model. This number of remaining pole pairs k,,; can be
adaptively chosen, for example, by the H.-error bound in (4.16), by observing stagnation
of the computed dominance measure (Definition 4.1), or by truncating dominant pole pairs
with dominance measure below a given tolerance. Especially, a drop in the dominance
measure indicates a good point for truncating pole pairs. O

Remark 4.4 (Choosing interpolation points for basis enrichment):

The choice of interpolation algorithms gives quite an amount of freedom to the user
in terms of realizing Algorithm 4.2. The only restriction done in Algorithm 4.2 is
the requirement of a single resulting basis matrix Vi,, to preserve the modal damping
property of the original system. In general, interpolation can be performed via a one-sided
projection anyway (cf. Proposition 3.2). In case of interpolation via two-sided projection,
to additionally match the frequency sensitivities, the two computed basis matrices V'
and W can be combined into a single basis by concatenation

Viay = orth [V W]).

Two example choices for the interpolation points are outlined below:
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4.1 Second-order modally damped dominant pole algorithm

Algorithm 4.2: SOMDDPA with basis enrichment via structured interpolation.

Input: System matrices M, E, K symmetric positive definite with
EM™'K = KM™'E, B,, C, from (4.1), number of pole pairs &y, in the
reduced-order model.
Output: Matrices of the modally damped reduced-order system M, E, K, By, ép.
Compute the eigenvector basis X for kyane = kme pole pairs using Algorithm 4.1
with the system matrices M, E, K, By, C,, an initial shift 0y € C and the residual
tolerance 0 < 7 < 1.

Partition X = [Xl Xg], with X the eigenvectors corresponding to the ki, most

dominant pole pairs.
3 Compute a real interpolation basis Vi,y, by any interpolation algorithm based on
Proposition 3.2 with

C(s)=Cy, K(s)=s2M +sE+ K, B(s)= B,.
4 Compute the orthogonal truncation basis
V =orth ([X1 Viy]).
Compute the reduced-order model

M=V'™MV, E=V'EV, K=V'KV, B,=V'B,, C,=C,V.

(a) As the transfer function on the imaginary axis is enough for stable systems to
describe their input-to-output behavior, interpolation points could be chosen as
complex conjugate pairs on the imaginary axis in the frequency range of interest.
Simple and efficient choices are, for example, logarithmically equidistant points
or to choose the points in the intervals spanned by the imaginary parts of the
computed dominant poles.

(b) Using the projection-based H,.-norm computation from [6-8,172] or error estima-
tors [82] allows for a similar greedy model reduction approach as described in [26,27]
such that interpolation points that minimize the H.,-approximation error can be
computed. The combination with the dominant pole algorithm corresponds to an
initialization of the greedy interpolation procedure ([26,27]) with a reduced-order
model from Algorithm 4.1. An advantageous side effect of this approach when
using the algorithms for H.-norm approximation is the potentially very accurate,
final H,-error as by-product. O
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4.1.5 Numerical experiments

In this section, the new SOMDDA approaches are tested and compared to classical
structure-preserving methods for second-order systems from Chapter 3. Therefore, the
two linear benchmark examples from Chapter 1 are used, namely the butterfly gyroscope
and the artificial fishtail model. The following list is an overview about the model
reduction methods used in the comparisons and their notation:

SOMDDPA denotes the pure structure-preserving dominant pole algorithm from Algo-
rithm 4.1,

SOMDDPA+Strint(equi./?H ) is the structure-preserving dominant pole algorithm
with basis enrichment from Algorithm 4.2, where only one-sided interpolation
(Proposition 3.2 Part (a)) is used with the interpolation points chosen either
logarithmically equidistant on the imaginary axis (equi.) or via a successive greedy

Hoo-selection (Hoo),

MT is the classical modal truncation method (Section 3.2.1) computing the eigenvectors
of the smallest eigenvalues of (3.8) as truncation basis,

SOBT(p/pm/pv/vp/vpm/v/fv/so) is the second-order balanced truncation method
(Section 3.4.3) with the balancing formulae from Table 3.1,

Strint(equi./H . /IRKA) denotes the structure-preserving interpolation method using
the one-sided interpolation (Proposition 3.2 Part (a)) and the interpolation points
chosen either logarithmically equidistant on the imaginary axis (equi.), via Heo-
greedy selection (Hoo) or as He-optimal points from TF-IRKA (IRKA),

Strint(avg.) computes the reduced-order model by approximating an oversampled inter-
polation subspace as in Remark 3.3 using the pivoted QR decomposition for the
basis truncation.

The numerical comparison of the different methods will be done using the MORscore from
Section 2.4.2, where the table columns corresponding to the time domain measures (2.44)
and (2.45) are denoted by L, and L., respectively, and for the frequency domain
measure (2.46) by H. For a more detailed discussion, a practical reduced order 75 is
selected, for which the best performing methods are compared in frequency and time
domains using pointwise relative errors. In frequency domain, this will be

_ lGLwi) = Gri)ls

re : ; , 4.19
)= el o
with the frequency range of interest w € [Wpin, Wmax] C R, and in time domain
t) — gt
era(t) 1= M, (4.20)

1yl
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Table 4.1: MORscores for the butterfly gyroscope example with reduced orders from 1 to
30, and the percentage of stable reduced-order models.

Method Hoo Lo Lo Stab. ratio
SOMDDPA 0.2540  0.2188  0.2090 1.0000
SOMDDPA+StrInt(equi.)  0.1964  0.1980  0.1912 1.0000
SOMDDPA+StrInt(H o) 0.2943  0.2328  0.2295 1.0000
MT 0.2094 0.1739  0.1677 1.0000
SOBT(p) 0.3147  0.2799  0.2758 1.0000
SOBT(pm) 0.1669  0.1170 0.1115 0.1333
SOBT(pv) 0.3165  0.2666  0.2634 1.0000
SOBT (wvp) 0.1153  0.0539  0.0473 0.5000
SOBT (vpm) 0.0965 0.0725  0.0709 0.0000
SOBT(v) 0.3007  0.2665  0.2604 0.9667
SOBT(fv) 0.2714  0.2506  0.2455 1.0000
SOBT(s0) 0.3079  0.2446  0.2383 0.8333
Strint(equi.) 0.1355  0.1486  0.1433 1.0000
Strint(Hso) 0.2853  0.2281  0.2238 1.0000
Strint(IRKA) 0.2474  0.2118  0.2083 1.0000
Strint(avg.) 0.2234  0.2095  0.2018 1.0000

with the time interval ¢ € [tg, t¢] used for simulations.

4.1.5.1 Butterfly gyroscope

The butterfly gyroscope is a mechanical system with ny = 17361 second-order differential
equations, m = 1 input and p = 12 position outputs. It is used as motivational example
in Section 1.3.1. The internal damping is modeled via the Rayleigh approach (4.4),
E = aM + BK, with o = 0 and 8 = 107%. Therefore, this benchmark example belongs
to the class of modally damped second-order systems (4.1).

The resulting MORscores for all implemented methods are shown in Table 4.1. The
number of dominant pole pairs to reside in the reduced-order model for the SOMD-
DPA+StrInt approaches was fixed to 6. This choice was taken for the practical reason
of comparability to the other methods. For the time domain simulation in the interval
[0,0.01] s, the input was chosen to be a piecewise constant white noise signal

u(t) = ﬁ(t]), for tj <t< tj+1,

with 7 =0,...,99, equidistant time steps t; = j - 0 01 and presampled Gaussian white

noise 7(t). The last column of Table 4.1 shovvs the relatlve amount of asymptotically
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Figure 4.1: Comparison of dominance measure, H.-error bound (4.16) and absolute
Hoo-error of SOMDDPA for the butterfly gyroscope example.
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Figure 4.2: Projection of complex dominant poles onto the frequency axis and relation
to the transfer function behavior for the butterfly gyroscope example.

stable reduced-order models, e.g., 0.8333 - 30 ~ 25 stable reduced-order models were
computed for SOBT(s0). By construction, the modal truncation and interpolation
approaches always produce asymptotically stable reduced-order models. In general,
beside some outliers within the SOBT methods, all techniques perform reasonably well
in this example.

Taking a close look at the new approaches, one can observe that the pure SOMDDPA
and SOMDDPA+StrInt(H.,) perform exceptionally better than the classical modal
truncation method, MT. Also, SOMDDPA+StrInt(equi.) is still able to outperform
the MT approach in time domain despite its very simple subspace enrichment strat-
egy of equidistant interpolation points. Another interesting observation is that both
SOMDDPA+StrInt methods perform better than their pure interpolation counterparts
Strint(equi.) and StrInt(H.). Overall comparing the MORscores, the best of the domi-
nant pole approaches is SOMDDPA+StrInt(#.., ), which is only outperformed by some
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Figure 4.3: Frequency domain results for the butterfly gyroscope example.

of the second-order balanced truncation methods SOBT(p/pv/v/so).

Figure 4.1 is used to compare the approximate error bound (4.16) with the actual
Ho-error of SOMDDPA and the corresponding dominance measure from Definition 4.1.
Thereby, SOMDDPA was used to compute up to 50 dominant pole pairs of the original
system, while reduced-order models were only computed up to order 30. One can see that
in the beginning, the dominance measure nicely decays and the error bound captures
very well the actual error behavior. However, after order 7 the error bound flattens
out and stops tracking the reduction error. This is due to the weaker decay of the
dominance measure arising after order r, = 20 in the order of magnitude of 10~® and
the multiplication with approximately no in the error bound. Figure 4.1 also shows, as
discussed in Section 4.1.3, that the stagnation of the dominance measure indicates the
stagnation of the approximation error. Following the decay of the dominance measure, a
good amount of dominant pole pairs to keep in the reduced-order model for the basis
enrichment strategy would be between 15 and 20.

For a better understanding of the influence of dominant poles on the transfer function
behavior, Figure 4.2 shows the first 12 pole pairs projected onto the imaginary axis and
the transfer function of the full and reduced-order SOMDDPA model of order ro = 12.
The “strong dominant poles” are the first 6 most dominant pole pairs and the “less
dominant poles” the following 6 pairs. One can directly observe how the strong dominant
poles resemble the peaks of the transfer function and lead to a matching approximation
in these regions.

For a more detailed comparison, the reduced order ro = 12 is picked also for the other
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(a) First output entry y;(t) of the time simulation.
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(b) Pointwise relative errors of the complete output.
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Figure 4.4: Time domain results for the butterfly gyroscope example.

model reduction methods. To keep the upcoming plots clearly arranged, only the best
performing approaches from the second-order balancing and interpolation-based methods
are chosen, namely SOBT(pv) and StrInt(H.). Figure 4.3 shows the results in frequency
domain. MT provides clearly the worst approximation where the transfer function is not
even matched anymore for higher frequencies. The SOMDDPA+StrInt(equi.) method
yields the overall best relative approximation error due to the interpolation points
equally distributed over the frequency range of interest. The methods with H.-greedy
interpolation also nicely match the transfer function except for high frequencies, where
they begin to diverge. Figure 4.4 illustrates the approximation in the time domain with
one selected example entry of the output vector in Figure 4.4a and the pointwise relative
errors of the complete output signal in Figure 4.4b. All methods are performing equally
well except for MT, which is several orders of magnitude worse than the rest.
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Table 4.2: MORscores for the artificial fishtail example with reduced orders from 1 to 10,
and the percentage of stable reduced-order models.

Method Hoo Lo Lo Stab. ratio
SOMDDPA 0.2490  0.2191  0.2192 1.0000
SOMDDPA+StrInt(equi.)  0.2461  0.2095  0.2133 1.0000
SOMDDPA+StrInt(H o) 0.2447  0.2011  0.2050 1.0000
MT 0.2043  0.1657  0.1651 1.0000
SOBT(p) 0.2537  0.2631  0.2649 0.9000
SOBT(pm) 0.2447  0.2125  0.2123 0.8000
SOBT(pv) 0.2540  0.2441  0.2460 0.9000
SOBT (wvp) 0.2461  0.2457  0.2468 1.0000
SOBT (vpm) 0.2352  0.2397  0.2399 1.0000
SOBT(v) 0.2548  0.2677  0.2721 1.0000
SOBT(fv) 0.2103  0.1890  0.1933 1.0000
SOBT(s0) 0.2553  0.2671  0.2709 1.0000
Strint(equi.) 0.0954  0.0921  0.0926 1.0000
Strint(Heo) 0.2018  0.1747  0.1803 1.0000
Strint(IRKA) 0.2005  0.1796  0.1843 1.0000
Strint(avg.) 0.2262  0.2013  0.2041 1.0000

4.1.5.2 Artificial fishtail model

As second numerical example, the artificial fishtail model from Section 1.3.2 is considered.
The example has ny = 779 232 states, m = 1 input and p = 3 position outputs. As in the
previous example, Rayleigh damping (4.4) is used to model the internal behavior of the
system, with £ = aM + BK, where a = 10~* and 8 = 2 - 10~*. Therefore, the artificial
fishtail model also belongs to the class of modally damped mechanical systems (4.1).
The MORscores of all compared methods are shown in Table 4.2. The maximum
reduced order for the comparison was chosen to be 10, because in [174] this was chosen
as reasonable large approximation order, and the SOMDDPA implementation is only
capable of computing 12 pole pairs before stagnating in large clusters of very weakly
observable/controllable eigenvalues. The number of dominant pole pairs to reside in the
reduced-order model in the basis enrichment methods was set to be 4 for the same practical
reasons as in the previous example. For MT, the eigenvalue computations in MATLAB
using eigs turned out to be difficult due to a cluster of weakly observable/controllable
eigenvalues close to the imaginary axis. To get similar results to [168, 174], the 50
smallest eigenvalues of (3.8) were computed using eigs and all values corresponding to
the occurring eigenvalue cluster were removed for MT. For the time domain simulation
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Figure 4.5: Comparison of dominance measure, H.-error bound (4.16) and absolute
Hoo-error of SOMDDPA for the artificial fishtail example.
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Figure 4.6: Projection of complex dominant poles onto the frequency axis and relation
to the transfer function behavior for the artificial fishtail example.

in the interval [0, 2] s, the input is chosen as piecewise constant white noise signal
u(t) =5000-n(t;), fort; <t <tj,

with j = 0,...,99, equidistant time steps ¢; = j - % and presampled Gaussian white
noise 7(t).

Comparing the MORscores in Table 4.2 reveals the SOMDDPA approaches to be good
approximation methods that perform better than the classical MT, all interpolation-based
methods and also some second-order balancing methods. In contrast to the previous
example, the basis enrichment approach is not capable to improve the approximation
quality compared to SOMDDPA. Figures 4.5 and 4.6 are used to give more inside about
the dominant pole approach. Figure 4.5 shows, as for the previous example, the H-error
to behave very similar to the dominance measure from Definition 4.1. But for the
artificial fishtail, the error bound (4.16) does not provide any information due to the early
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Figure 4.7: Frequency domain results for the artificial fishtail example.

stagnation of the dominance measure and the very large full-order state-space dimension.
The complex dominant pole pairs are shown in Figure 4.6. The figure only shows 6 pairs
since the rest of the pole pairs are real-valued. The 4 as “strong” denoted pole pairs
are the most dominant ones and those which are chosen to reside in the reduced-order
model in the basis enrichment methods. As recognized in the previous example, the most
dominant poles exactly capture the peaks and their surrounding behavior of the transfer
function very well.

For a more detailed comparison, the reduced order ro = 10 is chosen. For clarity in
the upcoming plots, only selected reduction methods are chosen. SOBT(so0) is used as
representative of the second-order balancing methods and from the interpolation-based
approaches StrInt(avg.) is taken. The approximation results in the frequency domain are
shown in Figure 4.7. From the modal truncation methods, the SOMDDPA+Strint(H )
performs best and MT worst. MT clearly diverges from the original transfer function for
frequencies close to 10%rad/s. Best performing is the SOBT(s0) approach. A general
problem in the approximation of the transfer function seems to be the sink close to
10*rad/s, which is best captured by SOMDDPA+StrInt(H,,) and SOBT(s0). The
time simulation results can be seen in Figure 4.8. The first and third entries of the
system’s output describe the fishtail movement in the non-horizontal directions, for
which the original system’s output is nearly zero. Therefore, Figure 4.8a only shows
the second output entry giving the horizontal flapping movement of the fishtail. All
chosen model reduction methods seem to capture the behavior of the original system in
Figure 4.8a. Looking at the pointwise relative output errors for the complete system’s
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Figure 4.8: Time domain results for the artificial fishtail example.

output in Figure 4.8b reveals similar results to the frequency domain observations. MT
performs again worst and SOBT(so0) best, where also SOMDDPA and StrInt(avg.) yield
comparably good approximations.

4.1.6 Conclusions

In this section, the idea of modal truncation via dominant poles was reconsidered for a
special subclass of mechanical systems, namely those with modal damping. By using the
special structure of the underlying quadratic eigenvalue problem, a structured pole-residue
form was attained leading to the definition of dominant pole pairs for modally damped
systems. An appropriate numerical procedure was developed to compute dominant
pole pairs efficiently in a structure-preserving fashion, based on classical techniques
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from first-order dominant pole algorithms. Two types of bounds for the absolute H..-
approximation error were developed. While only being of limited practical use, these
bounds imply a good approximation behavior of the method in cases of a fast decay of
the dominance measure. Motivated by the observation that modal truncation quickly
reaches its limits of approximation possibilities, a structure-preserving expansion of
the constructed model reduction basis was suggested as refinement procedure using
structured interpolation. In two numerical examples, the newly developed dominant
pole algorithms for modally damped systems were compared to a variety of established
structure-preserving model reduction methods and turned out to be very competitive
alternatives in terms of approximation quality in time and frequency domains.
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4.2 Second-order frequency- and time-limited balanced
truncation methods

While most structure-preserving model reduction approaches, as well as the methods
from the previous section (Section 4.1), aim for a globally sufficient approximation,
this is not always necessary. In the presence of practical applications, often only local
approximations of the original system’s behavior in frequency or time domain are of
actual interest, i.e., an approximation is only needed for a specified time or frequency
range due to physical restrictions.

A class of approaches that can be used in the frequency domain to derive reduced-order
models with locally good approximations is structured interpolation (Section 3.3.4).
Interpolation-based methods usually provide good approximations in the surroundings of
the chosen interpolation points. But this might not be sufficient for the approximation
of a whole frequency region leading to larger numbers of interpolation points and,
therefore, larger reduced-order models needed for the approximation. In case of first-
order systems, the limited balanced truncation methods (cf. Sections 3.4.1 and 3.4.2) are
suitable alternatives concerning local approximations in both frequency and time domains.
Compared to the Krylov subspace approaches, these methods usually lead to a more
uniform error behavior of the approximation in the ranges of interest. Therefore, one can
expect smaller reduced-order models with the required approximation quality than using
interpolation methods or global approximations. A first attempt of extending the limited
balanced truncation approaches to second-order systems (2.17) was done in [107] for the
frequency-limited case and, in the same fashion, in [108] for the time-limited case. While
these references give a general idea, they are still incomplete concerning the concept of
second-order balanced truncation methods and their application to the large-scale sparse
system case. Also, they contain a general misconception about the problem of stability
preservation in reduced-order second-order systems.

In the following, a full extension of the limited balanced truncation approaches from
first- to second-order systems of the form (2.17) is presented, followed by proposed
alternative methods for the problem of stability preservation and discussions on how
to handle the large-scale sparse system case and numerical difficulties in computations.
This section is based on the results published in [54,57] and also partially available
in [26,27,168].

4.2.1 Structured frequency-limited approach

The generalization of the frequency-limited balanced truncation method for second-
order systems has been discussed in [107] for the position (p) and position-velocity (pv)
balancing from [159] (cf. Table 3.1). A generalization to more second-order balanced
truncation approaches can be done by the following observation: The block partitioning
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of the Gramians (3.35) into position and velocity parts is given by

Prop = [In, 0P l](’ﬂ , Proy = [0 I, | P llgj ,

4.21
. (a.21)

T Quopie = [In, 0] ETQE [ :

]  MTQu M = [0 L, ETQLE [ B ] ,
for the infinite first- and second-order Gramians. Therefore, the extension of the existing
second-order balanced truncation methods to the frequency-limited approach follows the
replacement of the infinite first-order Gramians P, and ETQ..E in (4.21) by the first-
order frequency-limited Gramians Pg and ETQgE from (3.30), using the same first-order
realization (2.18). Applying (4.21), the frequency-limited second-order Gramians are
defined to be

Pqp = {Im O] Po llgzl ’ Poy = [0 InQ} Pa [1—2 ] ,

4.22
. (4.22)

JeQapic = |In, 0] ETQqE [ ;

1, MTQouM = [0 I,,| E'QqE LO},
or, equivalently,

’ ] , and E'QqE = [JfTCQQ,PJfC JfTCQQ,lel ’

MTQQ—),Hch MTQQ,VM

with Pqp, Poy the frequency-limited position and velocity controllability Gramians, and
JEQapJic, MTQqa M the frequency-limited position and velocity observability Gramians.
Remember that the matrices Pg and Qq are given by (3.31) using the first companion form
realization (2.18). As for the infinite second-order Gramians, one can observe that the
frequency-limited position and velocity Gramians are symmetric positive semi-definite.

According to [90, 107, 159], the corresponding frequency-limited singular values are
defined as follows.

Definition 4.5 (Second-order frequency-limited characteristic values):
Consider the second-order system (2.17) with the first-order realization (2.18) and the
frequency range of interest Q2 = —Q C R.

1. The positive square roots of the eigenvalues of Py, Ji.QqpJse are the frequency-
limited position singular values of (2.17).

2. The positive square roots of the eigenvalues of Py ,M"Qq M are the frequency-
limited position-velocity singular values of (2.17).

3. The positive square roots of the eigenvalues of PQ,VJ;EQQ’pJfC are the frequency-
limited velocity-position singular values of (2.17).
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Algorithm 4.3: Second-order frequency-limited balanced truncation square-root
method.
Input: System matrices M, E, K, By, C,, C, from (2.17), frequency range of
interest ().
Output: Matrices of the reduced-order system M , E, K , B, ép, C,.

1 Compute Cholesky factorizations P = RqRY,, Qq = LolL{, of the solutions of the
first-order frequency-limited Lyapunov equations (3.31), where the first companion
form realization (2.18) is used.

2 Follow the Steps 24 in Algorithm 3.4.

4. The positive square roots of the eigenvalues of Po,M'Qq M are the frequency-
limited velocity singular values of (2.17). O

Following the ideas of the first-order frequency-limited approach as well as the second-
order balanced truncation method, the characteristic values in Definition 4.5 can be seen
as a measure for the influence of the corresponding states to the input-to-output behavior
of the system in the frequency range of interest. Currently, there is no supporting energy
interpretation as for the classical first-order balanced truncation method available. But
in practical implementations, the decay of the values in Definition 4.5 can be used to
adaptively determine the reduced order.

Together with (4.22) and Definition 4.5, the resulting second-order frequency-limited
balanced truncation (SOFLBT) square-root method is summarized in Algorithm 4.3.

Remark 4.6 (Stability issues of SOFLBT):

The SOFLBT method is in general not stability preserving. The same goes for the
suggested approach in [107], which does neither necessarily yield a one-sided projection
as claimed by the authors, nor may produce stable reduced-order second-order systems.
Nevertheless, the general idea of the technique in [107] as well as a modified approach
that are potentially advantageous in terms of stability preservation are discussed in

Section 4.2.3. O

4.2.2 Structured time-limited approach

The idea of the second-order time-limited balanced truncation was first mentioned in [108].
Similarly to the frequency-limited case, the authors only considered two particular cases
of the second-order balancing formulae. As in the previous section, the idea for the
extension of the time-limited balanced truncation to second-order systems is to make use
of writing the second-order Gramians as truncation of the first-order Gramians (4.21).
Consequently, the infinite first-order Gramians in (4.21) are this time replaced by the
first-order time-limited Gramians from (3.33) to define the second-order time-limited
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Gramians

P@7p = [[n2 O} P@ [[821 s P@7V = [O [n2:| P@ |:[0 ] s
n2

I,

JtQopJic = |In, 0 E'QoE [ ;

], MTQo M := [0 I,,] ETQ@E[IS],

or, equivalently,

o P@,p P®,12 T _ Jg;Q@,pch JE—;QG,IQM
Pe_[ 1 and B QoE= | \FQL ke MTQo,M |

using the first companion form realization (2.18). Then, Pg, and Pg. are the time-
limited position and velocity controllability Gramians, and JQe pJi. and MTQe M are
the time-limited position and velocity observability Gramians. The two matrices Pg
and Qg are given via the time-limited dual Lyapunov equations (3.34) using the first
companion form realization (2.18). Inherited from the first-order Gramians, also the
second-order time-limited Gramians are all symmetric positive semi-definite. As pendant
to the frequency-limited characteristic values from Definition 4.5, the following definition
states the time-limited case.

Definition 4.7 (Second-order time-limited characteristic values):
Consider the second-order system (2.17) with the first-order realization (2.18) and the
time range of interest © = [to,t¢], 0 < ¢y < t;.

1. The positive square roots of the eigenvalues of Pg ,JfQo pJic are the time-limited
position singular values of (2.17).

2. The positive square roots of the eigenvalues of P ,M" Qe M are the time-limited
position-velocity singular values of (2.17).

3. The positive square roots of the eigenvalues of Pg . J§.Qe pJic are the time-limited
velocity-position singular values of (2.17).

4. The positive square roots of the eigenvalues of Po M Qe M are the time-limited
velocity singular values of (2.17). O

Similarly to the frequency-limited case, there is no energy interpretation for the
characteristic values in Definition 4.7. But they are used in practical implementations as
heuristics to determine the reduced order of the approximation.

As before, the resulting second-order time-limited balanced truncation (SOTLBT)
methods can be obtained by replacing the infinite Gramians in the second-order balanced
truncation method (Algorithm 3.4). This is summarized in Algorithm 4.4.
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Algorithm 4.4: Second-order time-limited balanced truncation square-root
method.
Input: System matrices M, E, K, By, Cp, Cy from (2.17), time range of interest
O.
Output: Matrices of the reduced-order system M , E, K , B, ép, C,.

1 Compute Cholesky factorizations Pg = ReR§, Qe = LelL§ of the solutions of the
first-order time-limited Lyapunov equations (3.34), where the first companion form
realization (2.18) is used.

2 Follow the Steps 24 in Algorithm 3.4.

Remark 4.8 (Stability issues of SOTLBT):

In principle, stability preservation is no important property for time-limited model
reduction methods. These techniques are supposed to approximate the system’s behavior
in a limited time range and are allowed to behave unstable outside this range. In some
cases, it is nevertheless desired to preserve the stability of the original system in the
reduced-order model. But as in the first-order case [130], there is no guarantee of stability
preservation for the SOTLBT method. Also, the approach suggested in [108] is not
capable to guarantee this. Another method that is potentially beneficial in terms of
stability preservation and the idea from [108] are further discussed in the next section.$

4.2.3 Mixed and modified Gramian methods

A drawback of the frequency- and time-limited balanced truncation methods in the
first-order system case is the loss of stability preservation [90]. This holds as well for the
second-order limited balanced truncation methods. Some modifications are known in
the first-order system case to regain this property. However, these approaches cannot
guarantee the preservation of stability for general second-order systems, since the original
second-order balanced truncation method does not guarantee stability preservation
in most cases [159]. But these modifications have the potential to produce a stable
second-order reduced-order model in cases, in which the limited approaches failed to do
SO.

The first approach mentioned is the mired Gramian technique. Therefore, one of
the limited Gramians is replaced by their infinite counterpart such that the balanced
truncation method is performed with one limited and one infinite Gramian [106, 117].
This idea directly translates to the second-order system case. One of the first-order
Gramians in Algorithms 4.3 and 4.4 is replaced by the corresponding infinite first-order
Gramian. This approach is suggested in [107,108] but follows the misconception that the
second-order balanced truncation is like the classical first-order version able to preserve
stability. The mixed Gramian approach is in general not capable of preserving stability
but might potentially work in some cases where the limited methods result in unstable
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systems. In general, it is not clear which of the limited Gramians should be replaced
in the approach to yield a good approximation in the limited time or frequency ranges.
However, a good heuristic is the singular value decay of the limited Gramians since a
faster decay indicates a better approximation using a smaller reduced order, i.e., the
limited Gramian with the slower singular value decay could be replaced by the infinite
Gramian.

A different technique, proposed in [102], are the modified Gramians. These replace the
indefinite right-hand sides

BoB" + BB :"B'LO I(ﬂ BT, CLC+CTCe=C" [}) ﬂ C,
Im . I” ; (4.23)
T T S m ST T T ~T ~
BtoBto - Bthtf =B [0 —[m‘| B, CtOCtO o thctf =C léj —[p] ©

with B = [BQ B}, T = [c}2 CT}, B = [Bto Btf} and CT = [c}o c;], by definite
right-hand sides. Using eigenvalue decompositions, the right-hand sides (4.23) can be
rewritten as

BQBT -+ BBT = UB,QSB,QU;Q, C}—ZC + CTCQ = UC,QSC,QUEQ;
B:,Bi, — B4Bl. = UseSs0Ut e, Ci,Ct — Ci.Cy = UcoScolUlo,

where Ug g, Ucq, Use, Uceo are orthogonal matrices and

C C
Lo Maps 0,000, 0),
115, 0, ..., 0).

Let Us a1, Ucqa1, Use, Uceo1 be the parts of the orthogonal matrices, which correspond

to the (potentially) non-zero eigenvalues. The modified frequency- and time-limited
Gramians are then given via the solutions of the following Lyapunov equations

Y

SB’Q = dl&g(?’]llg, e 77]28m, 0, P ,O), SC’Q = dl&g(T] .
SB’@ = dlag(,ulB, PN ,,ugm, 0, PN ,O), Sc’@ = dlag(,uf, PN

APQ,modET + EPQ,modAT + BQ,modB-gr),mod = 07
ATQ0 modE + E" Qo modA + C}—z,modCQ,mod =0,

4.24)
AP modE" + EPg mod AT + B@,mong,mod =0, (
ATQ6 modE + E' Q6 modA + Cg,modce,mod =0,
with the definite right-hand sides
) 1 1 ) 1 1
Bomon = Ussys Aing(PP1E, - 5, 15),  Comas = diog(Inf o S 0
. 1 1 ) 1 1 :
Bo.mod = U o1 dlag(]u?|2, ) |/’L2Bm|2>7 C@,mod = d1ag(|uf|2, ceey |M§p|2)Ug,@,1-

Using these modified Gramians for the limited balanced truncation methods preserves
the stability in reduced-order models in the first-order system case. Also, the modified
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frequency-limited balanced truncation yields a (global) H.-error bound for first-order
systems [47]. Note that for the solution of (4.24), still the matrix functions from the
frequency- and time-limited Lyapunov equations (3.31) and (3.34) are needed to compute
the new right-hand sides (4.25). For second-order versions of the modified Gramian
methods, only the solutions of the frequency- and time-limited Lyapunov equations in
Algorithms 4.3 and 4.4 need to be replaced. As for the mixed Gramian methods, the
modified Gramians are not guaranteed to be stability preserving in the second-order
system case but have the potential to produce stable reduced-order models when the
fully limited methods failed to do so.

4.2.4 Numerical methods for the large-scale sparse systems case

In this section, numerical methods for applying Algorithms 4.3 and 4.4 to large-scale
sparse second-order systems are discussed.

4.2.4.1 Matrix equation solvers for large-scale systems

A substantial part of the numerical effort in the computations of the second-order
frequency- and time-limited balanced truncation methods goes into the solution of the
arising matrix equations (3.31) and (3.34). In general, it was shown for the first-order
case, that the singular values of the frequency- and time-limited Gramians are decaying
possibly faster than for the infinite Gramians; see, e.g., [47] for the frequency-limited
case. That leads to the natural approximation of the Gramians by low-rank factors, e.g.,

Po ~ Zr,Zr,. Peo =~ ZroZg (4.26)

R@7

where Zg, € R"*4 7o € R"*2 and (y, f5 < ny. These low-rank factors then replace
the Cholesky factors in Algorithms 4.3 and 4.4.

The following three paragraphs will give a short inside into existing approaches for the
solution of such large-scale sparse matrix equations and corresponding implementations.

Quadrature-based methods A natural approach based on the frequency and time
domain integral representations of the limited Gramians (3.30) and (3.33) is the use of
numerical integration formulae. As used for example in [107,117], the low-rank factors of
the Gramians can be computed by rewriting the full Gramians using quadrature formulae,
for example, in the frequency-limited case

1
Po = /(wiE ~ A)BBT(—wiE — A)Tdw
T
Q

1 J4
~ oo i ((WHE — A) BB (—wilE — A) T + (—wiiE — A)7'BBT (widE — A)7T),
T k=1
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where 7, are the weights and wy, the evaluation points of an appropriate quadrature rule.
This expression can be rewritten for the low-rank factors into

Zre = [Re(By) Tm(By) ... Re(B,) Tm(By)],

where By = \/% (wiiE — A)71B. Note that this approach becomes impractical considering
the time-limited case, since there, for each step of the quadrature rule, an approximation
of the matrix exponential is needed. The empirical Gramians can be seen as a related
approach, which uses simulations of the system to compute the time domain representation
of the Gramians [110, 131].

A different approach was suggested in [47], which writes the right-hand sides of the
frequency-limited Lyapunov equations (3.31) as integral expressions. In this way, the
right-hand sides are first approximated and afterwards the large-scale matrix equations
are solved, using one of the approaches in the following paragraphs. In principle, it is
also possible to approximate the right-hand sides with matrix functions in (3.31) and
(3.34) using the general quadrature approach from [109]. Currently, there is no stable,
available implementation of quadrature-based matrix equation solvers for the frequency-
and time-limited Lyapunov equations to be known. Therefore, the upcoming approaches
will be rather used than the quadrature-based methods.

Low-rank ADI method The low-rank alternating direction implicit (LR-ADI) method
[49,136] is a well-established procedure for the solution of large-scale sparse Lyapunov
equations via low-rank approximations. Originally developed for the Lyapunov equa-
tions corresponding to the infinite Gramians (3.28), the LR-ADI produces low-rank
approximations of the form Zg__ ; = {Zij_l @j‘/}} using the iteration scheme

Vi = (A+o;E)"' Wiy, W; = W1 —2Re(o;)V},

with &; = \/—2Rea;, Wy = B and shifts a; € C; see [45-47,129] for more details on this
method.

The right-hand sides of the limited Lyapunov equations (3.31) and (3.34) can be
rewritten in terms of LDLT-factorizations as in (4.23). An extension of the LR-ADI
method for LD LT-factored right-hand sides is available by applying the same factorization
type to the solution of the Lyapunov equations [132], e.g., in case of the frequency-limited
controllability Gramian

Pa ~ Zr, YR, ZEQ, (4.27)

with low-rank factor Zg, € R"*% and symmetric center term Yg, € R*%. Since the
limited Gramians are positive semi-definite, the three-term factorization in (4.27) can be
reduced after converged iteration to a classical ZZ -type low-rank factorization (4.26).
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For using the LR-ADI method to solve the large-scale matrix equations (3.31) and (3.34),
an approximation of the matrix functions in the right-hand sides is needed beforehand.
This could be done by methods from the previous or the next paragraph. It is noted
in [47], that the information used for the approximation of the matrix functions cannot
be re-used in the LR-ADI method. A stable implementation of the LR-ADI method in
low-rank ZZ'- and LDLT-formats is available in [167].

Projection methods A class of methods that can be used to approximate the matrix
functions in the right-hand sides of the limited Lyapunov equations, as well as to solve
the large-scale matrix equations at the same time, are projection-based solvers. Thereby,
low-dimensional subspaces span(Vj) are used to obtain the low-rank solutions of the
large-scale matrix equations as solutions of projected small matrix equations. For example
in case of (3.31), the solution to the first Lyapunov equation is given by Pg ~ Vj I\:SQVI;I— ,
where Pq, is the solution of the projected Lyapunov equation

TiPq + PoTL + BoBT + BBY, = 0, (4.28)

where Tj, = VTE'AV}, Bq = VJE'Bg and B = VTE~!B are the projected matrices from
the large-scale Lyapunov equation (3.31). The equation (4.28) is now small and dense,
and can be solved using established dense solvers. As one can observe, this method gives
also the opportunity to approximate the matrix function in the right-hand side by the
same low-dimensional subspace span(V}). The projected right-hand side can then be
computed using dense computation methods [109].

Usually, the low-dimensional subspace span(Vj) is constructed as standard [118],
extended [176] or rational Krylov subspace [78], all of which can be efficiently computed
for large-scale sparse systems. The implementation of the limited balanced truncation
methods for second-order systems in [58] is also based on rational Krylov subspaces. The
underlying theoretical algorithm and further details can be found in [47, Algorithm 4.1].

A drawback of the projection-based approach, especially for second-order systems,
is that the projected system matrices T, are not necessarily Hurwitz, i.e., they might
have eigenvalues with nonnegative real parts. This can occur even if the original first-
or second-order systems are asymptotically stable. In fact, quality and performance
of the projection-based solvers strongly depend on the chosen first-order realization.
Concerning second-order systems, projection methods are generally failing for at least one
of the companion form realizations (2.18) and (2.19) due the occurring block structure.
Therefore, in [57] it is suggested to use the strictly dissipative realization of second-order
systems (2.22) from [151] for such computations. The advantages of this realization are
that E is symmetric positive definite and A + AT symmetric negative definite in case of
mechanical systems (M, E, K symmetric positive definite), and the same realization can
be used for both dual Lyapunov equations without running into problems because of
the block structure in the matrices. Following that, projection methods can preserve
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the eigenvalue structure in the projected matrices Ty if the computations are made on
the corresponding standard state-space realization, obtained by a symmetric state-space
transformation. Using the Cholesky factorization E = LLT, the projection methods should
work implicitly on a realization of the form

x(t) = LT'ALTx(¢) + L' Bu(t),
y(t) = CLTTX(t).

By changing the first-order realization to (2.22), the computed solutions of the matrix
equations change compared to the definition of the Gramians in the second-order balanced
truncation methods. Consider for illustration the case of infinite Gramians. Given the
two solutions P, and Q. of the Lyapunov equations (3.28) using the strictly dissipative
realization (2.22), and let P, and Q be the solutions of (3.28) with the first companion
form realization (2.18). Then it holds

Poo = T;EQSdISOOTfCQSd = 500 and Qoo - chstQooZP;QSda (429)

with the transformation matrices from (2.23). The same transformation (4.29) can be
used analogously to compute the solutions of the limited Lyapunov equations (3.31) and
(3.34) with low-rank Gramian factors using the strictly dissipative realization (2.22).

4.2.4.2 Numerical stabilization and acceleration by second-order a-shifts

So far, it was always assumed that the second-order system (2.17) is asymptotically
stable. In practice, the eigenvalues of A2M + AE + K can be very close to the imaginary
axis such that they behave numerically unstable, or they could be on the imaginary axis,
e.g., in the case of marginal stability. This makes the usage of balancing-related model
reduction methods and matrix equation solvers very difficult. A strategy to overcome
these problems has been proposed in [86]. Therein, a frequency domain shift was used
to move the spectrum of the pencil AE — A, which had eigenvalues at zero, away from
the imaginary axis to compute the system Gramians. This approach cannot be used
exactly the same for the first-order realizations (2.18), (2.19), and (2.22) of second-order
systems since it destroys the block structure used in the second-order balanced truncation
methods as well as the block structure which is exploited in the numerical computations.
Therefore, the concept of a-shifts needs to be transferred to second-order systems.

Remember the Laplace transformed second-order system (2.25) with the initial condi-
tions zp 0 = zy o = 0. Now, let the Laplace variable be given by s = p + «, with a shifted
Laplace variable p € C and a real, positive shift & € R.y. Then, the two equations
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in (2.25) can be rewritten in terms of the shifted Laplace variable p such that

((p+ )’ M+ (p+@)E+ K)X(s) = (5*M + 20pM + 0*M + pE + oE + )X (s)
= (P°M + p(E + 20M) + (K + aE + a>M)) X (s)

= (p°M + pE + K)X(s)
= B, U(s)

holds for the state equation, with E = E + 2aM and K = K + aE + o2M. For the
output equation, it holds

Y(s) = ((p+@)Cy + Cp) X (5)
= (pC. + (Cy +aCy)) X (5)
= (pC, + Cp) X (s),

with ép = Cp+aCy. The new system described by (M, E,K,B,, ép, Cy) has its spectrum
shifted to the left by the constant a. This system is now used for the computation of the
truncation matrices W,V € C"?*" for model reduction by projection (3.4). Then, the

matrices of the reduced-order system (M E K , By, C’p, C v) yield the following additional
relations

E=FE+2aM, K=FK+aE+a2¥, C,=0C,+al,,

where E = WTEV, K = WTKV and C, = C,V are the transformed matrices of the
non-shifted second-order system. Assuming the reduced-order model to be written in
frequency domain via the shifted Laplace variable p, it can be transformed back to a
reduced second-order system using the original Laplace variable s. Using the substitution
p = s — «a, the following two relations hold

P2]\7[+p§+f?:52]\7+sﬁ+f? and Pév+5p:36v+6p'

The back-substitution gives the final reduced-order model to be (]\7[ , E K, B\u, ép, év)
The a-shift strategy can be interpreted as a structured perturbation in the frequency
domain during the computations. Experiments have shown that such an approach works
fine for a small enough. It has to be noted that there are no theoretical results on the
influence of the chosen a concerning the quality of the reduced-order model or properties
like stability preservation and error bounds.

Remark 4.9 (Convergence behavior of numerical methods):
The a-shift approach can also be used to improve the behavior of numerical methods. In
large-scale sparse matrix equation solvers, shifted linear systems with matrices of the
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form (oM + oE+K ) need to be solved. Applying a-shifts can improve the conditioning
of these systems since eigenvalues with smaller real parts are stronger influenced by
the used shift compared to eigenvalues with larger real parts. Also, it can improve the
convergence behavior of numerical methods by pushing the spectrum of the matrix pencil
A2M 4+ A\E + K further into the left open half-plane and away from the imaginary axis.¢

The a-shift approach was used in [57] to apply the limited second-order balanced
truncation methods in a numerical example with a system that has eigenvalues in zero.
This technique will not further be investigated in the upcoming numerical experiments.

4.2.4.3 Two-step hybrid methods

The idea of two-step (or hybrid) model reduction methods has been used for quite some
time in different applications [79,135,187]. In general, two-step methods are based on
the division of the model reduction process into two phases. In the first step, a pre-
reduction is computed by an efficient numerical procedure, which yields a very accurate
approximation of the system’s behavior. The model resulting from the pre-reduction is
usually of medium-scale dimensions, to which the second reduction step using a more
sophisticated model reduction method is applied. This procedure has the advantage
that there is no necessity to solve complicated problems such as matrix equations in
the large-scale sparse setting. Instead, one can use dense computation methods on the
pre-reduced system usually avoiding the typical numerical problems as bad convergence
behavior or the restriction to only using sparse operations.

In order to have an efficient structure-preserving pre-reduction method, the sug-
gested approach is structured interpolation by rational Krylov subspaces (Sections 3.3.3
and 3.3.4). The pre-reduction is then computed via (3.4) with truncation matrices based
on Proposition 3.2. As a small note here, large-scale sparse matrix equation solvers
based on the solution of shifted linear systems (all methods in Section 4.2.4.1) are in fact
equivalent to a two-step solution procedure using rational Krylov subspaces; see [187]. In
general, the choice of interpolation points is crucial for the quality of the pre-reduced
model. While there are strategies for an adaptive or optimal choice of these, it is usually
enough to use as much sampling points as possible to be complex conjugate pairs on
the imaginary axis, since the corresponding computations are rather cheap. A different
problem that can occur in two-step methods is stability preservation in the pre-reduced
model. In general, interpolation methods only preserve stability in special cases but not
in general and might give an unstable pre-reduced model. However, this will not be
further discussed here, since in the upcoming numerical experiments only mechanical
systems are considered for which a one-sided projection (W = V') is enough to preserve
stability.
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Remark 4.10 (Pre-reduction in the frequency-limited case):

For the pre-reduction via interpolation for the frequency-limited balanced truncation
method, a natural choice of interpolation points would be to sample locally in i instead
of aiming for a global approximation. In this case, the resulting frequency-limited
balanced truncation will very likely not give the same results as the large-scale approach
that works with the original system matrices. This observation comes from the fact, that
the frequency-limited balanced truncation still takes information about the complete
system structure into account and the pre-reduced system can be completely different
from the original one, while being rather accurate in the frequency region of interest. It
is not known, which type of pre-reductions, local or global, performs better at the end.

Due to the required accuracy of the pre-reduced model, its order can be still comparably
large. Therefore, an efficient iterative solver for the Lyapunov equations appearing in the
second reduction step is suggested. In general, the following stable Lyapunov equations
are considered

AX,E" + EX;AT + BQB" =0,

4.30
ATX,E + ETX,A + CTRC = 0, (4.30)

Rme

with suitable E, A, B, C as in (2.8) and symmetric (possibly indefinite) matrices Q €
and R € RP*P. The solutions of (4.30) can then be factored in the same way as the
right-hand sides, i.e., X; = Z1Y1Z] and Xy, = Z,Y57], with Y] and Y, symmetric
matrices. For efficiently computing the solutions of (4.30), the dual sign function
iteration method from [33] is extended to the LDLT-factorization of the solutions. As a
result, a sign function iteration that solves both Lyapunov equations with symmetric
indefinite right-hand sides (4.30) at the same time is presented in Algorithm 4.5.

An implementation of Algorithm 4.5 as well as dense versions of the second-order
frequency- and time-limited balanced truncation methods can be found in [55].

Remark 4.11 (Compression of solution factors):

In Step 4 of Algorithm 4.5, the memory requirements as well as the number of operations
for the next iteration step are doubling due to the concatenation of the solution factors.
It is recommended to do LDL' column and row compressions in that step to keep the size
of the factors reasonably small. For example, consider the solution factors corresponding
to X; in the k-th iteration step, i.e., the product Bk+1Qk+1BZ+1. Computing a QR
decomposition followed by an eigenvalue decomposition such that

Byi1=VR and RQy R =UXUT
hold, with V, U orthogonal matrices and > a diagonal matrix with the eigenvalues, allows

the approximation of the iteration factors in the following way. Let ¥; contain the
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Algorithm 4.5: LDL"-factored sign function dual Lyapunov equation solver.

Input: A, B, C, E, Q, R from (4.30), convergence tolerance 7.
Output: 7, Y}, Z,, Y5 — solution factors of (4.30).
SetAle,BIZB, leQ,C’lzC, RlzR,kZ:]_

=

2 while ||A; + E|| > 7||E|| do
3 Compute the scaling factor for convergence acceleration c; = ,/%.
k
4 Compute the next iterates of the solution factors
By = |By EA{'By|, Quyi = [2(2@’“ ]
1 — ) 1 — c )
Ck L1I:Ek
Cri1=1| ,_ , Ry = | % . )
k+1 [Ak 1E0k‘| k+1 l ?kRk
5 Compute the next iteration matrix
Apr = —— Ay + SEAE
k+1 = 2%, B B B
6 | Setk==Fk+1.
7 Construct the final solution factors
Zi— —E'By Yi—Qn Z-——ETCl, Y,— R,
\/§ ) ) \/§ ko

eigenvalues from > with the largest absolute values and U; the corresponding orthogonal
eigenvectors, then

Bi1Qria By, ~ (VU (V)T

such that By,1 can be replaced by (VU;) and Qx41 by ¥ in the following iteration step
of Algorithm 4.5. O

4.2.5 Numerical experiments

Different numerical experiments employing the frequency- and time-limited second-order
balanced truncation methods can be found in [26,27,57,168]. In these publications,
the limited approximation quality between the different balancing formulae is the main
focus. In this section, the limited second-order balanced truncation methods will be
compared in numerical experiments with their global pendants as well as with the mixed
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and modified Gramian approaches from Section 4.2.3. The methods for the comparisons
will be denoted as follows:

SOBT(p/pm/pv/vp/vpm/v/fv/so) is the second-order balanced truncation method
(Section 3.4.3) with the balancing formulae from Table 3.1,

SOFLBT(p/pm/pv/vp/vpm/v/fv/so) is the second-order frequency-limited balanced
truncation method (Section 4.2.1) with the balancing formulae from Table 3.1,

SOMFLBT(p/pm/pv/vp/vpm/v/fv/so) is the modified second-order frequency-lim-
ited balanced truncation method (Section 4.2.3) with the balancing formulae from
Table 3.1,

SOFLBTC(p/pm/pv/vp/vpm/v/fv/so) is the mixed second-order frequency-limited
balanced truncation method (Section 4.2.3) using the infinite controllability Grami-
ans with the balancing formulae from Table 3.1,

SOFLBTO(p/pm/pv/vp/vpm/v/fv/so) is the mixed second-order frequency-limited
balanced truncation method (Section 4.2.3) using the infinite observability Gramians
with the balancing formulae from Table 3.1,

SOTLBT(p/pm/pv/vp/vpm/v/fv/so) isthe second-order time-limited balanced trun-
cation method (Section 4.2.2) with the balancing formulae from Table 3.1,

SOMTLBT(p/pm/pv/vp/vpm/v/fv/so) is the modified second-order time-limited
balanced truncation method (Section 4.2.3) with the balancing formulae from
Table 3.1,

SOTLBTC(p/pm/pv/vp/vpm/v/fv/so) is the mixed second-order time-limited bal-
anced truncation method using the infinite controllability Gramians (Section 4.2.3)
with the balancing formulae from Table 3.1,

SOTLBTO(p/pm/pv/vp/vpm/v/fv/so) is the mixed second-order time-limited bal-
anced truncation method using the infinite observability Gramians (Section 4.2.3)
with the balancing formulae from Table 3.1.

As the limited model reduction methods are supposed to approximate the system’s
behavior in restricted intervals, limited versions of the approximate norms (2.44)—(2.46)
will be used to compute the MORscores. Therefore, the norms will be restricted to the
approximation ranges of interest in either frequency or time domain. For the notation,
superscripts  and © are added to the current norm notation such that L, L2 and
HS! denote the local relative errors. For more detailed discussions, some methods will be
considered for fixed reduced orders in frequency and time domain. Therefore, the same
pointwise relative errors (4.19) and (4.20) as in Section 4.1.5 will be used.
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Figure 4.9: Sketch of the single chain oscillator example.

4.2.5.1 Single chain oscillator

The damped single chain oscillator benchmark was used in [142] with a holonomic
constraint to test the first-order balanced truncation method for descriptor systems.
As test example for the second-order frequency- and time-limited balanced truncation
methods, the holonomic constraint was removed. The resulting damped mass-spring
system can be seen in Figure 4.9. The system parameters are set exactly as in [142], with

kl:...:an,l:/12:...::‘4}”2,1:2, K}1:/€n2:4,
dl:---:dng—l:62:-“:5712—1:57 K1:Kn2:10,
for stiffness and damping coefficients, and m; = ... m,, = 100 for the masses. The

number of masses in the system is set to ny = 10000 for the following experiments. The
input matrix is designed such that the first and last five masses are excited by the same
input, and the outputs such that the summed displacement of the first three, eighth til
tenth and the last three masses can be observed, i.e.,

-
B.=1|":1, Cp:[€1+€2+€3 eg+ €9+ €10 €ny—9t Eny1+ €Eny|

where 1,, is the vector of length n containing only ones and e; is the j-th column of the
no-dimensional identity matrix. In the experiments with the single chain oscillator, the
computations were done directly on the large-scale sparse system using the projection-
based matrix equation solvers from [58] and the LR-ADI method from [167].

Frequency-limited methods The frequency-limited methods are considered with the
frequency range of interest [1073,3-107!| rad /s. The resulting MORscores of all computed
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Table 4.3: MORscores of the classical and frequency-limited second-order balanced trun-
cation for the single chain oscillator example with reduced orders from 1 to
40, and the percentage of stable reduced-order models.

Method Hoo HE Stab. ratio
SOBT(p) 0.2621  0.2430 1.0000
SOBT(pm) 0.2619  0.2422 1.0000
SOBT(pv) 0.2602  0.2480 1.0000
SOBT (vp) 0.2544  0.2333 0.9250
SOBT (vpm) 0.2595  0.2373 1.0000
SOBT(U 0.2620  0.2422 1.0000
SOBT(fv) 0.1991  0.1867 1.0000
SOBT(s0) 0.2623  0.2428 1.0000
SOFLBT(p) 0.0835 0.3912 0.9500
SOFLBT(pm) 0.0861  0.3949 0.9500
SOFLBT(pv) 0.0845 0.3971 1.0000
SOFLBT(vp) 0.0776  0.3905 0.9250
SOFLBT(vpm) 0.0814  0.3827 1.0000
SOFLBT(v 0.0785  0.3896 0.9500
SOFLBT(fv) 0.0649  0.2742 1.0000
SOFLBT(so) 0.0799  0.3860 0.9750

model reduction methods can be found in Tables 4.3 and 4.4. First, compare the classical
second-order balanced truncation and the frequency-limited variant in Table 4.3. The
SOFLBT methods behave exactly as expected. Their global approximation behavior is
very poor as indicated by the very small MORscores, but their local approximation quality
is much better than that of the classical second-order balanced truncation since these
MORscores are nearly twice as large. Concerning the amount of stable reduced-order
models, the global method always produced stable models except for the vp formula. This
is not true for the limited approach anymore. There, several formulae produced some
unstable reduced-order models. On the other hand for the vp formula, the frequency-
limited approach has exactly the same percentage of stable reduced-order models as the
global approach.

The alternative techniques with potential stability preservation are shown in Ta-
ble 4.4. The modified methods behave very similar to their global counterparts with only
marginally better approximations in the frequency range of interest. Also, the stability
ratio column of the SOMFLBT methods has exactly the same pattern as for SOBT,
where for the vp formula even less stable reduced-order models were computed. On the
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Figure 4.10: Frequency domain results of the frequency-limited methods for the sin-
glechain oscillator example.

other hand, the mixed Gramian methods seem to be very promising. Independent of
the chosen Gramian to be exchanged by its infinite version, the local approximations
yield good results. The version using the infinite observability Gramian performs better
than using the infinite controllability Gramian, and is also very close to the performance
of the fully limited methods. This observation coincides with the heuristic to keep the
frequency-limited Gramian with smaller rank, since the frequency-limited controllability
Gramian has rank 52 whereas the limited observability Gramian is of rank 144.

For a closer look at the frequency domain behavior of the reduced-order models,
the reduced order ro = 14 was chosen. Comparing all the MORscores, the position-
velocity balancing is overall very well performing and, therefore, chosen as representative
for all different model reduction techniques. Transfer functions and pointwise relative
approximation errors are shown in Figure 4.10. The frequency range of interest is depicted
between the dashed vertical lines. The behavior of the methods for low frequencies is a
bit different than one would expect from the discussion and MORscores before. Here,
the mixed Gramian method using the infinite controllability Gramian performs better
than the fully limited approach, and also SOBT(pv) has a smaller relative error than
the modified and the other mixed Gramian method. This behavior changes close to
the right border of the frequency range of interest. Here, the errors of SOBT(pv) and
SOMFLBT (pv) shoot up due to the changing behavior of the transfer function, while
the errors of the other limited methods increase at a slower rate.
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Table 4.4: MORscores of the modified and mixed second-order frequency-limited balanced
truncation for the single chain oscillator example with reduced orders from 1
to 40, and the percentage of stable reduced-order models.

Method Hoo HE Stab. ratio
SOMFLBT(p) 0.2530  0.2539 1.0000
SOMFLBT (pm) 0.2541  0.2530 1.0000
SOMFLBT (pv) 0.2443  0.2599 1.0000
SOMFLBT (vp) 0.2506  0.2454 0.9000
SOMFLBT (vpm)  0.2584  0.2489 1.0000
SOMFLBT (v 0.2535  0.2530 1.0000
SOMFLBT(fv) 0.1902  0.1946 1.0000
SOMFLBT(s0) 0.2534  0.2537 1.0000
SOFLBTC(p) 0.1832  0.3062 0.9500
SOFLBTC(pm) 0.1876  0.3093 1.0000
SOFLBTC(pv) 0.1802  0.3132 1.0000
SOFLBTC(wp) 0.1820  0.2957 0.9250
SOFLBTC(vpm)  0.1933  0.3048 1.0000
SOFLBTC(v 0.1847  0.3092 1.0000

SOFLBTC(fv) 0.1605  0.1982 1.0000
SOFLBTC(s0) 0.1846  0.3105 0.9750
SOFLBTO(p) 0.1086  0.3688 0.9500

SOFLBTO(pm) 0.1144  0.3727 1.0000
SOFLBTO(pv) 0.1096  0.3743 1.0000
SOFLBTO(vp) 0.1071  0.3746 1.0000
SOFLBTO(vpm)  0.1116  0.3745 1.0000
SOFLBTO(v 0.1063  0.3765 1.0000
SOFLBTO(fv) 0.0676  0.2656 1.0000
SOFLBTO(so) 0.1064  0.3756 0.9500
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Table 4.5: MORscores of the classical and time-limited second-order balanced truncation
for the single chain oscillator example with reduced orders from 1 to 40, and
the percentage of stable reduced-order models.

Method L, LY L L? Stab. ratio
SOBT(p) 0.3568  0.3586  0.3567  0.3602 1.0000
SOBT(pm) 0.3640  0.3676  0.3634  0.3690 1.0000
SOBT(pv) 0.3456  0.3469  0.3454  0.3483 1.0000
SOBT(wvp) 0.3425 0.3509  0.3418  0.3523 0.9250
SOBT(vpm) 0.3764  0.3853  0.3743  0.3859 1.0000
SOBT(v 0.3633  0.3669  0.3632  0.3682 1.0000
SOBT(fv) 0.2733  0.2748  0.2755  0.2778 1.0000
SOBT(s0) 0.3589  0.3606  0.3586  0.3620 1.0000
SOTLBT(p) 0.4556  0.8872  0.4288  0.8886 0.9500
SOTLBT(pm) 0.4616  0.8739  0.4409  0.8828 0.9750
SOTLBT(pv) 0.4612  0.8520 0.4391  0.8563 0.9750
SOTLBT(vp) 0.5283 0.8917 0.4985  0.8943 0.9750
SOTLBT (vpm)  0.5282  0.8684  0.4993  0.8752 0.9750
SOTLBT (v 0.5281 0.8889  0.4982  0.8945 0.9750
SOTLBT(fv) 0.2588  0.6432 0.2366  0.6507 1.0000
SOTLBT(so0) 0.4715 0.8698  0.4507  0.8740 0.9500

Time-limited methods Next, the time-limited approaches are considered. The time
interval for the full simulation is set to be [0, 10]s and the smaller time range for the
limited model reduction is [0,2]s. The results in terms of MORscores are given in
Tables 4.5 and 4.6. For the simulations, the input signal

u(t) =100 - n(tj)7 for t; <t< tj+17

was used, with 7 = 0,...,99, equidistant time steps t; = j - % and presampled Gaus-
sian white noise n(t). Comparing the classical and unmodified time-limited methods
in Table 4.5, the second-order time-limited balanced truncation methods have an over-
whelmingly high MORscore in the time range of interest which is more than twice as
large as the MORscores of the global methods. An interesting side effect that will be
discussed later in more detail are the larger MORscores of the limited methods in the
global norms. As mentioned in Remark 4.8, the time-limited balanced truncation is used
to approximate the time domain behavior of the system only in a limited range and can
be unstable otherwise. This effect is only indicated by the lower percentage of stable
reduced-order models in case of SOTLBT.
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Figure 4.11: Time domain results of the time-limited methods for the single chain oscil-
lator example.

Looking at Table 4.6 for the stabilization ideas, the modified and mixed Gramian
approaches were often able to increase the number of stable reduced-order models. For
nearly all methods, all computed reduced-order models were stable. Concerning the
MORscores, similar relations as for the frequency-limited methods can be observed.
The modified Gramian methods are only marginally better in the local approximation
than SOBT and the mixed Gramian approaches perform still very well in the local
approximation. The difference in the ranks of the time-limited Gramian factors is very
small as the limited controllability Gramian has rank 10 and the limited observability
Gramian rank 28 such that it is not surprising that both of the mixed Gramian approaches
give compatible results. The MORscores reveal SOTLBTO to be usually better in the
local approximation, while SOTLBTC gives results similar to SOBT and SOTLBT in
the global norms.
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4.2 Second-order frequency- and time-limited balanced truncation methods

Figure 4.11 shows the time-limited approaches with the vpm formula, choosing the re-
duced order ro = 7. The limited methods perform exactly as indicated by the MORscores
with SOTLBT best followed by the mixed and then the modified Gramian methods. The
interesting effect already seen in the global MORscores of Table 4.5 is visible here again.
In the time simulation, the approximation quality of later time steps strongly depends
on previous ones. The time-limited methods are very accurate in the beginning of the
simulation and do not stop to approximate the full-order system right at the end of the
considered time interval. Therefore, their errors are slowly diverging from the original
system’s simulation behavior after the considered time range of interest ended. At some
point they will have larger simulation errors than SOBT as it can be already seen for
SOTLBTC. But due to the length of the full time interval, they perform still better than
the global approximations.
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Table 4.6: MORscores of the modified and mixed second-order time-limited balanced
truncation for the single chain oscillator example with reduced orders from 1
to 40, and the percentage of stable reduced-order models.

Method Lo L2@ L LO@O Stab. ratio
SOMTLBT(p) 0.3578  0.3603 0.3573  0.3617 1.0000
SOMTLBT(pm) 0.3626  0.3672 0.3616  0.3680 1.0000
SOMTLBT(pv) 0.3501  0.3515  0.3496  0.3530 1.0000
SOMTLBT (vp) 0.3354  0.3421 0.3340 0.3438 0.9000
SOMTLBT(vpm)  0.3750  0.3900  0.3730  0.3917 1.0000
SOMTLBT (v 0.3648  0.3688  0.3639  0.3700 1.0000
SOMTLBT(fv) 0.2739  0.2773  0.2763  0.2803 1.0000
SOMTLBT(so0) 0.3596  0.3617  0.3590  0.3629 1.0000
SOTLBTC(p) 0.3813  0.5707  0.3693  0.5751 0.8500
SOTLBTC(pm) 0.4021  0.7027  0.3882 0.7033 1.0000
SOTLBTC(pv) 0.3882  0.5754  0.3752 0.5794 1.0000
SOTLBTC(vp) 0.3910 0.5815 0.3795  0.5857 0.7250
SOTLBTC(vpm) 0.4169 0.7172  0.4038  0.7206 1.0000
SOTLBTC(v) 0.4106  0.6114 0.3986 0.6154 1.0000
SOTLBTC(fv) 0.2616  0.2645 0.2630  0.2665 1.0000
SOTLBTC(so0) 0.4004 0.6108 0.3881 0.6148 1.0000
SOTLBTO(p) 0.2583  0.6354  0.2422  0.6481 1.0000
SOTLBTO(pm) 0.2791  0.6596  0.2583  0.6667 1.0000
SOTLBTO(pv) 0.2757  0.6542  0.2547  0.6610 1.0000
SOTLBTO(wvp) 0.3169 0.7029  0.2976  0.7095 1.0000
SOTLBTO(vpm)  0.3173  0.7086 0.2939 0.7174 1.0000
SOTLBTO(v 0.3169 0.7029  0.2975  0.7095 1.0000
SOTLBTO(fv) 0.2590 0.6431 0.2367 0.6506 1.0000
SOTLBTO(s0) 0.2774  0.6571  0.2562  0.6646 1.0000
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4.2 Second-order frequency- and time-limited balanced truncation methods

Table 4.7: MORscores of the (hybrid) classical and frequency-limited second-order bal-
anced truncation for the artificial fishtail example with reduced orders from 1
to 10, and the percentage of stable reduced-order models.

Method Hoo HL Stab. ratio
SOBT(p) 0.2610  0.2770 0.9000
SOBT(pm) 0.1795  0.1795 0.5000
SOBT(pv) 0.2609  0.2772 0.9000
SOBT(uvp) 0.2142  0.2674 0.6000
SOBT (vpm) 0.0884  0.0900 0.2000
SOBT (v 0.2606  0.2778 1.0000
SOBT(fv) 0.2168  0.2338 1.0000
SOBT(s0) 0.2610  0.2770 1.0000
SOFLBT(p) 0.1765  0.2876 0.6000
SOFLBT(pm)  0.1417  0.2521 0.2000
SOFLBT(pv) 0.1959  0.2876 0.8000
SOFLBT(vp) 0.2172  0.2816 0.9000
SOFLBT(vpm) 0.1206  0.1910 0.3000
SOFLBT(v 0.2150  0.2832 0.7000
SOFLBT(fv) 0.1386  0.2404 1.0000
SOFLBT(so) 0.1876  0.2887 0.7000

4.2.5.2 Artificial fishtail model

As second numerical example, the artificial fishtail model from Section 1.3.2 is considered.
For this example, the structure-preserving balanced truncation methods are applied as
two-step approaches (cf. Section 4.2.4.3). A structured interpolation was computed
as pre-reduction using 200 logarithmically equidistant interpolation points in complex
conjugate pairs in the frequency range [1072,10%| rad/s. Employing Parts (a) and (b)
from Proposition 3.2, and basis concatenation to use only a one-sided projection results
in a stable intermediate second-order system of order 1600. The medium-scale dense
implementations of the classical and limited second-order balanced truncation methods
from [55] were then used. Results for the artificial fishtail model with the limited balanced
truncation methods directly employed on the large-scale sparse system can be found
in [57].

Frequency-limited methods From a practical point of view, the artificial fishtail cannot
be operated at higher frequencies than 20 Hz. While it would make sense to consider
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Figure 4.12: Frequency domain results of the frequency-limited methods for the artificial
fishtail example.

the frequency interval to begin at zero, this leads to unstable numerical behavior in
computations due to the inversion of the mass or system matrix in the matrix logarithm.
Therefore, the lower bound of the globally considered frequency range is taken leading
the frequency range of interest to be [1072 27 - 20] rad/s. The resulting MORscores of the
applied methods can be found in Tables 4.7 and 4.8. First, one can observe the impact
of the pre-reduction comparing the SOBT entries from Table 4.7 with those of Table 4.2.
Beside small disturbances in the MORscores, there are more unstable reduced-order
models in the two-step case. For the fully frequency-limited reduced-order models in
Table 4.7, all MORscores in the limited norm are larger than for SOBT. This comes
with the cost that less stable reduced-order models were computed by SOFLBT than by
SOBT, except for the vp and vpm formulae.

Figure 4.12 shows the frequency-limited results in comparison with the global ap-
proaches using the so formula and the reduced order ro = 2. Here, the limited methods
perform exceptionally well with several orders of magnitude better than SOBT, and
SOFLBT and SOFLBTC as clear winners. The reason for the small difference in the
MORscores is that SOFLBT and SOFLBTC already reached their smallest possible
approximation accuracy in the frequency range of interest. Due to the bad conditioning
of the example data, it is not possible to further reduce the error in this region. In fact,
the rest of the methods also converge to this error level at latest with ro = 4 and stay
there for all larger reduced-order models that were computed for the MORscores. The
modified and mixed Gramian methods in Table 4.8 behave like SOBT and SOFLBT,
respectively, but partially yield larger percentages of stable reduced-order models.
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4.2 Second-order frequency- and time-limited balanced truncation methods

Table 4.8: MORscores of the (hybrid) modified and mixed second-order frequency-limited
balanced truncation for the artificial fishtail example with reduced orders from
1 to 10, and the percentage of stable reduced-order models.

Method Hoo HE Stab. ratio
SOMFLBT(p) 0.2610  0.2770 0.9000
SOMFLBT(pm)  0.2234  0.2244 0.5000
SOMFLBT (pv) 0.2610  0.2771 0.9000
SOMFLBT (vp) 0.2175  0.2575 0.7000
SOMFLBT (vpm)  0.1240  0.1317 0.4000
SOMFLBT (v 0.2606  0.2778 1.0000
SOMFLBT(fv) 0.2168  0.2336 1.0000
SOMFLBT(s0) 0.2611  0.2770 0.9000
SOFLBTC(p) 0.2437  0.2883 0.7000
SOFLBTC(pm) 0.1783  0.2371 0.2000
SOFLBTC(pv) 0.2439  0.2888 0.8000
SOFLBTC(wp) 0.1773  0.2690 0.3000
SOFLBTC(vpm)  0.1050  0.1497 0.1000
SOFLBTC(v 0.2192  0.2880 0.9000

SOFLBTC(fv) 0.2131  0.2356 1.0000
SOFLBTC(s0) 0.2158  0.2880 0.6000
SOFLBTO(p) 0.2179  0.2888 0.6000

SOFLBTO(pm) 0.1488  0.2039 0.3000
SOFLBTO(pv) 0.2097  0.2886 0.8000
SOFLBTO(vp) 0.2467  0.2643 0.7000
SOFLBTO(vpm)  0.1374  0.1374 0.1000
SOFLBTO(v 0.2484  0.2630 0.8000
SOFLBTO(fv) 0.1386  0.2334 1.0000
SOFLBTO(so) 0.2151  0.2860 0.6000
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Table 4.9: MORscores of the (hybrid) classical and time-limited second-order balanced
truncation for the artificial fishtail example with reduced orders from 1 to 10,
and the percentage of stable reduced-order models.

Method Lo LY Lo L? Stab. ratio
SOBT(p) 0.2538  0.2655  0.2571  0.2624 0.9000
SOBT(pm) 0.1467  0.1730  0.1473  0.1687 0.5000
SOBT(pv) 0.2364 0.2651  0.2391  0.2605 0.9000
SOBT(vp) 0.1750 0.1713  0.1817 0.1701 0.6000
SOBT(vpm) 0.0716  0.0946  0.0728 0.0918 0.2000
SOBT (v 0.2538  0.2644 0.2578  0.2612 1.0000
SOBT(fv) 0.1888  0.1881 0.1934  0.1860 1.0000
SOBT(s0) 0.2543  0.2678  0.2571  0.2624 1.0000
SOTLBT(p) 0.2533  0.2646  0.2568  0.2616 0.9000
SOTLBT (pm) 0.1178  0.1412 0.1180 0.1357 0.5000
SOTLBT(pv) 0.2535 0.2651  0.2564  0.2607 1.0000
SOTLBT(vp) 0.1656  0.1746  0.1679  0.1687 0.6000
SOTLBT(vpm) 0.0034  0.0064 0.0037  0.0066 0.1000
SOTLBT (v 0.1933  0.1881 0.1955 0.1813 1.0000
SOTLBT(fv) 0.1812  0.1837 0.1841 0.1805 1.0000
SOTLBT(so) 0.2156  0.2210 0.2175 0.2166 0.9000

Time-limited methods To test the time-limited methods, the time interval of the full
simulation is chosen as in Section 4.1.5.2 to be [0, 2] s and the limited time interval for
the reduction is set to be [0,0.5]s. For the simulations, the very same input signal as in
Section 4.1.5.2 is used, namely

U(t) = 5000 - ’I’](tj), for tj <t< tj+1,

with 7 = 0,...,99, equidistant time steps ¢; = j - % and presampled Gaussian white noise
n(t). Tables 4.9 and 4.10 reveal the second-order time-limited balanced truncation meth-
ods to be at most as good as the global SOBT method in global and local approximation
quality. This indicates that in fact the chosen time interval [0,0.5]s is already large
enough to nearly recover the infinite Gramians. The very small MORscores in Tables 4.9
and 4.10 result from unstable time simulations occurring for some reduced-order models.
Also, the time-limited methods are not always able to recover the behavior of SOBT. This
can be explained by accumulation of numerical errors due to the bad conditioning of the
original system combined with the pre-reduction step and the computation of the matrix
exponential in the time-limited Lyapunov equations. Therefore, further investigations of
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4.2 Second-order frequency- and time-limited balanced truncation methods

these numerical results are omitted here.

4.2.6 Conclusions

In this section, the limited balanced truncation approaches in time and frequency
domains were combined with the second-order balanced truncation methods to create
new structure-preserving model reduction approaches for linear second-order systems
that intend to approximate the original system only in limited time and frequency ranges
of interest. To provide alternative constructions of limited reduced-order models in those
cases where stability could not be preserved, mixed and modified Gramian methods
were considered. Solvers based on projection methods were the recommended tool to
compute the solutions of the frequency- and time-limited Lyapunov equations. The
strictly dissipative realization was the first-order realization of choice in computations
with mechanical systems to preserve stability of projected system matrices in the matrix
equation solvers. An extension of the a-shift theory from [86] was presented to accelerate
numerical computations, improve conditioning of the underlying linear systems, and to
handle systems with poles on the imaginary axis. The idea of two-step model reduction
methods was outlined as an alternative to the use of large-scale matrix equation solvers.
In two numerical examples, the different newly developed limited second-order balanced
truncation methods were compared to their global counterparts. In the first example and
the frequency-limited case of the second example, the new methods turned out to be very
effective in local approximations. In the time-limited case of the artificial fishtail example,
the time range of interest was not small enough to provide significant improvement of the
local approximations. The suggested alternatives using mixed and modified Gramians
have shown to be potentially more stability preserving than the fully limited methods.
But in general, it was not possible to predict if a computed reduced-order model of
a certain size would be stable or unstable. Also, in the comparison of the different
available second-order balancing formulae from Table 3.1, no outstanding winner could
be determined as for different examples also different formulae performed best.
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Table 4.10: MORscores of the (hybrid) modified and mixed second-order time-limited
balanced truncation for the artificial fishtail example with reduced orders
from 1 to 10, and the percentage of stable reduced-order models.

Method Ly LY Lo L8 Stab. ratio
SOMTLBT(p) 0.2538 0.2655 0.2571  0.2624 1.0000
SOMTLBT(pm) 0.0988  0.1203  0.0992  0.1168 0.5000
SOMTLBT (pv) 0.2515 0.2609 0.2535  0.2557 1.0000
SOMTLBT (vp) 0.1705 0.1700 0.1766  0.1683 0.6000
SOMTLBT (vpm)  0.0477  0.0657  0.0491  0.0650 0.3000
SOMTLBT (v 0.2537  0.2641  0.2578  0.2614 1.0000
SOMTLBT(fv) 0.1853  0.1861  0.1900  0.1847 1.0000
SOMTLBT(so0) 0.2543 0.2678  0.2570  0.2625 1.0000
SOTLBTC(p) 0.2538 0.2654 0.2570  0.2624 0.9000
SOTLBTC(pm) 0.1410 0.1656  0.1428  0.1617 0.5000
SOTLBTC(pv) 0.2364 0.2650 0.2391  0.2603 0.9000
SOTLBTC(vp) 0.1850  0.1814 0.1921  0.1799 0.6000
SOTLBTC(vpm)  0.0072  0.0258  0.0082  0.0261 0.2000
SOTLBTC(v) 0.2537 0.2644 0.2578  0.2611 1.0000
SOTLBTC(fv) 0.1888  0.1881  0.1934  0.1860 1.0000
SOTLBTC(so) 0.2543  0.2679  0.2571  0.2625 1.0000
SOTLBTO(p) 0.2533  0.2646  0.2568  0.2616 0.9000
SOTLBTO(pm) 0.1269 0.1499  0.1272  0.1439 0.5000
SOTLBTO(pv) 0.2364 0.2651  0.2391  0.2605 0.9000
SOTLBTO(vp) 0.1727  0.1771  0.1747  0.1716 0.7000
SOTLBTO(vpm)  0.0387  0.0841  0.0392  0.0802 0.1000
SOTLBTO(v 0.1935 0.1883 0.1956  0.1815 1.0000
SOTLBTO(fv) 0.1813  0.1838  0.1841  0.1805 1.0000
SOTLBTO(so) 0.2153  0.2211  0.2171  0.2166 0.9000
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5.1 Introduction

Bilinear control systems like (2.27) are an important class of dynamical systems bridging
between linear and nonlinear systems in theory and applications. They contain the
multiplication of state and control variables, i.e., they are still linear in state and control
separately but allow the modeling of nonlinear dynamics by the multiplication of both.
Bilinear systems got a lot of attention in the last decades, as they appear naturally
in the modeling of different physical phenomena, e.g., in the modeling of population,
economical, thermal and mechanical dynamics [145,146], of electrical circuits [5], of plasma
devices [130, 158], or of medical processes [171]. They can result from the approximation
of general nonlinear systems employing the Carleman linearization process [68, 126],
or appear in parameter control of PDEs [120, 124]. Recently, bilinear systems were
considered as a generalizing framework in the modeling of linear stochastic [35] as well
as parameter-varying systems [28,32,66].

Until now, bilinear systems were only considered with no further internal struc-
ture (2.27). There is a variety of model reduction methods available for the unstructured
system case, for example, balanced truncation [5, 35, 116], interpolation of underlying
multivariate transfer functions in the frequency domain [2,10,15,65,72,81], Volterra series
interpolation [29,37,85,190] or even the construction of reduced-order bilinear systems
from frequency data with the bilinear Loewner framework [12,93]. However, in practice,
as in the linear system case, also bilinear systems can inherit additional structures in the
differential equations from underlying physical phenomena leading to structured bilinear
dynamical systems. These systems come with two different concepts of structures that
need to be preserved. On the one hand, there are the bilinear terms as special nonlinear
structure and, on the other hand, the physically motivated internal structures of the
differential equations. For example, in accordance with the main subject of this thesis,
bilinear mechanical systems are given by

Mi(t) + Ei(t) + Kx(t Z ) + i Ny ;i (t)u;(t) + Byu(t), 51)

y(t) = Cpﬂf( )+ Cvi(t),

with the classical second-order structure from the linear mechanical case (2.17) described
by the matrices M, F, K € R™*" B, € R™*™ and Cp, C, € RP*™ and two types of
bilinear terms with N ;, Ny ; € RMX”? for j = 1,...,m. While in principle one could
rewrite (5.1) into a classical blhnear system (2.27) using the same idea as in the companion
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form realizations of linear systems (2.18), (2.19), and (2.22), the original structure is
completely lost in the model reduction process, which can lead to undesirable results
in terms of accuracy, stability and physical interpretation. Moreover, other structured
bilinear systems, e.g., such with internal time delays (see Section 5.2.4), cannot be
represented by (2.27), which complicates the application of established model order
reduction techniques. A structure-preserving reduced-order model for (5.1) that preserves
the mechanical as well as the bilinear structure looks like follows:

with M, E\,[A(,J/\\TPJ,NVJ e R™=2*2 for j =1,...,m, Eu € R™2*™ and ép,év € RP*"2,
where ry < ns.

In this chapter, a more general approach for model reduction of structured bilinear
systems is established utilizing the ideas of structured transfer functions from [24] and
subsystem interpolation for bilinear systems. Section 5.2 contains a generalization of
the subsystem transfer functions of bilinear systems from Section 2.3.1 to the structured
system case, for which in Sections 5.3 and 5.4 appropriate interpolation theory is developed.
Section 5.5 contains an extension of the interpolation theory to parametric structured
bilinear systems, and Section 5.6 adds the concept of tangential interpolation.

Parts of this introduction as well as Sections 5.2 to 5.4 are published in [43], and the
extension to parametric systems in Section 5.5 is available in [42].

5.2 Structured bilinear systems and transfer functions

Main item for structured interpolation is the object to be interpolated, namely the
multivariate transfer functions describing the dynamics of the bilinear control systems
in the frequency domain. Therefore, the transfer functions (2.32) developed for the
unstructured system case (2.27) will be generalized to structured bilinear systems in this
section. These will be used afterwards to develop structured interpolation approaches.

5.2.1 From classical to structured bilinear systems

Inspired by different examples, the frequency domain description of linear dynamical
systems got extended to the structured setting in [24]. Therein, the problem (3.17) is
considered with two algebraic equations defining the system’s state and output using
arbitrary matrix-valued frequency-dependent functions. In case of bilinear systems, this
approach can be combined with the Volterra series expansion, e.g., (2.30) and (2.31), from
the unstructured case. With the two upcoming structured examples in Sections 5.2.3

111



5 Structured Bilinear Systems

and 5.2.4, it can be motivated that a suitable extension of (3.18) to the bilinear system
case using regular subsystem transfer functions is given by

Gigo(s1, -y s1) = Csk)K(s) ™" (1:[ (Tt ® N (s-)) (Tt @ ’qs’”)l)) (5.3)

j=1

X ([mk—l ® B(Sl)),

for K > 1 and where N (s) = [ 1(s) ... /\/’m(s)}, with the matrix functions C: C —
crno K. C — C™ B: C — C™™ and N;: C — C™", for j = 1,...,m, such
that Gp C* — CP*™" . The main differences to the transfer function formulation of
structured linear systems (3.18) are the multivariate product structure, resulting from
the subsystem idea of the Volterra series expansion, and the new matrix-valued function
N(s) = [ 1(s) ... Nm(s)} for the bilinear terms.

This general formulation includes transfer functions of classical bilinear systems (2.32)
by choosing the matrix functions to be

C(s)=C, K(s)=se—A, N(s)=N, B(s)=B.

Sections 5.2.3 and 5.2.4 will illustrate the derivation of two other structured examples,
including the case of bilinear mechanical systems (5.1), which can be formulated in this
general setting.

5.2.2 Structure-preserving model reduction by projection

In the linear case, projection-based model reduction methods (3.19) on the transfer
function level are structure-preserving by nature; see Section 3.3.4.1. This idea can be
extended to the bilinear system case. Given two basis matrices W,V € C"*" of underlying
projection spaces, the reduced-order bilinear system quantities are computed by

~

C(s) = C(s)V, R(s) = WHK(s)V, B(s)=WHB(s), N,(s) = WHN(s)V,  (5.4)
for 5 =1,...,m, and the concatenated reduced-order bilinear matrix function is
N(s) = {f\\/'l(s) /\A/'m(s)] :

The only difference to the linear setting (3.19) is the additional truncation of the bilinear
terms. Utilizing the frequency-affine decomposition as in the linear case, e.g., in (3.21)
and (3.22), the matrices defining time and frequency domain descriptions of the bilinear
system can be extracted from (5.4). The corresponding structured regular subsystem
transfer functions of the reduced-order bilinear systems are then given by

G k(o1 51) = Clsu)R(51) (f[ (s @ N (51-) (I @ ’%M)l)) 5.5

j=1

X (L1 @ B(s1)),
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5.2 Structured bilinear systems and transfer functions

for k> 1.

5.2.3 Bilinear second-order systems

As first example, the mechanical bilinear system (5.1) is revisited. Introducing the new
state vector x(¢)T = [z(t)T,2(t)"], (5.1) can be rewritten in the first-order form (2.27).
The resulting first-order bilinear system is then given by

[Jé A(ﬂx(t)zl_o[( ;]fE] X“”é[NZj ]\?J]x(t)uj(t)jL[lgj u(t),

E A N, T (5,6)
y(t) = [Cy Co]x(®),

with any invertible matrix Jg. € R"2*"2. For the realization (5.6), the frequency domain
representation is given via the regular subsystem transfer functions (2.32). Inserting
the matrices from (5.6), the occurring block structures can be used to reformulate the
subsystem transfer functions in terms of the matrices defining (5.1). In general, it holds

-1
. -1 Sch _ch
(sE=A) _[K sM+E]
PRIt =AM+ sE+ K) UK (SPM 4+ sE+ K)T!
- — (M +sE + K)"'KJ! s(s*M + sE + K)~t|’

for the frequency-dependent center terms and, by multiplication with the bilinear terms,
it follows that

N;(sE—A)"B = [(Np,j+st,j)(s2M+sE+K)1Bu :

Consequently, the repeated multiplications of frequency-dependent terms describing the
linear and bilinear dynamics in the k-th regular subsystem transfer function can be
written as

(kl:[l (Imj—l &® N) ([mj %9 (Sk_jE — A)_l)) ([mk—l & B)
0
— k—1
( [T (L @ (Np + 553 NG)) (L ® (53, M + s E + K)1)> (Iyes ® By) |’

Jj=1
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5 Structured Bilinear Systems

where the following concatenation of the bilinear terms from the second-order system (5.1)
was used:

Np=[Npx - Npw| and Ny=[Nyy ... New

Multiplication with the one remaining frequency-dependent center term and the output
matrix yields the regular transfer functions of (5.1) to be given by

GB,k(Sla R ,Sk) = (Cp + skC’V)(siM -+ SkE + K)_l

k—1
X L,i-1 ® (N, + s,_; N,
(31;[1 ( (N o100 (5.7)
X Ly @ (s} ;M + sk E + K)—1)> (Iye-r @ By).

In the setting of the general formulation of structured regular transfer functions (5.3),
for (5.7) the matrix functions are set to be

C(s) =C, +sC,, K(s)=8sM+sE+K, N(s)=N,+sN,, B(s)=B,. (5.8)

Assume the truncation matrices W and V for projection-based model reduction (5.4)
to be given. By (5.4), the reduced-order system quantities are computed via

C(s) = C,V + s(C,V),

K(s) = s*(WHMV) + s(WHEV) + (WHKV), 59)
N(s) = (WHN, (I, @ V) 4+ s(WHN,(I,, ® V), '
B(s) = W"B,

Since (5.9) has the same structure as the original system (5.8), the reduced-order model
can be interpreted as a reduced-order second-order bilinear system of the form (5.2),
where the reduced-order matrices are given in (5.9).

5.2.4 Bilinear time-delay systems

A second example for structured bilinear control systems is given by bilinear systems
with an internal time delay, e.g.,

Ex(t) = Ax(t) + Agx(t — 7) + i N;x(t)u;(t) + Bu(t),

s (5.10)
y(t) = Cx(1),

114



5.3 Interpolation of single-input/single-output systems

with E,Aq,N; € R"*™ for j = 1,...,m, B € R™*™ C € RP*™ and the delay
0 < 7 € R. Systems like (5.10) were shown in [93] to have regular subsystem transfer
functions of the form

k—1

gBJC(Sl, N Sk) = C(SkE —A-— e_SkTAd)_l (H (Imj—l (024 N)
j=1

(5.11)
x ([mf ® (sk—E—A— €_sk‘jTAd)_1)) (Lppi-1 @ B).

As for the previous example, the regular transfer functions (5.11) of the time-delay
system (5.10) can be written in the structured transfer function setting (5.3) using

C(s)=C, K(s)=se—A—e""Ayq, N(s)=N, and B(s)=B.

Once the model order reduction bases W and V' are constructed, the resulting reduced-
order model retains the time-delay structure of the original system as its system matrices
are given by

C(s) = CV, K(s) = s(WHEV) — (WHAV) — e (WHALV),
N(s) = WHN(I,, ® V), B(s) = WHB,.

5.3 Interpolation of single-input/single-output systems

A tremendous simplification of the structured subsystem transfer functions (5.3) appears
in the SISO system case (m = p = 1), which will be considered in this section. Thereby,
the bilinear part consists of, at most, a single term N’ = N; and the matrix functions
C and B map frequency points onto either row or column vectors, respectively. In this
setting, the Kronecker products in (5.3) simplify to classical matrix products and the
regular subsystem transfer functions can be written as

QB,k(sl, ey Sk) = C(Sk)IC(Sk)_l (r[lN(Sk_j)IC(Sk_j)_l) 8(81)7 (512)

for £ > 1. In the remainder of this section, the theory for structure-preserving interpo-
lation (the case of simple and higher-order (Hermite) interpolation) will be developed
followed by numerical examples to illustrate the analysis.

5.3.1 Structured transfer function interpolation

The goal here is the construction of the model reduction bases W and V' and, subsequently,
the corresponding reduced-order structured bilinear systems via projection (5.4) such
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5 Structured Bilinear Systems

that their leading regular subsystem transfer functions interpolate those of the original
system:

gB,k(UL .. 7Uk) = G\B,k(ah .. 7Uk)7

for a sequence of selected interpolation points o1, ..., 0, € C. The following two theorems
answer the question of how the model reduction bases V' and W can be constructed for
the structured bilinear transfer function case similarly to the well-known results from the
unstructured case, e.g., in [10]. Both theorems consider V' and W independent of each
other, or in other words, the interpolation conditions are satisfied only via V' or W, no
matter how the respective other matrix is chosen.

Theorem 5.1 (Bilinear interpolation via V): R
Let Gg be a bilinear SISO system, described by (5.12), and Gg the reduced-order bilinear

SISO system constructed by (5.4), with its subsystem transfer functions G\B,k. Let
o1, ...,0% € C be interpolation points for which the matrix functions C, K=*, A/, B and
K1 exist. Construct V using

v = K(01) " B(o),
Uj = IC(O'j)_IN(O'j_l)Uj_l, 2 S ] S ]{7,
span(V') D span ([vl . ka :

and let W be an arbitrary full-rank truncation matrix of appropriate dimension. Then
the subsystem transfer functions of Gg interpolate those of Gg in the following way:

gB,l(Ul) = §B 1(01)7

gB,Q(Uh 02) = QB,2(017 02),

)

gB,k(O'lw--:Uk) ZQB,k(UL-qu)- O

Proof. As in the linear case, the main idea of this proof is the construction of appropriate
projectors Py of the form (3.24) onto span(V'). Since the first subsystem transfer function
corresponds to the linear case and is thereby given in Proposition 3.2, the second
subsystem transfer function

Gra(01,02) = Clo2)K(09) "N (1)K (1) " B(o1).
is considered next. With the projector (3.24), it holds

~

V’C(Oj)_lg(O'l) = VI%(O'l)_leB(O'l)
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5.3 Interpolation of single-input/single-output systems

= VK (o)) 'WHK(01) K(oy) " B(oy)

=Py (o1) =u

= PV(U1)Ul
= Uy,

where the construction of V' with v; € span(V) and the resulting identity (3.26) by
multiplying elements of span(V') with the projector Py are used. Therefore, it holds

Q\B,Q(Ula 0y) = 5(02)16(02)_1WHN(Ul)}C(Ul)_lg(Ul)
= C(o9)VE(02) " WHN (a1 )0y

Analogously, for the remaining reduced-order terms, a second projector is constructed
such that

VE(02) "WHN (01)vy = VE(02) " WHK (03) K(02) "N (07)v1 = Py(03)vs = vy

:Pv(o'g) =2

holds, since by construction ve € span(V’). Expanding v, into the matrix functions yields
the interpolation of the second subsystem transfer function

6372(01, 09) = C(02)K(02) "N (01)K(01) ' B(oy) = Gpa(o1,09).

Via induction over the transfer function index £ and with the same construction arguments
of the projectors (3.24) onto span(V') the theorem holds. O

The proof of Theorem 5.1 shows the recursive construction of the projection space to
be necessary for the interpolation of higher-level regular transfer functions via projection.
For example, putting v, into the projection space allows the interpolation of Gg (o),
but for the interpolation of Gg2(01, 02) having only vy € span(V) is not enough. Both
vectors are necessary to lie in the projection space, i.e., only from vy, vy € span(V') follows
the interpolation of Gp 2(01, 02). Consequently, aiming for the interpolation of the k-th
subsystem transfer function directly yields the interpolation of all preceding transfer
function levels.

Also, it should be noted that W was an arbitrary full-rank truncation matrix of suitable
dimensions but with no additional constraints for the interpolation of (5.12). Theorem 5.2
will be the counterpart to Theorem 5.1 by only giving constraints for the left model
reduction basis W, while V' is now allowed to be arbitrary.

Theorem 5.2 (Bilinear interpolation via W):

Let Gg, §B, and the interpolation points oy, ...,0;r € C be as in Theorem 5.1. Construct
W using
wy = K(og) "C(op)",
wj = K(0h—j1) "N (03—j11) w1, 2<j<k,
span(W) D span ([wl o ka ,
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and let V' be an arbitrary full-rank truncation matrix of appropriate dimension. Then
the subsystem transfer functions of Gg interpolate those of Gy in the following way:

gB,l(Uk) = §B,1(0k)a

GB,2(0k-1,0%) = G 2(0k-1,0%),

)

Gei(01,...,0k) = Gi(or,...,0%). O

Proof. The proof of this theorem follows analogously to the proof of Theorem 5.1 but
now with the construction of the projector Py from (3.25) onto span(I¥). For illustration
and later reference, the proof is sketched nevertheless. As in the proof of Theorem 5.1,
the reduced-order second subsystem transfer function is considered in the proposed
interpolation points, i.e.,

G\B,2(0'k—17 o) = a(Uk)]e(Uk)_lﬁ(ak—ﬂﬁ(%—ﬂ_lg(ak—l).
In contrast to Theorem 5.1, the projector (3.25) is now used such that

WK (03,) " HC (o)™

= WK (op) "VHC (o)™

= WK (o) "V (o) K(0) " HC (o)™
= Py (o) =w1

= Py (ox)w;

— w,

holds, since by construction wy, € span(W) and (3.26). This yields the reduced-order
transfer function to satisfy

Graolon1,0k) = wiN (o)) VK (0r_1) T WHB(0_1).
For the rest, again a projector like (3.25) is constructed as follows:

WK (01—1) M VIN (041 My = WE(op-1) MV (07— K(0p-1) "N (03— 1)y
:PW(Uk—l) = w2
= Py (0g—1)ws

= Wa,

which results in the interpolation of the second subsystem transfer function
Gp2(04-1,0%) = whB(ok_1) = Gp2(ow_1,0%).

The rest of the theorem follows via induction over the transfer function index k. O]
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The main difference between Theorems 5.1 and 5.2 is the order in which the interpolation
points have to be used to end up in the same sequence for the k-th subsystem transfer
function. Switching between the two interpolation schemes leads to a reverse ordering of
the interpolation points for the intermediate transfer functions, which can easily be used
to increase the number of matched interpolation conditions. The last theorem of this
section states now the combination of Theorems 5.1 and 5.2 in the two-sided projection
approach.

Theorem 5.3 (Bilinear interpolation by two-sided projection):

Let Gg and (/j\B be as in Theorem 5.1, let V be constructed as in Theorem 5.1 for a
given sequence of interpolation points oy, ...,0, € C, and let W be constructed as in
Theorem 5.2 for another sequence of interpolation points ¢, ...,s € C, for which the
matrix functions C, K1, N, B and K~! exist. Then the regular subsystem transfer
functions of Gy interpolate those of Gg in the following way:

Gei(o) = qBJ(al), oy Gpplon,... o) = g k(o1,...,0), and (5.13)
Gpi(so) =GB1(o), -y GrolSts---,%) =Gro(st,.-., %),
and, additionally,
GB.g4n (01, o, gy So—pt1s - - -, S0) = §B7Q+77(0-17 ey Oy Sh—nt s - -5 SB)s (5.14)
forl1<q¢g<kand1<n<4. O

Proof. The interpolation conditions in (5.13) are a reminder of the results in Theorems 5.1
and 5.2. Only the mixed interpolation conditions (5.14) involving both sequences of
interpolation points are left to be proven. Therefore, a combination of the projectors Py
and Py corresponding to the two truncation matrices V and W and their underlying
projection spaces is needed. Let ¢ and 1 be as in the theorem, the reduced-order (¢+n)-th
subsystem transfer function can be written as

gB,q+n(Ul7 -e50g, §€—77+17 s 7§9)

= C(s)K(sy (H/V 50—7) K (so- ])_1) N (o)

1=0

, ( zaaq_i)—lmaq_i_ﬁ) R(on) "B

= WHN (0,)0,

= W WHN (o,) Vi,

n

where the vectors w;' and 9, resemble the vectors from construction of the projection
spaces span(WW) and span(V) with the same subscripts but using the reduced-order
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matrix functions. Following the proof of Theorem 5.1, it can be shown via induction that
the identity

Vi,=V (qﬁ //C\(Uq_i)_l./\Af(crq_i_l)) K(o3) "N (01)K (1) B(0y)

=0

—V (qﬁ E(qu)_lﬁ(aqil)) K(o2)""WHN (01) Py (0101

=0

= VK(0)) "WHN (04-1)v4-1

= Py(04)v,

= ’Uq
holds by construction of span(V’), with v, as the g-th constructed vector in Theorem 5.1.
Analogously with the proof of Theorem 5.2, one can show that

Wi, = w,

has to hold by construction of span(WV), with w, as the n-th constructed vector in
Theorem 5.2. With these two identities, the interpolation conditions follow

G\B,(H»n(al? o >O-q7 §97n+17 s 7§9)

= o) WHN (0,) V1,

= wyN(Jq)Uq
n—1

= C(sp)K ()™ (H N(%j)’c(@aj)l) N(oy)
j=1

>< (h fc<aq@->wv<aqu>) (o) B(or)

=0
:gB,q+n<O-17"'7O-q7§9777+17"'7g9)- D

With Theorem 5.3 it is now proven that higher-level transfer functions can be inter-
polated in an implicit way evaluating only parts of lower-level transfer functions and
combining the resulting subspaces in a two-sided projection approach. In fact, by using
Theorem 5.3, it is possible to interpolate transfer functions up to level k& + 6, while
restricting the evaluation to only the k-th level for the right projection space and the
n-th level for the left one. In the same setting, it is possible to match up to k+6 + k-0
interpolation conditions. These results are similar to the unstructured system case [10].
The special case of identical sequences of interpolation points will result in the interpola-
tion of partial derivatives with respect to the function’s frequency arguments. This will
be discussed in the upcoming section regarding Hermite interpolation.
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5.3.2 Matching Hermite interpolation conditions

In the linear case (Proposition 3.2), it is possible to interpolate higher-order derivatives of
the transfer function in various ways. Similar results can be obtained for the multivariate
transfer functions of bilinear systems considering partial derivatives with respect to the
different frequency arguments. The following theorem states a Hermite interpolation
extension of Theorem 5.1 via V' only.

Theorem 5.4 (Bilinear Hermite interpolation via V):
Let Gg be a bilinear SISO system, described by (5.12), and Gg the reduced-order bilinear

SISO system constructed by (5.4), with its subsystem transfer functions ?B,k. Let
o1,...,0, € C be interpolation points for which the matrix functions C, X!, A/, B and
K- are complex differentiable, and /¢4, ..., ¢, € Ny orders of partial derivatives to be
matched in the k-th subsystem transfer function. Construct V' using

:asjl(lc_llg)(al)7 jl :07"'a£la
= astIC_l(O-Q)gszl (NK_IB)(01)7 j2 = 07 s 7€27

vlvjl

v27j2

k—2
Vk,j. = asjk ’Cil(dk) (H 852k_j (N’Cl)((fkj))

j=1
x Oy, (INK'B)(01), Je=10,..., b,
span(V) D span ({vl,o e ’Uk,ekD )

and let W be an arbitrary full-rank truncation matrix of appropriate dimension. Then
the subsystem transfer functions of Gy interpolate those of Gg in the following way:

351193,1(01) 23811'1913,1(01), J1=0,....0,
855183-2%3,2(01, 09) = aselsjggB,Q(Ul, 02), J2=0,...,0,
1 °2 1 °2
O o g OBk(01, - 08) =00 ey 5, GBk(01, ., 0h), Je=0,....0. O
1 k—1 "k 1 k—1 "k

Proof. As in case of classical interpolation (Theorem 5.1), the first subsystem transfer
function corresponds to the linear case and, thereby, the interpolation results are available
in Proposition 3.2. Also, the case of all derivative orders to be zero, /1 = ... =0, =0
resembles Theorem 5.1. The first interpolation condition to be considered next is given
for k = 2 and j, = 0. Using the product rule, the partial derivative with respect to the
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first frequency argument only concerns the rightmost product of the bilinear, linear and
input terms, which can in general be written as

s NK'B)(01) Zcﬁsz/\f 01)04, -1 (K™ 'B)(01),
=0

for some appropriate constants ¢; € C, i =0, ...,¢;. The reduced-order transfer function
is then given by

551? 3}3,2(01, 02) = 5(02)’/6(02)_18581 (N’%_lg)(gl)

~

Q

0 L
(02)7@ (09)~ (Zcﬁsz]\f 01)0461 - Z(IC_lB)(Jl))

=0
= C(UQ)IC(UQ)_le Zcﬁsd\/(al)Vﬁl,gl,i .
i=0
As in the proofs of the previous interpolation theorems, by construction of span(V'), the
identity

Vvul—z' = V14—

holds for all 0 <4 < #;. This allows to further rewrite the reduced-order transfer function
such that the interpolation condition holds:

=0

8zlg32(01,02) :/C\(O_Q)I/C\(O_Q) 1WH (Zcﬁsz/\f 0'1)?]1@1 z)

= C(09)K(02) WD o, (NK'B)(0)
1

= C(O'Q)P (O'Q)UQ 0

=C(o 2)712,

= a (0-17 0-2>a
where Py(09) is the projector from (3.24) onto span(V'). Using the same arguments, the
rest of the theorem follows via induction over the partial derivative orders jo, ..., jx and
the transfer function index k. O

While for previous interpolation results, the subspaces were constructed in a recursive
way by using previously computed evaluations in the next step, this is not (easily) possible
in Theorem 5.4 due to N depending on the frequency argument of the terms right of it.
Note that, in this sense, the construction in Theorem 5.4 becomes a recursive formula
again in case of NV being constant. Additionally, one can observe that for the interpolation
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of the ¢-th partial derivative, £ = {1 + ... 4 {}, of the k-th subsystem transfer function
Up i in the interpolation points oy, . .., 0%, the maximal dimension of the projection space
span(V) is given by ¢ + k if all constructed vectors are linear independent.

As before, it is possible to formulate the counterpart to Theorem 5.4 using the output
term of the transfer function for the construction of W instead of V. In addition to
reversing the order of interpolation points, the order of the partial derivatives needs to
be reversed as well for Hermite interpolation.

Theorem 5.5 (Bilinear Hermite interpolation via W):

Let Gg, Gg, the interpolation points o1, . .., 04 € C and the orders of partial derivatives
l1,..., 0 € Ny be as in Theorem 5.4. Construct W using
W5y, = 8sjk(]C_HCH)(O-k‘)7 ]k = 07"'7€k7
w27jk71 = asjk—l (’CiHNH)(akfl)wl,elw jk*l = 07 o agkfly
Wy = Oy (KN (01) w105, J1=0,.... 0,
span(W) D span ([ww . wwk]) ,

and let V' be an arbitrary full-rank truncation matrix of appropriate dimension. Then
the subsystem transfer functions of Gy interpolate those of Gg in the following way:

asikgB,l(o’k;) = alek gB,l(gk)a jk‘ = Oa v 7€ka
88%7151}@ Gp2(ok_1,0%) = asjkflslk Gp2(0k—1,0%), Jh=1=0,... 01,
1 2 1 2
8Sj1842__se,€g]3,k(01,...,ak) :8sj18z2._.szkg]37k(al,...,ak), jl :O,...,él. <>
1 827 Sk 1 5278y

Proof. The proof follows directly using the projection arguments from the proofs of
Theorems 5.2 and 5.4 with the construction of Py from (3.25). O

It can be noted that Theorem 5.5, in contrast to Theorem 5.4, resembles the recur-
sive structure from the classical interpolation of the subsystem transfer functions in
Theorem 5.2. This results from the frequency dependency of the bilinear terms on the
frequency argument from the right side but not from the left.

An interesting approach in the structured linear case is the implicit matching of
Hermite interpolation conditions; see Proposition 3.2 Part (c). It is possible to avoid
the evaluation of higher-order derivatives of the transfer function by using the two-sided
projection approach in the same interpolation points for both projection spaces. Next,
this idea is extended to the structured bilinear system case. The following result is
a special case of Theorem 5.3 by using identical sets of interpolation points for the
construction of V' and W.
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5 Structured Bilinear Systems

Theorem 5.6 (Implicit bilinear Hermite interpolation):

Let Gg be a bilinear SISO system, described by (5.12), and G\B the reduced-order bilinear
SISO system constructed by (5.4), with its subsystem transfer functions C?B’k. Let V and
W be constructed as in Theorems 5.1 and 5.2, respectively, for the same sequence of
interpolation points o1, ...,0, € C, for which the matrix functions C, K=, A/, B and
K1 are complex differentiable. Then the regular subsystem transfer functions of Gr
interpolate those of Gg in the following way:

~

gB,1(01) = G\B 1(01), ceey gB,k—l(Uly e ao-k—l) = gB,k—l(Uh B ,Uk—l),

gB,1<0k) = gB,l(Uk), ceey gB,k—1(027 cee ,Uk) = G\B,k—l(o-% cee ;Ok)a

and, additionally,

gB,k<0'17 .- 7Uk> = aB,k(‘Tla e 7(7k>7
VGpi(ot,...,0%) = VG\B,k(Ula s OR),
gB,q+n(Ul7 v 0q, Ok—n+1,y - - - 7Uk> - G\B,q—O—n(UlJ <o 0qy Ok—nd1y - - - 70k)
hold, for 1 < ¢,n < k. O

Proof. The simple interpolation of the subsystem transfer functions without partial
derivatives directly follows from Theorem 5.3 by using identical sets of interpolation
points for V and W. The interpolation of the complete Jacobian VGg, is left to be
proven. As the case k = 1 is covered by Proposition 3.2, assume k£ > 1. Since the
single entries of the Jacobi matrix are partial derivatives of the transfer function with
respect to a single frequency argument each, this can be combined with the special
structure of the subsystem transfer functions g j, where each matrix-valued function
only depends on a single frequency argument. With this observation, three general cases
of the differentiation of the matrix-valued functions can occur depending on the chosen
differentiation variable:

s10 OWK'B) = (0.N)K'B+ N (0.K7'B))
it 0NK™) = (0N K+ N (967, for1<j <k,
sei O0(CKT) = (000K +C(a.K7).

The resulting three cases of partial derivatives work analogously to each other, therefore,
it is enough to proof one of them, which will be here the first entry of the Jacobian, i.e.,
0s,Gp ,. The partial derivative of the terms of interest is extended further into

O, (NK™'B) = (ON) KB = NK' (0,K) KB+ NK 1 (9,B),
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5.3 Interpolation of single-input/single-output systems

which allows to write the complete partial derivative of the reduced-order transfer function
to be

=: df (ON)(o) b (

=y, WH(ON)(00)Vdy — D W (0,K) (00)V iy + 0 WH(9,8) (1),
with @ _1, Wy, and 0, vectors following the construction in Theorems 5.1 and 5.2 but with
the reduced-order matrix functions. In fact, the same projectors Py and Py from (3.24)

and (3.25) as in the proofs of Theorems 5.1 and 5.2 need to be constructed such that the
following identities hold

Vi =wv, Wp—1 = wi—1, Wiy = wy, (5.15)

using also the projection spaces span(V') and span(W). With (5.15), the formulation of
the reduced-order transfer function yields the desired interpolation condition

95,Gui(o1, ... op) = wh (BN)(01)v1 — W (D:K) (01) vy + wl(9,8) ()
= C(03)K(a)™" (EN(Ukj)’C(Ukj)_l)

x ((ONKT'B = NKH0.K)K™'B+ NK(0.B)) (o)

k—2

= C(ow)K(ow) ™ (H N(Uk—j)’C(Uk—j)‘l) 0s(NK'B)(01)

J=1

= aslgB,k(Uh ‘e >Uk).

As mentioned above, the same idea can be used for the other entries of the Jacobi matrix
giving the proposed interpolation condition. O

As in the previous section, using two-sided projection allows to match interpolation
conditions for a larger number of interpolation points and higher-level transfer functions.
Following the results of Theorem 5.3 and using partial derivatives for the construction of
the subspaces in the two-sided projection approach, it can be expected to match at least
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5 Structured Bilinear Systems

(k+0)+O@+v)+ (k+1)- (0 +v) transfer function values and derivative evaluations,
where k, ¢ relate to span(V) and 6,v to span(W), and where ¢ = ¢; + ... + {; and
v =11+ ...+ 1y denote the orders of the partial derivatives and k, f the maximum levels
of the transfer functions to interpolate.

Theorem 5.7 (Bilinear Hermite interpolation by two-sided projection):

Let Gg and §B be as in Theorem 5.4, let V' be constructed as in Theorem 5.4 for a
given sequence of interpolation points o1, ...,0; € C and orders of partial derivatives
li,..., 0, € Ny, and let W be constructed as in Theorem 5.5 for another sequence of
interpolation points ¢, ..., € C and orders of partial derivatives v4,...,1y € Ny, for
which the matrix functions C, K1, NV, B and K~! are complex differentiable. Then the
regular subsystem transfer functions of Gy interpolate those of G in the following way:

(9811@3,1(01) Zasal'lgBJ(Ul), 1 =0,...,4,
851 L1 jkgB,k(Ula"'7ak) :aél Lr—1 jkgB,k(Ula"‘aak)a jk:OJ"'7£k7
S1 k-1 Sk S1 7 Sk—1 Sk
asiegB,l(%) = 8319 gB,1(§9), ie = O, ..., g,
asils’/2”_su9 gB,e(gla e 7g9) - asilsVZ._.Sl'GgB,9<g17 e )g0>7 Zl - 07 cety Vl;
1 °2 0 1 °2 6
and, additionally,
Ot ta1 ja_io-ni1 o2 vg IBatn(01s- s 0q Somnts -, H)
S178q=1 Sa Sq41 Sz Sy
= 8841_..8411713]@ i€7n+1s”0771+2m51'9 gB,q+n(017 <y 0gy S9—n+15 - - - 7§9)
1 g—1 "9 “g+1 q+2 qa+n
holds for j, = 0,...,4g; tg—pyr1 =0,...,Vp—pr1; 1 <g<kand 1 <n <46. O

Proof. The first part of the result just summarizes the theorems stating the one-sided
projection approaches (Theorems 5.4 and 5.5), i.e., the mixed interpolation conditions
involving both sequences of interpolation points are left to be proven. Let j, = 0,...,/,;
t0-n+1 = 0,.. ., Vp—py1; 2 < g < kand 2 <n < 0. The limit case of g =1 orn=1has a
deviating structure but can be treated analogously by taking also the input and output
matrix functions B and C into account. The reduced-order transfer functions are then
given by

0 01 Lq—1 _dq t0—n+1 Ye—n+2  _vg gB,qun(Ub <oy 0gy SO—n+1,y - - - ,Ce)
8178q1 Sq Sqy1 Sqt2 Sq+n

— D0 (CR ) () - Dyromsa (V) (5020010 TR ) (50 0)
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5.3 Interpolation of single-input/single-output systems

% 0, (N ) (0,)0,00 (WK (041) -+ s (VB (0)
it 0 (FR ) 0y)0 5 (TR 0yr) - 00 (TR B ()

Evaluating the partial derivative in the middle via the product rule yields

Dgia (-//\\/I/C\_l)(aq) = Eq: Ca(aso‘-/v) (Uq)(asjr“ic\_l)(aq)a

a=0

with appropriate constants ¢, € C. Therefore, it is possible to further rewrite the
reduced-order transfer function into

0 o Zq 1 _Jq "0—n+1 Yo—n+2 50 gB,q—i—n(Ul? <o 0, S9—n+15 - - - 7§9)
51 78g—1 Sa Sg41 Sq+2 Sq+n

~

Z Ca 777”9 n+1 saN> (O-q)@qvjq—a

= Z COé r] vo_ H(aso"/\/') (UQ)V@q,jq_a‘

As in previous proofs, the truncation matrices and underlying projection spaces are now
used to show recursive identities for the constructed vectors using the projectors (3.24)
and (3.25), i.e., it holds

Vi,

Jaea = Ugja—as and V[/wn’l,ew+1 = Wnwe_pi1s for all 0 < a < j,.

Consequently, the mixed interpolation conditions in the theorem hold true:

88[1 gta=1 da jfo—nt1 Yo—nt2  ve gBy(H-ﬂ(O-l? w0 0qy So—n+15 - - ,§9)
Sg—1 Sa Sq41 Sq+2 Sqtn

= Z Caw;lv’/e—n-ﬁ-l (850./\/) (O_q)vq’jqia

= 5 w0 (CK™)(50) -+ Osvomsz (NKT) (So-+2) D 0 nis (W) (S-1)
Ouis WK™)(04)0, -1 (NK™H)(04-1) -+ Oyt (NKT'B) (01)

= 8851 3 Zq 187q820 N+l Yo—n+2 $0 gB,q+n(Ula <3 O0g, g@*?ﬁ»l? cee 7g9)- [
1 q 1 °9 “g+1 q+2 l]‘H’I

For an easier understanding of Theorem 5.7, a small theoretical experiment is considered,

where only the linear part is used choosing £ = 6 = 1, with the interpolation points o, ¢

and the orders of partial derivatives to be £ = ¢; =2 and v = 14 = 1. Then, by the first

part of Theorem 5.7, the interpolation of the following terms by means of span(V') is
enforced:

gB,l (0)7 asl gB,l (0)7 as% gB,l (U) :
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5 Structured Bilinear Systems

Similarly via span(W), the interpolation of

Gpi1(s), 0s,GB1(5)

is given. Using the two-sided projection approach, it is now possible to additionally
match higher-level transfer functions and partial derivatives of these, namely

gB,Q(Ua g)? asl gB,2(07 §)7 852 gB,Z (07 g)a
as% gB,Z(O—a g)v aslsggB,Z(Jv g)a as%SQQB,Q(O—a §).

As already realized in Theorem 5.6, using the same set of interpolation points in the
two-sided projection leads to additional interpolation of derivatives in an implicit way.
This works analogously in combination with Theorem 5.7. The following corollary states
this special case.

Corollary 5.8 (Implicit higher-order bilinear Hermite interpolation):

Assume Gy and §B are constructed as in Theorem 5.7 for identical sets of interpolation
points 01 = ¢1,...,0r = g € C and matching orders of the partial derivatives ¢, =
vi,..., U =1 € Ng. Then additionally to the interpolation results of Theorem 5.7, it
holds

V(&S?.._Sik QB,k) (0'1, .. 7Uk) = V(@silsik G\B,k) (O'l, C.e ,O’k>. <>

5.3.3 Numerical experiments

As illustration of the established interpolation theory for structured bilinear SISO systems,
numerical experiments are performed for instances of the two example structures from
Sections 5.2.3 and 5.2.4. Parts of the experiments will resemble the results published in [43].
Different variants of structured interpolation, following the suggestions for interpolation
point selection in Section 3.3.4.2, will be compared to unstructured methods in the
MORscore. Additionally to the approximate time domain measures (2.44) and (2.45)
from Section 2.4.2, two frequency domain errors are computed based on the subsystem
transfer functions of bilinear systems. For the first subsystem transfer functions, the
classical approximate H,./Loc-error (2.46) will be used and further denoted by H(Y), and
for the second subsystem transfer functions, the Hoo/Loo-error (2.46) is extended in the
following sense

1G = Gllree /22 = max]|Gp p(wii, wii) = Gra(wid, wjb) 2 (5.16)
[aatV}
with discrete frequency evaluation points wy,w; € [Wmin, Wmax]. The MORscores based

on this error will be further denoted by H?. For additional illustration, a fixed reduced

128



5.3 Interpolation of single-input/single-output systems

order is selected for both examples and pointwise relative approximation errors are
plotted. For the first subsystem transfer functions and the time domain simulations,
(4.19) and (4.20) are used, respectively, and for the second subsystem transfer functions,

1GB.2(wii, wai) — Gpoa(wii, wai) |2

5.17
[Gn2(wit, wai) [ (5-17)

€rel (W1, w2) ==

is shown.

5.3.3.1 Bilinear mass-spring-damper system

The first example to be considered is an extension of the single chain oscillator from
Section 4.2.5.1; see also [43,142]. For the bilinearity, the springs are modeled to depend
on the applied input force such that a displacement to the right increases the stiffness
due to compression of the springs and to the left decreases it due to the appearing strain.
The resulting bilinear mechanical system has the form

Mi(t) + Ei(t) + Kx(t) = Npx(t)u(t) + Buu(t),
y(t) = Cpx(2),

where M, E, K are chosen exactly as in Section 4.2.5.1, also with ny = 10000 masses.
The bilinear term is constructed to be a scaled version of the stiffness matrix

N, = —SKS,

(5.18)

where S is a diagonal matrix with linearly decaying entries linspace(0.5,0,n5). Input
and output vectors are compressed versions of the inputs and outputs in Section 4.2.5.1,
with

.
By = 7Cp:(61+62+63+€8+69+€10+€n2—2+€n2—1+6n2>-

The model reduction is performed with two general types of approaches: (i) the
new structure-preserving bilinear interpolation, denoted by Strlnt, (ii) the classical
unstructured bilinear interpolation by converting (5.18) to first-order form (5.6), further
on as FOInt. For both approaches, the first and second subsystem transfer functions
are interpolated with the suggested interpolation point heuristics from the linear case in
Section 3.3.4.2:

equi. denotes the simple choice of logarithmically equidistant interpolation points on the
imaginary axis in complex conjugate pairs, where for both frequency arguments of
the second subsystem transfer function the same interpolation point is chosen,
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5 Structured Bilinear Systems

Table 5.1: MORscores for the bilinear mass-spring-damper example with reduced orders
from 1 to 40.

Method HD HEP Lo Lo

o0 o)

Strint(equi.) 0.1833 0.1365 0.1829  0.1841
Strint(Heo) 0.2250  0.1625 0.1671  0.1660
StrIint(IRKA) ~ 0.2285  0.1700  0.2030  0.2019
Strint(avg.) 0.2738  0.2410  0.2478  0.2465
(
(H
(
(

FOInt(equi.) 0.1097  0.0698  0.1109  0.1099
FOInt(Ho) 0.1713  0.0741  0.0893  0.0882
FOInt(IRKA)  0.1827  0.0819  0.0893  0.0889
FOlnt(avg.) 0.1450  0.0890 0.0640  0.0645

H is an H-greedy selection based on the first and second subsystem transfer function
errors,

IRKA computes Hy-optimal interpolation points via TF-IRKA and uses these for the
first as well as second subsystem transfer function,

avg. is not an interpolation point selection but the averaged subspace approach from Re-
mark 3.3 based on interpolation using samples from the first and second subsystem
transfer functions in form of the input and output spaces.

To preserve even further mechanical properties of the bilinear mass-spring-damper system,
only a one-sided projection is performed, i.e., in the three interpolation point selections,
the reduced-order models are computed via Theorem 5.1 with V' = W. The averaged
subspace approach uses additionally Theorem 5.2 to compute both projection spaces, then
concatenates the basis matrices into a single one and uses the pivoted QR decomposition
to obtain a single truncation matrix of appropriate size for the one-sided projection.
The results in terms of the different MORscores for computing reduced-order models
from order 1 to order 40 can be seen in Table 5.1. For the time domain MORscores, the
systems have been simulated in the time interval [0, 100] s using the input signal

U(t) =10- U(tj>, for tj <t< tj+1, (519)

with 7 =0,...,99, equidistant time steps ¢; = j- 3 100 and presampled Gaussian white noise

n(t). In general one can say that the structured interpolation performs exceptionally
better than the unstructured approach in both frequency and time domains. The
structured averaged subspace approach (StrInt(avg.)) is the best performing method of
the full comparison, where Strint(IRKA) is a strong competitor. This does not hold for
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(a) Transfer functions. (b) Pointwise relative errors.
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Figure 5.1: First subsystem transfer functions and approximation errors for the bilinear
mass-spring-damper example.

the unstructured case, since except for the equidistant interpolation points, the other
methods have a very small MORscore in the time domain measures. In frequency domain,
from the unstructured methods the IRKA interpolation points perform best.

For a more detailed comparison of the methods, the reduced order is fixed to ry = 12.
The methods with IRKA point selection are chosen and compared to StrInt(avg.) as the
overall best performing method and an unstructured interpolation with IRKA points of
double order FOInt2(IRKA). This additional comparison with FOInt2 is based on the
observation that every bilinear mechanical system can be alternatively described by a
first-order system of double order using, e.g., (5.6). The results for the first subsystem
transfer functions are shown in Figure 5.1. Except for FOInt(IRKA), the other three
methods behave very compatible to each other. The structured approaches have a slightly
larger error in the middle of the frequency axis due to the changing behavior of the transfer
function, which is nicely compensated in FOInt2(IRKA). But for increasing frequencies,
the relative error of FOInt2(IRKA) is vastly growing while the structured approaches
stay constantly small. The relative approximation errors of the second subsystem transfer
functions are given in Figure 5.2. Here, FOInt2(IRKA) gives a comparably small error
to the structured methods for small frequencies in both directions. Both structured
approaches perform overall very well, where the errors of StrInt(IRKA) are usually smaller
than for Strint(avg.) except for a small region in the lower left area of the frequency
plane.

Last, the time domain simulations for the chosen methods are shown in Figure 5.3.
While all chosen methods perform stable for the given input signal (5.19), the approxi-
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Figure 5.2: Relative approximation errors €.(wy,ws) of the second subsystem transfer
functions for the bilinear mass-spring-damper example.

mation quality shows significant differences. FOInt(IRKA) is not fully able to capture
the behavior of the original system even in the eyeball-norm with visible deviations in
Figure 5.3a. FOInt2(IRKA) and StrInt(avg.) are of comparable quality, but StrInt(IRKA)
clearly performs best with exceptionally small relative errors in the beginning of the time
simulation.

5.3.3.2 Time-delayed heated rod

As second numerical example, the bilinear time-delay system from [93] is considered. This
example models a semi-discretized heated rod with distributed control and homogeneous
Dirichlet boundary conditions, which is cooled by a delayed feedback and described by
the partial differential equation

0w (¢, t) = O2v((, t) — 2sin(Q)v(¢, t) + 2sin(Q)v((, t — 1) + u(t), (5.20)
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(a) Time simulation.

(b) Pointwise relative errors.
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Figure 5.3: Time domain results for the bilinear mass-spring-damper example.

with (¢,t) € (0,7) x (0,t) and boundary conditions v(0,¢) = v(m,t) = 0 for t € [0, t].
A spatial discretization using centered finite differences results in a bilinear time-delay
system of the form (5.10) with the time delay 7 = 1. For the experiments, n = 5000 is
chosen.

For the model reduction, the structured interpolation, Strlnt, is used with the same
choices of interpolation points (equi./H.,/IRKA) as in the previous section, as well as the
averaged subspace approach (avg.), for the first and second subsystem transfer functions.
In this example, the two-sided projection approach is used based on Theorem 5.6. For
comparison, the bilinear Loewner framework [12,93], BiLoewner, is used to generate an
unstructured bilinear system (2.27) without the time delay.

The resulting MORscores for reduced-order models from order 1 to order 30 are given
in Table 5.2. For the simulations, the time interval [0, 10] s is chosen with the input signal
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Table 5.2: MORscores for the time-delay example with reduced orders from 1 to 30.
Method HO HP Ly Lo

Strint(equi.) 0.4381  0.4932 0.4607 0.4472
Strint(H o) 0.4934  0.5075 0.4550 0.4474
Strint(IRKA)  0.3850  0.4867  0.4656  0.4554
Strint(avg.) 0.5092  0.5520 0.5213  0.5120

BiLoewner 0.1234  0.1188  0.0810  0.0663
107 10°
= 10! .
3 ) 2 407
s
107! '
10714
107%10210"" 10° 10' 10* 10° 107%107210"" 10° 10" 10* 10°
Frequency w (rad/s) Frequency w (rad/s)
(a) Transfer functions. (b) Pointwise relative errors.
— FOM -a- StrInt(Ho)  —o— StrInt(IRKA)

~-¢- StrInt(avg.) -#- BiLoewner

Figure 5.4: First subsystem transfer functions and approximation errors for the time-
delay example.

with j =0,...,9, equidistant time steps t; = j - % and presampled Gaussian white noise
n(t). The structured averaged subspace approach performs best, directly followed by the
Hoo-greedy selection method Strint(H,). All structured methods perform pretty similar
except for StrInt(IRKA) in the approximation of the first subsystem transfer function.
Nevertheless, the structured approaches perform around 4 times better than the bilinear
Loewner framework in frequency domain and between 6 and 8 times better in the time
domain.

The large difference in the approximation quality becomes even clearer when considering
a fixed reduced order, here r; = 8. In Figures 5.4 and 5.5, the frequency domain results are
shown. BiLoewner fails in both figures to be compatible with the structured interpolation
methods, which behave all very similar to StrInt(Hs ), the clear winner. The same
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Figure 5.5: Relative approximation errors €.(wq,ws) of the second subsystem transfer
functions for the time-delay example.

results can be seen in the time domain simulation in Figure 5.6. The bilinear Loewner
framework performs several orders of magnitude worse than the structured interpolation
methods. While the relative errors of the selected StrInt methods are in the same order
of magnitude, their error behavior strongly differs. Thereby, StrInt(H,) provides an
overall very smooth and constant relative error, while StrInt(IRKA) provides a more
spiky error that is sometimes smaller than StrInt(#.,) but also sometimes larger.

5.4 Matrix interpolation of multi-input/multi-output
systems

In the previous section, the special case of SISO systems was treated to make use of the
significantly simplified structure of the transfer function (5.12) with only a single bilinear
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(a) Time simulation.
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(b) Pointwise relative errors.
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Figure 5.6: Time domain results for the time-delay example.

term. The more regularly occurring case in practice are MIMO systems, potentially
involving several different bilinear terms. In principle, the generalization of the results in
Section 5.3 to the MIMO case (5.3) is a straightforward procedure. However, one needs
to realize first that for bilinear MIMO systems the quantities to be interpolated, i.e., the
subsystem transfer functions, are matrix-valued with the column dimension increasing
exponentially with the transfer function level. The main difference to the SISO system
case in terms of formulae lies in the concatenation of the bilinear terms

N(s) = [Mi(s) ... Ni(s)] (5.22)

and the corresponding Kronecker products that produce different combinations of the
linear and bilinear parts in the k-th subsystem transfer function; cf. (2.33). This section
will only focus on matrix interpolation, i.e., the full matrix-valued structured subsystem
transfer functions will be interpolated. The concept of tangential interpolation from
the linear case [10,89] is an efficient way to handle matrix-valued transfer functions by
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restricting the interpolation to certain evaluation directions; see Section 3.3.2. There
were attempts to generalize the definition of tangential interpolation to bilinear systems
in [31,160]. However, this topic will be discussed separately in more detail in Section 5.6.
For the results involving conditions on the left projection space span(W), a different
concatenation of the bilinear terms than (5.22) is needed. Therefore, consider (5.22) to
be the 1-mode matricization of the tensor-valued function N : C — C™*™*™ given by

N(s) = NW(s).
In the upcoming theory, the 2-mode matricization of this tensor function is needed, which
is given by
NO(s) = [M(s)T .. Nuls)T]. (5.23)

See Section 2.1.1 for more details on tensors and matricizations. The following theorem
extends the results from Theorems 5.1 to 5.3 to structured bilinear MIMO systems.

Theorem 5.9 (Bilinear matrix interpolation):
Let Gg be a bilinear system, described by (5.3), and Gg the reduced-order bilinear system

constructed by (5.4), with its subsystem transfer functions Gg, in (5.5). Given sets of
interpolation points oy,...,0, € C and ¢, ...,¢ € C, for which the matrix functions C,
K1, N, Band K~! are defined, the following statements hold:

(a) If V is constructed as
Vi = K(oy) ' B(oy),
Vi =K(0) "' N(0j-1)(Inn @ V1), 2<j<k,
span(V) D span ({Vl e V’“D ,
then the following interpolation conditions hold true:
Gp,j(o1,...,05) = gB,j(al, ey 05),
fory=1,... k.
(b) If W is constructed as
Wy = K(ss)~"C ()",

W; = K(so—is1) "N (Gmi1) (I @ Wisy), 2<i <0,
span(W) D span <{Wl, . WQD ,
where N @ is the 2-mode matricization of the tensor defined by NV = N like
in (5.23), then the following interpolation conditions hold true:

O8,i(So—it1,---,%) = G\B,i(gefmb Cs ),
fori=1,...,0.
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5 Structured Bilinear Systems

(c¢) Let V be constructed as in Part (a) and W as in Part (b), then, additionally to
the results in (a) and (b), the interpolation conditions

gB,q—‘rn(Ub <o 0, S9—n+15 - - - 7§9) = gB,q-‘rn(o-la <o 0g,S0—n+15 - - - 7g0)

hold, for 1 <g<kand 1 <n<46. O

Proof. As mentioned before, large parts of the proof directly follow from the ideas in the
SISO case. First, consider Part (a). Let Gp j o, with 1 < j <k and 1 < a < m/, denote
a block entry of the transfer function Gg ; with evaluated Kronecker products, i.e.,

Gnjalst,. .. 85) = C(s5)K(s;) ™ Nay (55-1)K(sj-1) 7" - Nay (s1)K(s1) ' Bs1), (5.24)

where the indices 1 < ay,...,a;-1 < m denote any appropriate combination of the
bilinear terms. In the way of Theorem 5.1, it is now possible to analogously construct the
projector Py from (3.24) onto span(V'). Therefore, consider the reduced-order version
of (5.24) in the interpolation points

Gpjalon,....05) =Cl0))K (o)) "N, (0;-1)K(0j-1) "+ N, (01)K(01) 7 B(oy).

Considering (5.24) and the entry of the reduced-order transfer function column-wise , it
can be seen that the interpolation conditions hold exactly as before in a recursive way
using the single columns of V;,...,Vj, i.e., it holds

G\BJ,O((U:[? tee 70]> = gB7j7a(O-1’ . ,O'j)

forall 1 <j<kand1<a<ml, giving the result in Part (a).

Parts (b) and (c¢) work analogously using Theorems 5.2 and 5.3, where in the con-
struction of the matrices W7, ..., W} the 2-mode matricization of the bilinear concate-
nation (5.23) is used as complex conjugate such that the single matrix-valued entries
of (5.23) are the Hermitian transposed matrix functions of the original bilinear terms

N (G_ip1) = [ (s ./\/m(s)H} .
This leads to an analogue to the proof of Part (a). O

In a similar fashion, an extension for the Hermite interpolation results in Theorems 5.4,
5.5 and 5.7 to the MIMO case is given below.

Theorem 5.10 (Bilinear Hermite matrix interpolation):

Let Gg be a bilinear system, described by (5.3), and Gg the reduced-order bilinear system
constructed by (5.4), with its subsystem transfer functions C?ka in (5.5). Given sets of
interpolation points oy,...,0, € C and ¢y,...,5 € C, for which the matrix functions
C, K71, N, B and K~! are complex differentiable, and orders of partial derivatives
li,..., 0, € Ngand vy, ...,vy € Ny, then the following statements hold:
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5.4 Matrix interpolation of multi-input/multi-output systems

(a) If V' is constructed as
‘/I,jl = Sjl(lcilg)(o-l% .jl :07"'7617
‘/27j2 = 8sj21C_1(0-2)as£1 (N(Im ® IC_lB)) (01)7 J2=0,..., 0,

Vk,]k = asjklc ( )

(H P a( mi—1 @ N)(Lpns ®’C)>(0k—j)>

x O (T2 @ N)(Lyims @ K) (L @ B)) (01), Gk = 0, by,
span(V') D span ([Vl,o e Vk,gk]) :
then the following interpolation conditions hold true:

841... tg-1 g B (01, 04) = 0 4y Lgla—t quBq(Ulw--aUq)a
syt 8,11 Sg 81 Sg—1

forg=1,...,kand j, =0,...4,.
(b) If W is constructed as
Wi, = 040 (KTCH) (qp), ig=0,...,vp,
Waiy = Ogas (KN (o) (Ln © Wi, ), iges = 0,0 v,

Wg,h:asil( N )( )(m®W9 1,,2) 11=0,...,vq,
span(W) D span ([Wl,o . Wg,,,gD ,
where N'® is the 2-mode matricization of the tensor defined by NV = N like
n (5.23), then the following interpolation conditions hold true:

~

asie_"+ls’/9_”+2...su9 ngﬁ(ge_U‘i‘l’ te 7§9) = asiﬂ—m—l s 0-n+2 Vo gB,n(§9—n+1, ce ,§9)7
1 2 n 1 2 n
forn=1,...,0 and i9_p11 =0, ..., v9_p41.

(c¢) Let V be constructed as in Part (a) and W as in Part (b), then, additionally to
the results in (a) and (b), the interpolation conditions

D4y 241 Ja0—n+1 Yo—nt2  vg GB.n(015 - 0 So—ni1s -+ -5 S0)
S17Sq—1 Sa Sq41 Sq42 “Sqtn
=0, Sla=1 da 10-n+1 Ye-nt2  vg GB.g4n(01, 04y So—nt15- - -5 Sp)
817 7Sg—1 Sa Sq+1 Sq42 “Sq4n
hold, for j, = 0,...,44; tg—pyi1=0,...,p_pr1; 1 <g<kand 1 <7 <40. O
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5 Structured Bilinear Systems

Proof. The results follow directly by using the ideas from the proof of Theorem 5.9 for
the MIMO case and the results from Theorems 5.4, 5.5 and 5.7 about structured Hermite
interpolation. O

As in the SISO case, implicit interpolation of partial derivatives of the transfer functions
by two-sided projection is possible by using identical sequences of interpolation points
for the construction of left and right projection spaces in Theorems 5.9 and 5.10. This is
summarized in the following corollary without additional proofs.

Corollary 5.11 (Implicit bilinear matrix interpolation):
Let Gg be a bilinear system, described by (5.3), and Gp the reduced-order bilinear system
constructed by (5.4), with its subsystem transfer functions Ggj in (5.5). Given a set of
interpolation points o1, ...,04 € C, for which the matrix functions C, K=, N/, B and
K1 are complex differentiable, the following statements hold:

(a) Let V and W be constructed as in Theorem 5.9 Parts (a) and (b) for a matching
sequence of interpolation points o7 = ¢1,...,0r = <, then, additionally to the
results in Theorem 5.9, it holds

~

VgB,k(Ul7 o 70k) = VgB,k(Ula .. ao-k’)'

(b) Let V and W be constructed as in Theorem 5.10 Parts (a) and (b) for a matching

sequence of interpolation points o; = ¢1,..., 0, = ¢ and matching orders of partial
derivatives {1 = v, ..., = 1, then, additionally to the results in Theorem 5.10,
it holds
V(aselmslk QB,k) (0‘1, N O'k) = v<aselmszk Q\B,k) (0'1, ceey O'k). Q
1 k 1 k

For brevity and prevention of repetitions, numerical experiments for the matrix in-
terpolation theory presented in this section are shown later in Section 5.6. The matrix
interpolation approach is then compared to a newly developed framework for structured
tangential interpolation of bilinear MIMO systems.

5.5 Extension to parametric structured bilinear systems

An important system class extension, when thinking about real-world applications,
are bilinear time-invariant systems with additional parameter dependencies. As the
system structure itself, parameter dependencies are usually modeled with a physical
interpretation, allowing to use a similar mathematical descriptions for different system
realizations, e.g., in case of material coefficients as parameters. Going back to the
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5.5 Extension to parametric structured bilinear systems

motivating example of mechanical bilinear systems (5.1) from the introduction of this
chapter, its parametric version can be written as

OZMWVMM+EWVWM+KW)@M
— Bu( Z x(t; p)u; (1) ZN o (t; p)uj(t), (5.25)

y(t;p) = Cp(p)x (WHCV( )i (t; 1),

where M (p), E(p), K(p), Npj(p), Ny j(p) € R for j =1,...,m; By(p) € R
and C,(p), Cy (1) € RP*™2 are constant matrices; and p € M C R? is the collection of
the time-invariant parameters affecting the dynamics. The parameter u may represent
variations in, e.g., material properties or system geometry.

The aim of structure-preserving parametric model order reduction is in principle
the same as in structure-preserving model reduction to construct a cheap-to-evaluate
approximation of the input-to-output behavior of the original system by reducing the state-
space dimension while additionally the internal system structure and even the parameter
dependencies are preserved in the reduced-order model to retain the underlying physical
structure and its interpretation. For example, for the system (5.25), the structure-
preserving parametric reduced-order model will have the form

0 = M(p)i(t; ) + E(pu)a(t; ) + f((u)A(t; )

m

C Buluult) = 30 Ry () muy(6) — 32 Ry (o) )y (1),

1 7j=1
9(t; 1) = Colp)2(t; ) + Co(w)a(t; p),
wit ( ), E(u), K(1), Np (), Ny j(p) € R=2%72 for j = 1,...,m, By(u) € R2*™,

C ( ),Co(p) € RP*™2 and ry < no.
For parametric unstructured (classical) bilinear systems, i.e., for systems of the form

)

m

BGx(E ) = AGx(t )+ Bluju(t) + 2 Ni(ax(t ),

y(t; ) = Clu)x(t; ),

an interpolatory parametric model reduction framework was developed in [160] by
synthesizing the interpolation theory for parametric linear dynamical systems [10, 21]
with the subsystem interpolation approaches for bilinear systems [10,15,65,72,81]. In
a similar fashion, the structured interpolation theory from Sections 5.3 and 5.4 can be
extended to the parametric system case. The following subsections describe the extension
of the structured subsystem transfer functions (5.3) to parametric systems and, thereafter,
subspace conditions to enforce transfer function interpolation in frequency and parameter
points. Large parts of this section are published in [42].
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5 Structured Bilinear Systems

5.5.1 Parametric structured subsystem transfer functions

Since the parameter € M is considered to be constant in time, the parametric system
case resembles the non-parametric one for any chosen parameter configuration u, i.e., the
structured subsystem transfer functions (5.3) can be directly extended to the parametric
setting:

gB7k(sl7“'7sk‘7M) :C<Sk’7,u Sk?a (H ( mi—1 ®N Sk —jy ))

(5.27)
X (Imj ® /C(Sk—p#)_l)) (Imk—l ® 5(317,“)),

where the matrix-valued functions describing the different parts of the system dynamics are
now multivariate with the additional dependency on the parameter Conﬁguration € M.
Therefore, in this and the following subsections belonging to Section 5.5, the matrix-valued
functions are considered to be C: CxM — CP*", : CxM — C™*™, B. CxM — Cr*m,
N;: CxM — C™" for j = 1,...,m, with the column concatenation of the bilinear terms

N (s, 1) = [Nl(s,,u) oo Nin(s, u)}, such that Ggx: C* x M — CP*™" . For parametric
bilinear first-order systems (5.26), the matrix functions are realized by

C(Svlu) = C(lu)a IC(‘Snu) = SE(M) - A(:u)a B(S7ﬂ’) = B(lu)v 'A/](Shu) = N](M)a
and in case of parametric bilinear mechanical systems (5.25) by
C(s, 1) = Cp(p) + sCy (), K(s, 1) = s*M(p) + sE(p) + K (p),
B(Sa:u) :BU(M)v '/\[j(snu) :NPJ(M)_'_SNVJ(M)?

with j=1,...,m
The very same projection approach (5.4) as for non-parametric bilinear systems is used
to compute the reduced-order matrix functions for parametric systems by

Cls,p) =Cls,m)V,  K(s,p) = WHK(s, )V,

~ H _ H (5.28)
B(‘%/"’) =W B(S7u)7 NJ(‘S’,U’) =W '/\[j(57/1’)v7
with 5 = 1,...,m and constant truncation matrices V., W &€ C"*". The reduced-order
system is then described by
Q\B,k(sl,...,sk,u) :a(sk, I/C\ (Sk, (H ( i1 ®N (Sk—j, pt ))
- (5.29)

X ([mj ® l%(skj,,u)1>) (Imkfl ® g(sl,u)).
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5.5 Extension to parametric structured bilinear systems

Additionally to the internal system structure, also the exact parameter dependencies
are preserved in the reduced-order system when using the projection framework (5.28).
In general, the frequency-affine decomposition (3.22) can be directly extended to a
parameter-and-frequency-affine decomposition such that

ni
K(s, ) = hicj(s, n)K;
j=1

holds, with frequency- and parameter-dependent scalar functions hx ; and a possibly
different nx than in (3.22). This leads to the same observation as in the non-parametric
case that the reduction only affects the constant matrices K; and, therefore, the original
system structure and now also the parameter dependencies described by the scalar
functions hg ; are preserved.

Remark 5.12 (Parametric bilinear SISO systems):
As used in Section 5.3, the case of SISO subsystem transfer functions simplifies significantly
due to the vanishing of Kronecker products and only a single bilinear term present:

k—1

G (515 -y 8k 1) = Csp, ) K55, 1)~ (H N(sk_j,M)IC(sk_j,u)‘l) B(s1,p). (5.30)

This also inherits the simplification of the conditions on projection spaces in the structured
interpolation theory. Due to the similarity to Section 5.3 and the recovering of SISO
results from matrix interpolation, those simplified results for parametric bilinear SISO
systems are omitted here. O

5.5.2 Structured interpolation in frequency and parameter

In the setting of parametric structured subsystem transfer functions gy in (5.27), the
goal is to construct V' and W such that the reduced transfer functions Ggy, in (5.29)
satisfy

Gei(o1, ., 0%, f1) = ?B,k(017 .+, 0k, 1) and (5.31)
VgB,k'(O_la -5 0k, /j) = VQ\BJC(O-D ceey Ok, ﬂ)? (532)
for given frequency interpolation points oy, ..., 0, € C and the parameter interpolation

point 1 € M. In (5.31), VGp, denotes the complete Jacobi matrix with
Vg = [8519B,k oo 05,08k 0,08k .. 3,”913,1@} ;

involving not only the partial derivatives with respect to the frequency arguments as in
the non-parametric case but also the parameter sensitivities. Having in mind that in
the general MIMO system case the transfer functions are matrix-valued, the conditions
in (5.31) and (5.32) enforce matrix interpolation. The following theorem extends the
results of Theorem 5.9 to the parametric case.
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5 Structured Bilinear Systems

Theorem 5.13 (Parametric bilinear matrix interpolation):

Let gg be a parametric bilinear system, with its structured subsystem transfer functions
Gpy in (5.27), and Gy be the reduced-order parametric bilinear system, constructed
by (5.28) with its subsystem transfer functions Gg j, in (5.29). Given sets of frequency
interpolation points o1,...,0, € C and ¢, ...,¢ € C, and the parameter interpolation
point i € M for which the matrix functions C, K%, N, B and K~! are defined, the
following statements hold:

(a) If V' is constructed as

‘/1 - K(Ulaﬂ)_lg(alaﬂ)u
Vi = K(oj, 1) ' N(0j-1, 1) (I ® Vi), 2<j <k,
span(V') D span ({Vl . V;“D ,

then the following interpolation conditions hold true:

~

Gpj(o1,...,05, ) =Ggpj(o1,...,05 1), (5.33)
fory=1,... k.
(b) If W is constructed as
Wy = K(sp, 1) ""C (s, )",

Wi = K(so—ir1, 1) "N (So—iv1, 1) P (L, @ Wiy), 2<i<0
span(W) D span ({Wl . WQD ,

where N'® is the 2-mode matricization of the tensor defined by NV = A/, then
the following interpolation conditions hold true:

o~

gB,i(§6—i+17 -5 S0, ﬂ) = gB,i(gﬁ—H—lv -5 50, ﬂ)v (534)
fori=1,....,0.

(c) Let V be constructed as in Part (a) and W as in Part (b). Then, in addition
to (5.33) and (5.34), the interpolation conditions

g Oly ey O0gySo—mils -~ -5S0, [
Ban (01 o0t 2 ) (5.35)
- gB,q—i—n(Ul? cee 70-q7§9—77+17 s 7§97N)

hold, for 1 <g<kand 1<n<4. O
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Proof. Given the fixed parameter point i € M, the matrix functions C(s, i), K(s, f1),
N (s, 1) and B(s, ji) can be viewed as realization of a non-parametric bilinear system.
Then, the interpolation conditions (5.33)—(5.35) can be considered as subsystem in-
terpolation of a non-parametric bilinear system as these conditions do not involve any
variation/sensitivity with respect to p. Therefore, the subspace conditions in Theorem 5.9,
for interpolating a non-parametric structured bilinear system, apply here as well, which
are precisely the subspace conditions listed in Parts (a)—(c). O

In Theorem 5.13, only function values are matched, i.e., the zeroth-order derivative.
The following theorem extends these results to matching higher-order derivatives in the
frequency arguments, i.e., to enforce Hermite interpolation conditions.

Theorem 5.14 (Parametric bilinear Hermite matrix interpolation):

Let Gg be a parametric bilinear system, with its structured subsystem transfer functions
Gpy in (5.27), and Gy be the reduced-order parametric bilinear system, constructed
by (5.28) with its subsystem transfer functions Gg j, in (5.29). Given sets of frequency
interpolation points o1,...,0, € C and ¢,...,¢ € C, and the parameter interpolation
point 4 € M for which the matrix functions C, K=, N, B and K-! are complex
differentiable, and given the orders of partial derivatives ¢1,...,¢, € Ng and 1v,...,1y €
Ny, the following statements hold:

(a) If V is constructed as
Vi, = 04 (K™'B) (0, ),
‘/QJq = qu’C_l(O'q,ﬂ)
q—2
x (H @SZQ*j ((Imj‘l ® N)(Imj ® IC)) (Jq—j7 ﬂ))
j=1
% Ots ((Lna=2 @ N)(Ia=r @ K) (Lo @ B)) (04, 1),
span(V) D span ([Vl,o . Vk,ék]) ,

for 0 <53 <4 and 2 < q < k; 0<j, <, then the following interpolation
conditions hold true:

(95?“.825_115? Gpq(01,...,04, 1) = 88?.“5?1:1182[1 §B7q(01, e Oy 1), (5.36)
forg=1,...,kand j, =0,...,¢,.
(b) If W is constructed as
Wi, = Ogig (KﬁHCH)(%,ﬂ)a
Waio-yi = O (KN (o 1) (Fon © W10,
span(W) D span ([Wl,o . Wg’,,GD ,
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for 2<n <6 and 0 <ip < vp; 0 <dg_yy1 < Vo_py1, and where N® is the 2-mode
matricization of the tensor defined by NV = N, then the following interpolation
conditions hold true:

asie_”'*'ls;e—"'m.‘.s”e gBJI (§9*?7+17 <o S0, M)
0
. ) (5.37)
— 8539_"+ls;9_n+2~~s;9 gBJ](gG_n_A,_]_, e ,gg, ILL),
forn=1,...,0 and tg_p41 =0, ..., Vop_ys1.

(c) Let V be constructed as in Part (a) and W as in Part (b). Then, in addition
to (5.36) and (5.37), the interpolation conditions

O o1 to1 ja ionir otz vy IBgrn(01s . 0q Sompt1y - S0, )
S18g—1 Sa Sqp1 Sqv2 Sgd
_  (5.38)
=0 01 Lfg—1 Jq fo—n+1 Yo—n+2 Vo gB,qun(o—l? «o ey 0qySo—n+1y - - -5 S0, M)
S18g—1 Sa Sqr1 Sqr2 S
hold, for j, = 0,...,44; tg—pyr1 =0, ..., vg_pi1; 1 <g<kand 1 <n<0. O

Proof. As in Theorem 5.13, all the interpolation conditions are for a fixed parameter
it € M. Therefore, the subspace conditions from Theorem 5.10 can be applied here,
which are precisely the subspace conditions listed in Theorem 5.14. [

5.5.3 Matching parameter sensitivities

So far, the interpolation conditions enforced did not show variability with respect to the
parameter p. Even in the Hermite conditions in Theorem 5.14, the matched derivatives
(sensitivities) are only with respect to the frequency points. This enabled to directly
employ the conditions and analysis from Section 5.4. However, for parametric systems
it is important to match the sensitivity with respect to the parameter variation as
well. This is what will be established in the next result, extending similar results from
linear dynamics [21] and unstructured bilinear dynamics [160] to the new parametric
structured framework. An important conclusion is that the parameter sensitivity is
matched implicitly, i.e., without any explicit computation of it. This is achieved via the
two-sided projection approach using the same set of frequency interpolation points (and
orders of partial derivatives) for V' and W.

Theorem 5.15 (Implicit parametric bilinear matrix interpolation):

Let Gg be a parametric bilinear system, with its structured subsystem transfer functions
Gpy in (5.27), and Gy be the reduced-order parametric bilinear system, constructed
by (5.28) with its subsystem transfer functions Gp . in (5.29). Given a set of frequency
interpolation points o1,...,0;r € C and the parameter interpolation point i € M for
which the matrix functions C, K~1, N, B and K~ are complex differentiable, the following
statements hold:
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5.5 Extension to parametric structured bilinear systems

(a) Let V' be constructed as in Theorem 5.13 Part (a) and W as in Theorem 5.13
Part (b) with ¢; = o; for i = 1,2,..., k. Then, in addition to (5.33)—(5.35), it holds

VgB,k<O-17 ce ey Ok, ﬂ) = vgB,k(aly vy Ok, ﬂ) (539)

(b) Let V be constructed as in Theorem 5.14 Part (a) and W as in Theorem 5.14 Part (b)
with ¢; = 0; and ¢; = v; for i = 1,2,... k. Then, in addition to (5.36)—(5.38), it
holds

v <3sf1...sf,;k gB,k) (1, 0ny f1) = V@sh...sg §B,k) ) (5.40)
1 1 O

Proof. For brevity, only (5.39) will be proven. The proof of (5.40) follows analogously
using the correct subspaces and projectors. As in the proof of, e.g., Theorem 5.9,
appropriate projectors onto the projection spaces span(V’) and span(WV) need to be
constructed. In contrast to Theorem 5.14, now also the partial derivatives with respect
to the parameters are interpolated. Using the product rule, the partial derivative of QBJg
with respect to a single parameter entry u;, for 1 < i <d, is given by

Q)

B,k (017 y Ok, )

—;( o) (0,8 o)

) R (5.41)
(H mi—1® 0 a2g+1N(0k N ))([m] X 8”?2j+zlc—1(ak_j, ﬂ)))
X (Lpr—1 ® auf!mcﬂ 3(01, i),

where A denotes the set of all columns of I, 1, the identity matrix of size 2k + 1. In
other words, the right-hand side of (5.41) is a sum of 2k + 1 terms, where each term
corresponds to the vector « taking a value from this set of columns. Therefore, in each
term only a single matrix function is differentiated. It will be shown that every single
term in the sum (5.41) matches the same term in the full-order model, thus, summed
together, proving the desired interpolation property (5.39). Consider, e.g., the second
term in (5.41), i.e., the term in which « is the second column of the identity matrix:

a:{al g Qg ... 062k+1:|T:|:0 1 0 ... O}T

Denote the corresponding term in the sum (5.41) by A, such that
k-1

421\2 = 5(0k7ﬂ> (3,“//@71((7“/))) (H(Imjl ®ﬁ(ak*jaﬂ))([mﬂ' ® ’/C(Ukjha)l))

j=1
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X (Lys @ B(o, ).
The derivative of the inverse appearing in A, is given by
0K~ ok, 1) = =K(0w, 1) (0, K (0, 1)) K (04, 1) !
Therefore, A, can be rewritten as

Ay = —Clog, )R (0w, i) (aMIC(ak, ))K(ak, )

N ( T (Imj—l ®./V(0k—j,ﬂ)) ([mf ® I%(Uk—jvﬂ)_l)>

~

X (L ® B, 1))
. i (am;e(ak, m)vk.

Noting that the projection space span(V') was constructed as in Theorem 5.13, it holds

j=1

VVk: VIC(Uk7 ) ! (f[l(lmj—l ®N\’(O-k_j7ﬂ))('[mj ® K(Uk—ﬁﬂ)_l))
X (L1 ® B(oy, 1))

~

k—1
:VIC(O_IW[L)_lWHIC(Uk? ) O-ka (H mi— 1®N Uk —jy M ))
Jj=1

=Py(ox)
X (s @ K(akpﬂ)l)) (Ipr—r @ B0, 1))
= Pv(Uk)Vk
= Vi,

where Py (o) is the projector onto span(V') from (3.24). The other necessary projectors
Py(01), ..., Py(ok_1) were directly applied in the second step without further mentioning.
Similarly, it holds

= WK(ox, o) "V (o, )" K(ay, 1) ~"C(ow, 2)"

= Py (o) =W
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with Pyw(oy) the projector onto span(W) from (3.25). Using these two identities, one
obtains

—~

As

(0. K00, 72
= —hiwH <8uilC(ak, ﬂ)) VVi

= W <3mlC(0k, ﬂ))Vk

= C(O'kna) (8MIC_1(O';€, Ia)) (H(Imj_l ®N(0k—jv ﬂ))(lm] ® IC(O-k—j’ ﬂ)_1)>

j=1

X (Imk—l ® B(O-la ﬂ))a

ie., A, is identical to the same term using the original matrix functions. Since the same
technique can be used for all other possible a vectors, it holds

8,”?37,{(01, vy Ok, /AL) = 8MQBJ€(01, ceey OF,y ﬂ), (542)

for all 1 < < d. Interpolation of the partial derivatives with respect to the frequency
parameters follows by using Corollary 5.11 with the fixed parameter ji. Together
with (5.42), this proves (5.39). O

5.5.4 Numerical experiments

The results for structured interpolation of parametric bilinear systems have a strong
similarity to the non-parametric results in Sections 5.3 and 5.4. Therefore and for brevity,
only two short proof-of-concept experiments are performed for parametric versions of
the models in Section 5.3.3. Only the equidistant interpolation point selection and
the averaged subspace approach with a light oversampling in frequency and parameter
arguments will be compared. Instead of full comparisons via MORscores, a fixed order is
directly assumed for the model reduction and the results are then compared in parametric
extensions of the pointwise relative errors (4.19), (4.20), and (5.17), namely

|G (wi, 1) — Gr(wi, )]s
|GL(wi, )2

€rel(W1, W, [1) = IGs.2(wit, wai, 1) — G (wri, wat, 1)z
rel (W1, Wa, U ||gB72(W1i,w2i7M)H2

and

€rel (wla M) =

in frequency domain, and

@ ) = 9 w2
aall ) = Eolh

for the time simulation error.
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5 Structured Bilinear Systems

Table 5.3: Maximum pointwise relative errors for the parametric bilinear mass-spring-
damper example and reduced models of order r, = 40.

Strint(equi.) Strint(avg.)

Max € (W ) 3.897330e-04  1.472924e-07
w1

Jnax, €rel(wr, wo, 1) 2.928265e-03  1.076899e-05

max €rel(t, 14) 1.120365e-03  7.867531e-10
HLL

5.5.4.1 Parametric bilinear mass-spring-damper system

The first example is an extension of the bilinear mass-spring-damper system from
Section 5.3.3.1. The input vector is split into two according to its range of affection and
a second bilinear term is introduced acting into the opposite direction such that

1, 0
Bi=|" |, Noy=—SKSi, Ny»=SKS,
S0
0 1j5

with S; a diagonal matrix with entries 1inspace(0.5,0,n2) and Sy a diagonal matrix
with entries linspace(0,0.5,n5). Also, the output matrix is split into two rows by
taking the observations of the first half of the chain into the first row and the rest into
the second row. The number of masses ny = 10000 stays unchanged and two parameters
(1, p2) = p € M = 10,1} x [0,1] are used to control the strength of the bilinearities in
the system. The resulting parametric mechanical bilinear MIMO system has the form

Mi(t)+ Ei(t) + Kx(t) = pa Npax(t)ur (t) + peNp2x(t)ua(t) + Buu(t),
y(t) = Cpa(t).

Note that for p; = py = 0, the system (5.43) is linear. In the setting of structured
subsystem transfer functions, the matrix-valued functions in (5.27) are realized by

(5.43)

C(s,p) = Cp+sCy, K(s,p) =s*M + sE + K,

B(s,u) = By, N(s, ) = [Nle,l M2Np72} )
such that only the matrix function representing the bilinear terms depends on the
parameters.

To preserve definiteness of the system matrices, only a one-sided projection, V = W,
is employed in the model reduction process. Theorem 5.13 Part (a) was thereby used
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Figure 5.7: First subsystem transfer functions and approximation errors for the parametric
bilinear mass-spring-damper example.

in Strlnt(equi.) to interpolate the first and second subsystem transfer functions in the
frequency interpolation points +£{1072 10*}i and in the parameter interpolation points
{(0,1),(1,0)}. Observing that the first subsystem transfer function is independent of
the parameters, the resulting reduced-order model is of order o = 40. For Strlnt(avg.),
Theorem 5.15 Part (a) was used to construct interpolation bases for ten logarithmically
equidistant points in frequency and four linearly equidistant points in both parameters
for the first and second subsystem transfer functions. The resulting matrices were then
concatenated and truncated by the pivoted QR decomposition into a single orthogonal
basis to the desired reduced order of ry = 40.

The pointwise relative errors were computed for both approximations for the first and
second subsystem transfer functions in the frequency range wy,wy € [1072,10%] rad/s, as
well as for the time simulations in the interval [0, 100]s. The following input signal was
used in the simulations

7 (tj)]
u(t) = 10 - , fort; <t <tiq, 5.44
( ) Lh(tj) J J+1 ( )
with j = 0,...,99, equidistant time steps ¢; = j - —19090 and presampled Gaussian white

noise 71 (t),n2(t). The maximum attained pointwise relative erros are shown in Table 5.3.
Both methods perform very well, where the reduced-order model of choice would be
Strlnt(avg.). The parameter-independent first subsystem transfer functions are shown in
Figure 5.7. One can see that both approaches deliver accurate reduced-order models,
where the worst case deviations happen to be in the middle of the frequency range, which
is far away from the chosen interpolation points in StrInt(equi.). This indicates that
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5 Structured Bilinear Systems

Table 5.4: Maximum pointwise relative errors for the parametric time-delay example and
reduced models of order r; = 24.

Strint(equi.) Strint(avg.)

Max € (Wi, ) 2.183130e-07  4.370906e-11
w1
max, rel(wi, wo, 1) 9.491342e-07  7.536612e-11
w1,wW2,
max €rel(t, 14) 2.370008e-05  7.469150e-06
sH
10
SR 3
5 5
= =
g £ 4
i &
2
1073 10°* 10t 10 1073 10°1 10t 10
Frequency w; (rad/s) Frequency w; (rad/s)
(a) Strnt(equi.). (b) StrInt(avg.).

1007 107 1078 10712 1071 1071 10 10 1077

Figure 5.8: Relative approximation errors €,q(wy, 1) of the first subsystem transfer func-
tions for the parametric time-delay example.

another interpolation point at the maximum attained error might be very beneficial for
Strlnt(equi.), or alternatively, that a more sophisticated selection of interpolation points
using, for example, the IRKA and H.-greedy methods, will provide better reduced-
order models. StrInt(avg.) also shows an interesting error behavior in Figure 5.7. The
visible sink in the pointwise relative error in the middle of the frequency range leads
to the assumption that Strint(avg.) is still interpolating at this point, i.e., that in the
compression of the projection space bases this specific information was dominant enough
to be preserved.

5.5.4.2 Parametric time-delayed heated rod

As second example, a parametric version of the time-delayed heated rod from Sec-
tion 5.3.3.2 is used. Therefore, the diffusivity coefficients in (5.20) are parametrized with
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Figure 5.9: Relative approximation errors €. (t, 1) of the time simulations for the para-
metric time-delay example.

i € [1,10]. This results in a parametric bilinear time-delay SISO system of the form

Ex(t) = (Ao — pAg)x(t) + pAax(t — 7) + Nx(t)u(t) + Bu(t),
y(t) = Cx(1),
with the time delay 7 = 1 and n; = 5000 differential equations. Using the framework

of parametric structured subsystem transfer functions (5.30), the frequency domain
representation of (5.45) is given by the matrix-valued functions

(5.45)

C(&M) = Ca K(Svlu) = sE— (AO - H’Ad) - /ue_STAdv B(S,M) = Ba N(S7H’) = N7

where only the center term representing the linear dynamics depends on the parameter.

For model order reduction, a two-sided projection is used, where both approaches
Strint(equi.) and StrInt(avg.) are based on Theorem 5.15 for the first and second
subsystem transfer functions. For the equidistant interpolation point selection, in
frequency domain the points +{1073,103}i and in parameter domain {1,5.5, 10} are used.
This results in the reduced order r; = 24. For the averaged subspace approach, both left
and right interpolation spaces are set up for 40 logarithmically equidistant points in the
frequency range [1073,103| rad /s and 10 linearly equidistant points in [1,10]. Afterwards,
the resulting bases are orthogonalized and truncated via the pivoted QR decomposition
to order r; = 24.

The maxima of the pointwise relative errors are shown in Table 5.4, were in freqency
domain the range wy,wy € [1073,10%] rad/s was used, and in time domain the systems
were simulated in the interval [0, 10] s with the same input signal as in the non-parametric
example (5.21). Both reduced-order models yield a suitable approximation quality. In the
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frequency domain comparison, the averaged subspaces perform clearly better. The reason
can be seen in Figure 5.8 as StrInt(equi.) has a stronger increase in the error behavior
for larger frequencies. Another frequency interpolation point in this region might fix this
issue. In time domain, the approximation errors of StrInt(equi.) and Strlnt(avg.) are
very close to each other. The relative time domain errors are shown in Figure 5.9. Some
sinks and peaks of the approximation errors are visible for both methods but otherwise
the errors are very uniform over time and parameter.

5.6 Tangential interpolation framework for structured
bilinear systems

A general problem in matrix interpolation for MIMO systems is the fast growth of the
underlying projection spaces and, consequently, of the resulting reduced-order models.
This comes from matching interpolation conditions in each entry of the matrix-valued
transfer functions. A remedy used in case of linear systems is the tangential interpolation
approach (see Section 3.3.2) allowing for a fine control of the projection space dimensions.
In case of unstructured bilinear systems (2.27), a first attempt of generalizing tangential
interpolation to subsystem transfer functions was done in [31, 160]. This approach is
referred to as blockwise tangential interpolation as it is based on considering the single
block-matrix entries of the subsystem transfer functions (2.33) separately. For example,
the right blockwise tangential interpolation problem for the k-th subsystem transfer
function with interpolation points o1,...,0; € C and right tangential direction b € C™
aims for the construction of a reduced-order model that interpolates

Gp (o, ... 0%)(Im @) = [C(akE — A)"'Nj -+ Ny (01E — A)"'Bb,

C(oxE — A)"*N; - - - No(o1E — A)Bb,
(o )~ 2(o1 ) (5.46)

ey

C(okE = A) !Ny - - Ny (01 E — A)7'BB).

In this section, the idea of tangential interpolation (3.16) for model order reduction
is extended to structured bilinear systems in a much broader sense than in [31, 160].
Therefore, re-interpretations of tangential interpolation in frequency and time domain
are done in Sections 5.6.1 and 5.6.2, followed by a general framework for tangential
interpolation of structured bilinear systems in Section 5.6.3. The special case of blockwise
tangential interpolation from the literature is considered separately in Section 5.6.4 as
a special instance of the new framework. The tangential approaches are then tested in
different numerical examples.
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5.6.1 Frequency domain interpretation of tangential interpolation

Looking back to the origins of tangential interpolation (3.15) and the multivariate
transfer functions (5.3), a first idea is to consider an appropriately sized vector beCm
as right tangential direction, which results by multiplication with the subsystem transfer
functions (5.3) in

gB,k(Sh BRI Sk)g = Z ce Z C(Sk)lc(sk>_1'/\/’jk_1 (Sk’—l)’C(Sk‘—l)_l
Jim1  jr_i=1 (5.47)

X ..o X N, (51)K(s1) 7 B(s1)0',

where « is an appropriately changing index according to the £ — 1 sums and the partition

of the full direction vector
~ B B H
p— [(bm)“ . (b(m“>)“} ,

where b € C™ for a = 1,...,mF !, This general approach leads to a problem concerning
the recursive structure of the transfer functions and the corresponding construction of
the projection spaces. For every new level of the subsystem transfer functions, a different
part of b is multiplied with the input function B(s) in each term of the sum (5.47).
Therefore, the corresponding projection bases for the tangential interpolation would grow
vastly according to the number of different block entries in b, which is not suited to
produce small reduced-order models. A solution to this problem is the restriction of the
full direction vector to the repetition of a smaller one b € C™ such that

b
b= 1,1 ®@b=|:], (548)
b

with 1,,.-1 the vector of length m*~! containing only ones. With the particular choice
of (5.48), the right tangential interpolation problem can be written as

Go (o1, 0%) (Lpsor @ b) = Gplon, ..., 0%)(Lmor @ D), (5.49)

for a given set of interpolation points oy, ..., 0, € C. In (5.49), the interpolation problem
is restricted to vectors of constant length p, independent of the input dimension m.
Therefore, it allows for an efficient construction of projection bases.

The left tangential interpolation problem in the classical approach (3.15) would lead
to the same idea as in the blockwise tangential interpolation, since the output dimension
p of the transfer function is constant over all subsystem levels. To consider a dual
formulation of (5.47) and, corresponding to that, a projection basis that does not increase
its dimension exponentially with the transfer function level, the natural choice is

CHgBJg(O'l, C. ,O'k)(]lmkfl ® Im) = CH§B7k(Ul, C. ,O'k)(]lmkfl ® Im), (550)
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for a given direction ¢ € CP and interpolation points oy, ..., 0 € C, as the left tangential
interpolation problem and, consequently,

CHgB,k<017 s 7O-k)(]lmk*1 ® b) - CH?B,/C(O-D R 7O-k>(]lmk*1 ® b) (551)

for two-sided tangential interpolation.

5.6.2 Time domain interpretation of tangential interpolation

A different way to look at tangential interpolation of transfer functions with underlying
dynamical systems is (re-)interpretation in the time domain. Consider the tangential
interpolation problem for linear dynamical systems (3.16). For simplicity, the following
discussion is restricted to the simplified case of linear unstructured first-order systems (2.8)
with transfer function (2.14). But note that the upcoming ideas work analogously in
the general structured case [24]. The multiplication with tangential directions in the
frequency domain can be considered independent of the chosen interpolation points. This
yields new systems in the frequency domain described by transfer functions that are
restricted in one or both dimensions:

Ehb(s) = GL(s)b, ,G'L’C<S) = c"G(s) and EL,Cb(s) = "G (s)b, (5.52)

with the tangential directions b € C™ and ¢ € CP. These new restricted systems (5.52)
can now be transformed back into time domain. The resulting tangential systems can be
seen as embedding the original linear system Gy, into single-input and/or single-output
systems. Let the outer inputs and outputs be set to be u(t) = ba(t) and §(t) = cMy(t),
respectively, the three embedded (restricted) systems are given by

— Ex(t) = Ax(t) + Bbu(t),
o { (1) = Ax(t) + Bbi(t) 55
y(t) = Cx(1),
for the right tangential interpolation problem,
— Ex(t) = Ax(t) + Bu(t),
G, ~() H() (t) (5.54)
’ g(t) = "Cx(1),
for the left tangential interpolation problem, and
— Ex(t) = Ax(t) + Bbu(t),
Leb Dy H (5.55)
y(t) = c"Cx(t),

for the two-sided tangential interpolation. The systems (5.53)—(5.55) correspond to
the three identically denoted transfer functions in (5.52). With (5.53)—(5.55) one can
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interpret tangential interpolation as the restriction of the system inputs to a single input
signal that is spread along a given direction b to be fed into the original system (2.8)
and/or the restriction of the output to a linear combination of the observations of the
original system (2.8) using the direction c.

Now, consider the case of bilinear unstructured systems (2.27). The time domain
interpretation of tangential interpolation of the linear case (5.53)—(5.55) can be directly
transferred to bilinear systems. Using the same tangential directions b and ¢ as before,
and the embedding strategy for the bilinear system (2.27), one gets

_ Ex( )+ > Nyx(t ) + Bba(t
Gpp : Z ©) (5.56)

y(t) = Cx(1),

for the inputs,
_ Ex( )+ > Nyx(t ) + Bu(t),
Gp. : Z (5.57)
g(t) = "Cx(t >,
for the outputs, and
_ Ex( )+ D> Nyx(t ) + Bbu(t),
Gpeb Z (5.58)
g(t) = Cx(t ),

for the fully embedded system. These restricted bilinear systems (5.56)—(5.58) can be
transformed into their frequency domain representations to get back to the tangential
interpolation problem for subsystem transfer functions. The corresponding regular
subsystem transfer functions for the restricted systems look like follows:

k—1

EB,b,k(Sla Ce ,Sk) C(SkE A (H (Zb N, ) Sk— jE — A)1> Bb, (559)

7j=1

k—
Gpe(s1,. .-, s6) = c"C(sxE— A)~ (H mi-1 @ N)(L @ (s5—;E — A)_l))

X (I-1 @ B), (5.60)

Ga.ebi(S1, .-y 56) = C(skE — A)™ (ﬂ (i biNi> (sp_,;E — A)1> Bb, (5.61)

for £ > 1. These new transfer functions (5.59)—(5.61) can now be combined with the
setting of structured subsystem transfer function (5.3). Denote the scaled summation of
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the bilinear terms in the structured multivariate transfer functions by
?B,k(sla . ,Sk) = C(Sk)K(Sk)_l (Z bj./\/j(sk_l)) K(Sk_l)_l R
j=1

X (Z bj/\/j(sl)) K(s1)7'B(s1),
j=1
with a given direction b € C™, and let the scaled and summed transfer function of

the reduced-order model be denoted by ?B,k(sl, ...,8k). The new right tangential
interpolation problem can then be written as

?B,k(ala s 7Uk)b = aB,k(Jla s 70k)ba (562)

for a given set of interpolation points oy, ...,0, € C. Again motivated by duality, the
left and two-sided tangential interpolation problems are chosen to be

CHEB,k(UlaH-uO’k) = CHEB,k(@;---Jk); (5~63)

CHGBJﬂ(O'l, Ce ,O'k)b = CHaBk(O’l, ce ,O'k)b, (564)

respectively.

Remark 5.16 (Relation to other control systems):

The idea of the time domain interpretation of tangential interpolation offers a wide
range of applications. It can easily be transferred for other types of control systems, e.g.,
systems with polynomial nonlinearities, such that it may be used to develop new and
efficient tangential interpolation approaches for nonlinear MIMO systems. O

5.6.3 Structured tangential interpolation framework

With the two re-interpretations of tangential interpolation from Sections 5.6.1 and 5.6.2
in mind, in the following, a unifying framework is developed, which allows for an
interpolation theory covering the problems from Sections 5.6.1 and 5.6.2, as well as the
blockwise tangential approach from [31, 160], for structured bilinear control systems.
Therefore, define the modified subsystem transfer functions to be:

k—1
Gka(Sl, oy SE | d(l), e ,d(kil)) = C(Sk)K(Sk)il (H N(Sk,j ’ d(kij))

Jj=1

(5.65)
X ’C(Skfj)fl) B(s1),
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for k > 1, with the frequency variables sq, ..., s; € C, scaling vectors dV, ... d*-V ¢
C™, and where

N(s; | dV) := N (s)(dV ® L) = gmj 4 Ni(s;) (5.66)

denotes the linear combination of the single matrix functions representing the bilinear
terms. Note that the first modified subsystem transfer function does not depend on
scaling vectors and corresponds again to the linear case since

Gp.1(s1) = Gr1(s1) = Gr(s1)-

In this setting, the modified transfer functions of reduced-order models will be denoted
by aB,k(sl, cooyse|d®) o d* D). The resulting tangential interpolation problem for
modified transfer functions reads as follows: For a given set of interpolation points
o1,...,0p € C, scaling vectors dV,... d*1 e C™, and right and left tangential
directions b € C"™ and ¢ € CP, find a reduced-order model such that

Gei(on,...,on|dY, ... d*"Nb =GCprlo,... o0 | dD, ... d* )b,
CHGB,k(Ul, cey Ok | dW, ... ,d(k_l)) = CHEB,k(Ul, ey Ok | dv ... ,d(k_l)), or (5.67)
Heg (o, ..., 00| dV, . d% ) = MGp (o, ..., 00 dV, . d* D)
hold. The following corollary summarizes some motivated choices of scaling vectors.
Corollary 5.17 (Motivated choices of the scaling vectors):

With an appropriate choice of scaling vectors d%) in (5.65), different tangential interpola-
tion problems can be recovered from (5.67):

(a) Choosing dV = ... = d*~Y = 1,, yields the extension of classical tangential
interpolation to the subsystem transfer functions of bilinear systems (5.49)—(5.51)
from Section 5.6.1.

(b) Choosing dV) = ... = d*~Y = b, with b € C™ the right tangential direction, yields
the tangential interpolation problems (5.62)—(5.64) resulting from the time domain
interpretation in Section 5.6.2. O

The following theorem solves the new tangential interpolation problems (5.67) via
conditions for the underlying projection spaces in the projection framework (5.4).

Theorem 5.18 (Bilinear tangential interpolation):

Let Gg be a bilinear system, with its modified transfer functions Gg x in (5.65), and G the
reduced-order bilinear system constructed by (5.4), with its modified transfer functions
@Byk. Given sets of interpolation points o1,...,0r € C and ¢y, ..., € C, for which the
matrix functions C, K=, N, B and K- are defined, two tangential directions b € C™
and ¢ € CP, and two sets of scaling vectors dV, ..., d*=1 e C™ and 6, ..., 50D e C™,
the following statements hold:

159



5 Structured Bilinear Systems

(a) If V' is constructed as
vy = K(o1) " B(o1)b,
vy = K(o5) " N(oy1 [ dV D)o, 1, 2<j <k,
span(V) D span ([vl . ka :
then the following interpolation conditions hold true:

Gp1(01)b 263,1(01)197
GB’2<O'1, ()] | d(1)>b

Goi(or,. .. on|dV, . d* b =G (o, ..o [dD, .. d* )b,

(b) If W is constructed as
wi = K(p) MC(s) e,
w; = K(sp—it1) "N (Sp—isr | 87Ny, 2<i1<0,
span(W) D span ([wl . wgD ,
then the following interpolation conditions hold true:

CHGB,1 (sp) = CH@B,I (<o),

CHGB,2(§0—1: 1 5(0_1)) = CHGB,2(§0—1: S 5(0_1))7

CHGB,0(§1, e 5(1)7 o ,5(971)) = CH/G\B,@(Q, .y 5(1)7 o 75(071))

(c) Let V' be constructed as in Part (a) and W as in Part (b), then, additionally to
the results in (a) and (b), the following conditions hold:
cHGB,qH](Ul, e Oy So—yt1s - S0 | dV, o da g s0D ,(5(9*1))13

= MG gin(01, 104, Sopits -0 | dV, . deY o g0t 5Oy

for 1 < ¢ <k, 1<n<80, and an additional arbitrary scaling vector z € C™.  {

Proof. Parts (a) and (b) follow directly from Theorem 5.9 by using the vector-valued
inputs B(s)b and outputs ¢"C(s). One can observe that for given fixed scaling vectors
dM, ... d*D and 60, ... 60D the modified bilinear terms (5.66) are functions de-
pending on a single frequency variable. Therefore, a single block entry of a full MIMO
subsystem transfer function is resembled.
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To prove Part (c), the modified transfer functions of the reduced-order model are given

by

MCB g1 (01, Ty Sopty -5 | A, d 0D 2 O 507

= c"C(sp)K ()™ (HN%ZW MK (s )1>ﬁ(0q|z)
q_2 ~ ~ . ~ ~
x | IT K(og—5) " N(og—y1 [ d977V) | K(o1) ' B(on)b
=0
=: UA):?N\(UQ | 2)0,

= N WHN(o, | )V,

for 1 <q<k;1<n<0 and an arbitrary scaling vector z € C™. The right factor can
then be rewritten using the construction of V' such that

Vig=V (H K(og—j) " N(ogj1| d(q_j_l))) K(o2) 'N(oy | dD)K(01) "' B(o1)b

3
=V (H IC Uq J N(Uq —j—1 | 9=~ 1))) E(U2)_1WHN(UI | d(l))

x V(o) " WK (01) K(01) ' B(oy)b

=~ Pu(on) =u

(H (00-5) Moy |47 1>) Rlo2) W¥(on | 4,

(Uq)&WHNQqul ‘ d(qil))vqfl
(Uq)%WHIC<‘7q> K(Uq)ilN(Uqfl ‘ d(qil))vqfl

=:P\/(O'q) =q

VK
VK

= UQJ

where Py(01),. .., Py(o,) are the projectors onto span(V') from (3.24). Analogously, one
can show the identity

Wi, =w

n»

by constructing the projectors (3.25) onto span(W) and using wy, ..., w, € span(WW).

161



5 Structured Bilinear Systems

Combining the identities yields

cHaB7q+n(01, ey Oy Sh—pt s -5 SB | d(l), . ,d(q_l), z, 5(9_"+1), o ,5(9_1))b
= By WN(oy | 2)V,
= w;'N(crq | 2)v,

= cHGB7q+n(01, e Oy o=yt 1s - S0 | dW, . daY z g0t sE=Dyp,

for 1 < ¢ <k;1<n<0 and an arbitrary scaling vector z € C™. O

Theorem 5.18 Part (c) is an interesting result, as the modified bilinear term in the middle
between the interpolation by left and right projection allows for a completely arbitrary
scaling vector. Especially, by using certain realizations of z, blockwise interpolation
conditions hold true corresponding to the centering bilinear term, as the following example
demonstrates: With Theorem 5.18, construct span(V') and span(W) such that Gg1(c)b
and c"Gg;(c) are interpolated for chosen interpolation points o,¢ € C, and tangential
directions b € C™ and ¢ € CP. Then, by two-sided projection it holds additionally

Hapa(o,s|2)b = MGpa(o, s | 2)b,

T T
for all z € C™. Especially, choosing z = {1 0} and z = [O 1} yields the blockwise
two-sided tangential interpolation condition

CHQB,Q(Ua ) (I, ®@0b) = CH?B,z(U, )L, ®b);

cf. Section 5.6.4.

Besides matching transfer function values, in practice, the interpolation of partial
derivatives with respect to the frequency points is important as it can improve the approx-
imation quality of the computed reduced-order model around the chosen interpolation
points significantly. The following theorem states conditions on the projection spaces to
satisfy tangential Hermite interpolation conditions.

Theorem 5.19 (Bilinear tangential Hermite interpolation):

Let Gg be a bilinear system, with its modified transfer functions Ggj in (5.65), and
Gp the reduced-order bilinear system constructed by (5.4), with its modified transfer
functions Gp. Given sets of interpolation points oy,...,0, € C and gy, ...,5 € C, for
which the matrix functions C, K=, A/, B and K1 are complex differentiable, orders of
partial derivatives ¢y, ...,0, € Ny and vy, ...,y € Ny, two tangential directions b € C™
and ¢ € CP, and two sets of scaling vectors dV, ..., d*=1 e C™ and 6, ..., 50D e C™,
the following statements hold:

162
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(a) If V' is constructed as

k—2
Uk = 0 K™ (o) (H D,ny (NC-| d(k_j))’C_l)(Ukj))
j=1

x O (N(. | d)E'B) (01)b,

span(V) D span ([01,0 e UW'ﬂD :

then the following interpolation conditions hold true:

(9511 Gp1(01)b = asal'laB,l (01)b,

,1208.2(01, 02| dW)b = 8sflsjzaB,2(01, a5 | dV)b,
1 °2 1 S92

0o oy nGer(on,. .., 0] dm, ... ,d(k_l))b
“Sk—1 Sk

81'

=04 e 3 Gprlon, ..o dD . dFD),
S1 7 Sk—1 Sk

(b) If W is constructed as

Wiy = 0o (KHCH) (o)
Waiyy = Oy (KTN8O (G )01,

oz, = Dyia (KN 8 M) (1)1 1

span(W) 2 span ([wl,o we,ue}) :

jlzoa' 7‘617
]2:()" 7627
jk:Oa' 7€k’a
j1:07"‘7£17
j2:07 'a€2a
ijO, 'agk'
igZO,...,Vg,
lg—1 = 07"'71/9717
i1:0,...,1/1,
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then the following interpolation conditions hold true:

CHasie Gp,1(s9) = CHasie/G\B,l(ge)a ig=0,...,vp,

CHasieflsVe Gp2(so_1,50 | 60~D)
1 2

= CHaSieflsug GB,2(§9717 So ‘ 6(9_1))7 7:971 = 07 <oy Vo1,
1 2

CHasilsggmsg@ GB,H(gla Y | 5(1), RN ,(5(9_1))

= CHOSHSVQ.”SVQGB,g(Cl, ..., G0 | 5(1), o ,5(971)), 11 =0,...,11.
1 8275

(c) Let V be constructed as in Part (a) and W as in Part (b), then, additionally to
the results in (a) and (b), the following conditions hold:

H
C 0 01 Lg—1 _jq f0—n+1 Yo—n+2 vg GB,q-i—T](Ula <.y 0q, §9_77+1, N ] ‘
$178¢—1 Sq Sg4a Sq+2 Sqtn

I (Co R e SN (Gl )

_ .H ‘ a
=c'04  t41 g i9—n+1 Yo—n+2 vp GB,qun(Ub <30, 89—n+15 -+ -5 S8 |
51 7%¢—1 Sa Sq41 Stz Sgin

dW, . daD 5 g0t §O=Dyp,

for j, =0,...,4g; to—ys1 =0,...,v9_py1; 1 < g < k; 1 <n <0 and an additional
arbitrary scaling vector z € C™. O

Proof. The proof follows the ideas of the proofs of Theorems 5.4, 5.5, 5.7 and 5.18 using
the projectors (3.24) and (3.25) onto either span(V') or span(W). O

To complete the theory for the new tangential interpolation framework, the special
cases of Theorems 5.18 and 5.19 by using identical sets of interpolation points and scaling
vectors in the two-sided tangential interpolation case is left. As in Proposition 3.2,
Theorem 5.6 and Corollaries 5.8 and 5.11, this allows to implicitly interpolate partial
derivatives. Due to the dependency of the modified transfer functions on the scaling
vectors, also partial derivatives with respect to the scaling vectors will be considered for
interpolation, very similar to the results in the parametric system case (Theorem 5.15).
For the following theorem, the full Jacobi matrix (2.6) for the modified transfer functions
is given by

VGB,].C = 851GB7;€, R ,85kGB,k, 6d<11)GB7k, R ,8d5rll>GB,k, C. ,adgkfl)GB’k, RN ,8d5r;f71)Gka .
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Theorem 5.20 (Implicit bilinear tangential interpolation):

Let Gg be a bilinear system, with its modified transfer functions Ggj, in (5.65), and
Gy the reduced-order bilinear system constructed by (5.4), with its modified transfer
functions aB,k. Given a set of interpolation points o1, ..., 0, € C, for which the matrix
functions C, K1, N, B and K~ are complex differentiable, two tangential directions
b e C™ and ¢ € CP, and scaling vectors dV, ..., d*=D e C™, the following statements
hold:

(a) Let V and W be constructed as in Theorem 5.18 Parts (a) and (b) for matching

interpolation points oy = <1, ..., 0y = ¢ and the scaling vectors dV) = §()
d*=1D = 51 then additionally it holds

\Y (cHGB,kb) (01, e, Ok | d(l)’ . ,d(k_l))
=V (CHEB,kb> (01, e, O ’ d(l)’ o d(k_l))'

(b) Let V and W be constructed as in Theorem 5.19 Parts (a) and (b) for matching

interpolation points oy = <1, ..., o) = <, scaling vectors dV) = ¢, . k-1 =
§* =1 and orders of partial derivatives ¢; = v, ..., {, = v, then additionally it
holds

\Y (CHO o 4Gp kb) (01, o, Ok | d(l)’ o 7d(k—1))
Sp sy )

=V <CH83§1...S£k/G\B7kb) ((71, e, Ok | d(1)7 o ’d(kfl))' o

Proof. The proof of Part (b) is analogous to Part (a) by replacing the simple interpolation
by the Hermite conditions from Theorem 5.19. Therefore, it is enough to prove Part (a).
First, consider the partial derivatives with respect to the scaling vectors. For arbitrary
1<j<k—-—1Tand 1 <i<m,it holds

ad@ (CHEBJJ?) (01, 0% | d(l), o ,d(k—l))

il

(=

1

—_

k
:CHC(Uk I/C\ O'k ( ﬁak g|dk Z))I/C\(O'k_g)_l) (8d<j)ﬁ(0j|d(j))>

l=j+1

= ’Lf],l;l_j_l < d(J)N o; |d]) >

= Lf}k_j_lw <ad§j)N(Uj ‘ dY) )) V?A)k,jfl
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5 Structured Bilinear Systems

such that only the modified bilinear term corresponding to the scaling vector d¥) needs
to be differentiated. Using exactly the approach from the proof of Theorem 5.18 and the
construction of span(V’) and span(1V) yields the two identities

Vop_jo1 = vp—j1 and Wig_j1 = wi—j-1,
which give the Hermite interpolation condition
8d§j> (CH/C:B,kb) (0'1, e, 0k | d(l), e ,d(k_l))
= dj W (9,0N(05 | d9)) Vi
= wlt:i—j—l (8d£j>N(oj ’ d(j))>vk—j—1

- d(-j) (CHGB7kb) (0-17 <o Ok | d(l), e ,d(k_l))’

forall1 < j <k—1and 1 <i<m. Therefore, the interpolation of all partial derivatives
with respect to the scaling vectors holds. The interpolation of the partial derivatives with
respect to the frequency arguments can be proven in the same fashion but, in principle,
follows directly from Corollary 5.11. O

5.6.4 Special case: Structured blockwise tangential interpolation

As mentioned before, the new tangential interpolation framework for structured bilinear
systems from Section 5.6.3 also covers the case of blockwise tangential interpolation. Due
to its relevance in the literature [31,160], the blockwise tangential interpolation results
are summarized here for the structured bilinear system case.

As first step, the blockwise tangential interpolation problem as in (5.46) needs to
be generalized to the structured system case. Therefore, take a look at the structured
subsystem transfer functions in the MIMO system case (5.3). Multip