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A B S T R A C T

As multi-drug resistant tuberculosis (MDR-TB) continues to spread, investigating the transmission potential
of different drug-resistant strains becomes an ever more pressing topic in public health. While phylogenetic
and transmission tree inferences provide valuable insight into possible transmission chains, phylodynamic
inference combines evolutionary and epidemiological analyses to estimate the parameters of the underlying
epidemiological processes, allowing us to describe the overall dynamics of disease spread in the population. In
this study, we introduce an approach to Mycobacterium tuberculosis (M. tuberculosis) phylodynamic analysis
employing an existing computationally efficient model to quantify the transmission fitness costs of drug
resistance with respect to drug-sensitive strains. To determine the accuracy and precision of our approach,
we first perform a simulation study, mimicking the simultaneous spread of drug-sensitive and drug-resistant
tuberculosis (TB) strains. We analyse the simulated transmission trees using the phylodynamic multi-type
birth–death model (MTBD, (Kühnert et al., 2016)) within the BEAST2 framework and show that this model
can estimate the parameters of the epidemic well, despite the simplifying assumptions that MTBD makes
compared to the complex TB transmission dynamics used for simulation. We then apply the MTBD model
to an M. tuberculosis lineage 4 dataset that primarily consists of MDR sequences. Some of the MDR strains
additionally exhibit resistance to pyrazinamide — an important first-line anti-tuberculosis drug. Our results
support the previously proposed hypothesis that pyrazinamide resistance confers a transmission fitness cost to
the bacterium, which we quantify for the given dataset. Importantly, our sensitivity analyses show that the
estimates are robust to different prior distributions on the resistance acquisition rate, but are affected by the
size of the dataset – i.e. we estimate a higher fitness cost when using fewer sequences for analysis. Overall,
we propose that MTBD can be used to quantify the transmission fitness cost for a wide range of pathogens
where the strains can be appropriately divided into two or more categories with distinct properties.
1. Introduction

Tuberculosis (TB) continues to be a major problem for global public
health. A connected and pressing issue is the continued detection
of drug-resistant TB, and especially of multidrug-resistant (MDR-TB)
strains, which resist treatment by at least two main first-line drugs,
rifampicin and isoniazid. Rifampicin-resistant and MDR-TB made up
as much as half a million of the 10.6 million new tuberculosis cases
worldwide in 2016 (WHO, 2017). In the same year, an estimated 19%
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of previously treated TB cases were rifampicin- or multidrug-resistant.
While MDR-TB is treatable and curable by second-line drugs, there
are only a few second-line treatment options, all of which require
regimens that last from 9 months up to 2 years and are expensive
and toxic (WHO, 2016). While these treatments are normally successful
in curing MDR-TB patients, WHO reports that in 2017 an average of
6.2% of MDR-TB cases resisted treatment by the most effective second-
line anti-TB drugs, representing the so-called extensively drug-resistant
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(XDR-TB) cases. In at least 127 countries worldwide, one or more cases
of XDR-TB had been reported by the end of 2017 (WHO, 2018). The
continuous detection of such strains in transmission clusters and the
lack of new anti-TB drugs highlights the need for preventing further
transmission of drug-resistant strains (Kendall et al., 2015).

Any treatment selects for drug-resistant strains and any drug resis-
tance is a burden for the individual patient. A resistant strain with
high transmission potential may cause a resistant epidemic and thus
poses a serious risk for the general population. Thus, public health
measures should aim at preventing the emergence of resistant strains
with a high transmission potential. In this study we aim to quantify the
transmission fitness cost of drug-resistant strains using M. tuberculosis
genomic data.

New sequencing technologies allow us to obtain large numbers
of M. tuberculosis genome sequences (Meehan et al., 2018; Sengstake
et al., 2017; Casali et al., 2014). Extensive genetic sequencing allows
us to detect some types of drug resistance earlier compared to phe-
notypic methods (Yakrus et al., 2014; Miotto et al., 2014; Pankhurst
et al., 2016; Colijn and Cohen, 2016), and to detect drug resistance in
cases when standardized tests are not available (Horne et al., 2012).
New technologies allow real-time whole genome sequencing (WGS) of
ongoing epidemics (Walker et al., 2018).

Phylogenetic and transmission analyses of WGS data attempt to
reconstruct transmission between infected individuals. Tools for phy-
logenetic and transmission tree reconstruction from TB WGS data are
increasingly becoming available, e.g. Didelot et al. (2014, 2017) and
Klinkenberg et al. (2017).

Phylodynamic analysis, an approach introduced more than a decade
ago by Grenfell et al. (2004), aims at unifying the inference of epidemi-
ological and evolutionary dynamics of pathogens. This approach aims
to estimate the parameters of the tree-generating process, e.g. trans-
mission and cure rates in the case of an epidemiological model, jointly
with the evolutionary relationships between sampled sequences. There
are still a number of challenges to be tackled in phylodynamics (Frost
et al., 2015), particularly, since the first generation of phylodynamic
tools have been used and validated exclusively on viral sequences. Now
that whole genome sequences are readily available for other types of
pathogens, rigorous testing needs to be performed to further validate
their use (Biek et al., 2015).

Few phylodynamic methodological approaches have been devel-
oped specifically for analysing M. tuberculosis datasets. One example
s work by Merker et al. (2018), where population size estimates were
sed to approximate the fitness of strains with compensatory mutations.
owever, to our knowledge, no previous study has directly estimated
pidemiological dynamics such as the relative transmission fitness of
rug resistant strains for TB.

In this study, we first investigate the appropriateness of a phylody-
amic tool developed for viral pathogens to study the epidemiological
ynamics of TB. We first simulate epidemics under an epidemiolog-
cal model specific for TB, including latent (exposed) periods and
reatment periods. We then apply this phylodynamic tool to the sim-
lated data and evaluate the fitness costs for drug-resistant TB strains
ompared to the drug-sensitive TB strains. The tool is called the multi-
ype birth–death (MTBD) model (Kühnert et al., 2016), which works
ithin the BEAST2 software framework (Bouckaert et al., 2014). In-

erence under MTBD is based on a multi-type birth–death-sampling
rocess. It assumes that different strain types (such as drug sensitive
nd drug resistant) circulate simultaneously within an epidemic, and
llows estimation of type-dependent transmission rates based on se-
uencing data. To ensure computational feasibility, our configuration
f MTBD effectively ignores the complex TB dynamics such as latency
nd treatment.

Throughout, we estimate the relative transmission fitness r𝜆 of drug-
resistant strains as the ratio of the drug-resistant strain transmission
rate (𝜆R) to the drug-sensitive strain transmission rate (𝜆S), i.e. r𝜆 =
𝜆

2

R∕𝜆S. This definition of relative transmission fitness quantifies the d
average decrease or increase in the number of new cases per unit of
time caused by a patient infected with a resistant strain compared to
a patient with a drug-sensitive strain. For a given relative fitness r𝜆,
the transmission fitness cost is (1 − r𝜆) × 100%. This configuration of
MTBD has been applied to estimate the relative transmission fitness
of drug-resistant mutations for the human immunodeficiency virus
(HIV) (Kühnert et al., 2018). However, we present here the first study
in which it is applied to a bacterial – and hence much more slowly
evolving – pathogen.

Our simulation study shows that MTBD parameter estimates are
highly robust when estimating the relative transmission fitness r𝜆 of
drug resistant strains, despite long periods of treatment and latency
used in the simulation scenarios.

To illustrate the utility of MTBD for TB epidemiological analysis,
we apply it to an M. tuberculosis dataset sampled over the course of
ive years in Kinshasa, the capital of the Democratic Republic of the
ongo. The dataset contains sequences from re-treatment cases of TB
hich mainly exhibit MDR phenotypes. Many of these MDR sequences
lso carry substitutions that indicate pyrazinamide resistance (Meehan
t al., 2018). We set out to test the previously posed hypothesis
uggesting that pyrazinamide resistance reduces the ability of a strain
o be transmitted from host to host (den Hertog et al., 2015). In the
erminology used here this translates to the relative transmission fitness
𝜆 of drug-resistant strains being below one. To test this hypothesis,
e quantify the relative transmission fitness of additional pyrazinamide

esistance when compared to pyrazinamide-sensitive MDR strains.

. Materials and methods

.1. Simulation study

.1.1. Simulating epidemics
In order to simulate realistic epidemics we designed an epidemiolog-

cal model that accounts for the most important aspects of TB dynamics.
his model builds upon previous models described in the literature (e.g.
omes et al., 2007; Cohen et al., 2009; Pinho et al., 2015; Dowdy et al.,
013), and was adjusted to more closely represent the spread of drug-
ensitive and drug-resistant M. tuberculosis strains within the scope of a
ingle epidemic. In our modelling framework, strain spread is described
y the Susceptible–Exposed–Infectious–Treated (SEIT2) model, shown
n Fig. 1(a). The model is tailored towards M. tuberculosis transmission
s follows. Upon exposure to the bacterium only 10% of the susceptible
opulation ( compartment) proceed to infection; others will develop
either disease nor infectiousness and can therefore be ignored in the
odel (Vynnycky and Fine, 1997). As the sampling for the available
ataset has been done within the span of five years, we restrict our sim-
lations to modelling short-term epidemics. Previous infections have no
lear effect on immunity to consecutive disease (Verver et al., 2005;
hiang and Riley, 2005; Yew and Leung, 2005), and existing methods
f vaccination (e.g. the BCG vaccine) seem to have a negligible effect on
nfectious disease dynamics in adults in endemic settings (Gomes et al.,
004). Therefore, recovered individuals return to being susceptible
fter successful treatment.

Each simulated epidemic starts with a single patient infected with a
rug-sensitive strain (compartment IS in Fig. 1(a)) and N-1 susceptible
ndividuals (compartment  in Fig. 1(a)), where N is the total popula-
ion size. A patient enters the latent (exposed) phase (ES compartment)
pon infection with a drug-sensitive strain, and moves (with rate 𝜎) to
he active phase of TB infection (IS compartment). Patients in the active
hase can transmit to susceptible individuals from the  compartment
ith rate 𝛽S, die with rate 𝜋, and start treatment (moving to the TS

ompartment) with rate 𝜏. As a patient starts treatment, they will be
ampled and the M. tuberculosis genome sequenced with probability
S. We assume that successful treatment always leads to recovery
i.e. the individual moves to the  compartment with rate 𝛾S), whereas

ropped treatment or otherwise unsuccessful treatment leads to disease
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Fig. 1. Different models used for simulation and analysis. In all figures, the compartments are marked as follows: Susceptible — , Exposed — E𝑥, Infected — I𝑥, under Treatment
— T𝑥, where 𝑥 is either drug-sensitive or drug-resistant, S or R respectively. Sampling probability is marked by p𝑥, where 𝑥 is S or R.
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elapse (i.e. the individual moves to the IS compartment again, with
ate 𝜅S). Furthermore, we assume that there are no co-infections. As
ll diagnosed cases in the study area are currently getting treatment,
here is little possibility for self-cure. Hence, infected individuals never
ecover without treatment in our model.

To account for the drug-resistant strains (compartments ER, IR, TR
n Fig. 1(a)), we add a rate 𝜇 with which individuals in the treated com-
artment TS may develop drug resistance and thus move into a resistant
nfectious compartment IR. We assume that drug resistance is never
ost, i.e. a resistant individual cannot move back to the sensitive class.
s it is also possible for drug resistance to be transmitted, we allow new

nfections which follow the same dynamics as for drug-sensitive strains.
ndividuals enter the latent phase (ER compartment) upon infection at

rate 𝛽R and progress to active disease (IR compartment) at a rate
. Again, infectious individuals can be treated (e.g. using second-line
reatment in the case of MDR-TB) and thus move to compartment TR,
here they can recover or relapse. A patient entering the TR class will
e sampled and the M. tuberculosis genome sequenced with probability
R. We call this model an SEIT2 model, and in general an SEIT𝑚 model
ith 𝑚 − 1 resistant classes.

The simulations were performed using the Bayesian inference frame-
ork BEAST2 (Bouckaert et al., 2014). The BEAST2 package MASTER

Moments and Stochastic Trees from Event Reactions) (Vaughan and
rummond, 2013) was used to simulate stochastic realizations of
pidemic histories. The simulation model was specified as chemical
aster equations (CMEs) describing the transitions between different
EIT𝑚 model states happening with predefined rates. The stochastic
imulator produced a random outcome of the epidemic in the form of
transmission tree. The simulations with initial population sizes N =

00,000 or N = 1000 stopped when 300 or 150 cases were sampled,
espectively, which is close to the sample number available in the
mpirical dataset from Kinshasa. The large population size results in
xponentially growing epidemics. The smaller population size of N =
000 resulted in epidemics where the infected population size saturated
see supplementary Figure 9).
3

To match real life sampling and to ensure identifiability, we only
eep trees with a minimum sample of 30 patients with a drug-resistant
nfection and 30 patients with a drug-sensitive infection, and restart the
imulation otherwise. We also restart the simulation in cases when the
pidemic died out before reaching the desired number of sampled cases.
hile this constraint is biasing the tree sample for surviving epidemics,
e want to mimic real world data, and we would not be able to obtain
ccurate estimates for empirical datasets that have fewer sequences.

To mimic real life situations we used a number of different con-
igurations for our model parameters 𝛽𝑥, 𝜎, 𝜏, 𝛾𝑥, 𝜅𝑥, p𝑥, 𝜋, and 𝜇,
here 𝑥 ∈ {S,R}. We specify the basic reproductive number R0,S of

the sensitive strain type, defined as the expected number of secondary
infections caused by a single drug-sensitive infected individual at the
start of the simulation prior to changing resistance status. Thus, in case
a drug-sensitive individual evolves drug resistance, only the secondary
infections caused prior to drug resistance contribute to the R0,S. Analo-
ously, the respective basic reproductive number of resistant strains is
0,R.

In the simulation setup, we specify R0,𝑥 instead of 𝛽𝑥, 𝑥 ∈ {S,R}.
This re-parametrization of 𝛽𝑥 given the parameters R0,𝑥, 𝜎, 𝜏, 𝛾𝑥, 𝜅𝑥, p𝑥,
𝜋, 𝜇, 𝑥 ∈ {S,R}, is described in the Supplement. We use combinations
of values for R0,𝑆 and R0,𝑅 for which the drug-resistant strain causes
either the same or a slightly lower number of secondary infections than
the drug-sensitive strain. We also included a case in which the basic
reproductive number of the resistant strain R0,R is below the epidemic
threshold 1. The R0,𝑥 parameter combinations for simulation were as
follows: (R0,S,R0,R) = (1.3, 1.1), (1.2, 1.1), (1.1, 1.1), and (1.2, 0.9).
Note that all R0 values are around 1, since TB is endemic in many
countries (Stadler, 2011; Ma et al., 2018).

The time spent in the exposed and infectious compartments together
(prior to first treatment or death) is fixed to one time unit, which we
set to one year in our simulations. The proportion of time spent in
the exposed and infectious compartments, respectively, is varied. The
effect of a higher proportion of time spent in the exposed compartment
on the tree shape is that bifurcations (new infections) will start to
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appear on branches later after the start of the branch, since individuals
reach the infectious state later. average time spent in the exposed
compartment in the simulations ranges from 𝑡E = 0, 0.2, 0.4, 0.5, 0.6, 0.8
to 0.9 year, which is specified by the rate 𝜎 = [∞, 5, 2.5, 2, 5∕3, 5∕4, 10∕9]
year−1. Hence, the average times spent in the infectious compartment
are 𝑡I = 1 − 𝑡E = [1, 0.8, 0.6, 0.5, 0.4, 0.2, 0.1] year, specified by 𝜏 + 𝜋 =
[1, 5∕4, 5∕3, 2, 2.5, 5, 10] year−1. Thus, 1∕𝜎 + 1∕(𝜏+𝜋) = 1, which keeps the
total time of infection before first treatment or death at one year.
This way we allow the time a person spends while exposed and not
yet infectious to be up to nine times longer than the infectious time.
Individuals infected with either sensitive or resistant strains are re-
moved from the infectious pool due to fatal outcomes with probability
0.1 and proceed to treatment with probability 0.9, (i.e. 𝜏 = 0.9 × 1∕𝑡I).
The following rates are used for the recovery rate as consequence of
treatment: 𝛾S = 1.0 year−1, 𝛾R = 0.5 year−1, which takes into account
the fact that resistant strains need longer treatment given currently
recommended treatment regimens. Mean rates of relapse are set to
𝜅S = 0.1 year−1, 𝜅R = 0.075 year−1, corresponding to a lower chance
of relapse for the resistant strains with appropriate treatment. Drug
resistance mutations were acquired at a rate of 𝜇 = 0.04 year−1. We
assume that M. tuberculosis drug resistance reversal does not occur (An-
dersson and Hughes, 2010; Casali et al., 2012; Allen et al., 2017).
Unfortunately, relapse and drug resistance acquisition rates have not
yet been quantified conclusively, so these rates were set in an ad hoc
way. We also simulated trees without exposure or possible relapse by
setting 𝜎 = ∞ and 𝛾𝑥 = ∞ (essentially setting the time spent in the E𝑥
and T𝑥 compartments to 0, 𝑥 ∈ {S,R}), referred to as the SIS2 model.

Due to drug resistant strains being of greater clinical interest, a
higher proportion of them is sampled compared to sensitive strains.
Hence, the sampling probabilities were set to pS = 0.1 and pR = 0.3
in the simulations.

To account for the stochasticity of the epidemiological process
for each of the different parameter configurations we ran a hundred
separate instances.

2.1.2. Analysis of the simulated epidemics
Employing a full SEIT𝑚 model for phylodynamic inference would

be very demanding computationally (see supplementary section MTBD
vs. SEIT𝑚). Instead, we analyse the simulated trees using the BEAST2
package MTDB (Kühnert et al., 2016). We configure it to fit a sim-
pler epidemiological model (Fig. 1(b)), and estimate the posterior
distribution of the model parameters given each tree simulated using
SEIT2. MTBD allows us to estimate a time-dependent transmission rate
𝜆𝑘𝑥, which accounts for possible changes in transmission rates due to
e.g. susceptible depletion or a newly introduced effective vaccination
strategy. Transmission rates are modelled as piecewise constant rates,
i.e. the transmission rate is constant within a user-specified time inter-
val 𝑘 (𝜆𝑘𝑥), after which it may change to another constant rate (𝜆𝑘+1𝑥 ),
and so on. The number of time intervals is user-specified. The model
estimates a removal (become uninfectious) rate 𝛿. We use a MTBD setup
in which all infected individuals are infectious, i.e. the latent and treat-
ment phases are ignored. We further assume that 𝛿 is constant through
time as the treatment strategies stay the same during the time spanned
by our phylogenetic tree. Sensitive and resistant strain have the same 𝛿
as any difference in time until treatment is likely negligible. Similarly,
MTBD estimates the sampling proportions pS and pR and resistance
acquisition rate 𝜇, which are directly comparable between MTBD and
SEIT2. We fix the sampling probability in the simulation analysis to the
true values (see supplementary section Parameter definitions). We use
the MTBD setup which disallows so-called sampled ancestors.

In the classic MTBD setup, one would estimate a separate 𝜆𝑥S per
time interval 𝑘 and per strain 𝑥 ∈ {S,R}. However we argue that the
relative transmission fitness 𝜆𝑘R∕𝜆𝑘S in real epidemics is independent of
the speed of spread (e.g. due to the varying number of susceptible
individuals) at a particular point in time, thus the disadvantage a
4

strain has after developing drug resistance stays constant. This means
that we assume r𝜆 = 𝜆𝑘R∕𝜆𝑘S is constant for all time intervals 𝑘. We
implemented this assumption in MTBD by estimating r𝜆, 𝛿S, 𝛿R, 𝜇 and
Re,S = 𝜆kS∕(𝛿S+𝜇). The latter is called the effective reproductive number
which we estimate for the sensitive strain. The effective reproductive
number Re,S of the sensitive (resp. Re,R of the resistant) strain type is
defined as the expected number of secondary infections caused by a
single drug-sensitive (resp. drug-resistant) infected individual at time
𝑡, before leaving the class 𝑥, 𝑥 ∈ {S,R}. Thus, analogous to the basic
reproductive number, in case a drug-sensitive individual evolves drug
resistance, we only count the secondary infections caused prior to
evolving the drug resistance. Thus, R𝑘

e,S = 𝜆𝑘S∕(𝛿S+𝜇) and R𝑘
e,R = 𝜆𝑘R∕𝛿R

for each time interval 𝑘.
We evaluate the performance of MTBD for analysing SEIT2 model

simulations by comparing the estimated relative transmission rate r𝜆
to the true ratio 𝛽R∕𝛽S in SEIT2. The prior distributions used for Re,S,
r𝜆, 𝛿𝑥, p, and 𝜇 are provided in Table 1. We perform all analyses
assuming both (i) a constant transmission rate and (ii) a piecewise
constant transmission rate over three time intervals. For (ii) we split
the time covered by the simulated tree such that each interval has the
same number of branching events approximately. For all analyses of
the simulation runs the Markov chain Monte Carlo (MCMC) reached
an ESS for all parameters of at least 200. For some of the simulation
configurations with tE = 0.9 and tI = 0.1 the simulations failed to
run due to the epidemics dying out almost instantly, thus they were
excluded from the results.

2.2. The Kinshasa dataset

The Kinshasa M. tuberculosis dataset consists of 324 sequences sam-
pled from re-treatment patients, most of which were identified as
Lineage 4 (309). The sequences were sampled over the course of
5 years and the sampling calendar dates were recorded. The sequence
alignment is 6567 nucleotides long, not including any known resistance
mutations.

Of the 309 sequences, 170 were clustered MDR-TB strains. The
Lineage 4 sequences are not all part of one single transmission cluster,
but form a number of smaller clusters identified previously (Meehan
et al., 2018). These transmission clusters are based on a 12 single-
nucleotide polymorphism (SNP) cut-off. This cut-off excluded the mu-
tations known to cause resistance to reduce false clustering due to
similar drug resistance profile (any mutations defined by Feuerriegel
et al., 2015). For the purpose of this paper we also removed non-MDR
sequences, i.e. sequences that lack one or both isoniazid or rifampicin
resistance, and sequences which have different MDR profiles within a
cluster.

102 of the clustered strains additionally exhibited pyrazinamide
resistance (Meehan et al., 2018). Pyrazinamide was used in Kinshasa
as an anti-tuberculosis drug in the form of a fixed combination tablet.
Pyrazinamide is an antimycobacterial pro-drug that is activated by the
enzyme pyrazinamidase, which is encoded by the non-essential pncA
gene in M. tuberculosis (Yadon et al., 2017). As pyrazinamide action
depends on the activity of the enzyme encoded by pncA (Njire et al.,
2016), multiple different single point mutations in pncA may cause
resistance to pyrazinamide by disrupting the enzyme. Little convergent
evolution has been detected on that gene (Miotto et al., 2014), and it
appears that resistance reversal mutations are extremely unlikely (An-
dersson and Hughes, 2010). The dataset contains sequences that have
59 different pncA gene mutations and we assume that the relative
transmission fitness for each of the different mutations is the same.

The resulting dataset consisted of 33 transmission clusters, sized 2 to
30 strains. Each cluster contained at most 6 different pncA substitutions,
meaning that in each cluster we have up to 6 resistant compartments.
In the resulting MTBD7 model, each resistant compartment informs the
same transmission rate. Drug resistance substitutions are not used to
infer phylogenies, but only to categorize strains into different resistance

compartments. The division of strains into different compartments does
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Table 1
Prior distributions for the MTBD parameters.
Analysis Re,S r𝜆 𝛿𝑥 𝜇 p𝑥
Simulations Lognormal(0, 1.25) Lognormal(0, 0.5) Lognormal(0, 0.5) Exp(1.0) Fixed
Kinshasa Lognormal(0, 1.25) Lognormal(0, 0.5) Lognormal(0, 0.5) Exp(1.0)

Exp(0.2)
Exp(50)
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not enforce their clustering on the tree. The same pncA substitution can
evolve multiple times along the tree if the tree structure estimated from
the genetic sequences favours de novo resistance rather than transmitted
resistance (high 𝜇, low Re,R). We however disallow resistance reversal.

The model setup used for analysis is shown in Fig. 1(c). We per-
formed MTBD analyses assuming a constant Re,S over the whole time
period (we report in the Results section that, based on our simulation
study, r𝜆 is estimated reliably without assuming time-variation for Re,S).

e set the priors for the MTBD parameters as specified in Table 1 and
he prior for the substitution rate was set to a Log-normal distribution
ith the mean of 1.5𝑒−7 and standard deviation of 1.0 (Meehan et al.,
018). While the distribution is Log-normal, the mean is specified not
n log, but in real space, such that it translates directly to estimated
ubstitution rates. We set the sampling proportion to be equal for both
train types as all strains were sampled regardless of pyrazinamide
esistance status. In particular, we set a narrow prior on the sam-
ling proportion, centring the mean sampling proportion at 2.3%, as
stimated by Meehan et al. (2018). The sampling proportion is a lot
ower than in the simulations, however the difference in sampling is
ccounted for in the prior and should not bias the estimates of other
arameters, as MTBD accounts for the sampling proportions in the
ikelihood (see Kühnert et al., 2016). Then, we estimate phylogenetic
rees for each of the 33 clusters; the MTBD and evolutionary parameters
re shared across all clusters.

The empirical analysis was done based on several small clusters,
hile the simulation study was done on one large cluster (and revealed

eliable results for that scenario, see the Results section). To validate
ur empirical analysis approach involving several clusters, we have
erformed analyses only using one or a few of the Kinshasa clusters.
tarting with the largest cluster in the Kinshasa data, we analysed in-
reasing numbers of clusters, sequentially including the smaller cluster
izes. We similarly removed the largest clusters, thereby reducing the
ize of the dataset.

The relative fitness r𝜆 and the de-novo resistance evolution rate 𝜇
hould be inversely correlated, as new infectious and de novo resis-
ance acquisitions are the only routes to a drug-resistant infection. We
nvestigated the robustness of the pyrazinamide resistance acquisition
ate 𝜇 and r𝜆 estimates by changing the prior on the mutation rate
rom Exp(1.0), translating to a mean rate of 1, to Exp(0.2), translating
o a mean rate of 5. Such priors set the mean time until resistance
cquisition to 1 and 0.2 years respectively. We additionally ran the full
luster analysis under a very restrictive prior on 𝜇 (Exp(50), translating
o a very low mean rate of 0.02) to see whether this will greatly
nfluence the results. In all of the analyses the MCMC reached an ESS
or all parameters of at least 175.1

. Results

.1. Simulation study

We simulate M. tuberculosis phylogenetic trees under an SEIT2
odel (shown in Fig. 1(a)), performing 100 simulations for each

hosen parameter combination. We then estimate the epidemiological

1 With the exception of two runs on a small number of clusters, where the
rior did not mix, however as the runs on the incomplete dataset were done
o verify the approach and every other run mixed, we disregard those.
5

t

parameters based on the simulated phylogenetic trees using the MTBD
package (model shown in Fig. 1(b)) within BEAST v2.0, resulting in
a sample of the posterior distribution for each model parameter. We
summarize each posterior distribution by computing the median and
the 95% highest posterior density (HPD) interval. To evaluate the
estimates for all 100 simulated trees together, we report the median
of the set of parameter medians.

Here we report the relative transmission fitness r𝜆, which is defined
s the ratio of transmission rates of the two strains: 𝜆R∕𝜆S. If the r𝜆 is
reater than 1, we conclude that the MDR M. tuberculosis strain is fitter
han the drug-sensitive strain. Fig. 2 and supplementary Figures 1 to 8
how the resulting estimates from all simulations, the simplest ignoring
he E and T compartment and the most complex including a long latent
eriod (large 𝑡E) and treatment.

First, we discuss the Figures showing the simulated epidemic on
fairly small population size, N = 1000 (Fig. 2 and supplementary

igures 1 to 4). The transmission rates and consequently the effective
eproductive number Re decrease through time due to a depletion of
usceptibles. As explained in the Materials and Methods section, we
ssume Re to be either (i) constant or (ii) allow three piecewise constant
ntervals for Re in the inference. First, we observe that violating the
TBD assumptions by adding the E and T compartments neither affects

he estimate of the relative transmission fitness r𝜆 nor the estimates
f Re,S and Re,R. When assuming (i) that Re is constant through time,
he r𝜆 is estimated very well (in 91%–99% of the simulations for each
onfiguration the true value falls within the estimated HPD). Not only
he coverage is high, accuracy is good as well. For example, when the
elative fitness is relatively high (e.g. r𝜆 ≈ 0.72), in at least 72% of the
nalyses the HPD interval excludes 1 when it should be excluded due
o the fitness cost of resistance. As expected, the estimated Re is lower
han the true R0 when a constant Re is used as it averages over the
hole time period which includes times with low susceptible counts.

For (ii), the Re,S and Re,R estimates in the first interval of the epi-
emic correspond to the true R0 and the second and third interval show
drop in the estimated Re due to a decreasing susceptible population

ize. The r𝜆 is estimated well, as in 86%–98% of simulations for each
onfiguration the true value is within the estimated HPD. Here, in the
ases when the relative fitness cost is high (e.g. r𝜆 ≈ 0.72), in at least
5% of the analyses, the corresponding HPD interval excludes one.

Given a large population size (supplementary Figures 5 to 8), we
stimate all parameters reliably, both when using one and three inter-
als for Re estimation. Additionally, given more data the estimates of
𝜆 become more precise, as for r𝜆 ≈ 0.72 in at least 81% of the analyses
he HPD interval excludes 1 in both single and three interval estimates.

.2. The Kinshasa dataset

We ran the analyses on the complete dataset using the package
TBD configured as shown in Fig. 1(c) under two different priors on

he resistance acquisition rate 𝜇, Exp(1) and Exp(0.2). In particular we
ssumed a constant Re,S through time as the simulations revealed that
his assumption still produces reliable r𝜆 estimates. The two analyses
stimate a median relative transmission fitness of approximately 0.64:
𝜆 = 0.6417 (median, 95% HPD: [0.5477, 0.7378]) for Exp(1) and r𝜆 =
.6403 (median, 95% HPD: [0.5454, 0.7394]) for Exp(0.2) (Fig. 3). We
ranslate the estimated relative fitness to a pyrazinamide resistance
ransmission fitness cost of approximately 36%. To test robustness of

he results when the acquisition rate is much slower, we additionally
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Fig. 2. r𝜆, Re,S and Re,R estimates plotted in relation to the different simulation models, for 𝑟𝜆 ≈ 0.72, R0,S = 1.2 and R0,R = 0.9, 1000 individuals in the population, 150 samples
nd 3 intervals for Re estimates. Each plot shows the median parameter estimates for 100 simulation runs for each configuration. The points on the vertical lines indicate the
edian of estimate medians per 100 runs. Similarly, the upper and lower bounds show the median values of the 95% HPD interval limits per 100 runs.
sed a prior of Exp(50) on 𝜇. This analysis estimates a slightly higher
elative transmission fitness with largely overlapping confidence inter-
als: r𝜆 = 0.7194 (median, 95% HPD: [0.6261, 0.8063]). The parameter
stimates for 𝜇 for the Exp(0.2), Exp(1) and Exp(50) priors overlap by a
arge margin:
.0774 (median, 95% HPD: [0.0498, 0.1116]), 0.0752 (median, 95%
PD: [0.0466, 0.1071]) and 0.0414 (median, 95% HPD: [0.0277, 0.0572])

see Supplementary Figure 10).
In order to test robustness of our results to dividing sequences into

lusters, we perform incremental analyses, where we first analyse only
he biggest cluster, then the two biggest clusters, etc. The results for the
nalyses under an Exp(1) prior on 𝜇 are shown in supplementary Fig-
re 11a. Second, we perform a decremental cluster analysis, where we
tart with the full dataset and then remove the largest cluster from the
nalysed dataset, then the two largest clusters, etc. The corresponding
esults are shown in supplementary Figure 11b. The incremental cluster
nalyses show a consistent fitness cost and an effect of the dataset size
n the fitness cost estimate. As more information is added, the between-
ost pyrazinamide resistance transmissibility increases (from r𝜆 ≈ 0.5

to r𝜆 ≈ 0.64), and stabilizes after a certain dataset size is reached (see
supplementary Figure 11a). Furthermore, the prior on 𝜇 does not affect
these results (supplementary Figure 12). Similarly, in the decremental
cluster analyses, the cost rises as more sequences are removed from the
analyses.

We further performed the incremental cluster analyses without se-
quence data, while still specifying the cluster sizes, sampling times, and
drug resistance types, i.e. information on the composition of prevalence
data. For this, all sequence data was replaced by a single unknown nu-
cleotide character in the configuration files. The posterior estimates are
6

shown in supplementary Figure 13. Importantly, 𝑟𝜆 for the full dataset
is estimated around 0.42. Thus, the same method using prevalence-
related data only predicts a relative transmission fitness of 0.42, while
adding sequences predicts a relative fitness of around 0.64.

Additionally, we investigated whether the estimated relative trans-
mission fitness in the analyses without genomic data reflects simple
data properties such as the proportion of pyrazinamide-resistant strains
to all strains, or the diversity of the pyrazinamide-resistant strains.
However, we find no clear trend (supplementary Figure 13 vs. supple-
mentary Figure 14). This suggests that the fitness cost is at least in part
informed by the sampling times and drug resistance statuses, even when
disregarding evolutionary relationships between samples.

4. Discussion

We have shown that the BEAST2 MTBD package can be used to
estimate relative transmission fitness for drug-resistant TB strains com-
pared to drug-sensitive strains. Even though our MTBD configuration
ignores latency and treatment during infection, it reliably estimates the
transmission dynamics for simulations with long latent and treatment
phases. This insight is useful beyond the analysis of M. tuberculosis.
Many infections can be treated but may relapse. Many phylodynamic
tools do not directly model exposure, treatment, or relapse for compu-
tational reasons. Here, we show that a phylodynamic tool with such
a setup can still robustly estimate relevant epidemiological quantities
of epidemics with treatment, latency, relapse, and other dynamics. La-
tency should be accounted for whenever possible, however, our results
suggest that we can gain valuable insights on pathogen transmission
dynamics even when latency could not be explicitly incorporated into
the analysis due to computational or statistical reasons. As in every
simulation study, only a range of parameters can be investigated. Here

we picked parameter values that are realistic for MDR-TB epidemics,
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Fig. 3. The posterior probability density of r𝜆 for the full dataset analysis of the Kinshasa sequences under 2 different priors on the resistance acquisition rate 𝜇.
and researchers interested in different pathogens are highly encouraged
to use our BEAST2 configuration files (in supplement) with modified
parameter settings to explore the appropriateness of MTBD for their
study system.

Previous works considered fitness cost in vitro for drug resistant
M. tuberculosis strains. For example, Gagneux et al. (2006) and oth-
ers (Mariam et al., 2004; Davies et al., 2000) have assessed fitness costs
of drug resistance in M. tuberculosis using competition assays in differ-
ent media. They measure fitness costs via differences in cell growth,
also referred to as in vitro fitness cost. However, in vitro fitness cost
is not equivalent to transmission fitness cost. Once transmission fitness
cost for a range of drug resistant strains is quantified, one can assess
the correlation between in vitro and observational transmission fitness
costs. At present, no estimates of pyrazinamide resistance transmission
fitness costs in vitro are available, so a direct comparison between
different estimates is currently impossible.

Kendall et al. (2015) have used incidence data to estimate rela-
tive transmissibility of MDR-TB, showing that a predominant number
(median 95.9%; 95% uncertainty range [68.0, 99.6]) of MDR-TB cases
are due to transmission rather than de-novo resistance acquisition. On
the other hand, Burgos et al. (2003) have used M. tuberculosis drug
resistance and genotype data to cluster isolates from San Francisco and
estimate drug resistance fitness costs in comparison to drug sensitive
strains in the form of a proxy for the ratio of reproductive numbers.
Their analyses show a high overall fitness cost of drug resistance,
showing that on average the estimated reproductive number ratio of
any drug-resistant to drug-susceptible TB strains is 0.51 (95% confi-
dence interval [0.37, 0.69], resistant to isoniazid, streptomycin, or both).
Moreover, their dataset shows no secondary MDR-TB cases, whereas
our studied dataset shows signal for transmitted MDR-TB cases. Luciani
et al. (2009) estimate that the relative fitness of drug-resistant strains
varies from 0.3 in Venezuela to 1.0 in Cuba and Estonia, showing
that depending on the country in question the fitness costs can vary
drastically. Our estimate of around 0.64 for the relative fitness of
pyrazinamide resistant strains in Kinshasa falls inside the confidence
intervals both in Burgos et al. (2003) and Luciani et al. (2009).

In summary, Kendall et al. (2015) have no genomic information
available, while Burgos et al. (2003) only make use of genotyping data
to cluster isolates by similarity, rather than by inferring evolutionary
relationships. In our analyses, we observed higher estimates of trans-
mission fitness costs when ignoring the genomic data and hence the
evolutionary relationship among samples (see Supplementary Figure
12). Luciani et al. (2009) estimate fitness costs from genetic data
using approximate Bayesian computation, bundling multiple different
7

resistant strain types together, which leads to averaging of possible
costs in any different resistance type. While in this study we bundle
substitutions on a single gene that confer resistance to a single drug,
we make sure that the MDR substitutions are identical within a cluster.

Phylogenetic and transmission analyses have previously been per-
formed on WGS M. tuberculosis data. These analyses have mainly fo-
cused on inferring the timing of epidemics and on inferring transmis-
sion networks with direction of transmission. Works such as Didelot
et al. (2014, 2017) have used phylogenetic trees inferred by BEAST to
infer transmission trees. On the other hand Klinkenberg et al. (2017)
have implemented simultaneous transmission and phylogenetic tree
estimation, which allows for more precise estimates of transmission
event times, as unobserved events are unconstrained by the previously
estimated phylogenetic trees. However, this latter tool was tested on
densely sampled populations, and is thus not applicable to datasets as
the one used here. Moreover, none of these tools allow us to infer
parameters defining the dynamics of epidemic spread, such as the
transmission rates and the relative fitness of distinct strains.

Based on phylogenetic and transmission analyses, one can attempt
to make qualitative conclusions on specific strain fitness based on
the clustering of the samples on phylogenetic and transmission trees.
One phylogenetic analysis aiming at assessing transmission fitness cost
based on WGS data is Casali et al. (2014), where the authors used whole
genome sequences and their reconstructed phylogenetic relationships
to investigate the transmission fitness costs of drug resistance. They
used the clustering of isolates as an indicator of transmission fitness,
where closely clustering isolates with an inferred common ancestor in-
dicate transmitted resistance, whereas single isolates indicate acquired
resistance. The authors speculate that the most prevalent substitution
p.Ile6Leu in the pyrazinamide resistance gene pncA, which does not
confer resistance in vitro, does confer clinical resistance with no re-
duced transmissibility. Unfortunately, this specific substitution is not
present in the dataset from Kinshasa so it was impossible to check this
hypothesis.

Our approach allows us to look at specific resistances and esti-
mate their transmission success in relation to other strains circulating
in the same epidemic. We quantify the transmission fitness cost of
pyrazinamide resistant MDR M. tuberculosis to be around 36% relative
to pyrazinamide-sensitive MDR M. tuberculosis strains. While it would
be most interesting to investigate the transmission fitness costs for
each specific resistance mutation, rather than assuming that the cost
is the same for all mutations causing pyrazinamide resistance, we
need to have a significant amount of sequences with identical pncA
mutations to be able to estimate their specific transmission costs. Our
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dataset, however, does not contain enough sequences exhibiting the
same mutation in order to quantify its transmission fitness cost. Our
model does not allow for co-infection, which could have occurred in the
Kinshasa patients but is impossible to detect. The long culturing period
of the strains required before sequencing (at least 6 weeks) results in
outcompeting of any mixed infections and the sequencing of a single
dominant clone. We lack information on possible confounding factors
such as HIV co-infection status which could potentially influence our
estimates. However, the possible association between pyrazinamide re-
sistance and HIV status has been previously explored and no significant
association was found Budzik et al. (2014).

The BDMM model explicitly accounts for incomplete sampling in
the computation of the phylodynamic likelihood. This in turn means
that difference in sampling strategies for the different types of analysed
strains will not bias the results as long as this prior information on the
sampling strategy is included using informative priors on the sampling
proportions. It is important to also set the substitution rates depending
on the time scales on which the sequences are available. If the data is
available in a similar format to what is analysed here, e.g. in 12 SNP
clusters covering a relatively short time period, estimates of the substi-
tution rates for shorter time scales are more reasonable than estimates
from the whole evolutionary history of M. tuberculosis. Additionally, it
would be beneficial to include information on the rates of resistance
acquisition.

In the future, we would like to estimate the relative transmis-
sion fitness of isoniazid and rifampicin resistances, the two resistances
defining MDR-TB, compared to drug sensitive strains. Such analy-
ses require datasets containing large numbers of both drug-sensitive
and drug-resistant strains. Unfortunately, drug-sensitive M. tuberculosis
strains are often of lower clinical interest and are therefore rarely
sequenced. Indeed, mainly MDR strains were available for Kinshasa,
thus such analyses were impossible. To our knowledge, no reasonably
sized datasets of linked cases containing both sensitive and resistant
strain sequences are available at the moment. Upon availability of such
data sets, our approach could be employed to compare between-host
fitness e.g. between strains with and without compensatory mutations,
between HIV negative and positive patients, and between prison and
non-prison-associated TB cases.

Overall, we show through simulation that we can use the modified
MTBD method to analyse pathogens where the strains can be appro-
priately divided into two or more categories with distinct properties.
Importantly, since we employ phylogenetic trees as a model for evolu-
tionary histories, these pathogens may not recombine drastically on an
epidemiological scale. This is fulfilled for TB and many viral pathogens
where parts of the genome never recombine. Many other bacteria may
not be appropriately analysed with this method due to e.g. frequent
plasmid exchange. In this work we show that we can estimate the
transmission fitness effects of additional resistance in MDR-TB. We
expect that our method will more generally be useful to quantify the
epidemic spread of drug resistances in a range of pathogens, and in that
way may shed light on optimal treatment strategies aiming to avoid
the selection for highly transmissible drug resistances causing epidemic
outbreaks.
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