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Abstract

In this paper, we consider model order reduction for bilinear systems with non-
zero initial conditions. We discuss choices of Gramians for both the homogeneous
and the inhomogeneous parts of the system individually and prove how these Grami-
ans characterize the respective dominant subspaces of each of the two subsystems.
Proposing different, not necessarily structure preserving, reduced order methods for
each subsystem, we establish several strategies to reduce the dimension of the full
system. For all these approaches, error bounds are shown depending on the trun-
cated Hankel singular values of the subsystems. Besides the error analysis, stability
is discussed. In particular, a focus is on a new criterion for the homogeneous subsys-
tem guaranteeing the existence of the associated Gramians and an asymptotically
stable realization of the system.
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MSC classification: 65L05, 93A15, 93C10, 93D20

1 Introduction

In this paper, we study model order reduction (MOR) techniques for the following system
with non-zero initial states:

ẋ(t) = Ax(t) +Bu(t) +
m∑
k=1

Nkx(t)uk(t), x(0) = x0 = X0v0, (1a)

y(t) = Cx(t), t ≥ 0, (1b)

where A,Nk ∈ Rn×n, B ∈ Rn×m, and C ∈ Rp×n. Moreover, x is the state vector, y
the quantity of interest and the columns of X0 ∈ Rn×q span all initial states x0 that
are considered here, i.e., there exist v0 ∈ Rq such that x0 = X0v0. We assume that the
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matrix A is Hurwitz, meaning that σ(A) ⊂ C− = {z ∈ C : <(z) < 0}, where σ(·)
denotes the spectrum of a matrix and <(·) represents the real part of a complex number.
Furthermore, let u ∈ L2, i.e.,

‖u‖2L2 :=

∫ ∞
0
‖u(s)‖22 ds =

∫ ∞
0

u>(s)u(s)ds <∞.

There exist many different MOR techniques for bilinear systems when x0 = 0, e.g.,
methods that are balancing related [1, 14, 19, 21], optimization/interpolation based [5,
13] and data-driven [2]. However, many applications involve non-zero initial states such
that a study for MOR for (1) is essential. Several approaches in this context have been
established for linear systems [3, 4, 12, 15, 25]. There is no straightforward generalization
of these techniques to (1), since the study of transfer functions and fundamental solutions
is much more involved for bilinear systems. In this work, choose an approach that relies
on estimates for fundamental solutions of bilinear systems that originate in [22]. These
estimates enable a detailed theoretical analysis for an ansatz that conceptionally extends
the one used in [4]. The general idea is to split (1) into two subsystems. System

ẋx0(t) = Axx0(t) +
m∑
k=1

Nkxx0(t)uk(t), xx0(0) = X0v0, (2a)

yx0(t) = Cxx0(t). (2b)

involves the initial condition and

ẋB(t) = AxB(t) +Bu(t) +

m∑
k=1

NkxB(t)uk(t), xB(0) = 0, (3a)

yB(t) = CxB(t) (3b)

captures the inhomogeneous part of (1). Consequently, we have x = xx0 + xB and
y = yx0 + yB. The above splitting was considered in [16], where the authors discuss a
balancing approach to produce reduced order models (ROMs). Additionally, MOR of
(1) based on a different splitting was proposed in [9]. However, theoretical questions
remain open for this approaches such as the error analysis.

Notice that the need for MOR of bilinear systems with non-zero initial states is higher
than for linear systems since there is an essential difference between both cases. For
linear systems, it is required that several initial states are of interest in order to motivate
applying MOR to the homogeneous equation. However, the homogeneous bilinear system
(2) is control dependent such that MOR can already pay off for a single initial condition
(X0 = x0 and v0 = 1) if system evaluations for multiple controls are desired. The
individual reduction of (2) and (3) has several advantages. As for linear systems, one
subsystem can have a higher reduction potential than the other. Hence, reduced order
dimensions can be chosen differently, but the actual benefit of the splitting goes beyond
this degree of freedom. In addition, it turns out that using different Gramians and
different structures of the reduced systems can be beneficial.
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In this work, we discuss several Gramian based approaches in which subsystems (2) and
(3) are reduced separately. This leads to reduced order models

˙̃xx0(t) = Ãx0 x̃x0(t) +

m∑
k=1

Ñx0,kx̃x0(t)uk(t), x̃x0(0) = X̃0v0, ỹx0(t) = C̃x0 x̃x0(t) (4)

approximating (2) and to reduced systems

˙̃xB(t) = ÃBx̃B(t) + B̃u(t) +
m∑
k=1

(
ÑB,kx̃B(t) + Ẽku(t)

)
uk(t), x̃B(0) = 0,

ỹB(t) = C̃Bx̃B(t) + D̃u(t)

(5)

approximating (3) with x̃x0(t) ∈ Rrx0 and x̃B(t) ∈ RrB , where rx0 , rB � n and all
above matrices are of suitable dimension. The goal is to choose (4) and (5) such that
y ≈ ỹx0 + ỹB.

In this paper, we provide estimates that explain how the considered Gramians charac-
terize dominant subspaces in both (2) and (3). Such a result for (2) has not even been
established in the linear case. These estimates give a motivation for different Gramian
based MOR techniques proposed in this paper without directly using control concepts
such as reachability or observability. Moreover, we prove error bounds for all methods
studied within this paper, closing a gap in the analysis of such schemes. However, the
main focus is on analyzing (4), since different results on properties of (5) already exist
in the literature.

2 Solution representation and fundamental solutions

The fundamental solution to (1a) represents a basis for the solution to the homogeneous
state equation (B = 0). Its precise definition is as follows:

Definition 2.1. Given that s ≤ t, the fundamental solution to (1a) is a matrix-valued
function Φ satisfying

Φ(t, s) = I +

∫ t

s
AΦ(v, s)dv +

m∑
k=1

∫ t

s
NkΦ(v, s)uk(v)dv.

If s = 0, we set Φ(t) := Φ(t, 0).

This fundamental solution can now be used to derive an explicit representation for the
state variable.

Lemma 2.2. The solution to (1a) for 0 ≤ t0 ≤ t is given by

x(t) = Φ(t, t0)x(t0) +

∫ t

t0

Φ(t, s)Bu(s)ds.
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Proof. Using that Φ(t, s) = Φ(t)Φ−1(s), the result follows by applying the product rule
to Φ(t)g(t), where g(t) := Φ−1(t0)x(t0) +

∫ t
t0

Φ−1(s)Bu(s)ds.

In the context of MOR and associated error estimates the solution representation in
Lemma 2.2 is vital. However, the fundamental solution is control dependent and hence
Φ(t, s) 6= Φ(t−s) (no semigroup property of Φ(·)). Therefore, an estimate on Φ is needed
in order to extract the dependence on u. Given two symmetric matrices M1 and M2 we
write M1 ≤M2 below if M2 −M1 is symmetric positive semidefinite.

Lemma 2.3. Let Φ be the fundamental solution according to Definition 2.1, K ≥ 0 and
γ > 0. Then,

Φ(t, s)KΦ>(t, s) ≤ exp

{∫ t

s

∥∥γu0(v)
∥∥2

2
dv

}
Zγ(t− s),

where Zγ(t), t ≥ 0, satisfies the matrix differential equation

Żγ(t) = AZγ(t) + Zγ(t)A> +
1

γ2

m∑
k=1

NkZγ(t)N>k , Zγ(0) = K, (6)

and u0 is the vector of control functions entering the bilinear part

u0 = (u0
1 u

0
2 . . . u

0
m)> with u0

k ≡

{
0, if Nk = 0

uk, else.
(7)

Proof. We factorize K = FF>. Let fi be the ith column of the matrix F and xfi(·, s)
denote the solution to (2a) with initial state fi and initial time s. Then, we have

Φ(t, s)F = [xf1(t, s), xf2(t, s), . . . , xfd(t, s)],

where d is the number of columns of F . Using the scaling γ > 0, xfi(·, s) can be
interpreted as the solution to ẋfi(t) = Axfi(t) +

∑m
k=1

1
γNkxfi(t)γuk(t). Applying the

results of [22, Section 2] on a bound for xfi(t, s)x
>
fi

(t, s), we obtain

Φ(t, s)KΦ>(t, s) =

m∑
k=1

xfi(t, s)x
>
fi

(t, s) ≤ exp

{∫ t

s

∥∥γu0(v)
∥∥2

2
dv

} m∑
k=1

Zγ(t− s, fif>i )

= exp

{∫ t

s

∥∥γu0(v)
∥∥2

2
dv

}
Zγ(t− s,K),

where the second argument in Zγ denotes the respective initial condition.

Lemma 2.3 is a variation of the results from Lemmas 2.2, 2.3 and 2.4 in [22]. The
constant γ in Lemma 2.3 is essential to achieve asymptotic stability of (6). Based on
this stability, Gramians for (2) will be introduced in Section 3.1. However, a bit less than
asymptotic stability is needed, as the following theorem shows. It contains a sufficient
condition for the existence of Gramians. This criterion is related to a matrix inequality
and can be seen as an extended notion of stability for (6). We will also see later that
ROMs (4) based on balancing generally satisfy such a condition.
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Theorem 2.4. Let γ > 0 and Zγ(·, X0X
>
0 ) the solution to (6) with K = X0X

>
0 . If

there exists a matrix X > 0 such that

AX +XA> +
1

γ2

m∑
k=1

NkXN
>
k ≤ −X0X

>
0 . (8)

Then, (6) is stable meaning that

σ

(
I ⊗A+A⊗ I +

1

γ2

m∑
k=1

Nk ⊗Nk

)
⊂ C−. (9)

Moreover, there is a constant c > 0 such that
∥∥Zγ(t,X0X

>
0 )
∥∥

2
. e−ct, i.e., the initial

condition K = X0X
>
0 yields exponential decay. In particular, we can construct a matrix

V ∈ Rn×ñ, ñ ≤ n, with V >V = I providing a projected system with coefficients Ã =
V >AV , X̃0 = V >X0 and Ñk = V >NkV . This reduced system with fundamental solution
Φ̃ has an asymptotically stable equation (6), i.e., it holds that

σ

(
I ⊗ Ã+ Ã⊗ I +

1

γ2

m∑
k=1

Ñk ⊗ Ñk

)
⊂ C− (10)

and it has no reduction error in the sense that

Φ(t)X0 = V Φ̃(t)X̃0.

Proof. Condition (8) implies (9) by [7, Corollary 3.2] or [18, Lemma 6.12]. Now, we can
use a stochastic representation for Zγ(·, X0X

>
0 ), see, e.g., [10, 19] which is Zγ(t,X0X

>
0 ) =

E
[
Φw(t)X0X

>
0 Φ>w(t)

]
. Here, the stochastic fundamental solution Φw satisfies Φw(t) =

I +
∫ t

0 AΦw(s)ds +
∑m

k=1

∫ t
0 NkΦw(s)dwk(s) by definition, where w1, . . . , wm are inde-

pendent standard Brownian motions. Based on [24, Theorem 4.4, Remark 1], we then
find ∥∥∥Zγ(t,X0X

>
0 )
∥∥∥

2
≤ E

∥∥∥Φw(t)X0X
>
0 Φ>w(t)

∥∥∥
2
≤ E ‖Φw(t)X0‖2F . e−ct .

Let us finally consider∥∥∥Φ(t)X0 − V Φ̃(t)X̃0

∥∥∥2

F
=
∥∥∥[ I −V ]

[
Φ(t) 0

0 Φ̃(t)

] [
X0

X̃0

]∥∥∥2

F

= tr
(

[ I −V ]
[

Φ(t) 0

0 Φ̃(t)

] [
X0

X̃0

]
[X>0 X̃>0 ]

[
Φ>(t) 0

0 Φ̃>(t)

] [
I
−V >

])
.

Since
[

Φ(t) 0

0 Φ̃(t)

]
is the fundamental solution to a bilinear system with matrices

[
A 0
0 Ã

]
and

[
Nk 0

0 Ñk

]
, we can apply Lemma 2.3 leading to

∥∥∥Φ(t)X0 − V Φ̃(t)X̃0

∥∥∥2

F
≤ tr

(
[ I −V ]Zeγ(t)

[
I
−V >

])
exp

{∫ t

0

∥∥γu0(s)
∥∥2

2
ds

}
,
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where Zeγ is the matrix function solving (6) with coefficients
[
A 0
0 Ã

]
,
[
Nk 0

0 Ñk

]
and K =[

X0

X̃0

]
[X>0 X̃>0 ]. We exploit the associated stochastic representation which is Ze(t) =

E
([

Φw(t) 0

0 Φ̃w(t)

] [
X0

X̃0

]
[X>0 X̃>0 ]

[
Φ>w(t) 0

0 Φ̃>w(t)

])
, where Φ̃w is the reduced order stochastic

fundamental solution involving the matrices Ã and Ñk. Consequently, based on the
linearity of the trace and the definition of the Frobenius norm, we have∥∥∥Φ(t)X0 − V Φ̃(t)X̃0

∥∥∥2

F
≤ E

∥∥∥Φw(t)X0 − V Φ̃w(t)X̃0

∥∥∥2

F
exp

{∫ t

0

∥∥γu0(s)
∥∥2

2
ds

}
.

Due to [24, Corollary 4.5, Remark 1] we know about the existence of V with V >V = I
such that Φw(t)X0 = V Φ̃w(t)X̃0, where Φ̃w decays exponentially in the mean square
sense. This decay of Φ̃w is equivalent to (10), see, e.g., [10] which concludes the proof.

Theorem 2.4 shows that if (8) is satisfied, the bilinear system represented by the matrices
A,Nk with initial conditions encoded by the matrix X0 can be always reduced to a
asymptotically stable system in the sense of (10) with no reduction error.

Remark 1. If (6) is asymptotically stable there exists an X > 0 such that

AX +XA> +
1

γ2

m∑
k=1

NkXN
>
k = Y

given Y < 0, see [10]. Setting Y = −I −X0X
>
0 now implies (8).

3 Gramians and dominant subspaces

3.1 Gramians and dominant subspaces for (2)

We begin with investigating the homogeneous part of (1a) with non-zero initial states. To
do so, we study two Gramians for (2) that provide information concerning the dominant
subspaces of (2a) and (2b), respectively.

In order to identify the unimportant directions in (2a) a Gramian P0 is introduced
below. Let Zγ = Zγ(t,X0X

>
0 ) as in (6) and K = X0X

>
0 . The existence of the Gramians

requires the asymptotic stability of (6) which is stronger than σ(A) ⊂ C−. However, we
can enforce this stronger type of stability by a sufficiently large γ > 0 providing

σ(A⊗ I + I ⊗A+
1

γ2

m∑
k=1

Nk ⊗Nk) ⊂ C−. (11)

The rescaled matrices 1
γNk in (11) are associated to the following equivalent reformula-

tion of (2a):

ẋx0(t) = Axx0(t) +
m∑
k=1

1

γ
Nkxx0(t)γuk(t), xx0(0) = X0v0,

6



but it goes along with an enlarged control energy in the bilinearity. Now, we define

P0 :=

∫ ∞
0

Zγ(s,X0X
>
0 )ds.

The dependence of P0 on γ is not explicitly indicated to simplify the notation. By
definition of P0 and the asymptotic stability of (6), we can immediately see that P0

solves

AP0 + P0A
> +

1

γ2

m∑
k=1

NkP0N
>
k = −X0X

>
0 . (12)

We are now ready to establish an estimate identifying redundant information in (2a).
Therefore, let us introduce an orthonormal basis (p0,i) of eigenvectors of P0. Con-
sequently, we can write xx0(t) =

∑n
i=1〈xx0(t), p0,i〉2 p0,i. The following estimate for

〈xx0(t), p0,i〉2 allows us to find directions p0,i which barely contribute to the dynamics.

Proposition 3.1. Let xx0 denote the solution to (2a) and γ > 0 such that (11) holds.
Then,

‖〈xx0(·), p0,i〉2‖L2 ≤ λ
1
2
0,i exp

{
0.5
∥∥γu0

∥∥2

L2

}
‖v0‖2 , (13)

where λ0,i is the eigenvalue associated to p0,i.

Proof. Based on Lemma 2.2 we find that

xx0(t) = Φ(t)x0 = Φ(t)X0v0.

Exploiting this leads to∫ t

0
〈xx0(s), p0,i〉22ds =

∫ t

0
〈Φ(s)X0v0, p0,i〉22ds =

∫ t

0
〈v0, X

>
0 Φ>(s)p0,i〉22ds

≤ ‖v0‖22 p
>
0,i

∫ t

0
Φ(s)X0X

>
0 Φ>(s)ds p0,i

using the inequality of Cauchy-Schwarz. Using Lemma 2.3, we obtain∫ t

0
〈xx0(s), p0,i〉2ds ≤ ‖v0‖22 exp

{∫ t

0

∥∥γu0(v)
∥∥2

2
dv

}
p>0,i

∫ t

0
Zγ(s,X0X

>
0 )ds p0,i

≤ ‖v0‖22 exp
{∥∥γu0

∥∥2

L2

}
p>0,iP0 p0,i = ‖v0‖22 exp

{∥∥γu0
∥∥2

L2

}
λ0,i.

Consequently, xx0 is small in the direction of an eigenvector p0,i = p0,i(γ) of P0 associated
to a small eigenvalue λ0,i = λ0,i(γ). This means that eigenspaces corresponding to small
eigenvalues of P0 are less relevant and hence can be neglected.
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Let us now turn our attention to the choice of Gramians and the related dominant
subspaces of (2b). We introduce the matrix-valued function Z∗γ = Z∗γ(t, C>C) satisfying

Ż∗γ(t) = A>Z∗γ(t) + Z∗γ(t)A+
1

γ2

m∑
k=1

N>k Z
∗
γ(t)Nk, Z∗γ(0) = C>C, (14)

where the superscript ∗ indicates that the Lyapunov operator defining the right side of
(14) is the adjoint operator of the one entering (6). Let us further assume that (11)
holds. Then, we define

Q :=

∫ ∞
0

Z∗γ(s, C>C)ds. (15)

By definition of Q and the asymptotic stability of (14), we have

A>Q+QA+
1

γ2

m∑
k=1

N>k QNk = −C>C. (16)

Let 0 ≤ t0 <∞. We now expand xx0(t0) using an orthonormal basis (qi) of eigenvectors
of Q, i.e., we write xx0(t0) =

∑n
i=1〈xx0(t0), qi〉2qi. The goal is to identify the directions

qi which do not contribute significantly to the output yx0 on the interval (t0,∞). We
exploit the representation in Lemma 2.2 and obtain for t ≥ t0 that

yx0(t) = CΦ(t, t0)xx0(t0) =
n∑
i=1

CΦ(t, t0)qi〈xx0(t0), qi〉2. (17)

Eigenvectors qi can now be neglected if the respective summand in (17) is small in some
norm. These summands are now analyzed in the following theorem.

Proposition 3.2. Let (qi) be an orthonormal basis of eigenvectors of the Gramian Q
and γ > 0 such that (11) holds. Then,(∫ ∞

t0

‖CΦ(t, t0)qi‖22 dt
) 1

2

≤ µ
1
2
i exp

{
0.5
∥∥γu0

∥∥2

L2

}
, (18)

where µi is the eigenvalue associated to qi.

Proof. With Lemma 2.3, we find∫ ∞
t0

‖CΦ(t, t0)qi‖22 dt =

∫ ∞
t0

q>i Φ(t, t0)C>CΦ(t, t0)qidt

=

∫ ∞
t0

tr
(
CΦ(t, t0)qiq

>
i Φ>(t, t0)C>

)
dt

≤
∫ ∞
t0

tr

(
C exp

{∫ t

t0

∥∥γu0(v)
∥∥2

2
dv

}
Zγ(t− t0, qiq>i )C>

)
dt

≤ exp
{∥∥γu0

∥∥2

L2

}∫ ∞
0

tr
(
CZγ(s, qiq

>
i )C>

)
ds

= exp
{∥∥γu0

∥∥2

L2

}
tr

(
C>C

∫ ∞
0

Zγ(s, qiq
>
i )ds

)
.

8



∫∞
0 Zγ(s, qiq

>
i )ds solves (12) with right hand side qiq

>
i . Inserting (16) for C>C above,

we can see that tr
(
C>C

∫∞
0 Zγ(s, qiq

>
i )ds

)
= q>i Qqi = µi. This concludes the proof.

Estimate (18) now tells us that qi = qi(γ) is an unimportant direction in xx0(t0) for
each t0 ≥ 0 if µi = µi(γ) is small since these vectors have a low impact on the output
yx0(t), t ≥ t0. Consequently, eigenspaces of Q corresponding to small eigenvalues can be
removed from the system.

3.2 Gramians and dominant subspaces for (3)

We introduce a reachability Gramian PB as a positive definite solution to

A>P−1
B + P−1

B A+
1

γ2

m∑
k=1

N>k P
−1
B Nk ≤ −P−1

B BB>P−1
B . (19)

Such a solution exists given that (11) holds, see [11, Lemma III.1] or more generally [19,
Proposition 3.1] Notice that an inequality is considered in (19), since the existence of a
positive definite solution of the associated equality is not ensured. PB identifies directions
in the state equation (3a) that can be removed from the system. To see this, let (pB,i)
an orthonormal basis of eigenvectors of PB, such that xB(t) =

∑n
i=1〈xB(t), pB,i〉2 pB,i.

As in Proposition 3.1 an estimate for 〈xB(t), pB,i〉2 can be found. However, the norm is
a different one.

Proposition 3.3. Let xB denote the solution to (3a) and γ > 0 such that (11) holds.
Then,

sup
t≥0
|〈xB(t), pB,i〉2| ≤ λ

1
2
B,i ‖u‖L2 exp

(
0.5
∥∥γu0

∥∥2

L2

)
, (20)

where λB,i is the eigenvalue associated to pB,i.

Proof. The result for γ = 1 is a special case of [21, Section 2.1]. RescalingNkxB(t)uk(t) 7→
1
γNkxB(t)γuk(t) in (3a) immediately provides the desired estimate for general γ.

By (20), we can see that pB,i = pB,i(γ) is less relevant for the dynamics if λB,i = λB,i(γ)
is small. For that reason, one is interested in computing a PB with possibly small
eigenvalues since such a solution to (19) characterizes the negligible information best.
Therefore, determining PB becomes an optimization problem of, e.g., minimizing tr(PB)
subject to (19).

The dominant subspace of (3b) can be found with the same Gramian Q, defined in (15)
as in the case of yx0 . We expand xB(t0) =

∑n
i=1〈xB(t0), qi〉2qi for 0 ≤ t0 < ∞. By

Lemma 2.2 we have

yB(t) = CΦ(t, t0)xB(t0) +

∫ t

t0

CΦ(t, s)Bu(s)ds

=
n∑
i=1

CΦ(t, t0)qi〈xB(t0), qi〉2 +

∫ t

t0

CΦ(t, s)Bu(s)ds

9



for t ≥ t0. Therefore, the direction qi is less relevant if CΦ(t, t0)qi is small. The
corresponding estimate for this expression has already been established in Proposition
3.2. Consequently, qi is also negligible for yB if the eigenvalue µi is small.

4 Gramian-based model order reduction

4.1 Balancing of subsystems (2) and (3)

We have seen in Sections 3.1 and 3.2 that the eigenspaces corresponding to small eigen-
values of P0 and Q are not important for subsystem (2) and the ones of PB and Q are
less relevant for subsystem (3). Therefore, we construct a state space transformation
ensuring that P0 and Q are diagonal and equal, meaning that p0,i = qi = ei, where ei
is the ith unit vector in Rn. The ith diagonal entry of the diagonalized Gramians then
determines how much the ith component of the state variable contributes to the dynam-
ics. This procedure of simultaneously diagonalizing the Gramians is called balancing.
After conducting this procedure for (2), another balancing transformation is constructed
for (3), guaranteeing that PB and Q are diagonal and equal as well. Subsequently, the
unimportant information in both subsystems can be removed, leading to the reduced
models (4) and (5).

The procedure sketched above now works as follows. Based on the assumption that
P0, Q > 0, we can construct the following regular matrices and their inverses

S = Θ−
1
2U>L>, S−1 = KVΘ−

1
2 and S = Σ−

1
2U>L>, S−1 = KV Σ−

1
2 , (21)

where Θ = diag(θ1, . . . , θn) > 0 and Σ = diag(σ1, . . . , σn) > 0 with θi and σi being the
square root of the ith eigenvalue of P0Q and PBQ, respectively. These diagonal entries of
Θ and Σ are called Hankel singular values (HSVs) of (2) and (3). The other ingredients
in (21) are computed by the factorizations P0 = KK>, PB = KK>, Q = LL> and the
singular value decompositions of K>L = VΘU> and K>L = V ΣU>.

Replacing (A,X0, C,Nk) by the transformed matrices

SAS−1 =
[
A11 A12
A21 A22

]
, SX0 =

[
X0,1

X0,2

]
, CS−1 = [ C1 C2 ] , SNkS

−1 =
[
Nk,11 Nk,12

Nk,21 Nk,22

]
,

(22)

in (2) with A11,Nk,11 ∈ Rrx0×rx0 , X0,1 ∈ Rrx0×q, and C1 ∈ Rp×rx0 , we obtain the
following system[

ẋ1(t)
ẋ2(t)

]
=
[
A11 A12
A21 A22

] [
x1(t)
x2(t)

]
+

m∑
k=1

[
Nk,11 Nk,12

Nk,21 Nk,22

] [
x1(t)
x2(t)

]
uk(t),

[
x1(0)
x2(0)

]
=
[
X0,1

X0,2

]
v0

yx0(t) = [ C1 C2 ]
[
x1(t)
x2(t)

]
, t ≥ 0,

(23)

having the same output as (2). Above, we set Sxx0(t) =
[
x1(t)
x2(t)

]
. The Gramian of (23)

are

SP0S
> = S−>QS−1 = Θ =

[
Θ1

Θ2

]
(24)
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with Θ1 ∈ Rrx0×rx0 and Θ2 = diag(θrx0+1, . . . , θn) contains the n− rx0 smallest HSVs of
the subsystem.

The same way, (A,B,C,Nk) is replaced by

SAS−1 =
[
A11 A12
A21 A22

]
, SB =

[
B1
B2

]
, CS−1 = [ C1 C2 ] , SNkS

−1 =
[
Nk,11 Nk,12

Nk,21 Nk,22

]
,

(25)

in (3) with A11, Nk,11 ∈ RrB×rB , B1 ∈ RrB×m, and C1 ∈ Rp×rB such that we have

[
ẋ1(t)
ẋ2(t)

]
=
[
A11 A12
A21 A22

] [
x1(t)
x2(t)

]
+
[
B1
B2

]
u(t) +

m∑
k=1

[
Nk,11 Nk,12

Nk,21 Nk,22

] [
x1(t)
x2(t)

]
uk(t),

yB(t) = [ C1 C2 ]
[
x1(t)
x2(t)

]
, t ≥ 0,

(26)

where SxB(t) =
[
x1(t)
x2(t)

]
and the new Gramians are

SPBS
> = S−>QS−1 = Σ =

[
Σ1

Σ2

]
with Σ1 ∈ RrB×rB and Σ2 = diag(σrB+1, . . . , σn).

Remark 2. It is important to point out that the balancing transformations S and S
depend on γ since the Gramians are functions of this parameter. Consequently, the
balancing realizations in (22) and (25), as well as the later ROMs, depend on γ.

4.2 Model order reduction for subsystem (2)

In this section, we discuss two different MOR techniques for (2) that rely on the balancing
procedure described in Section 4.1. We already know that the state variables x2 in the
balanced realization (23) are less relevant since they are associated to the small HSVs
θrx0+1, . . . , θn. A ROM (4) can now be obtained by neglecting x2. A first option is
to truncate the second line of the state equation in (23) and to set x2(t) = 0 in the
remaining parts of the subsystem. This methods is called balanced truncation and leads
to a ROM with (

Ãx0 , X̃0, C̃x0 , Ñx0,k

)
= (A11, X0,1,C1,Nk,11) . (27)

Alternatively, one can argue that due to (13), x2 is close to its equilibrium (especially
if the system is uncontrolled). Hence, it is in a quasi steady state, motivating to set
ẋ2(t) = 0 in (23). If we further neglect Nk,21 and Nk,22 in the resulting algebraic
constrain in order to avoid a control dependence of the matrices in the ROM, we obtain
x2(t) = −A−1

22 A21x1(t). Inserting this for x2 in (23) leads to a ROM with(
Ãx0 , X̃0, C̃x0 , Ñx0,k

)
=
(
Ā, X0,1, C̄, N̄k

)
, (28)

11



where Ā := A11 −A12A
−1
22 A21, C̄ := C1 − C2A

−1
22 A21 and N̄k := Nk,11 −Nk,12A

−1
22 A21. It

is important to point out that both ROMs (27) and (28) share the same initial condition
matrix X̃0. Notice that the structure preservation in the ROM is also desired here, which
is motivated by the existence of an error bound that we prove later. This bound can
only be achieved between systems having the same structure. We refer to a related SPA
MOR scheme for (3) in [14], where such a reduced system was derived by an averaging
principle representing a more detailed motivation than given here.

Remark 3. A result on stability preservation for BT has already been established in [7].
Given Θ > 0 and σ(Θ1) ∩ σ(Θ2) = ∅, it was shown that

σ(A11 ⊗ I + I ⊗A11 +
1

γ2

m∑
k=1

Nk,11 ⊗Nk,11) ⊂ C−.

Whether SPA guarantees this type of stability under the same assumption is an open
question. However, for SPA it can be proved that the eigenvalue of the above Kro-
necker matrix involving the matrices in (28) are in C−, see [23]. Since Θ > 0 and
σ(Θ1)∩ σ(Θ2) = ∅ might not be always given, stability preservation and the existence of
Gramians for the two different balancing related methods are discussed in the following,
only assuming Θ1 > 0.

Theorem 4.1. Let S be the balanced transformation providing (24) with Θ1 > 0 and
consider the associated balanced realization in (22). Given the matrix differential equa-
tions

˙̃Zγ(t) = Ãx0Z̃γ(t) + Z̃γ(t)Ã>x0 +
1

γ2

m∑
k=1

Ñx0,kZ̃γ(t)Ñ>x0,k, Z̃γ(0) = X̃0X̃
>
0 ,

˙̃Z∗γ(t) = Ã>x0Z̃
∗
γ(t) + Z̃∗γ(t)Ãx0 +

1

γ2

m∑
k=1

Ñ>x0,kZ̃
∗
γ(t)Ñx0,k, Z̃∗γ(0) = C̃>x0C̃x0 ,

the Gramians P̃ :=
∫∞

0 Z̃γ(s)ds and Q̃ :=
∫∞

0 Z̃∗γ(s)ds exist for reduced system (4) with
coefficients as in (27) (BT). If instead the ROM by SPA defined in (28) is considered,
the existence of Q̃ is ensured.

Proof. Since the Gramians of a balanced system are identical and equal to the diagonal
matrix Θ, we have[

A11 A12
A21 A22

] [
Θ1

Θ2

]
+
[

Θ1
Θ2

] [
A>11 A>21
A>12 A>22

]
+

1

γ2

m∑
k=1

[
Nk,11 Nk,12

Nk,21 Nk,22

] [
Θ1

Θ2

] [
N>k,11 N>k,21
N>k,12 N>k,22

]
= −

[
X0,1

X0,2

]
[X>0,1 X>0,2 ] , (29)[

A>11 A>21
A>12 A>22

] [
Θ1

Θ2

]
+
[

Θ1
Θ2

] [
A11 A12
A21 A22

]
+

1

γ2

m∑
k=1

[
N>k,11 N>k,21
N>k,12 N>k,22

] [
Θ1

Θ2

] [
Nk,11 Nk,12

Nk,21 Nk,22

]
= −

[
C>1
C>2

]
[ C1 C2 ] . (30)

12



The left upper blocks of these equations yield

A11Θ1 + Θ1A
>
11 +

1

γ2

m∑
k=1

Nk,11Θ1N
>
k,11 ≤ −X0,1X

>
0,1, (31)

A>11Θ1 + Θ1A11 +
1

γ2

m∑
k=1

N>k,11Θ1Nk,11 ≤ −C>1 C1.

Therefore, Z̃γ and Z̃∗γ decay exponentially by Theorem 2.4 if BT is considered. Conse-

quently, the integrals P̃ and Q̃ exist. We now multiply (30) by[
A11 A12

A21 A22

]−1

=

[
Ā−1 ?

−A−1
22 A21Ā

−1 ?

]
(32)

from the right and with its transposed from the left. Evaluating the left upper block of
the resulting equation and multiplying it with Ā from the right and its transposed from
the left, we find

Ā>Θ1 + Θ1Ā +
1

γ2

m∑
k=1

N̄>k Θ1N̄k = −C̄>C̄− 1

γ2

m∑
k=1

N̄>k,21Θ2N̄k,21 ≤ −C̄>C̄, (33)

where N̄k,21 := Nk,21−Nk,22A
−1
22 A21 providing the existence of Q̃ for SPA using Theorem

2.4.

Due to Theorem 4.1 technical assumptions like θrx0 6= θrx0+1 can be omitted in the error
analysis if BT is considered since the reduced Gramians will still exist. Furthermore,
given Θ1 > 0, Theorem 2.4 and (31) tell us that the ROM by BT can always be reduced
to a system satisfying (10) without causing an additional error. Whether P̃ generally
exists for SPA remains open and is therefore always assumed below. Now, we establish
error bounds for the BT and SPA procedures. Firstly, we prove an intermediate lemma
in order to show this result.

Lemma 4.2. Let yx0 be the output of (2) and ỹx0 be the reduced order output of system
(4). Then, we have

‖yx0(t)− ỹx0(t)‖22 ≤ tr
(

[ C −C̃x0 ]Zeγ(t)
[

C>

−C̃>x0

])
exp

{∫ t

0

∥∥γu0(v)
∥∥2

2
dv

}
‖v0‖22 ,

where Zeγ(t), t ≥ 0, satisfies the matrix differential equation

Żeγ(t) =
[
A 0
0 Ãx0

]
Zeγ(t) + Zeγ(t)

[
A> 0
0 Ã>x0

]
+

1

γ2

m∑
k=1

[
Nk 0

0 Ñx0,k

]
Zeγ(t)

[
N>k 0

0 Ñ>x0,k

]
,

Zeγ(0) =
[
X0

X̃0

]
[X>0 X̃>0 ] .

13



Proof. By Lemma 2.2, we have that yx0(t) = CΦ(t)X0v0 and yx0(t) = C̃x0Φ̃(t)X̃0v0,
where Φ and Φ̃ are the fundamental solutions to the original and the reduced system,
respectively, introduced in Definition 2.1. Consequently, we obtain

‖yx0(t)− ỹx0(t)‖22 ≤
∥∥∥CΦ(t)X0 − C̃x0Φ̃(t)X̃0

∥∥∥2

F
‖v0‖22 =

∥∥∥[ C −C̃x0 ]
[

Φ(t) 0

0 Φ̃(t)

] [
X0

X̃0

]∥∥∥2

F
‖v0‖22

= tr
(

[ C −C̃x0 ]
[

Φ(t) 0

0 Φ̃(t)

] [
X0

X̃0

]
[X>0 X̃>0 ]

[
Φ>(t) 0

0 Φ̃>(t)

] [
C>

−C>x0

])
‖v0‖22 .

Now,
[

Φ(t) 0

0 Φ̃(t)

]
is the fundamental solution to the bilinear system with matrices

[
A 0
0 Ãx0

]
and

[
Nk 0

0 Ñx0,k

]
. Therefore, the result follows by Lemma 2.3 setting K =

[
X0

X̃0

]
[X>0 X̃>0 ].

Theorem 4.3. Let yx0 be the output of (2) given that (11) holds for a sufficiently large
γ > 0. Suppose that ỹx0 is the reduced order output of system (4), where the matrices(
Ãx0 , X̃0, C̃x0 , Ñx0,k

)
are either given by BT stated in (27) or by SPA defined in (28)

given a balancing transformation S as in (24) with Θ1 > 0. We assume that the reduced

system Gramian P̃ for SPA exists. Defining Y =
[
Y1
Y2

]
as the unique solution to

[
A11 A12
A21 A22

] [
Y1
Y2

]
+
[
Y1
Y2

]
Ã>x0 +

1

γ2

m∑
k=1

[
Nk,11 Nk,12

Nk,21 Nk,22

] [
Y1
Y2

]
Ñ>x0 = −

[
X0,1

X0,2

]
X>0,1, (34)

using the balanced realization in (22), it holds that

‖yx0 − ỹx0‖L2 ≤ (tr(Θ2Wx0))
1
2 exp

{
0.5
∥∥γu0

∥∥2

L2

}
‖v0‖2 . (35)

The above weight is

Wx0 = X0,2X
>
0,2 + 2Y2A

>
21 + 2 [ A21 A22 ]Y Ā>21 +

1

γ2

m∑
k=1

2 [ Nk,21 Nk,22 ]YN>k,21 −Nk,21P̃N>k,21,

where (A21, Ā21,Nk,21) = (A21, 0,Nk,21) for BT and (A21, Ā21,Nk,21) = (0,−A−1
22 A21,Nk,21−

Nk,22A
−1
22 A21) for SPA.

Proof. We integrate the result of Lemma 4.2 on [0,∞) and obtain

‖yx0 − ỹx0‖
2
L2 ≤ E exp

{∥∥γu0
∥∥2

L2

}
‖v0‖22 ,

where E := tr
(

[ C −C̃x0 ]
∫∞

0 Zeγ(t)dt
[

C>

−C̃>x0

])
. The left upper and the right lower block

of
∫∞

0 Zeγ(t)dt are P0 and P̃ , respectively. Both Gramians exist by assumption and
Theorem 4.1. This also implies the existence of the right upper block of

∫∞
0 Zeγ(t)dt

which we denote by P̂ . It satisfies

AP̂ + P̂ Ã>x0 +
1

γ2

m∑
k=1

NkP̂ Ñ
>
x0,k = −X0X

>
0,1. (36)
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Let S be the matrix ensuring (24). Since Θ = SP0S
>, Y = SP̂ and [ C1 C2 ] = CS−1, we

have

E = tr(CP0C
>) + tr(C̃x0P̃ C̃

>
x0)− 2 tr(CP̂ C̃>x0)

= tr([ C1 C2 ]
[

Θ1
Θ2

] [
C>1
C>2

]
) + tr(C̃x0P̃0C̃

>
x0)− 2 tr([ C1 C2 ]Y C̃>x0).

Comparing (29) with (30), we see that tr([ C1 C2 ] Θ
[
C>1
C>2

]
) = tr([X>0,1 X>0,2 ] Θ

[
X0,1

X0,2

]
).

Since the same is true for the reduced Gramians, we obtain

E = tr([X>0,1 X>0,2 ]
[

Θ1
Θ2

] [
X0,1

X0,2

]
) + tr(X>0,1Q̃X0,1)− 2 tr([ C1 C2 ]Y C̃>x0), (37)

where Q̃ exists due to Theorem 4.1. Now, it is needed to find an equation for C̃>x0 [ C1 C ]
for both BT and SPA in order to analyze the error further. We evaluate the first rx0
rows of (30) to obtain an expression for the case of BT:

− C>1 [ C1 C2 ] = [ A>11Θ1 A>21Θ2 ] + [ Θ1 0 ]
[
A11 A12
A21 A22

]
+

1

γ2

m∑
k=1

[ N>k,11Θ1 N>k,21Θ2 ]
[
Nk,11 Nk,12

Nk,21 Nk,22

]
.

(38)

For SPA we multiply (30) with
[
A>11 A>21
A>12 A>22

]−1
from the left and obtain

−
[
Ā−>C̄>

?

]
[ C1 C2 ] =

[
Θ1

Θ2

]
+
[
Ā−> −Ā−>(A−1

22 A21)>

? ?

] [
Θ1

Θ2

] [
A11 A12
A21 A22

]
+

1

γ2

m∑
k=1

[
Ā−>N̄>k Ā−>N̄>k,21

? ?

] [
Θ1

Θ2

] [
Nk,11 Nk,12

Nk,21 Nk,22

]

using the partition in (32) and setting N̄k,21 := Nk,21 − Nk,22A
−1
22 A21. Multiplying the

first rx0 rows of the above equation by Ā> from the left results in

−C̄> [ C1 C2 ] = Ā>Θ1 + [ Θ1 −(A−1
22 A21)>Θ2 ]

[
A11 A12
A21 A22

]
+

1

γ2

m∑
k=1

[ N̄>k Θ1 N̄>k,21Θ2 ]
[
Nk,11 Nk,12

Nk,21 Nk,22

]
.

(39)

We summarize (38) and (39) to one equation. That is

−C̃>x0 [ C1 C2 ] = [ Ã>x0Θ1 A>21Θ2 ] + [ Θ1 Ā>21Θ2 ]
[
A11 A12
A21 A22

]
+

1

γ2

m∑
k=1

[ Ñ>x0,kΘ1 N>k,21Θ2 ]
[
Nk,11 Nk,12

Nk,21 Nk,22

]
.

where A21 ∈ {A21, 0}, Ā21 ∈ {0,−A−1
22 A21} and Nk,21 ∈ {Nk,21, N̄k,21}. Inserting this
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into tr([ C1 C2 ]Y C̃>x0) yields

− tr([ C1 C2 ]Y C̃>x0)

= tr

(
Y

[
[ Ã>x0Θ1 A>21Θ2 ] + [ Θ1 Ā>21Θ2 ]

[
A11 A12
A21 A22

]
+

1

γ2

m∑
k=1

[ Ñ>x0,kΘ1 N>k,21Θ2 ]
[
Nk,11 Nk,12

Nk,21 Nk,22

]])

= tr

(
Θ1

[
[ A11 A12 ]Y + Y1Ã

>
x0 +

1

γ2

m∑
k=1

[ Nk,11 Nk,12 ]Y Ñ>x0,k

])

+ tr

(
Θ2

[
Y2A

>
21 + [ A21 A22 ]Y Ā>21 +

1

γ2

m∑
k=1

[ Nk,21 Nk,22 ]YN>k,21

])
.

The first rx0 rows of (34) give us

− tr([ C1 C2 ]Y C>1 ) =− tr
(
X>0,1Θ1X0,1

)
+ tr

(
Θ2

[
Y2A

>
21 + [ A21 A22 ]Y Ā>21 +

1

γ2

m∑
k=1

[ Nk,21 Nk,22 ]YN>k,21

])
.

Inserting this into (37) leads to

E = tr(X>0,1(Q̃−Θ1)X0,1)

+ tr

(
Θ2

[
X0,2X

>
0,2 + 2Y2A

>
21 + 2 [ A21 A22 ]Y Ā>21 +

2

γ2

m∑
k=1

[ Nk,21 Nk,22 ]YN>k,21

])
,

By the left upper rx0 × rx0 block of (30) (BT) and (33) (SPA), it holds that

Ã>x0Θ1 + Θ1Ãx0 +
1

γ2

m∑
k=1

Ñ>x0,kΘ1Ñx0,k = −C̃>x0C̃x0 −
1

γ2

m∑
k=1

N>k,21Θ2Nk,21

for both reduced order schemes. Subtracting this identity from the equation for the
reduced Gramian Q̃, we find

Ã>x0(Q̃−Θ1) + (Q̃−Θ1)Ãx0 +
1

γ2

m∑
k=1

Ñ>x0,k(Q̃−Θ1)Ñx0,k =
1

γ2

m∑
k=1

N>k,21Θ2Nk,21.

Hence, exploiting the equation for P̃ , we have

tr(X>0,1(Q̃−Θ1)X0,1) = − tr

([
Ãx0P̃ + P̃ Ã>x0 +

1

γ2

m∑
k=1

Ñx0,kP̃ Ñ
>
x0,k

]
(Q̃−Θ1)

)

= − tr

(
P̃

[
Ã>x0(Q̃−Θ1) + (Q̃−Θ1) Ãx0 +

1

γ2

m∑
k=1

Ñ>x0,k(Q̃−Θ1) Ñx0,k

])

= − tr

(
Θ2

1

γ2

m∑
k=1

Nk,21P̃N>k,21

)
,

which concludes the proof of this theorem.
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The result of Theorem 4.3 shows an error bound that depends on the truncated HSVs.
Choosing rx0 such that Θ2 is small therefore ensures a small error and hence a good
approximation.

4.3 Model order reduction for subsystem (3)

In this section, BT and SPA are studied for (3). As for the methods considered in
Section 4.2 they rely on the balancing procedure described in Section 4.1. However,
these methods are not necessarily structured preserving and rely on a different type
of Gramian PB. In order to find a ROM for (3), state variables x2 in (26) need to
be removed. These variables belong to the small HSVs σrB+1, . . . , σn and are hence
negligible. A ROM (5) by BT is here obtained by truncating the second line of the state
equation in (26) and to set x2(t) = 0 in the remaining parts of the subsystem. This
results in (

ÃB, B̃, C̃B, D̃, Ẽk, ÑB,k

)
= (A11, B1, C1, 0, 0, Nk,11) . (40)

Using similar arguments as in Section 4.2, ẋ2(t) = 0 can be set alternatively in (26).
Additionally ignoring the terms depending on Nk,21 and Nk,22, we obtain x2(t) =
−A−1

22 (A21x1(t) +B2u(t)). Inserting this for x2 in (26), a ROM (5) is obtained that
has a different structure than (3). The associated matrices are(

ÃB, B̃, C̃B, D̃, Ẽk, ÑB,k

)
=
(
Ā, B̄, C̄, D̄, Ēk, N̄k

)
, (41)

where Ā := A11 − A12A
−1
22 A21, B̄ := B1 − A12A

−1
22 B2, C̄ := C1 − C2A

−1
22 A21, D̄ :=

−C2A
−1
22 B2, Ēk := −Nk,12A

−1
22 B2 and N̄k := Nk,11 − Nk,12A

−1
22 A21. It is important to

mention that the main motivation behind the ROM given by (41) is an error bound
based on the sum of truncated HSVs that we state below. This shows the actual benefit
of the structure change.

Remark 4. Notice that both balancing related methods above preserve the type of stability
given in (11). If ÃB and ÑB,k are as in (40) or (41) and if additionally Σ > 0 and
σ(Σ1) ∩ σ(Σ2) = ∅, we have

σ(ÃB ⊗ I + I ⊗ ÃB +
1

γ2

m∑
k=1

ÑB,k ⊗ ÑB,k) ⊂ C−.

This was proved in [8, Theorem II.2] for BT and shown in [19, Section 4.2] for SPA in
the context of stochastic systems.

Theorem 4.4. Let yB be the output of (3) given that (11) holds for a sufficiently large
γ > 0. Suppose that ỹB is the reduced order output of system (5), where the matrices(
ÃB, B̃, C̃B, D̃, Ẽk, ÑB,k

)
are either given by BT stated in (40) or by SPA defined in
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(41). Then, we have

‖yB − ỹB‖L2 ≤

2
n∑

i=rB+1

σi

 exp
{

0.5
∥∥γu0

∥∥2

L2

}
‖u‖L2 ,

where σrB+1, . . . , σn are the truncated small HSVs of system (3).

Proof. The above results for γ = 1 are special cases of the ones in [21, Theorem 3.1]
(BT) and [20, Theorem 3] (SPA). Rescaling NkxB(t)uk(t) 7→ 1

γNkxB(t)γuk(t) in (3a)
provides the formulation of this theorem for general γ.

Theorem 4.4 shows that the truncated HSVs determine the error of the approximation.
Hence, these values are a good indicator for the expected error and can be chosen to find
a suitable reduced order dimension rB. Notice that for the HSVs it holds that σi = σi(γ)
since the underlying Gramians PB and Q depend on the rescaling factor γ.

4.4 Model order reduction and an error bound for (1)

In this section, we exploit the results of Sections 4.2 and 4.3 in order to find an error
bound between the output y of (1) and some reduced output ỹ which we construct as
the sum of the outputs ỹx0 and ỹB of subsystems (4) and (5). We discussed BT and
SPA for the homogeneous and the inhomogeneous part of the bilinear system in order to
obtain ỹx0 and ỹB. All approaches are designed to provide an error bound in L2, which
enables us to combine them in the following theorem.

Theorem 4.5. Suppose that (11) holds for a sufficiently large γ > 0. Let y be the output
of the original system (1) and let us define the reduced output ỹ = ỹx0 + ỹB, where ỹx0 is
the quantity of interest in (4) and ỹB the one of (5). We assume that (4) is the ROM of
either BT stated in (27) or by SPA defined in (28) with Θ1 > 0, state dimension rx0 and
an existing reduced Gramian P̃ for SPA. Let (5) be an rB-dimensional ROM computed
by BT with matrices (40) or by SPA defined through (41). Then, there exist a matrix
Wx0 defined in Theorem 4.3 such that

‖y − ỹ‖L2 ≤

(tr(Θ2Wx0))
1
2 ‖v0‖2 +

2
n∑

i=rB+1

σi

 ‖u‖L2

 exp
{

0.5
∥∥γu0

∥∥2

L2

}
with Θ2 = diag(θrx0+1, . . . , θn), where θrx0+1, . . . , θn and σrB+1, . . . , σn are the truncated
small HSVs of (2) and (3), respectively.

Proof. Let us recall that y can be written as yx0 + yB, where yx0 is the output of (2)
and yB the one of (3). Consequently, we have

‖y − ỹ‖L2 = ‖yx0 + yB − (ỹx0 + ỹB)‖L2 ≤ ‖yx0 − ỹx0‖L2 + ‖yB − ỹB‖L2

using the triangle inequality. The claim now follows by Theorems 4.3 and 4.4.
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Theorem 4.5 indicates that one finds a good approximation ỹ for the output y of the
large-scale system (1) with non-zero initial states if each individual subsystem of (1) is
reduced such that the associated truncated HSVs are small. Depending on the decay,
the number of truncated HSVs can differ in each subsystem leading to reduced order
dimensions rx0 6= rB. The result of Theorem 4.5 is the generalization of the error bound
for the linear case proved in [4, Theorem 3.2] if BT is applied to both subsystems (2)
and (3). The result for the case of SPA as well as the combination of BT and SPA is
new even for linear systems.

The representation of the error bound nicely shows the relation between the error and
the truncated HSVs which makes these values a good a-priori criterion for the choice of
the reduced order dimensions. However, the first part of the bound is not suitable for
practical computation as Wx0 depends on the full balanced realization (22) which is not
computed in practice. Instead one can use the general representation E = tr(CP0C

>) +
tr(C̃x0P̃ C̃

>
x0)− 2 tr(CP̂ C̃>x0) from which tr(Θ2Wx0) was derived at the beginning of the

proof of Theorem 4.3. E is easily available since it involves the Gramian P0 (which
needs to be computed anyway to derive the reduced system) as well as the reduced
Gramian P̃ and the solution P̂ of (36) (both computationally cheap). Of course E then
is an a-posteriori bound but still very powerful in order to determine an estimate for
the reduction quality. The representation E provides another strategy in reducing (2)
since

√
E is the H2-distance between systems (3) and (5), where (B, B̃) are replaced

by (X0, X̃0), see [26]. Necessary conditions for local minimality have been provided
in [26] and a method called bilinear iterative rational Krylov algorithm (BIRKA) was
proposed in [5] satisfying these conditions. Therefore, one can also use BIRKA instead of
a balancing related scheme in order to keep the first summand of the bound in Theorem
4.5 small.

The second part of the bound in Theorem 4.5 can be calculated once the Gramian
PB, satisfying the linear matrix inequality (LMI) (19), is computed. At the moment,
LMI solver can only solve problems in moderate high dimensions, which might not be
sufficient for some practical applications. However, once efficient computational methods
are available, considering a Gramian like PB is very useful due to the a-priori L2-error
bound. In fact, only an L2-bound is compatible with the bound in Theorem 4.3. One
might also think of choosing a Gramian like P0 satisfying (12) for subsystem (3) as
proposed in [1]. However, an L2-error bound does not exist in such a case indicating the
relevance of the new approach of choosing some LMI solution as a Gramian.

Remark 5. The value γ > 0 was introduced in order to ensure (11) which is a condition
ensuring the existence of the Gramians. On the other hand, γ can also be seen as an
optimization parameter since the ROMs, and the HSVs depend on γ. This value was
chosen equally in both subsystems, as one can see in Theorem 4.5 but certainly they can
also be different if this leads to a better reduction quality.
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5 Numerical results

In this section, we conduct some numerical experiments illustrating the efficiency of the
proposed MOR schemes. All the simulations are done on a CPU 2,2 GHz Intel® Core™i7,
16 GB 2400 MHz DDR4, MATLAB® 9.1.0.441655 (R2016b).

We consider a standard test case model representing a 2D boundary controlled heat
transfer system as described in [6]. The model is governed by the following boundary
value problem

∂tX(t, ξ) = ∆X(t, ξ), if ξ ∈ (0, 1)× (0, 1), and t > 0,
X(t, ξ) = u(t), if ξ ∈ Γ1,

n · ∇X(t, ξ) = u(t)X(t, ξ), if ξ ∈ Γ3,
X(t, ξ) = 0, if ξ ∈ Γ2 ∪ Γ4,

where Γ1 = {0} × (0, 1), Γ2 = (0, 1)× {0}, Γ3 = {1} × (0, 1) and Γ4 = (0, 1)× {1}. Here
the heat transfer term u acting on Γ1 and Γ3 is the input variable. Moreover, we assume
that the initial temperature is positive and constant in space, i.e.,

X(0, ξ) = 0.1, ξ ∈ (0, 1)× (0, 1).

A semi-discretization in space using finite differences with k = 10 equidistant grid points
in each direction leads to a bilinear system of dimension n = k2 = 100 having the form

ẋ(t) = Ax(t) +Nx(t)u(t) +Bu(t), x(0) = X0v0, (42a)

y(t) = Cx(t), (42b)

where X0 =
[
1 . . . 1

]>
, v0 = 0.1 and C = 1

n

[
1 . . . 1

]
(see [6] for more details).

Firstly, in order to apply the proposed techniques, one need to compute P0, Q and PB
satisfying equations (12), (16) and (19), respectively. As shown in [11], by applying the
Schur complement condition, (19) can be equivalently written as the following linear
matrix inequality [

APB + PBA
> +BB> PBN

>

NPB −PB

]
≤ 0. (43)

Hence, we use the YALMIP toolbox [17] to the cost function tr(PB) subject to (43) in
order to find a good candidate for the Gramian.

Then, we compute the Hankel singular values associated to subsystems (2) and (3) using,
respectively, the pair of Gramians (Px0 , Q) and (PB, Q). The resulting Hankel singular
values are depicted in Figure 1. We notice a fast decay of these values, and hence,
we expect accurate reduced models already for small reduced order dimensions as a
consequence of Theorems 4.3 and 4.4.

For subsystem (2), we construct ROMs of orders 5 and 10 using balanced truncation
(referred here as BT) and SPA (referred here as SPA) based on the Gramians P0 and Q.
Similarly, for subsystem (3), we construct ROMs of order 5 and 10 using balanced trun-
cation (referred here as BT 2) and SPA (referred here as SPA 2) based on the Gramians
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Figure 1: Decay of Hankel singular values for the subsystems (2) and (3).

Method Err. bound rx0 = 5 L2-err. rx0 = 5 Err. bound rx0 = 10 L2-err. rx0 = 10

BT 7.64 · 10−5 2.80 · 10−5 1.32 · 10−6 6.76 · 10−7

SPA 1.53 · 10−4 5.33 · 10−5 2.57 · 10−6 1.77 · 10−6

Table 1: L2-errors for subsystem (2): Error bounds in Theorem 4.3 and real errors for
BT and SPA for the simulation presented in Figure 2.

Method Err. bound rB = 5 L2-err. rB = 5 Err. bound rB = 10 L2-err. rB = 10

BT 2 1.69 · 10−4 3.25 · 10−5 7.88 · 10−7 5.31 · 10−8

SPA 2 1.69 · 10−4 3.42 · 10−6 7.88 · 10−7 4.00 · 10−9

Table 2: L2-errors for subsystem (3): Error bound in Theorem 4.4 and real errors for
BT 2 and SPA 2 for the simulation presented in Figure 3.

PB and Q. In order to compare the quality of ROMs, we simulate the original system
and the reduced models using the input u(t) = e−t cos(0.5t), t ∈ [0, 1]. In Figure 2, the
pointwise absolute errors for BT and SPA are depicted, i.e., the function ε(t) = |y(t)−ỹ(t)|
is computed, where y and ỹ are, receptively, the original and reduced outputs. One can
observe that the results improve once the reduced order is increased. Both methodologies
produce ROMs with a similar accuracy. Similarly, in Figure 3 the pointwise absolute
error plots for BT 2 and SPA 2 are presented. We notice that, for this example, SPA 2

produces ROMs with a higher accuracy than BT 2. Additionally, in Tables 1 and 2, the
L2-error values for the time interval [0, 1] together with the corresponding error bounds
for the different methods are shown, respectively, for subsystems (2) and (3).
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Figure 2: The pointwise absolute error for the approximations of subsystem (2) with
input u(t) = e−t cos(0.5t).

In Figure 4, we depict the decay of normalized L2-error bounds from Theorem 4.3 to-
gether with the real L2-errors produced by the time domain simulations for the subsys-
tem (2) using the methods BT and SPA. Normalized here means to be divided by the
L2-norm of the original system output, e.g., the normalized L2-error for a given order
is ‖y − ỹ‖L2/‖y‖L2 , where ỹ is the reduced output. For this example, BT is performing
slightly better than SPA. Similarly, in Figure 5 we depict the decay of the normalized
L2-error bound from Theorem 4.4 together with the normalized L2-errors produced by
the time domain simulations for the subsystem (3) using the methods BT 2 and SPA 2.
As stated before, SPA 2 produces ROMs that are more accurate than BT 2.
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