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Abstract: Macromolecular assembly into complex morphologies and architectural shapes is an area
of fundamental research and technological innovation. In this work, we investigate the self-assembly
process of recombinantly produced protein inspired by spider silk (spidroin). To elucidate the first
steps of the assembly process, we examined highly concentrated and viscous pendant droplets
of this protein in air. We show how the protein self-assembles and crystallizes at the water–air
interface into a relatively thick and highly elastic skin. Using time-resolved in situ synchrotron x-ray
scattering measurements during the drying process, we showed that the skin evolved to contain a
high β-sheet amount over time. We also found that β-sheet formation strongly depended on protein
concentration and relative humidity. These had a strong influence not only on the amount, but also
on the ordering of these structures during the β-sheet formation process. We also showed how the
skin around pendant droplets can serve as a reservoir for attaining liquid–liquid phase separation
and coacervation from the dilute protein solution. Essentially, this study shows a new assembly
route which could be optimized for the synthesis of new materials from a dilute protein solution and
determine the properties of the final products.

Keywords: spider silk; X-ray diffraction; β-sheet; skin formation; coacervate; liquid–liquid phase
separation; conformational conversion

1. Introduction

Fabricating materials from biological macromolecules includes utilizing unique molec-
ular interactions to formulate condensed multiscale superstructures. The formation of
protein-based materials is closely related to multi-scale supramolecular self-assembly pro-
cesses and conformational conversion by developing secondary structural motifs, which is
not yet fully understood [1,2]. One fascinating example of such ultrastructural material
is spider silk, which exhibits exceptional mechanical properties in comparison to any nat-
ural or human-made materials. It is a unique material, with high stiffness, strength, and
extensibility, and considerable overall toughness [3,4].

Despite extensive study in recent years, and the fact that spider silk and the spinning
process have served as a source of inspiration for the design of next-generation high-
performance materials, little is known about the intermediate process steps from dilute
spidroin solution to the final dried silk fiber, nor the conformational conversions taking
place during this process at ambient conditions [5–10]. Riekel and Vollrath investigated
dragline spider silk strand extracted from living spiders in an in situ X-ray experiment by
combining small-angle X-ray scattering (SAXS) and wide-angle X-ray scattering (WAXS)
measurements [11]. They showed that the fibers are composed of crystalline and amor-
phous domains, stabilized by a polymeric network. β-sheet structures were present even
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shortly after exiting the spider, demonstrating that the secondary structures form either
directly at the exit or already inside the body [12]. There is a general understanding that
the remarkable mechanical properties of spider silk are heavily influenced by β-sheets
motifs [6,13–16].

Although this has been mainly investigated for dried silk solutions or fibers, little
is known about the formation processes that occur in the protein solutions while drying,
or the development of secondary structural features. Several synthetic pathways exist to
produce recombinant silk, and they provide an excellent basis for in situ investigations of
the formation process of secondary structures [17].

In this work, we explore the development of conformational structures during
evaporation-induced self-assembly of pendant droplets of recombinantly produced spider
silk-like proteins (Figure 1A,B). Their tri-block architecture is based on our earlier reports
consisting of two folded terminal domains and a highly repetitive amphiphilic mid-block
spidroin sequence (Figure 1A) [18–21]. We anticipated the geometry of the pendant droplet
interface to be the most suitable approach for understanding the self-assembly and con-
formational evolution of dense silk solution with concentrations of spidroins in the same
range as in the glands before fiber formation (Figure 1B). This is otherwise problematic to
probe using any other means, such as planar surfaces using very dilute protein solutions,
as described previously [22,23]. As a starting point, under controlled relative humidity
at room temperature, we formed a pendant droplet in the air from a never-dried 2% w/v
protein in pure water for one hour. To our surprise, we noted that the same protein could
undergo two very distinct self-assemblies. First, part of the protein is self-assembled and
crystallized at the water–air interface into an elastic skin (Figure 1). Second, we observed
that the skin acts as a barrier, enabling the protein within to gradually be concentrated and
undergo liquid–liquid phase separation (LLPS) and thereby forming liquid-like coacervate
(LLC) droplets (Figure 1). We extensively characterized the physio-chemical nature of the
LLPS for this protein previously [18–21]. Therefore, in this work we focused on a detailed
characterization of self-assembly, leading to the formation of the skin with the associated
evolution of secondary structures.

Figure 1. Cont.
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Figure 1. Structural evolution during evaporation induced self-assembly of pendant droplet of the
silk-like protein. (A) Schematic representation of the genetically engineered and recombinantly
produced spider silk-like 3-block architecture. (B) This results in two distinct assemblies. A highly
crystalline skin at the water–air interface and liquid–liquid phase separation (coacervate forma-
tion) internally.

2. Materials and Methods
2.1. Cloning, Expression and Protein Purification

Cloning, expression, and protein purification were performed as described in our ear-
lier publications [18–21]. Briefly, DNA sequences encoding bacterial family three cellulose-
binding module (CBM3) from Ruminiclostridium thermocellum (PDB Accession number:
1NBC) [24] and DNA sequence encoding Aaraneus diadematus major ampulla gland
(ADF3) and twelve-time repeats of residues 325–368 (eADF3) [25–27] were synthesized and
codon-optimized by GeneArt gene synthesis (ThermoFisher Scientific, Waltham, MA, USA)
for expression in E. coli. The construct was made by golden gate cloning [28–30]. pE-28a (+)
(kanR) (Novagen, Darmstadt, Germany) expression vector in frame with C-terminal 6×His-
tag coding sequence for facilitating the purification was used. The resulting construct was
named CBM-eADF3-CBM, in which the repetitive silk sequence was flank at both termi-
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nals with CBM. In general, for all the expressions either EnPresso® B medium (BioSilta,
Oulu, Finland) technology were used or MagicMediaTM E. coli expression medium (Ther-
moFisher Scientific, Waltham, MA, USA) according to instructions, with some changes
otherwise stated in the text. After 15–24 h of induction, cells were harvested (centrifugation
at 16,000× g, 15 min, 4 ◦C), washed, and lysed. Proteins were purified using HisTrap FF
crude columns (GE Healthcare life Science, Chicago, IL, USA) connected to AKTA-Pure liq-
uid chromatography. For high scale purification cells lysed and supernatant heat-shocked
at 70–75 ◦C for 30 min, and then centrifuged at 16,000× g for 80 min at 4 ◦C and desalted
using Econo-Pac® 10DG column (Bio-Rad Laboratories, Hercules, CA, USA). Samples were
then frozen in liquid nitrogen and stored at −80 ◦C until use.

2.2. Sample Preparation for the Analysis

Never-dried protein samples were gradually concentrated to the desired concen-
trations (0.2% w/v, 2% w/v, and 15% w/v) using centrifugal concentrator (Vivospin20,
Göttingen, Germany) at 845 r.c.f. Unless otherwise stated, proteins were in Milli-Q water.
For the measurements, pendant droplet of silk solution made by forming approximately
200–500 µL of proteins solution drawn into a Hamilton® syringe and a droplet with approx-
imately 40 µL volume was made in a humidity-controlled box using a flat-tipped needle
at various relative humidities (20%, 40%, and 80% relative humidity (RH)). Self-assembly
of proteins at the air–water interface led to the formation of an elastic skin around the
pendant droplets.

2.3. Optical and Polarized Microscopy

Samples were imaged on several platforms as follows: (1) Axio observer inverted
microscope (Carl Zeiss, Jena, Germany) equipped with a motorized stage, AxioCam MRm
camera (Zeiss, Jena, Germany), a × 100/numerical aperture, and Zeiss AxioVision software
(version 4.7). Images were further processed with ImageJ [31] or ImageJ Fiji (versions
1.47d) [32]. (2) Polarized microscopy imaging was performed using a Leica DM4500 P LED
polarized optical microscope (POM, Wetzlar, Germany) for the qualitative observation and
to study the birefringence of the fibers. Samples were placed between two cross-polarizers
in an optical microscope and interference color resulting from the retardation between
ordinary and extraordinary waves at angles ±45 was determined. All the imaging was
performed on microscope glass slides (24 mm × 50 mm, with 170 µm thickness) that were
washed with 10 mM NaOH with sonication for 5 min and rinsed with water.

2.4. Flash-Freezing of the Pended-Droplet for Characterization of the Skin Formation

Verification of the pended droplets was achieved by plunging the droplets into 1:1
mixture of liquid propane and ethane (−180 ◦C). Samples were then handled under liquid
nitrogen transferred into a FreeZone 4.5 L Cascade Benchtop Freeze Dry Systems equipped
with a collector cooling chamber of −105 ◦C.

2.5. Scanning Electron Microscopy (SEM)

High-resolution SEM imaging was performed via Zeiss (Sigma VP) FE-SEM field
emission microscope (Microscopy Center, Aalto University, Espoo, Finland) with variable
pressure, operating at 1–1.5 kV operating. A thin (2 nm) platinum coating was sputtered
onto the samples prior to imaging of surfaces only in SEM mode. For further analysis,
an image processing software package ImageJ [31] and ImageJ Fiji (versions 1.47d) [32]
was used.

2.6. Raman Spectroscopy

A Lab RAM HR UV-NIR single-stage dispersive Raman microscope system with
an 800 mm high-resolution spectrograph was used to record Raman Spectra from the
specimens. A 633 nm @ 30 mW (with an estimated power of 3 mW on the sample) Helium-
neon laser was used to focus on the surface of the specimens. An Olympus BX41 with a
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motorized stage with 50× objective was used to focus the <1 µm laser beam to collect the
scattered radiation and record the spectra with a high-resolution CCD camera (1024 × 256
(pixel size 26 µm × 26 µm)) in the region of 700–1800 cm−1 with the exposure time of 20 s,
accumulation number of 100 and grating of 600.

2.7. Micro-Mechanical Measurement of Skin

Tensile testing was performed on a 2 kN tensile/compression module (Kammrath
& Weiss GmbH, Schwerte, Germany) using 2 N load cells. The elongation speed was
8.35 µm/s with a gauge length of 10 mm. The ends of the fiber-shaped materials were fixed
by gluing them between two pieces of abrasive sandpaper. Before testing, the samples
were stabilized at 50% relative humidity overnight. SEM imaging was used to obtain the
cross-sectional areas of each sample. In most cases, the cross-section was not completely
circular; a contour line was drawn to measure the cross-sections. We used the Image J
software package.

2.8. Interfacial Tension

Measurements were performed using Biolin Scientific Attention Theta Flex optical
tensiometer (Espoo, Finland) equipped with a temperature and humidity controlled unit
with the camera resolution of 1984 px × 1264 px (3009 FPS). A pendant drop was made
using a micropipette containing 25 µL of either 0.2%, 2%, or 15% w/v silk solution. The
Young−Laplace formula was used to calculate the shape change of the pendant drop [33,34].
The pendant drops were incubated at room temperature in a controlled humidity unit.
Changes in the shape of the pendant droplet were characterized using OneAttention Theta
Flex software (version 3.8).

2.9. Synchrotron Wide-Angle X-ray Scattering (WAXS) Measurement

The in situ X-ray scattering experiments were conducted at BESSY II (Helmholz
Zentrum Berlin für Materialien und Energie; Berlin, Germany) at the µSpot beamline (Max
Planck Institute of Colloids and Interfaces, Potsdam, Germany). An energy of 15 keV with
a Si111 double monochromator and 100 µm spot-size was used; the sample to detector
distance of 311 mm allowed for WAXS investigations. The images were captured with an
Eiger 9M detector (pixel size 75 µm × 75 µm). To control the humidity, a custom-made
measurement chamber (10 to 90% relative humidity) was installed, which was attached
to a generator and its air pressure system. This chamber consists of X-ray transparent
polymeric windows and a cannula (2 mm diameter) that could be operated remotely with
a motorized tensile testing machine. The defrosted proteinous solutions (0.2%, 2%, and
15% w/v silk solution) were captured inside the cannula, and a droplet was formed. A
repeating line scan (4 mm width, step size 200 µm, and 10 s exposure time) was used
to acquire images directly underneath the cannula over the whole width of the droplet;
each sample was investigated for a minimum of 1 h with higher durations for the high
humidities. The software DPDAK (directly programmable data analysis kit) was used
for calibration and evaluation of the X-ray spectra, using the plugins “Image Input” and
“Image Integration 1D” [35]. A quartz standard was used for calibration of the radially
integrated images, oversaturated pixels were removed by masking and the background of
the empty measurement chamber was subtracted. Furthermore, a transmission correction
value was calculated for each measurement point, considering the respective path of the
beam through a spherical shape. Finally, Lorentzian peak fits (5000 iterations, least-squares,
linear background subtraction) were applied to determine the area and position of the
peaks; peak position variations higher than 0.5 and error calculations higher than 0.1
were discarded.
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3. Results and Discussions
3.1. Evolution of Skin at the Water–Air Interface

To better understand the assembly process of the protein at the interface, we vitrified
the entire droplets at various time points in liquid ethane–propane (50%:50%) mixture,
followed by fracturing the droplets and probing the evolution of the skin using high-
resolution SEM imaging to have direct observation of the assembly. Figure 2 illustrates
droplets corresponding to 2 min, 20 min, 30 min, and 50 min into the incubation in air,
respectively. The formation of a free-standing coherent skin, covering the entire surface of
the pendant drop over time, is clearly evident. The thickness of the skin increased as more
protein was absorbed at the interface of the drop. The thickness of the skin ranged from
10 nm to about 25 µm during incubation from 2 to 50 min. Notably, the skin appeared to
become increasingly dense as it matured.

Figure 2. Self-assembly and evolution of skin at the water–air interface. SEM images of the cross-
section of the pendant droplets of 2% w/v silk solution after 2 min, 20 min, 30 min, and 50 min. The
skin layer is indicated in-between two yellow arrows for all images. For each time point, we have
also included representative images of each pendant droplet.

3.2. Structural Evolution of Skin

To investigate the structural features of the skin at the molecular scale, we followed
in situ self-assembly of the protein at the water–air interface using synchrotron WAXS
measurements. Figure 3A shows representative time-resolved 1D WAXS curves extracted
from 2D diffraction patterns corresponding to Figure 2. The measurement was expanded
up to 120 min. Scans were performed every minute at 500 µm underneath the blunt needle
tip at the center point, keeping the position fixed throughout the measurement. At the
onset of the measurement, a strong signal corresponding to the so-called water peak could
be seen with the D-spacing ranging from 3 to 3.5 Å [36,37]. Over time, scattering intensity
declined due to the gradual evaporation of the water molecules. This gradually resulted
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in the emergence of the two visible peaks towards the last scans. A sharp peak between
4 and 5 Å, with the maximum peak intensity at around 4.5 Å, is known to correspond
to β-sheet interstrand spacing, as described previously, by combining experimental and
computational simulation [19,38–40], A broader peak appeared between 8.5 and 11 Å, with
its maximum intensity at 10.6 Å. This spacing is commonly assigned to β-sheet interspacing.
As the content of β-sheet structures was rising during the drying process, water loss and
drying can be interpreted as the key triggering mechanism for crystallization [18,38–40].
These observations are in agreement with complementary RAMAN spectroscopy mea-
surements to determine the conformationally sensitive amide I signal which has been
dominantly assigned to β-sheet structures with an emerging peak at a wavenumber of
1657 cm−1 (Figure 3B) [41,42]. Additionally, performing polarized microscopy of the skin
at various time points placed between two crossed polarizers at 45◦ with respect to their
axis demonstrated an increase in the birefringence of the samples over time, indicative of
conformational conversion and evolution of β-sheet motifs (Figure 3C).

Figure 3. Probing structural evolution of skin at the water–air interface using time-resolved in
situ synchrotron WAXS measurements corresponding to Figure 2. (A) Extracted one-dimensional
diffractogram for the period of 120 min. (B) RAMAN spectrum for the first and last time points
as in (A). (C) Polarized microscopy images of skins at various time points placed between two
crossed polarizers at 45◦ with respect to their axis, illustrating the increase in the birefringence of the
specimens over time.
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3.3. Mechanical Properties of the Skin

As the skins matured over time into the free-standing, highly elastic 2D membrane in
both the hydrated and dehydrated state, we set to determine their mechanical properties.
To minimize possible experimental errors during tensile measurements due to inherent
variation in the thickness of the skin throughout the surface of a single droplet, and also
possible variation between different droplets, we rolled the 2D skins into fiber-shaped
materials (Figure 4A). This enabled us to measure the cross-sectional area for each specimen
accurately by SEM. By doing so, we were able to make fiber-shaped materials with an
average diameter of 500 ± 30 µm. Figure 4A,B shows the results of stress–strain tests carried
out for the corresponding samples at 50% RH. As described, the skins were highly elastic
in the hydrated state, however their ultimate strength values were substantially low, and
therefore we were not able to detect this using our experimental setup. Hence, we exclude
any discussion on the hydrated specimens. However, for the dried samples at 50% RH, the
general shape of the stress–strain curves showed ductile fracture features [43]. Stress–strain
curves of the skins showed four distinct regimes: (1) a linear elastic deformation region from
0 to 1.12% strain and 0 to 25 MPa stress, (2) a yield point (1.24), (3) a short hardening region
expanding from 1.12 to 2.6% strain and 25 to 33.2 Mpa stress, followed by (4) decreasing
plastic deformation region until catastrophic failure. The materials showed an ultimate
strength of 33.2 ± 4.6 MPa and an ultimate strain of 6.89%. High-resolution fractography
after the tensile test revealed the origin of the ductile behavior of the materials. Besides
the internal molecular rearrangement and sliding of the protein backbone, we noted the
formation of multiscale tears throughout the material, which is indicative of inelastic
deformation and a decrease in the tensile properties before undergoing catastrophic failure.

3.4. Absorption Kinetics of the Protein at the Water–Air Interface

To better understand the absorption kinetics of the protein at the water–air interface,
we performed pendant drop tensiometry for the protein solutions at the various concen-
trations (Figure 5). In addition to what we indicated as a saturated silk solution (2% w/v),
we also tested very dilute (0.2% w/v) and highly concentrated (15% w/v) solutions. We
also included MQ water as a control. Data obtained from the DST measurements revealed
two distinct trends illustrating the absorption of the protein at the water–air interface, very
similar to what is known for surface-active proteins [44,45]. First, with the increase in
protein concentration, we noted a substantial decrease in surface tension. Second, surface
tension decreased substantially as the droplets were incubated for a longer period. These
were only pronounced for 2% w/v and 15% w/v. DST data points for the 0.2% w/v sample
remained nearly constant at around 72.5 mN m−1, indicating that there is no apparent
absorption of the proteins at the interface. Data for 0.2% w/v was nearly identical to the
MQ water. Both 2% w/v and 15% w/v showed a similar trend in the evolution of the
interfacial tension. This includes a steep initial decrease in the surface tension, followed by
a very gradual reduction for the rest of the measurements. However, we also observed a
few noticeable differences. For instance, surface tension for the 2% w/v decreased from 71
to 58 mN m−1, whereas this was ranging from 69 to 47 mN m−1 for the 15% w/v protein
solution. Additionally, the initial plunge was expanded for around 10 min for the 2% w/v,
whereas this was about 20 min for 15% w/v sample.
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Figure 4. Rolling the skin into fiber-shaped material and testing its mechanical properties. (A) Po-
larized microscopy of a fiber-like material made from the skin. The panel also shows SEM images
from three different regions of the same fiber which demonstrates inhomogeneity in the thickness
and surface morphology throughout the length of the fiber. (B) Representative stress–strength curve
for the corresponding sample as in (A). (C) SEM images of the material after the tensile measurement
test illustrating typical tears observed throughout the length of the fibers.
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Figure 5. Changes in the interfacial tension of silk solution during drying over time.

3.5. Time-Dependent Conformational Conversion of the Proteins at the Water–Air Interface

To approach the structural characteristic and conformational conversion more sys-
tematically we probed in situ X-ray scattering experiments on drying droplets (Figure S1,
Supplementary Materials) of 0.2%, 2%, and 15% w/v at various humidities (20, 40, and
80% RH). We primarily examined the most prominent peak at 4.5 Å to evaluate the for-
mation of secondary structures. The area and the position of this peak were probed as
a function of time (drying of the droplets) and the circular chord (corresponding to the
distance the X-ray beam has to travel through the droplet). Measurements were performed
at various positions of the droplets, starting from the edge and moving to the center
(Figures 6A–F and S2). Results demonstrated that the formation of β-sheet structures was
directly correlated with the increase in the protein concentration and inversely correlated
with the increase in humidity. We noted that the amount of β-sheets, indicated by the peak
area (Figures 6A–F and S2), was lowest for 80% RH and protein concentrations of 0.2%
w/v, reaching almost the range of a threshold error.

Figure 6. Effect of concentration and humidity on the formation of β-sheets analyzed by in situ X-ray
scattering. (A) Peak fit area over time for protein concentrations of 0.2% w/v, 2% w/v, and 15% w/v
protein samples at 20% RH, (B) at 40% RH, and (C) at 80% RH. (D) Peak fit position illustrating
changes in D-spacing (shown in angstrom scale) as a function of time for protein concentrations of
0.2% w/v, 2% w/v, and 15% w/v protein samples at 20% RH, (E) at 40% RH, and (F) at 80% RH.
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Samples with 2% and 15% w/v at 20 and 40% RH showed a clear appearance of
β-sheet structures over time. Both 2% and 15% w/v samples showed relatively similar
development of β-sheets over time, with the differences that samples with 15% w/v reach
a higher content of β-sheets in comparison to 2% w/v in most humidities. However, it
is notable that the 15% w/v sample showed a lower slope (Figure 6A–C) of the peak
area, increasing overtime at the onset of measurements. Seidel et al. showed that a peak
position at around 4.4 Å is correlated to silk with only isolated or partially stacked β-sheet
structures, while materials (usually after drawing) with larger microcrystals exhibit a peak
for lateral distance at 4.6 Å. Therefore, not only larger peak areas, but also higher peak
positions (larger D-spacing) can be assumed to correlate with a higher degree of ordering
of β-sheets [38]. In general, D-spacing rises overtime for all samples (Figure 6D–F).

It is also important to notice that, in almost all the combinations, a slight delay before
β-sheet formation was observed. This was more pronounced for low protein concentrations
and high humidities. Contrary to this, the combination of high protein concentrations and
low humidities showed the least delay, leading to the assumption that the water content
and the drying of the droplet is of great importance for the entire process. Furthermore,
looking at the β-sheet formation over the circular chord (corresponding to the distance
the X-ray beam has to travel through the droplet), for most samples, we noted that the
assembly is higher at the edge of the droplet, but we found no relation between the path
through the droplet and the peak position, and therefore ordering, of the β-sheets.

4. Conclusions

Natural and synthetic spider silk materials are both mechanically processed to achieve
their mechanical properties, usually by a spinning process. Earlier studies showed that
the three-dimensional poly(alanine) crystals with the β-sheet structure are formed only
during drawing steps [38]. Future studies may cover both the early formation stages
of secondary structures, as well as their transformation into higher-order structures due
to additional processing. Another phenomenon in natural spider silk, which strongly
depends on the basic formation mechanisms of secondary structures, is the so-called
super contraction, where unrestrained spider dragline silk contracts to about 50% of its
original length when wetted or exposed to highly humid environments [46]. Our results
also show that a humidity of 80% leads to a significant reduction in β-sheets. Specifically,
our results provide insights into the formation processes of secondary structures from
solutions containing proteins inspired by spidroins. This work thereby highlights the
importance of the water–air interface during the self-assembly of tough silk fiber in the
natural spinning process, and clarifies why synthetic processes, i.e., wet spinning of
engineered or reconstituent silk proteins, do not recapitulate the properties of native
fibers. On a more general level, these results build the basis for further investigations
of such formation processes to optimize the production of new materials with tailored
functionalities from solutions of engineered macromolecules toward sustainable production
of next-generation high-performance material with much broader applications.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ma14154239/s1, Figure S1: Overview of the used humidity measurement chamber with a
motorized tensile testing machine, syringe/cannula, and X-ray transparent polymeric windows. The
red circle marks the area of interest, where the droplet was formed; Figure S2: Effect of concentration
and humidity on the formation of β-sheets analyzed by in-situ X-ray scattering. (A) Peak area fit
over the circular chord for 0.2% w/v, 2% w/v and 15% w/v protein samples at 20% RH, 40% RH and
80% RH. (B) Peak fit position over the circular chord of the droplet corresponding to (A). For better
clarity, data points for 80% RH for all three concentrations were removed due to the unreliability
of detections.
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