
Optically-Induced Symmetry Breaking via Nonlinear Phononics  
 

Jared S. Ginsberg1,#,*, M. Mehdi Jadidi1,#, Jin Zhang2,#,*, Cecilia Y. Chen3, Sang Hoon Chae4, Gauri N. Patwardhan1,5, 

 Lede Xian2, Nicolas Tancogne-Dejean2, Kenji Watanabe6, Takashi Taniguchi7, James Hone4, Angel Rubio2,8,*,  

and Alexander L. Gaeta1,3,* 
 

1Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, USA 
2Max Planck Institute for Structure and Dynamics of Matter and Center for Free-Electron Laser Science, Hamburg 22761 Germany 

3Department of Electrical Engineering, Columbia University, New York, New York 10027, USA  
4Department of Mechanical Engineering, Columbia University, New York, New York 10027, USA 

5School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, USA 
6 Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan 

7 International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan 
8Center for Computational Quantum Physics, Simons Foundation Flatiron Institute, New York, NY 10010 USA. 

 
#These authors contributed equally to this work 

* jsg2208@columbia.edu (J.S.G.), jin.zhang@mpsd.mpg.de (J.Z.), angel.rubio@mpsd.mpg.de (A.R.), and alg2207@columbia.edu (A.L.G.)  

Abstract: Optical nonlinearities in solids reveal information about both the in-plane rotational and out-of-plane inversion 

symmetries of a crystal. In the van der Waals material hexagonal boron nitride (hBN) both these symmetries and the linear 

vibrational properties have led to the rich physics of mid-infrared phonon-polaritons. However, the role of strong electron-phonon 

nonlinearities requires further study. In this work, we investigate both theoretically and experimentally the rich interplay of 

phonon anharmonicity and symmetry in phonon-polariton mediated nonlinear optics. We show that large enhancements (>30×) 

of third-harmonic generation occur for incident femtosecond pulses that are resonant with the hBN transverse optical phonons. 

In addition, we predict and observe large transient sub-picosecond duration second-harmonic signals during resonant excitation, 

which in equilibrium is forbidden by symmetry. This surprising result indicates that instantaneous crystal inversion symmetry 

breaking can be optically induced and controlled via phonon interactions by both the power and polarization of the pump laser. 

 

Introduction 
 

The generation of optical harmonics in solids provides a window into the optical susceptibility, band-structure, and underlying 

symmetries of crystals, each of which can dramatically affect the nonlinear frequency-conversion process [1–3]. Symmetries, 

more so than any other factor, dictate the allowed higher-order processes in a given nonlinear system [4]. These properties 

become frequency independent far from any resonances, as is the case in the visible and near-infrared regime where many high-

order harmonic generation measurements take place [5]. However, in the mid-infrared regime, polar crystals support lattice 

collective oscillations that can be resonantly driven by an optical field. At frequencies near these phonon resonances the linear 

optical response of the crystal is significantly modified, manifesting for example as a peak in the real permittivity [6]. Under 

increased resonant excitation using femtosecond laser pulses, the amplitude of the ionic motion can become nonlinear with the 

incident field strength. For bulk materials such as LiNbO3 and GaAs, phonon-induced enhancements of optical nonlinearities [7–

10] occur in this regime. Furthermore, these ionic modes can alter the symmetry properties of the crystal, leading to transient 

nonlinear optical effects such as those observed in SrTiO3, which can be driven into a metastable non-centrosymmetric state 

following prolonged exposure to a phonon-resonant pump [11].  

 

A strong phonon resonance in the mid-IR is present in the van der Waals crystal hexagonal boron nitride (hBN), with a transverse 

optical (TO) phonon mode at 7.3 µm free-space wavelength (170 meV) [12]. The relatively light constituent atoms of hBN make 

this one of the most energetic TO phonons, accessible by ultrafast table-top lasers. hBN has an energetically favorable AA’ 

stacked lattice in equilibrium, with alternating boron and nitrogen atoms sitting one on top of the other. An illustration of the 

resonantly driven, in-plane displacement of atoms for the TO (E1u) mode of hBN [13] is presented in Fig. 1a. At the point where 

the photon and phonon dispersion curves meet, an anti-crossing emerges in the hBN band structure, and the crystal hosts new 

hybrid modes called phonon-polaritons [14]. These have been the subject of intense study due to their long-range 

propagation [15].  

 

The natural hyperbolicity of the hBN TO phonon also makes it an attractive platform for tight confinement of optical energy, 

and therefore for enhancing nonlinearities and light-matter interactions within relatively large volumes [6]. We will extend the 

scope of these light-matter processes by showing that it is possible to further enhance optical nonlinearities by exploiting the 

mailto:jsg2208@columbia.edu
mailto:jsg2208@columbia.edu
mailto:jin.zhang@mpsd.mpg.de
mailto:angel.rubio@mpsd.mpg.de
mailto:alg2207@columbia.edu


strong hyperbolic confinement for even greater electron-phonon coupling. Specifically, in this work we show enhanced emission 

from the phonon-electron contributions to optical harmonic generation in hBN. We theoretically predict and demonstrate 

experimentally the nonlinear response of thin hBN crystals associated with this TO phonon mode at 7.3 µm. By sweeping a 

significant bandwidth of the mid-IR we demonstrate a greatly enhanced on-resonance phononic contribution to third-harmonic 

generation (THG) when hBN is pumped at its TO phonon-polariton. In addition, through time-resolved measurements, we 

confirm that when TO phonons of hBN are strongly excited, the inversion symmetry of the crystal is broken instantaneously and 

transient second-harmonic generation (SHG) occurs, which is forbidden in the bulk at equilibrium (with few exceptions)  [16–

18]. The SHG yields are studied as a function of the power and polarization of both the phonon-inducing pump and harmonic-

generating probe, from which preferential symmetry axes for SHG are identified. 

 

Results 
 

Phonon-enhanced third-harmonic generation: We first characterize theoretically the ionic displacements in bulk hBN under 

resonant excitation with 25-fs FWHM pulses by performing time dependent density-functional theory (TDDFT) simulated atomic 

oscillations panning 200-fs, or roughly 8 times the theoretical pulse duration (see Fig. 1b). For a modest input intensity of 7 x 

1010 W/cm2, we estimate that the phonon amplitude is 1% of the equilibrium lattice constant. While the period of the lattice 

oscillation is 25-fs, which is consistent with the expected phonon frequency, the relaxation time cannot be theoretically 

determined due to a lack of dissipative pathways. The amplitudes of atomic motion are plotted as a function of pump intensity 

in Fig. 1c. The displacements predicted by TDDFT calculations are fit by I1/2 with deviations appearing at large intensities and 

reach nearly 5% of the equilibrium lattice constant (2.5 Å) [19] at 10 TW/cm2. The time-dependent electronic current is extracted, 

and from this we generate the theoretical harmonic spectra employed throughout this work (see Methods). This process is 

repeated for wavelengths below, at, and above 7.3 μm, and the integrated theoretical THG yields are plotted in Fig. 3a as green 

dots.  

 

We show the integrated and normalized experimental (Fig. 2a) THG amplitudes for a range of pump wavelengths from 3 μm to 

9.5 μm in Fig. 3a as blue dots, which are in excellent agreement with the calculations discussed in Fig. 1 and plotted as green 

dots in Fig.3a. The third-harmonic exhibits a strong peak for pump wavelengths near the TO phonon resonance at λ = 7.3 µm. 

As this wavelength is far from any electronic or excitonic resonances, the enhancement must be phononic in nature. We fit the 

data to a Lorentzian and extract a resonance full-width at half-maximum of 500 nm. THG yields are below the noise level for all 

λpump less than 6 µm or greater than 9 µm, compared to that of the resonant signal which yields at least a 30-fold increase, and 

thus the phononic enhancement of the THG coefficient at the phonon-polariton wavelength is significantly greater than the 

purely-electronic component in this regime. In Fig. 3b we plot the measured intensity dependence of the THG signal for λpump = 

7.3 µm. The fit to a cubic function indicates that the measured nonlinearity is third-order and that the scaling is perturbative, even 

at high intensities [20]. We note that a similar effect has been observed in the phononic second-harmonic generation of LiNbO3, 

which also remained in the perturbative regime at higher-than-expected intensities. Also, we propose that subwavelength 

structures that support confined phonon-polaritons [6,21] can drastically enhance the phonon-induced nonlinearity in the same 

way that they dramatically enhance electronic nonlinearities. 

 

Figure 1: (a) Honeycomb lattice arrangement of hexagonal boron nitride. Arrows illustrate the motion of atoms under resonant optical excitation. 
The two species move oppositely from each other in plane and across all layers for the IR-active TO (E1u) mode, but same species atoms move 
oppositely in adjacent layers for TO (E2g). (b) Simulated atomic displacements of boron and nitrogen ions in TO (E1u) excited hBN. A 25-fs 
FWHM, 1 x 1012 W/cm2 pulse excites the lattice dynamics. The TDDFT simulations do not include any damping terms through which to estimate 
the relaxation time. (c) Peak amplitude of atomic displacements as a function of pump intensity, fit to I1/2 with a small linear-in-intensity correction. 
Displacements nearing 5% of the equilibrium lattice constant are achievable before the onset of damage. 



We also performed TDDFT simulations of the wavelength dependence of a higher-order harmonic (HHG) spectra of bulk hBN 

See supplementary Fig. S1 for two different pump lasers with a wavelength of λpump = 7.3 µm (polarized parallel to the TO mode) 

and λpump = 6.2 µm (polarized parallel to the LO mode). Changing the wavelength and polarization of the pump laser can lead to 

the excitation of different phonon modes and lead to significant modulation of the HHG spectra. Excitation of either the TO or 

LO mode leads to noticeable modifications of the high-harmonic spectra, with the TO (E1u) enhancement being one order of 

magnitude greater than that caused by LO excitation. Furthermore, more intense laser pulses can introduce larger atomic 

displacements and lead to larger nonlinearity.  As seen from a pump intensity of 2.5 x 1010 W/cm2, the high-harmonic yields can 

be increased in a wide energy regime, and the high harmonic generation plateau is enhanced (Fig. S2), which is attributed to the 

increased atomic movement and enhanced nonlinearity. 

 

Phonon-induced transient second-harmonic generation: Multilayer hBN has inversion (and 6-fold rotational) symmetry due 

to the natural 2H stacking of its van der Waals structure [22]. Any contribution to SHG in few- to many- layer hBN is therefore 

restricted only to the broken inversion symmetry cases of interfaces and an odd number of layers and is inherently weak [16]. By 

conducting ultrafast pump-probe experiments we show that the crystal inversion symmetry can instead be controllably broken 

by excitation of the IR-active TO (E1u) phonon, which leads to a finite second-order susceptibility. For large amplitudes of the 

laser-driven lattice deformation, our simulations reveal the emergence of an ultrafast, transient SHG signal from a secondary 800 

nm laser pulse, as shown in Fig. 4a. We distinguish this induced SHG from any nearby odd-order processes by performing the 

calculations in the following two different ways: i) with a 7.3 µm pump field, and ii) using the time-evolution of an equivalently 

distorted lattice and no resonant photons. In both cases the signal at harmonic order 2 emerges, confirming the principal role of 

the broken symmetry. Furthermore, simulations confirm that in the case of the Raman-active hBN TO (E2g) phonon which 

preserves inversion symmetry, even-order nonlinearity cannot be observed.  

 

The experimentally measured SHG signal at 396 nm is presented in Fig. 4b as a function of the time delay between 792 nm and 

7.3 µm pulses. The probe pulse from an amplified Titanium-Sapphire laser and the pump pulse from a mid-infrared OPA and 

difference frequency generation module are scanned in time by a mechanical delay line. The powers and relative polarizations 

are set with filters and half wave plates (HWP), and the two beams are then combined on a beamsplitter before being focused 

onto the sample by a reflective objective (the experimental setup is shown in Fig. 2b, with further details in Methods). When the 

probe pulse precedes the pump pulse, no SHG is measured, indicating that the interface SHG and odd layer-number contributions 

Figure 2: (a) Experimental setup for THG experiments. Detection is performed with PbS and MCT detectors, a lock-in amplifier, and boxcar-
averaging. (b) Experimental setup for pump-probe SHG experiments. The time-delay is controlled by a mechanical delay stage with sub-1 µm 
step size. The pump and probe are both focused onto the sample with a reflective objective with 0.5 numerical aperture. Detection is performed 
with a silicon photomultiplier tube and lock-in amplifier. 



are below the noise floor. The time-resolved SHG then displays a finite signal at the zero-time delay, when the probe pulse’s 

arrival coincides with the strong excitation of the hBN phonon-polariton. The SHG signal relaxes back to zero with a time 

constant of approximately 120 fs, which is approximately twice the pump pulse duration. When pumped far off-resonance, no 

SHG is measured. In Fig. 4c and 4d we show the dependence of the SHG yield on the intensity of the probe and pump, 

respectively. A quadratic dependence of the SHG intensity on the probe power is observed, as expected for a second-order 

nonlinear process. The linear scaling of the SHG signal with respect to the mid-IR intensity in Fig. 4d implies a direct dependence 

of the transient SHG process on the ionic displacements. These dependences match those reported for SrTiO3, in which an SHG 

yield in low temperature experiments was found to steadily increase over hours of total pump exposure and persist for hours 

after, with ps-scale modulations that also increase in frequency with total exposure time [11]. Another similar effect with a very 

long response time was observed in the naturally inversion-symmetry-broken van der Waals material WTe2 [23]. However, in 

this case the effect of a shear strain and lattice displacement was to eliminate the naturally present SHG, which is the opposite of 

our observed effect.  

 

Next, we establish the dependence of the ultrafast SHG on the orientation of the pump and probe polarizations with respect to 

the crystal high-symmetry axes. Figure 5a gives the total normalized SHG yield for 360o rotation of both pulses (180o rotation is 

measured and the data is then mirrored). We observe a polarization behavior unique from either the inherent 6-fold χ(2) or isotropic 

χ(3) symmetries of purely electronic hBN nonlinearities [24]. Specifically, the emission closely follows the functional form, 

 

𝑆𝐻𝐺(𝜃, 𝜙) = [ 𝛼 𝐶𝑜𝑠(3𝜃)2 + 𝛽 𝑆𝑖𝑛(3𝜃)2 ]  𝐶𝑜𝑠(𝜃 − 𝜙)2,          (1) 

where 𝜃 and 𝜙 are the angles of the pump and probe relative to the zigzag (ZZ) axis of the crystal, respectively, and 𝛼 and 𝛽 

determine the relative strengths of the emission along the ZZ and Armchair (AC) axes, respectively. SHG yields peak only along 

ZZ axes that are being resonantly driven with a phonon-polariton. This is most clearly visible in the linecuts of the probe 

polarization dependence for pump fields aligned parallel to the AC and ZZ axes, given in Fig. 5b. Even when the pump excitation 

is aligned with an AC axis, the two adjacent ZZ oriented TO(E1u) phonons break the inversion symmetry, and we observe SHG, 

whereas the ZZ axis at exactly 90o from that excitation shows no emission. From Fig. 5 we determine that the phonon-mediated 

SHG is at least 3 times greater parallel to ZZ than AC directions. This is supported by time-dependent density functional theory 

(TDDFT) simulations in Fig. 5c, which identifies even-order nonlinearity along both symmetry axes, though much greater for 

the TO(E1u) phonon than the relative π phase LO(E1u). 

 

Discussion 

 

We have extended the light-matter interactions confined by the hyperbolic nature of the hBN phonon dispersion to a strongly 

Figure 3: (a) Normalized third-harmonic generation yields of 120-fs pulses as a function of pump wavelengths throughout the mid-IR. THG yields 
are below the noise level for all wavelengths less than 6 µm or greater than 9 µm. Within a roughly 1 µm bandwidth of the phonon-polariton 
resonance, a THG enhancement of 30x is observed. The black line is a Lorentzian fit to the data (blue dots) with full-width at half-maximum of 
500 nm. The green dots were obtained by integrating the third-harmonic signal in TDDFT simulations and show excellent agreement with 
experiments. (b) Normalized intensity dependence of THG pumped on-resonance at 7.3 µm and measured at 2.43 µm. The data is a close fit to 
I3, indicating that the nonlinear process is scaling perturbatively. 



nonlinear regime by demonstrating that the large electron-phonon coupling leads to a nearly two order of magnitude enhancement 

of SHG and THG. Efficient coupling of light to hBN phonon-polaritons at normal incidence places stringent requirements on the 

allowed optical excitation wavelength. For the free-space wavevector k = 0, the required photon wavelength of 7.3 µm is fixed, 

independent of flake thickness [12]. With the energy-momentum conditions met, we have shown that efficient coupling of optical 

energy into the hBN lattice leads to anharmonic driving of the atoms. Phonon amplitudes can reach a few percent of the 

equilibrium lattice constant long before the onset of laser-induced damage according to TDDFT simulations. The anharmonicity 

of the ionic motion leads to a novel, enhanced nonlinearity, for which hBN is the most attractive platform in the mid-IR due to 

its relatively light constituent atoms. Saturation of the THG yield below its perturbative cubic scaling was not observed and is 

more likely to occur closer to the onset of sample damage. The extension of nonlinear phonon enhancement to higher-order 

nonlinearities and to two-color high-harmonic generation techniques will likely advance our understanding of electron-phonon 

coupling and nonlinearly-driven lattices.  

 

Our results also establish SHG as a sensitive probe for ultrafast symmetry monitoring and eventually control, complementing 

earlier demonstrations on broken-inversion-symmetric transition metal dichalcogenides, while reducing the relaxation time scale 

by more than two orders of magnitude [23]. The presence of fast oscillations in the measured SHG on top of another transient 

but finite signal is indicative of a combination of effects. Whereas the fast fs-timescale oscillations appear to be coherent with 

the excited phonons, the constant pedestal suggests a second, rectified signal. This can occur, for example, when the coupling of 

the IR-active phonon to a Raman-active mode creates a new equilibrium position of the lattice atoms [11]. The maximum 

achievable yield is highly sensitive to the underlying symmetries of the hexagonal lattice, peaking along the ZZ axes where the 

greatest atomic displacements are known to occur. We note that the observed transient broken-inversion symmetry and atomic 

displacement can also be interpreted as a strong photo-induced strain field when the phonon mode is resonantly excited [25]. The 

Figure 4: (a) TDDFT simulations show the emergence of even-order nonlinearity during resonant excitation of the TO phonon mode. (b) Time-
resolved SHG yield (normalized) of the 792 nm probe pulse. While the pumps are temporally overlapped, an ultrafast second-order nonlinearity is 
measured. The inversion symmetry is restored following a 200-fs time constant, or about twice the pulse duration. The appearance of wings in the 
time-delay scan is a result of a non-perfectly Gaussian pulse, a result of strong atmospheric absorption. Inset: Fourier-Transform of the SHG time-
delay. (c) Dependence of measured SHG yield on probe power. (d) Dependence of measured SHG on pump power. The SHG yield increases 
linearly with the phonon driving intensity. 
 



promise of optically-controllable strain in hBN lends itself to numerous other applications, from the tuning of 

photoluminescence [26] to optical control of van der Waals heterostructures, for which hBN is a common encapsulating material. 
 

Methods 
 

Theory: in the TDDFT simulations, the time evolution of the wave functions and the evaluation of the time-dependent electronic 

current were computed by propagating the Kohn-Sham equations in real space and real time, as implemented in the Octopus 

code [27,28], in the adiabatic LDA [29] (the findings and trends discussed in the present work are robust with different 

functionals) and with semi-periodic boundary conditions [28]. All calculations were performed using fully relativistic 

Hartwigsen, Goedecker, and Hutter (HGH) pseudopotentials [30]. The real-space cell was sampled with a grid spacing of 0.4 

bohr and the Brillouin zone was sampled with a 42 × 42 × 21 k-point grid, which yielded highly converged results. The boron 

nitride bond length is taken here as the experimental value of 1.445 Å. The laser was treated in the dipole approximation using 

the velocity gauge (that implies that we impose the induced vector field to be time dependent but homogeneous in space), and 

we used a sin-square pulse envelope. In all of our calculations, we used a carrier-envelope phase of f = 0 [31]. The full harmonic 

spectrum is computed directly from the total electronic current j(r, t) as 

 

𝐻𝐻𝐺() = |𝐹𝑇 (
𝜕

𝜕𝑡
∫ 𝑑3𝒓 𝒋(𝒓, 𝑡))|

2

,             (2) 

 

where FT denotes the Fourier transform. The atomic vibrations of phonon modes are prepared with the following two methods: 

(i) the time-evolution from a distorted atomic configuration along the phonon modes of 1% of the bulk hBN lattice. (ii) application 

of pump laser pulses with the same frequencies and polarizations of phonon modes. Our calculations confirm the two methods 

are equivalent in the simulations of high-harmonic generation. 

 

Experiments: we performed the nonlinear experiments on high-quality hBN flakes with thicknesses of 10 to 50 nm and typical 

sizes of tens of microns. The flakes are exfoliated onto a CaF2 substrate, chosen for its high transparency in both the visible and 

mid-infrared and its relatively small nonlinearity. For our long-wave infrared pump pulses we utilize an optical parametric 

Figure 5: (a) Pump and probe polarization dependence of total SHG emission (normalized). White dashed lines indicate ZZ axes and are included 
as a guide for the eye and to emphasize the 60o periodicity. (b) Linecuts along the ZZ and AC axes from (a). Solid black lines are fit from Equation 
1, with 𝛼 and 𝛽 as fit parameters. (c) TDDFT computed high-harmonic generation spectra for pump and probe pulses co-polarized along the ZZ 

(blue) and AC (red) directions. The TO(E1u) phonon present along the ZZ axes leads to the greatest even order nonlinearity.  



amplifier (OPA, Light Conversion HE Topas Prime) pumped by an amplified Titanium-sapphire laser system (Coherent Legend 

Elite) operating at a 1-kHz repetition rate with 6 mJ of pulse energy. The OPA produces 60-fs duration signal and idler pulses 

with center wavelengths in the near-IR. The parametric amplifier output is then used to seed an additional difference frequency 

generation (DFG) module for all mid-infrared measurements from λpump = 3 to 10 μm with pulse durations ranging from 70- to 

120-fs. Pulse intensities are consistently set below the hBN damage threshold, which we estimate to be 50 TW/cm2. For THG 

experiments the pump is focused onto an hBN flake using a 2-cm focal length CaF2 lens, and the emitted THG signal is collected 

in a transmission geometry by an identical lens. After the residual pump beam is rejected by a short-pass filter, the remaining 

THG is measured on a PbS detector for harmonic wavelengths λTHG below 1.7 μm, and on a liquid nitrogen-cooled MCT detector 

for all λTHG greater than 2 μm.  

 

For SHG measurements we modify the experimental setup to a pump-probe scheme with the addition of a 792 nm, 45-fs pulse 

from the same amplified Ti-Sapphire laser. A variable time-delay separates the 7.3 µm pump pulse that we use to excite the 

phonon, from the near-IR probe which produces the SHG signal at 396 nm. The intensity of both pulses is maintained at or below 

the (TW/cm2) range, which is below the hBN damage threshold. The time delay between pulses is controlled by a mechanical 

delay line with sub-1-µm step size. The polarization of the pump and probe beams are independently rotated with zero-order 

half-wave plates and wire-grid polarizers before the pulses are combined on a beamsplitter. The collinear pump and probe are 

focused onto an hBN flake using a reflective objective (NA = 0.5), which ensures the same focal plane for the two beams with 

very different wavelengths. The SHG signal produced by the 792 nm pulse can be collected either in the reflection geometry by 

the reflective objective, or in transmission by a CaF2 lens. The signal is then directed through a bandpass filter with a 10-nm 

bandwidth to reject the residual 792 nm and 7.3 µm light, as well as any unwanted χ(3) signals, before detection on a fast 

photomultiplier tube (PMT) and lock-in amplifier. 
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Supplementary Material For: 

Optically-Induced Symmetry Breaking via Nonlinear Phononics 

 

Figure S1: (a) HHG spectrum for the pump laser parallel with TO (E1u) mode. (b) HHG spectrum for the pump laser parallel with 

LO (E1u) mode. Here, we employ an in-plane electric field with a wavelength of  = 800 nm and an intensity of I = 1012 W /cm2, and 
a pulse duration of 25-fs full width at half maximum. 
 

Figure S2: HHG spectra for different pump laser intensities. Here, the polarizations of pump and probe laser are parallel with TO 

(E1u) mode (pump laser with a wavelength of  = 7300 nm). For the probe laser, we use an in-plane driving electric field with a 

wavelength of  = 800 nm and an intensity of I = 1012 W/cm2, and a pulse duration of 25-fs full width at half maximum. 
 


