English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Paper

Spores and extracellular matrix components impart molecular order in Bacillus subtilis biofilms.

MPS-Authors
/persons/resource/persons228694

Späker,  Oliver
Wolfgang Wagermaier, Biomaterialien, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons208551

Scoppola,  Ernesto
Wolfgang Wagermaier, Biomaterialien, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

External Resource

Article
(Any fulltext)

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Azulay, D. N., Späker, O., Ghrayeb, M., Wilsch-Brauninger, M., Scoppola, E., Burghammer, M., et al. (2021). Spores and extracellular matrix components impart molecular order in Bacillus subtilis biofilms. bioRxiv. doi:10.1101/2021.07.27.453653.


Cite as: https://hdl.handle.net/21.11116/0000-0008-EF9B-D
Abstract
Biofilms are surface-associated soft microbial communities, which may be either detrimental or beneficial to their hosting environment. They develop from single cells into mature colonies, that are composed of cells and sometimes (in Firmicutes phylum) spores, held together by an extracellular matrix (ECM) of secreted biomolecular components. Biofilm development is a dynamic process, during which cells organize into subgroups, creating functionally distinct regions in space. Specific examples of functional-spatial division in Bacillus subtilis biofilms include matrix and spore formation as well as water channels that form beneath wrinkles. An interesting question arising is whether the division of labor in biofilms is also reflected in the molecular-level order across whole biofilms. Using combined X-ray diffraction (XRD)/X-ray fluorescence (XRF), we studied the molecular order in intact biofilms across multiple length scales. We discovered that biofilms display a distinct spatio-temporal XRD signature that depends on highly ordered structures in spores and on cross beta sheet structures in matrix components. Spore signal is found especially enhanced with water molecules and metal-ions signals along macroscopic wrinkles, known to act as water channels. Demonstrating in situ the link between molecular structures, metal ions distribution and division of labor across whole biofilms in time and space, this study provides new pivotal insight to the understanding biofilm development.Competing Interest StatementThe authors have declared no competing interest.