English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Observation of robust Néel skyrmions in metallic PtMnGa

MPS-Authors
/persons/resource/persons260837

Srivastava,  Abhay K.
Nano-Systems from Ions, Spins and Electrons, Max Planck Institute of Microstructure Physics, Max Planck Society;

/persons/resource/persons260833

Sharma,  Ankit K.
Nano-Systems from Ions, Spins and Electrons, Max Planck Institute of Microstructure Physics, Max Planck Society;

/persons/resource/persons259901

Ma,  Tianping
Nano-Systems from Ions, Spins and Electrons, Max Planck Institute of Microstructure Physics, Max Planck Society;

/persons/resource/persons259903

Deniz,  Hakan
Nano-Systems from Ions, Spins and Electrons, Max Planck Institute of Microstructure Physics, Max Planck Society;

/persons/resource/persons260281

Meyerheim,  Holger L.
Max Planck Institute of Microstructure Physics, Max Planck Society;

/persons/resource/persons245678

Parkin,  Stuart S. P.
Nano-Systems from Ions, Spins and Electrons, Max Planck Institute of Microstructure Physics, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

adma.201904327.pdf
(Publisher version), 2MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Srivastava, A. K., Devi, P., Sharma, A. K., Ma, T., Deniz, H., Meyerheim, H. L., et al. (2020). Observation of robust Néel skyrmions in metallic PtMnGa. Advanced Materials, 32: 1904327. doi:10.1002/adma.201904327.


Cite as: https://hdl.handle.net/21.11116/0000-0008-F1FB-D
Abstract
Over the past decade the family of chiral noncollinear spin textures has continued to expand with the observation in metallic compounds of Bloch-like skyrmions in several B20 compounds, and antiskyrmions in a tetragonal inverse Heusler. Néel like skyrmions in bulk crystals with broken inversion symmetry have recently been seen in two distinct nonmetallic compounds, GaV4S8 and VOSe2O5 at low temperatures (below ≈13 K) only. Here, the first observation of bulk Néel skyrmions in a metallic compound PtMnGa and, moreover, at high temperatures up to ≈220 K is reported. Lorentz transmission electron microscopy reveals the chiral Néel character of the skyrmions. A strong variation is reported of the size of the skyrmions on the thickness of the lamella in which they are confined, varying by a factor of 7 as the thickness is varied from ≈90 nm to ≈4 µm. Moreover, the skyrmions are highly robust to in-plane magnetic fields and can be stabilized in a zero magnetic field using suitable field-cooling protocols over a very broad temperature range to as low as 5 K. These properties, together with the possibility of manipulating skyrmions in metallic PtMnGa via current induced spin–orbit torques, make them extremely exciting for future spintronic applications.