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Down-conversion processes in ab initio nonrelativistic quantum electrodynamics
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The availability of efficient photon sources with specific properties is important for quantum-technological
applications. However, the realization of such photon sources is often challenging and hence alternative per-
spectives that suggest different means to enhance desired properties while suppressing detrimental processes are
valuable. In this work we highlight that ab initio simulations of coupled light-matter systems can provide such
alternative avenues. We show for a simple model of a quantum ring that by treating light and matter on equal
footing, we can create and enhance pathways for down-conversion processes. By changing the matter subsystem
as well as the photonic environment in experimentally feasible ways, we can engineer hybrid light-matter states
that enhance at the same time the efficiency of the down-conversion process and the nonclassicality of the created
photons. Furthermore, we show that this also leads to a faster down-conversion, potentially avoiding detrimental

decoherence effects.
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I. INTRODUCTION

Quantum-light sources exhibiting two-photon emission,
especially entangled photon pairs, are crucial building blocks
for quantum-information-processing protocols [1,2], cryptog-
raphy [3], or teleportation [4]. As opposed to the charac-
terization of single-photon sources, or photon guns, which
have sub-Poissonian statistics [5], the characterization of
two-photon processes shows statistics that vary from non-
classical (sub-Poissonian) to even chaotic (super-Poissonian)
behavior [6]. Spontaneous parametric down-conversion or
parametric down-conversion (PDC) is the coherent generation
of a pair of photons with lower frequency (signal photons)
by injecting a higher-frequency photonic field (pump pho-
ton) into a nonlinear medium [7]. Three-wave mixing has
been mostly used for the generation of entangled photon
pairs [8—12]. The need for on-demand efficient two-photon
sources expanded PDC from using nonlinear crystals with pi-
cosecond pulsed lasers [13,14] to atomlike systems coupled to
cavities [15,16], photon-pair generation using the biexciton-
exciton cascade in quantum dots [9,17-19], and the nascent
fields of polaritonic chemistry [20] and circuit quantum elec-
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trodynamics (QED) [21,22]. The most widely used of these
methods suffer from low photon emission rates and limited
scalability. For example, an average of one in every 10'?
photons is down-converted when using a bulk material [23].
Also, it was shown that entanglement between emitted photon
pairs could be degraded due to the presence of energy-level
splitting of the intermediate excitonic states in, e.g., quan-
tum dots [17,24]. Semiconductor quantum rings, where the
charge carriers are confined in the radial direction, have been
demonstrated to be excellent quantum emitters which generate
single-photon states with strong antibunching under certain
conditions [25]. Here the quantum confinement of the charge
carriers together with modified ring geometries led to the ob-
servation of geometry-dependent photon antibunching. This
makes quantum rings a suitable medium for photon generation
since the electronic properties of the quantum ring can be
modified by varying the geometric confinement parameters
which in turn changes the optical spectrum [26].

In order to investigate such down-conversion processes
theoretically, one usually assumes that light and matter can
be separated and treated differently. The nonlinear-optics ap-
proach, for instance, uses nonlinear response functions and
susceptibilities of matter-only quantum mechanics to char-
acterize such a process and connects them with a classical
description of the light field [13,14,27]. The quantum-optics
approach, on the other hand, treats the light field as quantized
and couples the resulting photons to a simplified few-level
description of the matter [10,12,28]. In the latter approach one
often even gets rid of the matter part altogether by defining
effective photon-only Hamiltonians which model the photon-
photon interaction due to the matter system [27,29,30]. In
both approaches the efficiency and properties of the down-
conversion process in question are usually determined by
dipole-transition elements which depend on the symmetry
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the matter subsystem possesses. For instance, since PDC
is a three-wave-mixing process, the second-order nonlinear
susceptibility is the dominant contribution. For systems that
possess a single symmetry (like the model considered below)
this quantity is negligible [31], resulting in an inefficient or
even impossible PDC process. For this reason, one would
conventionally break the symmetry of the quantum ring by
some external classical field to engineer appropriate dipole-
allowed transitions [26,32] or use double-ring structures [25].
However, besides this more conventional perspective, here we
highlight the possibilities that arise if we do not make the
initial assumption to treat light and matter separately. Instead,
by performing numerical simulations of nonrelativistic QED,
where light and matter are treated on an equal quantized
footing, we show how hybrid light-matter states (polaritons)
are created that can act as intermediators for a photon down-
conversion process. By making use of the full flexibility of
the matter and the photon subsystems, we can achieve a high
degree of control.

Our ab initio simulations in the following are based on
the Pauli-Fierz Hamiltonian of nonrelativistic QED [33-35]
in the long-wavelength limit [36-39]. As a simple yet il-
lustrative example system we consider the aforementioned
GaAs semiconductor quantum ring featuring a single effec-
tive electron coupled to a photonic environment. Varying the
anharmonicity of the quantum ring, we change the charac-
ter of the matter subsystem continuously from harmonic to
strongly anharmonic without breaking the radial symmetry.
We however allow changes in the photonic environment, e.g.,
the geometry of a multimode cavity. This provides a means
to control the basic coupling parameters and can hence in-
terpolate between free-space-like situations (weak coupling
with strong dissipation) and ultrastrong-coupling situations.
Since the coupling between light and matter is fully quantized,
also for the quantum ring (non-dipole-allowed or virtual-state)
down-conversion processes take place. We then investigate
how specific properties and the efficiency of such a process
can be optimized without relying on (experimentally chal-
lenging) specialized input fields but instead making use of the
hybrid nature of coupled light-matter systems. For the case
of degenerate (both output modes have the same frequency)
down-conversion we see that by coupling the photons strongly
to a virtual transition while optimizing the configuration of
the coupled system, we can enhance the efficiency as well as
the nonclassicality of the created photons. Just increasing the
intensity of the input field does not make the down-conversion
process more efficient. Furthermore, increasing the coupling
between light and matter shifts the down-conversion process
to earlier times. This temporal control potentially allows us
to suppress the influence of dissipation in desired features
like nonclassicality and entanglement. All these results for a
simple system highlight the possibilities that become available
for designing different photon sources if light and matter are
treated on an equal footing in an ab initio description.

II. AB INITIO DESCRIPTION OF THE
DOWN-CONVERSION PROCESS

The starting point of our investigation is very general and
we only make the assumption that our bound matter system

is small compared to the wavelength of the relevant photon
modes. In this case we can consider the Pauli-Fierz Hamilto-
nian in the dipole approximation [39]
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Here H,; is the bare Hamiltonian of the matter subsystem in
the Coulomb gauge and P is the corresponding momentum.
The charge and mass are given by e and m, respectively. The
operator A = Zale Ao€ydo 1S the vector potential with the
dipole strength A, determined by the value of the respective
mode function at the position of the matter system (center of
charge) and e, is the polarization vector [39] of M photon
modes. The strength A, that contributes to the amplitude of
the field is the origin of the enhanced coupling between light
and matter [40]. Collecting all the prefactors, one then usually
considers A,e/m as the coupling strength between matter and
light represented by the displacement operators G, [39]. It
is this prefactor that can be enhanced by various cavity ge-
ometries. Here g, = «/g (aq + &Z,) is the canonical photon
coordinate that satisfies the commutation relation [Go> Pur] =
ihéy o and a, and &; are the usual annihilation and creation
operators, respectively. The photon Hamiltonian is given by
H, = hoy(aa, + ) = 3(p2 + 2g2). In the case that we
keep many modes (up to a certain physical cutoff) to simulate
the continuum, we need to be aware that this might make it
necessary to use the bare mass of the charged particles instead
of the already renormalized (physical) mass [33,38,41,42].
Here we make the usual assumption that only a small part
of the photon continuum is changed with respect to the free-
space case due to a cavity or photonic nanostructure and we
treat only these changes explicitly. The rest of the continuum
of modes is subsumed in the usual renormalized (physical)
mass of the charged particles [33]. Thus, in practice, out of
M modes of the electromagnetic field, we just keep a few
effective modes that are relevant. We note that this change
of the photon modes also modifies the free-space Coulomb
interaction [35,43]. So care has to be taken when assuming
that H,, is just due to a free-space matter system as described
by the standard Schrodinger equation once the interaction
with the photon field is taken into account explicitly. These
cautionary remarks translate equivalently to the usual few-
level models, where H,; is replaced typically by a few states
from free-space calculations, or when making the mean-field
assumption for the coupling between light and matter which
leads to the Maxwell-Schrodinger equation of nonlinear
optics [34].

A. Semiconductor quantum ring in a multimode
photonic environment

For investigating the down-conversion process we need
to make a specific choice for the matter system and the
photonic environment. We choose for the matter subsystem
that mediates the down-conversion process a two-dimensional
(2D) semiconductor GaAs quantum ring [32,44]. We describe
the quantum ring by a single effective electron confined in
a 2D Mexican-hat potential (see Fig. 23 in Appendix A). A
more realistic description with many interacting electrons and
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FIG. 1. (a) Setup for investigating down-conversion processes
featuring a 2D GaAs quantum ring at the center of a multimode
photonic environment. The fields are linearly polarized in the (x, y)
plane where the effective quantum ring particle is trapped in a
binding potential. The fields A, are polarized perpendicular to the
propagation vectors Kk,. (b) Simplified energy-level scheme indi-
cating the relevant transitions in a nondegenerate down-conversion
process. The simulations take the full level structure into account
(see Appendix A for details).

possibly even phononic excitations would be possible if
we employ more efficient first-principle methods such
as quantum-electrodynamical density-functional theory
(QEDFT) [35,45-47] or polaritonic coupled-cluster
theory [48,49]. Nevertheless, the current level of
description already suffices to demonstrate the pathways
for down-conversion that become accessible with an ab
initio light-matter description. Moreover, by changing the
anharmonicity of the GaAs quantum ring, we obtain control
over the electronic level structure. We can use this control,
which is also experimentally realizable [26], to optimize the
down-conversion process without breaking the symmetry
of the matter subsystem. Finally, due to the rotational
symmetry [26,50,51], a simple matter-only analysis would
indicate that no (efficient) down-conversion takes place. Due
to the rotational symmetry of the eigenstates, only transitions
that change the angular momentum by one (see also a detailed
discussion in Appendix A) are dipole allowed, and hence
a process as indicated in Fig. 1(b) is not dipole allowed.
This becomes evident also in the second-order nonlinear
susceptibility, which is negligible in this case [31]. Yet, since
we do not decouple light and matter, we will still find a certain
probability that such a process takes place. The efficiency and
the details of the ensuing process will then depend crucially
on the details of the photonic environment.

For the photonic subsystem we consider a multimode envi-
ronment. To be precise, we assume that we can manipulate
three of these modes, i.e., Al, Az, and A3, at will, while

the rest of the continuum of modes stays largely unaffected.
We consider A, as the input (pump) mode with frequency
), polarization direction e;, and coupling strength A; and
A, and A; as the output (signal) modes with correspond-
ing frequencies, polarizations, and coupling strengths. While
we depict in Fig. 1(a) a standard Fabry-Pérot configuration,
many other setups for strong light-matter coupling with a
high degree of control are possible. This includes hybrid
cavity-antenna configurations [52], coupling to surface plas-
mons [53], nanoparticle arrays [54], or coupled photonic
crystals [9]. The precise experimental realization of the pho-
tonic environment is beyond the scope of the present work.
Here we assume the multimode environment to be control-
lable.

We arrange the matter and the photon system as depicted
in Fig. 1, such that only the x and y polarization directions are
relevant and couple to the quantum ring. We then choose a co-
ordinate system such that Al = Alex, Az = A}(— sin 6,e, +
cos 6,e,), and A3 = A3(sin 0se, + cos 6ze,), where 6, and 0;
are the angles of the respective polarization vectors. Here the
in-plane polarization of the signal modes are chosen to be
a general case that couple to both momentum contributions
(i.e., px and p,) of the quantum ring. Later we will show
that polarizing the signal modes parallel to the pump mode
results in maximum efficiency of the down-conversion. With
this sketch of a possible setup, we can connect the change
in coupling strength to a change in the length of the cavity
L, ie., A = /2/€L, where the dielectric permittivity of the
GaAs quantum ring is € = 12.7¢,. For simplicity, we assume
in the following that the rest of the continuum of modes is
assumed to be subsumed, on the one hand, in the effective
mass of the quantum ring particle [in accordance with the
case of no nanophotonic environment, we set m = 0.067m,
(see also Appendix A)] while we treat a finite number of
modes that constitute the linewidth of the enhanced modes
explicitly in order to account for dissipation and decoherence
in the electron-photon coupled system [41]. The Hamiltonian
for this description is given in the form

H = Hy + Hg + Hgp, (2
where the internal system Hamiltonian is
A N N A A € A
Hg = Hq + H, + H, + H3 — ;Alﬁx
e A . .
- E{Az[—ﬁx sin(6,) + p, cos(6)]

+ A3 [y sin(63) + py cos(6:)])
2
e

+ —[AT + A3 + A3 — 24,4, sin(6,)

2m
— 2454 sin(63) + 2434, cos(6; + 63)] 3)

and the bath and system-bath coupling that constitute the rest
of the M — 3 modes in the full Hamiltonian are

M M M
N 1 A e e’ " A " " "
Ay =) :ha)a<a;aa+§), A =) [—ZAQ ~f)+2—<2A1 +2A, +245+) A,g) ~Aa},

m =
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where p = p,e, + pye,. For our further consideration, the
last two terms of Eq. (2) constitute the active photonic bath
and its coupling to the system. For the photonic bath, we
consider M — 3 = My, = 70 bath modes that are treated in
photon Fock number states together with the three relevant
modes. The vector potential of the bath modes is A, =
A;ea\/% (4 + @), where A/, is the coupling of the bath
modes. The M7y bath modes considered are chosen to rep-
resent the linewidth of the pump and signal modes and thus
serve as decoherence and dissipation channels.

B. Time evolution of the coupled system

To investigate the down-conversion process in detail
we perform the time evolution of different initial states
|W;,(0)) of the coupled matter-photon system. To do so
we explicitly propagate the time-dependent Schrédinger
equation ifi-X|W(1)) = H|W(t)) with the Hamiltonian of
Eq. (2). The initial states that we consider in the follow-
ing are factorizable product states of the form |W;,(0)) =
|9)[41)102)103) - - - |0s), Where |¢?) is the ground state of
the uncoupled quantum ring and |0, ) is the zero-photon state
of mode «. The pump mode o = 1 will take different ini-
tial states. The simplest choice is that |¢;) = |1;) is just a
single-photon Fock state. In most cases we will consider
(1) = [£1) = e 1230 ((E" //niD)Iny), where & is the
amplitude and |n;) the Fock states of mode 1. This implies
that we have on average |£|> photons at the beginning in the
input mode. If we increase |&|> > 1 we approach a classical
laser field (see Appendix B for details). We note that the
factorizable initial state chosen here is not special and we find
similar behavior also with different choices. This is discussed
in more detail in Sec. V.

We solve the time-dependent Schrodinger equation of
the coupled light-matter system with a Lanczos propagation
scheme [55]. We represent the matter Hamiltonian on a two-
dimensional uniform real-space grid of Ny = N, = 127 grid
points (implying 127% states are taken into account) with
spacing Ax = Ay = 0.7052 nm while applying an eighth-
order finite-difference scheme for the momentum operator and
Laplacian. At several points (for comparison or for numerical
efficiency) we represent, instead of the real-space grid, the
matter subsystem by its truncated uncoupled eigenstate basis.
For only a few states, this amounts to the usual few-level
approximation (see Appendix C1 for further details). The
photon modes are represented in a basis of Fock number
states as discussed in Appendix D for the different input fields
and descriptions. In the combined electron-photon space, we
explicitly construct matrix representations for all operators.
The expectation values for observables are computed for a
time step of At = 0.029 fs of the time-evolved wave function.

C. Characterization of down-converted photons

To characterize the down-converted photons, we compute
the mean photon occupation n, = (a}a,) for the pump (a =
1) and down-converted signal modes (« = 2, 3). The photon
occupation n; = (&I&l) is computed to contrast the amount
of photonic occupation in the down-converted mode n, =

(&;&2) and mode n3 = (&;&3). Furthermore, we consider the

populations of single-, two-, and three-photon Fock states
of the relevant modes, i.e., |(1o|W())|%, 1{2|W())|?, and
[(34|W(1))|? for = 1, 2, 3 of the down-conversion. In simple
cases, this will allow us to identify the standard PDC process.

Of importance is the character of the down-converted pho-
tons, which can be determined by computing the Mandel Q,
parameter [56] defined as

(alalaaaa) - <a2&a>2
Co = (@) ' @

The Mandel Q, measures the deviation of the photon statistics
from a Poisson distribution and thus is a measure for the non-
classicality. For a field with nonclassical properties, the range
of values lies within —1 < Q, < 0, which corresponds to
sub-Poissonian statistics (antibunching behavior). Fields with
super-Poissonian statistics (bunching behavior) have Q, > 0
and for a coherent state with Poissonian statistics we have
O, =0[57].

In addition, we compute the second-order cross-correlation
function (intensity correlations) of the photon field as a
measure of correlation between the modes. The multimode
intensity correlation function is defined by

&)

The correlation function takes values greater than one for
correlated modes. For uncorrelated modes, it is equal to one
and it takes values smaller than one if the modes are anticor-
related [57-59].

Also, we compute the purity y, with « =1,2,3 as a
measure for entanglement. The purity is obtained by tracing
over the square of the one-body reduced density matrix of
the respective subsystem (see Appendix E for details). If the
purity is equal to one, the system can be expressed as a
factorizable state of the subsystem (modes « = 1, 2, 3) and
the rest of the coupled matter-photon system. If the purity
is smaller than one, we have a nonfactorizable state, which
indicates correlation between the subsystems.

III. SINGLE INPUT-PHOTON DOWN-CONVERSION
AND TEMPORAL CONTROL

We start by considering the case where the input mode 1 is
occupied by just one photon, the coupling between light and
matter is weak such that the usual nonlinear-optics consid-
erations apply, and we have a strongly anharmonic quantum
ring such that a few-level approximation is reasonable as
well. We therefore choose |¢;) = |1;), fix a small coupling
strength of A = 0.014, and use an anharmonicity of V =
200 meV (see Appendix A for details on the quantum ring).
By selecting the frequency of mode 1 in resonance with the
dipole-allowed transition between the ground and 11th excited
state (|¢?) <> |p1)) of the bare quantum ring, which is fiw; =
24.65 meV, and by choosing the signal mode 2 with energy
hw, = 1.36 meV which is resonant with the 10th and 11th
excited states (|¢71) <~ |<p‘6))) as well as signal mode 3 with
energy hiw; = 23.29 meV resonant with the ground and 10th
excited state (|¢2) <~ |<p‘1))), a few-level picture is appropriate
[see also Fig. 1(b)]. We will not, however, a priori restrict the
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number of electronic states involved. That means we will use
all electronic states or will have checked for convergence with
respect to the number of states in all considered observables.
Only in Sec. VI we make a comparison with an a priori
restriction to only a few levels as well as with a semiclassical
treatment, which shows how certain observables are not well
captured. We further note that the superindex of the matter-
only eigenstates refers to their angular momentum. Thus the
transition in resonance with mode 3 is not dipole allowed,
since only states that differ by exactly one in their angular
quantum number have a nonzero dipole-transition element
(see Appendix A for details). Due to treating light and matter
as fully coupled we will however still find a down-conversion
process in our ab initio simulation.

Finally, we need to fix the polarization directions of the
input and output modes and also define the bath modes. In
order to maximize the photon-pair generation, we choose the
mixing angles 8, = 63 = 90° such that both fields of the signal
modes are horizontally polarized as Az = —Ase, and A3 =
Ase,. This choice results in maximization of the interference
terms of Eq. (3) since the sines and cosine of the mixing angles
become one (see the detailed investigation in Sec. VII A).
With these choices the down-conversion process obeys the
energy and momentum conservation /iw; = hw, + hw; and
hk; = hk, + Fiks, respectively. The polarizations of the M7
bath modes are chosen to be equally aligned as modes 1, 2,
and 3 (since otherwise the bath modes would just couple more
weakly). We sample equally spaced energy ranges around
the main modes of hw;, hw,, and hws. For hw, the energy
range is fiwp, = [0.113,4.521] meV, which is sampled with
20 bath modes, and for hw, and fhiws, 50 bath modes are
employed to sample for the combined energy range fiwp,, =
[11.303,27.128] meV with equal spacing iAw = 0.25 meV.
The coupling strength of the bath modes is chosen to be A/ =
0.007. For the combined system-bath Hamiltonian of Eq. (2),
we treat the M7( and three relevant modes by including three
photon Fock states (vacuum, one-photon, and two-photon
states) in each of these sampled modes (see Appendix D for
details). In the following, we present the time evolution for
the combined system and bath [i.e., Eq. (2)] and the system
only [i.e., Eq. (3)]. For the simulation including the bath, we
compute observables only for the three relevant modes while
the bath modes serves just as dissipation and decoherence
channels.

A. Dissipation and coherence time

We first focus on the influence of the bath modes on the
down-conversion by performing two different simulations:
one with the bath modes [i.e., time propagation of Eq. (2)]
and one without the bath modes [i.e., time propagation of only
Eq. (3)]. In both cases, since the effective coupling strength
8« = AV I/2w, of the transition |<p71) <~ |<p?) is small when
compared to the coupling of the other main transitions (see
the discussion in Sec. III B for further details), the effective
electron preferably relaxes by cascaded emission into modes
2 and 3. This is inferred, as the coupling strength is propor-
tional to the square root of the spontaneous decay rate (see
Appendix C 1). We therefore expect that modes 2 and 3 will
become strongly populated once the initial photon in pump

--- with bath without bath
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FIG. 2. Real-time photon occupations of the (a) pump mode and
(b) and (c) signal modes for weak coupling A = 0.014 and bath
coupling A’ = 0.007. Qualitatively, the coherent simulation without
the bath modes (pink solid line) agrees with the simulation including
the bath modes (blue dashed line) and only towards the end of
the simulation, i.e., the end of the coherence time, the differences
become large.

mode 1 interacts with the matter subsystem. Thus, in the ab
initio description of the PDC process the effective coupling
strengths g, become decisive and the bare dipole-transition
elements are no longer the only important quantities to con-
sider. Indeed, we find in Fig. 2, where we show the mode
occupations for the input and two signal modes, that this holds
true for both situations. Qualitatively, both simulations show
the same behavior, with the main difference that the down-
conversion from mode 1 to the signal modes is less effective
when the bath modes are included and the maximum of the
down-converted number of photons appears slightly later. If
we would simulate for longer times, the differences would
become more pronounced and (provided we do not wait too
long so that we hit the unphysical revival time due to having
only finitely many modes [60]) the photon numbers would
relax to the ones of the coupled matter-photon ground state.
For the weak-coupling case this number is effectively zero.
We would therefore consider the photons emitted. Since we do
not simulate the full emission process in this numerical setup,
we instead make the simple assumption that what appears
as the maximum amount of photons in each of the signal
modes corresponds to what would be detected outside the
system. Furthermore, since the bath modes do not seem to
change these numbers strongly, even for this weakly coupled
case where the bath contributes considerably, the bath-free
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--- with bath without bath
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FIG. 3. Real-time Mandel Q parameter of the (a) pump mode
and (b) and (c) signal modes for weak coupling A = 0.014 and bath
coupling A" = 0.007. Again the coherent simulation (pink solid line)
agrees qualitatively with the simulation including the bath modes
(blue dashed line).

simulation is a good approximation as long as we do not go
beyond the coherence time of roughly 40 ps. By coherence
time we mean the time interval in which the bath-free (fully
coherent) simulation is a good approximation to the simu-
lation including a bath. If we increased the coupling to the
bath modes (stronger dissipation) the coherence time would
be shorter. On the other hand, if we considered a stronger
coupling to the input and signal modes while keeping the
bath modes fixed (essentially increasing the finesse of the
cavity), the coherence times would be longer. It is not sur-
prising that simulating 70 modes coupled to the electronic
system is numerically very expensive and would not allow for
all the different cases of down-conversion processes that we
investigate in this work. In order to compare all these different
cases as unbiasedly as possible, we therefore consider them all
with a bath-free simulation of a coherence time of about 40 ps.
This is not a completely arbitrary number, since quantum
rings are known to have long coherence times on the order
of picoseconds, before other dissipation channels destroy the
coherence [26]. Thus this analysis allows us to avoid the
use of (numerically expensive) nonunitary master-equation
approaches to approximately treat the effect of the bath on
the system [61] or to keep the bath explicitly in our following
considerations.

Since we will consider also other quantities, let us check
whether the coherent simulation faithfully reproduces these
observables as well. The most important quantity in the fol-
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i -3
o 0:100 (a) 10
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FIG. 4. Real-time Fock state populations of signal mode 2 from
weak to ultrastrong coupling for (a) one-photon, (b) two-photon, and
(c) three-photon Fock states. The one-photon Fock state dominates
for a single photon in the input mode.

lowing will be the Mandel Q parameter to determine the
statistics of the down-converted photons. We find in Fig. 3
that again both simulations agree qualitatively and remain
close over a long period of time. This demonstrates that the
bath-free simulations capture at least qualitatively also the
more complex properties of the created photon pair. Since we
will be focused on an enhanced coupling to the main modes,
the influence in these simulations of the bath modes will be
even less important. The same holds true if we consider many
input photons and classical external pumping.

B. Temporal control of down-converted photons

While we have shown above the mode occupations and we
see a drop in the input mode and an increase in the signal
modes, this does not imply that we have indeed converted
one photon of w; into a photon with w, and one with ws. For
this we need to consider the populations of the different Fock
number states in each mode. While in mode 1 we know by
construction that we have only one photon at# = 0 and zero in
the other modes, it could easily be that we also populate two-
and three-photon states in the down-conversion process. This
would imply that also a higher-order process plays a role and
we could not identify it in a simple manner as a two-photon
down-conversion process. However, in Figs. 4 and 5, focusing
on the pink solid lines, we find that our intuition about the
PDC process was correct. Only the one-photon states have
significant population throughout the simulation. If we in-
crease the coupling strength and go from the weak- to the
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FIG. 5. Real-time Fock state populations of signal mode 3 from
weak to ultrastrong coupling for (a) one-photon, (b) two-photon, and
(c) three-photon Fock states. The one-photon Fock state dominates
for a single photon in the input mode also in this case.

ultrastrong-coupling domain it is not clear a priori that we
still only have single-photon processes and no higher-order
(multilevel/multiphoton) contributions become important. We
vary the coupling A by varying the effective cavity length L
(see also Fig. 1). This also leads to modified effective cou-
pling strengths g, = A/li/2w, (see Table I for detail values),
while the bare dipole-transition elements stay unchanged and
are given in scaled effective atomic units in Appendix A.
From Figs. 4 and 5 we see that also for the strong-coupling
calculations the PDC remains qualitatively similar to the
weak-coupling case. Yet if we look for the total number of
photons in each mode we find in Fig. 6 that we can increase
the number of photons in the signal modes considerably. This
demonstrates that the effective coupling strength becomes a
decisive quantity for the efficiency of the process in an ab
initio description. It indicates how strongly light and matter
mix and how strongly the matter-only eigenstates are modified
and turn into hybrid light-matter states potentially beneficial
for the PDC process. Indeed, as has been shown in several
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FIG. 6. Real-time photon occupations of (a) the input mode n; (¢)
initially in a single-photon Fock state and (b) and (c) the photon
occupations of the down-converted signal photons (b) ny(t) and
(c) n3(¢) from weak (pink solid line) to ultrastrong coupling (blue
solid line).

works [38,44], the vacuum field of the modes can break the
rotational symmetry and therefore g, can lead to increased
dipole-transition elements. Although the dipole elements are
no longer a good descriptor for the interaction between light
and matter in this regime, they nevertheless provide an in-
tuitive picture for the PDC process. They also highlight that
by engineering the vacuum of the electromagnetic field, the
properties of the coupled system can be very different from
the individual uncoupled systems. For example, changing the
photonic environment by decreasing L increases the coupling
g« even in the case of a weak dipole moment. Also, the
photon-photon couplings g, * g2, g1 * g3, and g, * g3 between
the modes increases with increasing couplings. We note that
these terms arise due to the induced diamagnetic currents and
are an often overlooked yet important contribution in many
light-matter phenomena [37,39,42].

TABLE 1. Electron-photon coupling strengths by varying the cavity length/mode volume. The coupling strengths g, = A/fi/2w, are
different for coupling to different modes of frequency w, . Decreasing the cavity length L increases the coupling strengths g, and their respective

products.

Coupling L (um) e g1 & 81 % & 81 % &3 82 * &3
Weak 100 0.014 0.00675 0.02875 0.00694 0.00019 0.00005 0.00020
Strong 50 0.020 0.00954 0.04065 0.00981 0.00039 0.00009 0.00040
Ultrastrong 30 0.026 0.01232 0.05249 0.01267 0.00065 0.00016 0.00067
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FIG. 7. Real-time photon statistics from weak to ultrastrong cou-
pling for the input single-photon Fock state and down-converted
signal photons. (a) Pump mode 1 has sub-Poissonian photon statistics
for the entire evolution for all three coupling strengths. (b) Strong
antibunching as well as bunching features for different couplings of
signal mode 2. (c) Mode 3 stays close to a coherent state throughout
the PDC process. In all cases the coupling strength shifts the appear-
ance of the different features to earlier times.

In the remainder of this section we focus on a different
effect. In the Figs. 4-6 we consistently find that the stronger
the coupling is, the earlier the down-conversion of photons
happens. Having the coherence time in mind, we find that
we can potentially beat the undesired dissipative processes
by strong and ultrastrong coupling. That is, by shifting the
creation of the down-converted photons to earlier times while
the coupled system is still behaving coherently, we can hope
to attain also special coherence-driven features of the PDC
process such as nonclassicality and entanglement of the pho-
tons. Considering the Mandel Q parameter of the different
photons (see Fig. 7), we observe that the time of appearance
of nonclassical features can be controlled by the coupling
strength as well. The overall shape of the time evolution of the
different Mandel Q parameters stays relatively rigid. The same
holds true for the intensity correlation functions (see Fig. 8).
They nicely show how the photon in mode 1 is anticorrelated
with respect to the signal modes, while the signal modes are
strongly correlated.

While we do not model the emission of the down-converted
photons from the photonic environment, we believe that
controlling the timing of the creation process of the down-
converted photons by varying the coupling strength will have
a direct impact on the features of the emitted photons. At
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FIG. 8. Real-time cross correlation between the pump and sig-
nal modes for the input single-photon Fock state. The dashed line
indicates when the modes are correlated (above the dashed line) or
anticorrelated (below the dashed line). (a) and (b) Pump and signal
modes 2 and 3 are anticorrelated. (c) Down-converted photons of
modes 2 and 3 are correlated for the whole evolution.

least for a simple description of an instantaneous emission, the
features of the created signal photons are carried over to the
emitted signal photons. It remains however unclear whether
these features are only there for the special and in practice
highly demanding choice of a single photon in mode 1 and
whether also the temporal control of these features is lost with
another initial state or when the pump mode is replaced by a
classical external pump field, i.e., a laser.

IV. INPUT MODE IN A COHERENT STATE

The generation of a single photon in a specific mode is
highly challenging and due to the usually low efficiency of the
PDC process it is also not easy to observe such a process. So in
practice one has to increase the number of photons to observe
any down-converted photons. That means we will have more
than just one photon in mode 1 at the beginning. It is however
not clear how this will change the main features observed for
the case above. Let us therefore here consider how a change
in the initial state influences the different observables.

The pump mode is now initially prepared in a coherent
state |¢1) = |&;) and thus its vector potential has the strength
(£11A1 &) = A2T /w1 |€1| while that of the signal modes is
zero at the beginning. We choose &; such that the mean photon
number (&I&l) = |£,|> = 4. We have thereby just changed the
occupation slightly. However, this is already enough to no

033067-8



DOWN-CONVERSION PROCESSES IN AB INITIO ...

PHYSICAL REVIEW RESEARCH 3, 033067 (2021)

A=0.020

— A=0.017 A=0.014

o

le-7

44(c)

1(32]w(t))|?
’2
b

, NN o o
T T T T T T T T

0 5 10 15 20 25 30 35 40
t (ps)

FIG. 9. Real-time Fock state populations of signal mode 2 from
weak to ultrastrong coupling for the input coherent state. The two-
photon Fock state in (b) is mostly populated in comparison to the
one- and three-photon Fock states in (a) and (c), respectively.

longer be able to identify in a simple manner the usual PDC as
one photon being down-converted to two photons, since now
many photon states mix (see also Appendix F).

We now find that the two- and three-photon states are
also relatively strongly occupied in addition to the one-photon
state. This becomes evident in Fig. 9, where the second Fock
state population is an order of magnitude larger than the one
of the single-photon Fock state.

Qualitatively, the mode occupations in Fig. 10 remain rel-
atively close to the one-photon case in Fig. 6 and also the
feature of faster down-conversion in the strong-coupling limit
is preserved. Some details (especially for the input mode
1) are changed in comparison with the single-photon case
when considering the nonclassicality of the down-converted
photons. As can be seen in Fig. 11, in mode 2 the antibunch-
ing behavior is increased and mode 3 becomes now more
nonclassical as well. The cross-correlation features of the
different modes also change greatly. While before the input
and the different signal modes were anticorrelated all the time,
indicating that the input photon is annihilated and the signal
photons are created instead, we now have a richer behavior. In
Figs. 12(a) and 12(b) we see that there is a switching between
anticorrelation and correlation in time. This change is not so
surprising because we have now several photons in the initial
state and the simple picture of one photon annihilated in mode
1 and one photon created in modes 2 and 3, respectively, is
not so straightforward anymore. However, the main feature of
correlated down-converted photons persists also for this initial
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FIG. 10. (a) Real-time photon occupations of the input mode
ny(t) initially in a coherent state and (b) and (c) photon occupations
of the down-converted signal photons (b) n,(¢) and (c) n3(¢) from
weak to ultrastrong coupling.

state [see Fig. 12(c)]. This highlights that a small change in the
input field does not affect the efficiency much, but the precise
nature of the involved (multiphoton) processes does change.
This is also found in Sec. V. Conservation of energy and mo-
mentum in this cascaded process gives rise to the correlations,
implying energy-time entanglement [63], which is important
for on-demand generation of entangled photon pairs [9,19].
This interpretation is strengthened if we furthermore consider
the purity y, to be the entanglement measure for the present
case. As shown in Fig. 13, the different modes become en-
tangled over time. The entanglement and its time profile can
be controlled by the coupling strength and pushed to earlier
times as well. Treating the pump and signal fields as quantized
modes, the three fields are shown to be entangled (see Fig. 13)
and have varying correlations (see Fig. 12), which allows for
applications in quantum information networks [64].

V. CLASSICAL INPUT FIELDS

While a coherent initial state is already closer to the clas-
sical input field, we want to investigate whether a description
based on a genuine classical external pumping changes the
picture fundamentally. Although it is to be expected that a
classical description of the input field for the relatively few
photons we considered so far is not perfect, it should show
qualitatively similar behavior at least for certain observables.
We would then expect that these features are relatively unaf-
fected by the details of the input field, i.e., how we populate
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FIG. 11. Real-time photon statistics from weak to ultrastrong
coupling for an input coherent state and down-converted signal
photons. (a) Pump mode 1 varies from fields with Poissonian, super-
Poissonian, and sub-Poissonian statistics. (b) Strong antibunching
feature for different couplings regimes of mode 2. (c) Emitted photon
in mode 3 is nonclassical for a brief time interval with a maximum
nonclassicality of Q3 = —0.0025 at t+ = 4.93 ps (ultrastrong cou-
pling) as shown in the inset. In all cases the coupling strength shifts
the appearance of the different features to earlier times.

the input mode or alternatively how we drive the electronic
system. This is a very desirable feature since it would indicate
that our findings are robust and do not depend on minuscule
details of the setup.

At this point we face a further choice. Pumping the sys-
tem with a classical field is possible in two distinct ways in
an ab initio description. First, we can prescribe an external
electromagnetic field that couples to the matter system and
its induced currents generate photons in the respective output
modes. Alternatively, we could prescribe an external current
that couples to the input mode and thus we pump this mode di-
rectly. Physically, these options should not be too different [by
Maxwell’s equation both can be connected to each other (see
also Appendix B)]. To find the influence of these two options,
in the following we consider both cases. First, we consider
the more traditional option, that is, we choose some external
electromagnetic field that drives the matter subsystem. Such
a situation is often considered to avoid the need to have three
explicit photon modes [12,65,66]. In practice, this means we
replace input mode 1 by a classical external field and keep the
rest of the system’s Hamiltonian the same, i.e., we have

H{(t) = Hg + Hex (1). (6)
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FIG. 12. Real-time cross correlation between the pump and sig-
nal modes. The dashed line indicates when the modes are correlated
(above the dashed line) and anticorrelated (below the dashed line).
(a) and (b) Correlation and anticorrelation between the pump and
signal photons at different times. (c) Generated photon pairs of
modes 2 and 3 are time entangled for the whole evolution. In (c) we
disregard the time interval between ¢ = 0 and 0.58 ps due to finite
numerical precision [62].

The time-independent Hamiltonian I{[é and external driving
term I-th(t) are given explicitly in Appendix B. The external
pulse used corresponds to the classical field induced by the
below-defined external source term for the photon field in the
case that mode 1 would be uncoupled. To facilitate a simple
comparison, we therefore select the weak-coupling regime of
Table I in the following. Otherwise we would need to adopt
the form of the external pulse to expect reasonable agreement.
We note that as a result of discarding mode 1 the correspond-
ing observables of this mode become inaccessible in a direct
manner.

This is not the case for the second approach, where we
pump mode 1 by an external current, i.e., a source term for
the photons. In this case we can still investigate properties of
mode 1. The corresponding Hamiltonian becomes

Hs(t) = Hs + A, - ji(1). @)

The external current is an envelope Gaussian of the form
j1(t) = jiexp[—(t — t9)*/7?]sin wt. The parameters of the
Gaussian pulse are chosen such that at time t = 0.23 ps, the
pump mode is driven to an excited state with on average
n1(0) = 4 photons. Thus the vector potential of the pump
mode is the same as that of the coherent state at the initial
time (discussed in Sec. IV). For both cases, we choose the
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FIG. 13. Measure of entanglement for the pump and signal
modes. For the three modes in (a)-(c), signal mode 2 is most en- t (ps)
tangled, signal mode 3 is intermediate, and pump mode 1 is least
entangled. In addition, increasing the coupling from weak to ultra-
strong not only changes the entanglement profile but also makes the
modes more entangled.

FIG. 14. Comparison of the two different external drivings for
weak matter-photon coupling A = 0.014. In red we use an external
laser pulse and in blue we use an external current to pump mode 1
directly. We have chosen the pump pulse and the pump current to be
connected via Maxwell’s equations such that for weak coupling both
lead to similar effects. (a) and (c) The photon occupations and (b)
and (d) £ the Mandel Q, parameter for signal modes 2 and 3. The
results start to differ after + = 7 ps.

initial state to be the nonfactorizable ground states of Hg and
H, respectively.

Comparing now both cases of external driving in Fig. 14,
we see that they agree qualitatively for the mode occupations
and for the Mandel Q parameters. We find, however, that at
later times, e.g., for O3, they can differ strongly. If we then
compare to the case of no external driving and having four
photons in mode 1 at# = O instead (discussed in Sec. IV), we
find that the chosen external fields qualitatively reproduce this
case (see Fig. 15).

longer changes. This basis-set-limit procedure is common-
place to ensure that the obtained results are not pathologically
influenced by a cutoff in the matter-photon basis. Disregarding
the issue of basis-set convergence, we can instead choose to
consider only a few relevant matter states, which leads to a
Hamiltonian of the form given in Appendix C 1. In this sec-
tion we choose four levels [as in Fig. 1(b) or the highlighted
energy levels in Fig. 24(a)] which by simple energy arguments

We have found so far that while treating the pump mode are the most relevant states (for details see Appendix C1).
differently has an influence on certain observables and that it Simplifying the matter subsystem in this way eliminates the
can make the interpretation of the down-conversion process possibility of the existence of other hybridized polariton and
more involved, other observables stay relatively unchanged. virtual states that occur in an ab initio treatment when the
Yet can we capture these effects also with standard approaches quantized field is coupled to the full matter subsystem. In
and avoid a full ab initio treatment? By this we mean, on the few-level approximation considered here, we include the

VI. COMPARISON TO STANDARD APPROXIMATIONS

the one hand, quantum-optical approaches based on the few- mode-mode interactions that arise from the diamagnetic term

level approximation and, on the other hand, semiclassical as opposed to cases where they are omitted [28,67]. Ignoring

approaches which are employed in nonlinear optics. these terms can lead to results that will differ considerably.
The few-level approximation takes only a few matter states In nonlinear optics one would usually use a semiclas-

into account, in contrast to the large number of states that sical approximation and consider, for instance, nonlinear
are considered in ab initio simulations [67]. In ab initio matter-only response functions. However, in the case of the
simulations one increases the number of states until either quantum ring these would just be zero at the frequencies
the observables of interest or even the full wave function no employed [31] and thus no further conclusions could be
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FIG. 15. Comparison between an initial coherent state with on
average four photons (discussed in detail in Sec. IV) and an external
current that simulates the creation of these four photons for weak
coupling A = 0.014. (a) At t = 0.23 ps, four photons are readily
excited by the external current j,(z). The external current and initial
state are qualitatively the same for the entire profile of the mode
occupations. (b) and (c) The photon occupations £. for signal modes
2 and 3 where the results are qualitatively the same for the time
evolution shown.

drawn. We therefore go one rung higher and employ an
adopted Maxwell-Schrodinger approximation [35], which is a
further common approximation used in the field of nonlinear
optics. It replaces the quantized photon field by its mean-field
expression and hence leads to a set of coupled nonlinear
equations

9 "

ifi—(r, 1) = Hys (4], De(r, 1), ®)
d? 5 :
o T @ )aa®) = Jo(P, gal. )- ©)

Here ¢(r,t) is the wave function of the matter subsystem
and j,(¢) is the current that self-consistently couples the
mode-resolved Maxwell fields to the electronic subsystem
(see Appendix C2 for details). We note that we include in
the Maxwell-Schrodinger approximation also the mean-field
mode-mode interactions (and with these the diamagnetic cur-
rent). Discarding these terms, as is commonly done, will make
the Maxwell-Schrodinger approximation less accurate. While
the PDC process will be well described by this level of theory
for the weak-coupling situation, in the strong-coupling case
where hybrid light-matter states emerge, it is expected to be
less reliable.
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FIG. 16. Performance of few-level and Maxwell-Schrodinger ap-
proximations. In (a) and (b) the few-level approximation is relatively
accurate while the Maxwell-Schrodinger approximation is qualita-
tively correct only up to # =5 ps. In (c) both approximations are
qualitatively off and do not capture the occupation of mode 3.

In Figs. 16 and 17 we display characteristic observables
of the down-conversion process in the strong-coupling regime
(i.e., A =0.017). The Maxwell-Schrodinger approximation
fails, as expected, in the few-photon strong-coupling limit for
all observables. In this case the quantum features of the elec-
tromagnetic field are essential and hence the mean-field-type
approach of the Maxwell-Schrédinger theory is inadequate.
Nevertheless, once we go to many photons, it becomes much
more precise such that in the limit of arbitrarily many pho-
tons the full ab initio theory becomes essentially equivalent
to the Maxwell-Schrodinger theory (see also Appendix C 2).
Therefore, we can use this level of theory to assess how
increasing the number of input photons strongly affects the
down-conversion process (see Sec. VII C). In addition to the
inadequacy of the semiclassical approximation for describing
the down-conversion in the few-photon limit, we also find in
Figs. 16 and 17 that the standard few-level approximation is
not completely reliable as well. The main reason is that since
the transition that is in resonance with mode 3 is not dipole
allowed, many more levels have a similar contribution. This
highlights that such a reduction to merely a few states can
become inaccurate once several observables are considered
at once. Only upon having converged the full wave function
to an appropriate accuracy can we hope to have access to all
possible observables.

Consequently, in the case that light and matter cou-
ple strongly and hybrid-light matter states mediate the
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FIG. 17. Performance of few-level and Maxwell-Schrodinger
approximations. While the few-level approximation captures the
Mandel Q, in (a) quite well, it is wrong initially for @, in (b) and
wrong for Qs in (c). As expected, the Maxwell-Schrodinger approx-
imation does not capture the quantum features of the photon field in

(a)—(c).

down-conversion process, an ab initio light-matter description
becomes necessary.

VII. OPTIMIZATION OF DOWN-CONVERSION:
DEGENERATE CASE

In this section we want to find the optimal setting for
having, on the one hand, an efficient polariton-mediated
down-conversion process and, on the other hand, nonclassical
and controlled down-converted photons. In our current context
we mean by nonclassical the minimum Mandel Q parameter,
i.e., antibunching behavior. To make the space of parameters
as small as possible we will consider here the degenerate
case, i.e., modes 2 and 3 have the same frequency. As a
result of the degeneracy in energy in both signal modes 2
and 3, we decouple the signal mode 3 from Eq. (3) such that
the down-converted photons populate only mode 2. We fix
the polarization of signal mode 2 as A, = Azey by choosing
6, = 0° and change the polarization of the pump field to
Al =A1(cos 01e, +sinf;e,), where 0; is the mixing angle
between the photonic and electronic subsystems. In this case
the Hamiltonian of Eq. (3) reduces to the two-mode electron-
photon Hamiltonian

. . .l ,
Hp = He + H + Hy — ZAl(ﬁx cos 0 + pysin6y)

e A 62 ~

- —Aopy+ %(A% + A3 +24,A;sin6;).  (10)

As increasing the coupling strength pushes the down-
conversion process to earlier times, here we consider its
maximal efficiency and minimum Mandel Q parameter in
mode 2. We will vary the polarization directions (see
Sec. VII A), the anharmonicity of the binding potential of the
GaAs quantum ring (see Sec. VII B), and the coupling strength
as well as the number of input photons (see Sec. VIIC). To
judge the efficiency we consider the maximal amount of mode
occupation n, (except in Sec. VIIC, where we use a more
general definition) over the range of the first 40 ps. For the
nonclassicality we determine the minimal amount of Q, over
the same time interval.

We simulate the time-evolution dynamics of the ab ini-
tio system, the three-level approximation (due to having a
degenerate down-conversion process), and the self-consistent
Maxwell-Schrodinger approximation in the strong-coupling
regime (A = 0.017) starting from a coherent state in mode
1 with four photons (& = 2). For degenerate two-photon
generation, the pump field with energy /iw; = 1.413 meV
drives resonantly the transition between the ground and first
excited states |<p(1)) < |¢3), thereby populating the state |¢3).
The signal mode has half the energy hw, = 0.706 meV of
the |<p?) <~ |g021> transition corresponding to a two-photon
process. Since the coupling g; = 0.0398 of the pump mode
is less than the coupling g, = 0.0563 of the signal mode,
the effective electron in state |g021) is likely to relax to the
ground-state through a two-photon emission channel via a
virtual state (see Appendix A). The virtual state in this context
is a superposition of real electronic states [68] and in this case
includes also the photonic states. From a standard perspective
this process should be again very inefficient. Yet within an
ab initio light-matter treatment, tuning the photonic environ-
ment to a virtual state will in the strong- and ultrastrong-
coupling regimes lead to the creation of a hybrid state that can
efficiently mediate the down-conversion of the input photons.

In Figs. 18 and 19 we show the real-time photon occu-
pations and Mandel Q, parameters of the incoming pump
photon at the mode-mixing angle 8; = 60° and the degen-
erate down-converted photons. For the ab initio results, the
profile of n;(¢) shows that at + = 5.61 ps, 0.82 of a photon
is annihilated by absorption to promote the electron to the
state |¢1). At t = 5.84 ps, the particle subsequently relaxes
to the ground state by emitting photons with maximum mode
occupation ny = 0.041. The apparent weak profile for n,(t)
is due to emission via virtual states. The photon statistics
of the pump field starts out in a coherent state and leads
to a field with super-Poissonian statistics, while the photon
statistics of the generated photons varies between a field with
bunching and antibunching features at different times, with the
minimal value of Q; = —0.0199 atr = 4.94 ps. The few-level
approximation [in this case we only take three states into
account (see also Appendix A)] in Figs. 18(a) and 19(a) is
relatively accurate, while the Maxwell-Schrodinger performs
is qualitatively correct only up + =5 ps and by construc-
tion it remains a coherent field for the entire evolution with
constant O; = 0. Both approximations deviate from the full
solution in Figs. 18(b) and 19(b). While the three-level ap-
proximation consistently overestimates the down-conversion
efficiency as well as the quantumness of the photons in mode
2 (because it restricts the matter system too strongly), the
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FIG. 18. Example of the degenerate down-conversion process in
the strong-coupling regime (A = 0.017) and for a mixing angle of
6; = 60°. (a) The three-level approximation qualitatively captures
the full dynamics of n,(¢), while the Maxwell-Schrodinger descrip-
tion deviates around ¢ = 5 ps for the entire dynamics. (b) Associated
n,(t) of down-converted photons where both approximations are off
from the ab initio result.

Maxwell-Schroédinger approximation underestimates these
quantities. For the Mandel Q parameter this is by design and
for the down-conversion efficiency the Maxwell-Schrodinger

—— mean-field

(a)

—— ab initio — 3-level

0.4 A

Q1(t)

0.2 A

0.0

FIG. 19. Example of the degenerate down-conversion process in
the strong-coupling regime (A = 0.017) and for a mixing angle of
0, = 60°. (a) The three-level approximation qualitatively captures
the full dynamics of Q;(¢), while the mean field is zero for the
full simulation by construction. (b) The three-level and Maxwell-
Schrodinger approximations are off for the complete time evolution.

—&— ab initio —o— 3-level —— mean-field
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FIG. 20. (a) Influence of the interference term in the down-
conversion process by varying the mixing angle 6,. Increasing 6,
increases the photon occupation. The three-level and Maxwell-
Schrodinger approximations are off from the exact results. (b) In-
creasing the mixing angle 6, results in increasing sub-Poissonian
statistics (antibunching) of the down-converted photons.

discards all the correlation between light and matter that be-
comes beneficial in the strong-coupling case.

We note that this down-conversion scheme is indeed an in-
verse second-harmonic generation made possible by coupling
the signal mode to a virtual state at half the energy of the first
degenerate excited state |@;). This will not however be the
limiting case since the same can be done for the third-, fourth-,
and Nth-photon generation, thereby defining an inverse har-
monic generation for realizing an N-photon photon gun. By
tuning the system in an experimentally realizable way, the
setup can potentially be used as an N-photon source with
highly nonclassical properties. Such an optimization will be
discussed below for the inverse second-harmonic generation
process.

A. Optimization of field polarization

Now we consider which relative polarization is most ef-
ficient and at the same time minimizes Q5. In our setup
this means that we consider the mixing angle 6; and the
contribution of the interference term 24,4, sin6;. For this
we perform the time propagation for different mixing angles
0, = 0°,30°,45°,60°,90° for strong coupling (A = 0.017)
and choose as the input mode 1 in a coherent state with
& =2 and have Vy =200 meV. From Fig. 20 we see that
for 6; = 0°, where the polarizations of pump and signal
modes are perpendicular, we obtain the smallest value of
ny = 0.013 for all the mixing angles. The mean photon oc-
cupation n,(¢) increases with increasing angles due to the
fact that 24,4, sin 6, becomes larger. For 6; = 90° we find
the highest down-conversion of photons as we obtain n, =
0.0527 since sin#; = 1 and the polarizations of both modes
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TABLE II. Values for maximum »n7** and minimum Mandel
Oyin for different mixing angles. Increasing 6 increases ny™ and

min

decreases Q5"".

6 (deg) Exact nf™ Exact QF'"
0 0.0130 0.0

30 0.0206 0.0

45 0.0301 —0.0123
60 0.0413 —0.0258
90 0.0527 —0.0387

are parallel with momentum contribution only on the y axis
(i.e., py # 0 while p, = 0). The Mandel Q,(¢) for §; = 90°
shows the highest nonclassical (antibunching) features of the
down-converted photons as @, = —0.0387. The values of
ny** and Q‘znin for angles 6, = 0°, 30°, 45°, 60°, 90° are given
in Table II. Both the three-level and Maxwell-Schrédinger
approximations deviate from the ab initio results yet provide
upper and lower bounds. Although the Maxwell-Schrodinger
approximation [35] takes the mixing angle into account, it
misses the induced correlations between the two modes, high-
lighting that an efficient down-conversion is driven in this
strong-coupling case by the quantum correlations between the
different modes and the matter system. The three-level ap-
proximation, on the other hand, overestimates these quantum
correlations.

B. Optimization of the matter spectrum

Next we investigate the influence of the anharmonicity
of the electronic subsystem on the down-conversion process.
We choose mode 1 in a coherent state with on average four
photons, assume strong coupling (A = 0.017), and choose a
mixing angle 8; = 60° such that both momentum components
of the matter system are nonzero. We vary the parameter V) =
0, 50, 100, 150, 200, 250, 300 meV (see also Appendix A),
which changes the transition energies between states from
harmonic (all have the same transition energy) to anharmonic
(different transitions have different energies). Table III shows
the transition energies from the electronic ground state to the
first excited state that the pump energy is resonant to and
its down-converted energies. In addition, increasing V, also
increases the transition elements, which leads to a stronger ef-
fective coupling between light and matter (see Appendix C 1).

TABLE III. Pump energies for resonant coupling of the electron
ground state and first excited state and corresponding down-
converted energies of the signal field for different values of V,. Also
shown are the numerically exact real-space values for maximum

(max) P (min)
ny  and minimum Q,

Vo (meV)  how; (meV)  fiw, (meV)  Exactn)®™  Exact Q'z"i“
0.0 10.00 5.00 0.0049 —0.0019
50.0 3.121 1.560 0.0105 —0.0103
100.0 1.924 0.962 0.0227 —0.0178
150.0 1.580 0.790 0.0334 —0.0229
200.0 1.413 0.706 0.0413 —0.0258
250.0 1.311 0.655 0.0475 —0.0303
300.0 1.239 0.619 0.0527 —0.0348

—&— ab initio —o— 3-level —— mean-field

0084 (a)

(max)

(min)
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FIG. 21. (a) Maximum down-converted photons n, for increas-
ing V, for the different levels of theory. (b) Minimum Mandel Q,
parameter for increasing V; for the different levels of theory.

We find (Fig. 21) that with increasing V; the maximum
photon occupation 7, increases. Simultaneously, the state of
the generated photon pairs becomes increasingly antibunched
as 0, becomes more negative. This results from (i) the in-
creasing dipole moments due to the reduction of the quantum
ring width for increasing V;, and (ii) the increase in the ef-
fective coupling strength due to the reduced scaling of the
energies (see Table III) as the effective coupling is related
to the frequency by g, = A/ii/2w, (see Appendix A). We
see how the three-level approximation at V) = 0 meV fails,
because many more than just three levels are important when
all transitions have the same energy and we cannot separate
a few specific transitions. Yet even when the system becomes
strongly anharmonic and hence a separation of states is more
reasonable, the few-level approximation greatly overestimates
the results. Again, the Maxwell-Schrodinger approximation
consistently underestimates the results.

C. Optimization of the coupling and input field

Finally, we consider the influence of the coupling as well
as the strength of the input field on the efficiency of the down-
conversion process. It is clear that by increasing the number
of photons in the input mode 1 we will generate more photons
in mode 2. We therefore have to think about a better way to
judge the efficiency. We choose here the ratio of the photon
energy of down-converted photons to the photon energy of the
pump field to judge the efficiency of the down-conversion, i.e.,
ngl! ) = max[H,(t)/H;(t)]. In this way, just increasing the in-
put field will not automatically lead to a higher efficiency. We
then scan for a mixing angle of §; = 60°, a binding potential
of V, = 200 meV, and a coupling strength of A = 0.017 differ-
ent initial states for mode 1 by &, = 1,2, 3, ..., 10 such that
the input field has n; = 1,4, 9, ..., 100 photons at the initial
time. In Fig. 22(a) we display that by increasing the strength
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FIG. 22. (a) Comparison of the down-conversion efficiency for
the three-level and mean-field approximations of the real-space nu-
merically exact coupled system for increasing field amplitude &;.
For the exact system, we vary & = 1, 2, 3, 4 because of the large
dimensionality. (b) Increasing efficiency for increasing A for the
three-level and mean-field approximations of the real-space coupled
system.

of the pump field through the amplitude &;, the efficiency of
the down-conversion decreases. Since the ab initio simulation
for such a large number of photons becomes numerically very
expensive, we extrapolate by the three-level and the Maxwell-
Schrodinger approximation. As is expected, for more photons
the Maxwell-Schrodinger theory becomes increasingly accu-
rate and in the limit of very large photon numbers it should
become exact. Since the quantum ring can only convert a finite
number of photons in the 40 ps considered, in this limit ngli )
goes to zero. In contrast, if we instead set the amplitude of
the input mode to &, = 2 with four photons but we increase
the coupling strength A = 0.014, 0.017, 0.019, 0.026, 0.044,
we find [see Fig. 22(b)] that the efficiency increases. Inter-
estingly, both approximations overestimate the efficiency for
large A. For very large coupling strengths, it is no longer the
quantum correlations that provide a higher down-conversion
rate but the shear strength of the coupling terms domi-
nates. By manipulating the photonic environment to reach the
ultrastrong-coupling limit, the inverse second-order harmonic
generation is strongly enhanced.

VIII. SUMMARY AND OUTLOOK

In this work we have highlighted how ab initio nonrelativis-
tic quantum electrodynamics simulations, which treat light
and matter on an equal footing, provide different ways of
engineering a parametric down-conversion process. By cou-
pling strongly to a photonic environment, hybrid light-matter
states (polaritons) emerge that can efficiently mediate and
control the down-conversion process. This can be done even
for processes via non-dipole-allowed or virtual states. We
have focused on a simple yet instructive model of a GaAs

quantum ring coupled to a photonic environment, e.g., an
optical cavity. We have shown that for short times (on the
order of several tens of picoseconds) the dissipation of a
photonic bath can be ignored in our setup and we have focused
on coherent simulations. Changing the coupling strength to
the input and signal modes, e.g., by increasing the quality
of the cavity, then allowed us to control the timing of the
down-conversion process and shift it to earlier times. Thus
strong coupling can help to limit the detrimental effects of
dissipation on the PDC process. We then highlighted that
while the interpretation of the PDC process as a single-photon
process becomes less straightforward in the case where we
have a coherent initial state in the input mode or when we
replace the input mode by a classical external pump, the main
features of the down-conversion remain intact independent of
the exact form of the input mode. This suggests that our results
are relatively robust with respect to details of the bath, the
initial states, or the different pumping schemes. We then opti-
mized the down-conversion efficiency and the nonclassicality
with respect to the level structure of the quantum ring, the
coupling strength to the photonic environment, the polariza-
tion directions of its modes, and the number of input photons.
We found that parallel modes maximize the matter-mediated
mode-mode interactions, strong anharmonicity reduces the
number of electronic states involved, and ultrastrong coupling
between light and matter maximizes both targets. We found
that common approximations are helpful to estimate limiting
cases but often do not capture the qualitative details of the
down-conversion process for strong-coupling situations.

Our results demonstrate the possibilities that become ac-
cessible with ab initio light-matter methods in the context of
engineering alternative photon sources. Since these methods
stay applicable from the weak- to the ultrastrong-coupling
regime and connect few-level models to the Maxwell-
Schrodinger picture of nonlinear optics seamlessly, we can
scan a wide range of parameters to find optimal conditions not
only for efficiency but also for other objectives, such as the
Mandel Q parameter discussed here. While our simulations
are still far from exact, since we do not model, for instance,
the emission process or the phononic bath, we think our re-
sults demonstrate that using the full flexibility of the matter
system and the photonic environment enables detailed control
of down-conversion process also in practice. We envision
that using methods from polaritonic chemistry and material
sciences to enhance the coupling between light and matter
even at room temperature might provide new ways to access
this full flexibility. Furthermore, since our description is not
geared to only a two-photon down-conversion process but in-
cludes all processes, we can consider more intricate processes
such as three-photon (or even more) down-conversions and
can try to develop completely new ways to generate photons
with specific properties on demand. With coupling strongly to
many virtual states and the emergence of hybrid light-matter
states at these energies, not only can inverse second-harmonic
generation be realized, but also inverse high-harmonic gener-
ation seems feasible. This is a subject left for future work.

Since we have restricted our exploratory study to just a
single active electron, the total number of photons down-
converted is relatively small. However, if we have an ensemble
of quantum rings or a general many-electron system, the
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total number of down-converted photons can be efficiently
increased. Such setups can be accessed with, for instance,
quantum-electrodynamical density-functional theory [45,69]
or polaritonic coupled clusters [48,49], which can provide
not only qualitative results but also a quantitative prediction
of how hybrid light-matter states can generate photons on
demand. This in certain cases can even include the nanopho-
tonic structure as part of the simulation as well as the full
emission process [35]. The results of this work demonstrate
that the design of efficient photon sources is a very interesting
working avenue for the emerging field of ab initio light-matter
interactions.
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APPENDIX A: 2D SEMICONDUCTOR QUANTUM RING

The 2D semiconductor quantum ring of finite width fea-
tures a single effective electron confined in two dimensions in
real space (r = xe, + ye,). The bare electron Hamiltonian is
given by

2 2 2

Ha = _2h_m<% * 572) * %mwﬁrz +Voe M (A
where the potential part with r?> =x?>+y? introduces a
parabolic confinement and a Gaussian peak located at the
center as shown in Fig. 23(a). The parameters of the potential
are chosen in order to reflect the energy and length scales
of quantum ring experiments [70,71] as iwg = 10 meV, d =

10 nm, m = 0.067m,, and Vy = 200 meV (unless otherwise
stated). The potential strength V;, in meV can be varied and
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— Vp=100
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Vo=0

Vext(X =y) (meV)
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FIG. 23. (a) Real-space 2D potential of the quantum ring with
potential strength parameter V;, = 200 meV. (b) Diagonal cut (x = y)
of the 2D potential showing increasing Gaussian peak for increasing
Vo. The ring radius ry = 44 nm.

TABLE IV. (a) The x component of the transition dipole ma-
trix elements for selected transitions shown in Fig. 23(a) for V;, =
200 meV between the various states. (b) Increasing x compo-
nent of the dipole-transition amplitudes between the ground state
and first degenerate excited states for increasing potential strength
parameter V.

(@)

Transition Amplitude
(W1R1v7) 0.2077
(WI1x1v7) 1.2786
(WP1R1v) 1.0867
(W% d) 4.0090x 1013
(b)
Vo (meV) (WL 1R1y)
0 0.53159199
50 0.84520553
100 0.97645376
150 1.04263107
200 1.08705932
250 1.11987106
300 1.14420501

introduces the anharmonicity (nonlinearity) in the electronic
system as in Fig. 23(b). This is particularly important because
increasing Vj increases the transition dipole amplitudes [see
Table IV(b)], which leads to a stronger coupling since the
coupling parameter is proportional to the transition dipoles
as discussed in Appendix C 1. For V) =0 meV, Eq. (Al)
reduces to a two-dimensional isotropic harmonic oscilla-
tor with energies E,, = hwo(2n + 1), wheren =0, 1,2,3, ...
and the degeneracy in energy is n+ 1. For Vj > 0 meV
(and we choose Vy = 200 meV unless otherwise stated) the
eigenstates (p§ are labeled by the angular momentum [ =
0,+£1, 42,43, ... and the index j = || 4+ | enumerates over
the energy levels [see Fig. 24(a)]. The ground state and
excited states with [ = 0 are singlets, whereas the excited
states with finite angular momentum differing from / = 0 are
doubly degenerate as shown in Fig. 24(a). Dipole-allowed
transitions occur only between states with consecutive angular
momenta [32,44]. For example, in the first radial band the al-
lowed transitions are ¢) <> gy ' < 7 2 < @) 7 < b7t
and for the two lowest radial bands some of the allowed
transitions are <p? <~ (pzl'_l <~ (pg <~ g071’_l. Making use of the
dielectric constant € = 12.7¢;, we work in scaled effective
atomic units as in Ref. [32] by defining effective units as
Ha* = (m/e*)Ha ~ 11.30 meV, ajy, = (m/e)ap ~ 10.03 nm,
and u} = /i/Ha* ~ 58.23 fs.

The choice of the quantum ring as the down-conversion
medium is motivated by two properties. First, since it is
a variable atomlike system, the electronic spectrum can be
altered, which is usually realized experimentally [26]. For
example, the parabolic confinement potential of a quantum
ring can be altered, which changes the geometric properties by
reducing the ring width [see Fig. 23(b)], thereby changing the
electronic spectra as shown in Fig. 24(b). Second, transitions
between states with the same angular momentum (i.e., <pj’l to
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FIG. 24. (a) Energy spectrum of the 2D quantum ring showing
the two lowest radial bands with degenerate and nondegenerate ex-
cited states and a nondegenerate ground state for Vo = 200 meV
against angular momentum [. For the nondegenerate down-
conversion case, the pump mode (blue) drives resonantly the
transition |@Y) <> |p1) and the electron later relaxes to the ground
state by emitting two photons into signal modes 2 (orange) and 3
(red). (b) Variation of the four lowest energies of (a) for increasing
potential strength parameter.

<p§ and vice versa) have been shown to be accessible by driving
the transitions with a coherent laser field [32] breaking the
inversion symmetry of the quantum ring. Here we take another
route by considering the Pauli-Fierz Hamiltonian in which the
electronic subsystem is the GaAs quantum ring and show that
the down-conversion is possible between non-dipole-allowed
transitions since the photon modes are quantized and treated
inclusively as dynamical contributions of the coupled system.
Specifically, photon emission into mode 3 in the cascaded
process is possible for coupling resonantly to the non-dipole-
allowed transition ¢) <> ¢2. The transition dipoles in effective
atomic units for the electronic states considered in this work
are given in Table IV(a). In Figs. 24(a) and 25 we show the
down-conversion pathways for the nondegenerate and degen-
erate photon down-conversions, respectively.

APPENDIX B: EXTERNAL PERTURBATION
FOR DOWN-CONVERSION

We consider the case in which the photons to be down-
converted come from an external classical current that
perturbs the pump mode of the coupled system. This is the
case in Eq. (7), where an external field j;(¢) couples to the
vector potential A; of mode 1. This field injects photons into

651 N |
601 \62'2661.62\-F\
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FIG. 25. Close-up of the three lowest-energy eigenstates |¢?),
lo5 1, and lp;) of the quantum ring which are the most relevant
for the degenerate down-conversion case. The pump mode (blue)
resonantly drives the transition |¢)) <> |¢; LYy The active electron
in the excited state subsequently decays to the ground state via the
virtual state (dashed gray line) by emitting two photons (red).

the system that interact and are down-converted into the va-
cant modes. On the other hand, we consider an external field
that couples to the electrons, thus inducing down-conversion
by driving the electronic system. This requires the pump field
A, in Eqg. (3) to be an external classical field A{ () = A1q; ().
In order to compute the classical field g;(¢), we consider that
mode 1 is driven by an external classical field j, (¢) given by

H (1) = 3(p} + wig]) + A1 - ji(0). (B1)

The mode-resolved classical equation of motion of the photon
coordinate §; is given by (3%/8t> + w%)ql(z‘) = —A1ji(t), of
which the solution of the mode-resolved Maxwell equation is
given as

t
AL o
mm=—/dﬂimmm—mma>
0 wq
- (0)

+¢\” cos(wi1) + i sin(w;t).
w1

(B2)

With the solution of the classical trajectory gq;(¢), the time-
dependent external pump of Eq. (6) is given by

2
n e R e P
Hey (1) = _;Al(t)px + %[A%(l) —2A1(1)A; sin 6

— 2A:(t)A; cos 5], (B3)

where A (1) = A1q;(¢) and the down-conversion Hamiltonian
is

A

A N N e . . R
s =Ha+H,+H; — n_1[A2(_ﬁx sin 6, + py cos )
+ A5(py sin s + Py cos 63)]

2
5 (A3 + A3+ 2Ashr 056, + 63). (B4)
In Fig. 15 for strong coupling, we show the comparison of the
evolution dynamics of the down-conversion with an external
current j; (¢) (as in Sec. V) and with an initial factorizable state
as in Sec. IV. Att = 0.23 ps, the external pump j;(#) injects
n; = 4 photons and this qualitatively corresponds to the case
of an initial state which at the initial time has n; = 4 photons.
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The profiles for the photon occupation are qualitatively the
same for the evolved time. The apparent slight deviation in
the profiles is attributed to the values of the observables at
the initial time. For example, at the initial time, n, = 0 for
the initial factorizable state and n, = 0.0018 for the external
current with a correlated ground state. Therefore, the profiles
for the evolved observable quantities are independent of the
initial state chosen.

APPENDIX C: APPROXIMATIONS OF THE
ELECTRON-PHOTON COUPLED SYSTEM

1. Few-level approximation

The few-level approximation of the real-space electron-
photon coupled system approximates Eq. (2) to

N
Ae. =) Elogil + By + B + B

i=1

e o .
- Z[Az(—(ﬁx)ij cos 0y + (Py)ij sin )
ij
+ A3((py)ij sin O3 + (py)ij cos 63)
+ A1 (pe)iillei) (@]
+ %[A% + A3 + A2 — 24,4, sin(6,)
— 2454, sin(65) + 2434, cos 6 + 03],

where (py)i; = (@il pxle;) and (py)i; = (@ilpyle;) represent
the transition momentum matrix elements between relevant
electronic states of the coupling to the photons. This approx-
imation assumes that the few lowest energy levels of the
electronic spectrum are separated in energy from the higher-
lying energy levels. Assuming this approximation holds, we
truncate the Hilbert space to the N lowest energy levels of
interest [67]. Due to the degeneracy in the electronic spec-
trum, for the nondegenerate down-conversion we considered
the four electronic states ¢?, (pg, <p71’71 and for the degenerate
down-conversion we considered the three electronic states
ooy

From Eq. (3) we deduce the electron-photon coupling
from the bilinear term which can be written as Hiy =
- vaj S M e (€0 - D))ijl9i) (@j]. The interaction term
can be expressed as Hiy = sz’ ; ZZI gfj’ (ag + al), where
the coupling term is g/ = 2% (fiw, /€oL)'"/*d;; and the dipole
matrix elements is d;; = ((€q - T)); i, which is related to the
momentum matrix elements by ((e, - P));j = iw;jmd;;. For
free-space radiation, the electron-photon coupling is related

fatd i) 323 12
to the radiative decay rate as g,’’ = (myi /2. Here we

used the relation between the radiative decay rate and the
a):‘-ld--lz
ijldij

transition dipole matrix elements y;; = T

2. Maxwell-Schrodinger approximation

By making a mean-field ansatz of the coupled electron-
photon system, we can approximate the correlated electron-
photon wave function as W(r, ga) ~ ¢(r) ® ¢(g1) ® ¢(q2) ®

-+ ® ¢(qy) [34]. This ansatz simplifies the dynamics of the
time-evolved correlated problem of Egs. (8) and (9), where
the self-consistent Hamiltonian and currents are

A ~ 6)\1 R
Hvis([qalit) = He — WQl(t)px
e A . A
— —[22q2()(—=px sin Oy + py cos 6)
m
+ A3q3(t)(Pxsin0O; + pycosdz)],  (Cl)

. e)"l e2 2 .
DP, go)) = —pu(t) + %[—qul(t) + A2k1ga (1) sin 6

+ A3h1g3(t) sin 03], (€2)

. er .
(P gul) = m—j[—px(r) $in 6> + py (1) cos 2]
2
e ) .
+ —[-23¢2(t) + Ah1q1 () sin 6
m

— AA3q3(t)cos 6, + 93], (C3)

. e .
J3(P. ga)) =~ [P () sin 65 + py (1) cos ]
2
e 2 .
+ —[—33¢3(t) + 232141 () sin 6
m

— A3haqa(t) cos 6; + 65]. (C4)

—— mean-field

@)

—— ab initio

(a)

0.01 A
=
70.00
(o))
—0.01
—0.02 1
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T T ~ —0.04
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0.01 A 0.02 1
=
—0.00 0.00
(o))
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FIG. 26. Comparison of the field g;(¢) for both real space and
mean field. The comparisons of (a) and (a’), (b) and (b’), and (c) and
(c) are the cases where the amplitudes of the pump field are & =
2, 3,4 with respective photon numbers n; = 4,9, 16 at the initial
time, respectively. The amplitude of g3 (¢) for the mean field increases
over the real space for increasing &;.
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FIG. 27. Photon field ¢;(¢) for mode 3 for different amplitudes
&, of the coherent pump field with corresponding photon numbers
nm = |&1%: (@) & = 20 and n; = 400, (b) & = 30 and 1, = 900, and
(c) & =40 and n; = 1600. A more intense pump field results in a
slight increase in the amplitude of g3 (¢ ) for the time evolution shown.
The time step is At = 0.0058 fs.

Here the g,’s are the photon coordinates of the respective
modes o = 1,2, 3 and p = (p,, p,) are the x and y momenta
of the electron.

We compute the photon occupation by first computing
the Hamiltonians of the photonic subsystem H, = %(pé +

w2q) + h‘;’”, where we added the zero-point energy to ac-
count for the energy shift which does not appear in the
mean-field treatment. From the photonic Hamiltonian, we
deduce the photon occupation to be n, = H,/hw, — 0.5.
Equally, we determine the photonic observable of Eq. (4) by
defining, respectively, the mean-field annihilation and creation
operators

1
Gy = —— (Wuqa + iPy),
o 2ha)a( Go + ipo)
. 1
a,, = ——=(wgGa — iPa)-
& 2hwo{( q Da)

For the choice of the initial states in Sec. II B, the initial values
of the photon coordinate are q; = (§1|G11&1) = |§1|1V20/ w1,
q> = (021G2102) = 0, and g3 = (03]¢3]/03) = 0 and momenta
are p1 = (§1|p1161) = |§1|v 20w, pa = (02]p2]02) = 0, and
p3 = (03]p3103) = 0.

In Fig. 26 we show a comparison between the Maxwell-
Schrodinger approximation (mean field) and the real-space
result for the nondegenerate case in weak coupling for
the generated field ¢3(¢) of mode 3 when the pump field
has different amplitudes &; = 2, 3, 4 with respective photon

numbers n; = |$1|2 = 4,9, 16 at the initial time. Consider-
ing the maximum amplitude of g3(¢) of the evolution, the
mean field is larger than the real space for increasing am-
plitude of the pump field. Also, in Fig. 27 we show for
the mean-field case that by increasing the amplitude of the
pump mode by an order of magnitude, i.e., £ = 20, 30, 40,
the amplitude of gs(¢) slightly increases. This is in ac-
cord with nonlinear optics, for which, for intense fields
(large number of photons), the down-conversion has a low
efficiency [23].

APPENDIX D: NUMERICAL DETAILS

We outline details of the representation of the photon sub-
space in a Fock number basis for the different input fields and
the description of the many-mode case including a restrictedly
sampled photon bath. The numerical details follow chronolog-
ically as in the successive sections in the paper.

(i) For dissipation and coherence in Sec. III A, for each of
the modes 1, 2, and 3 we included three photon Fock states
which are the vacuum, one-photon, and two-photon states. In
order to be able to treat the photon bath consistingof M — 3 =
M9 = 70 modes in a numerically exact way, we truncate the
Fock space and consider only the vacuum state, the M7, one-
photon states, and the (M720 + M70)/2 two-photon states as in
Ref. [36]. For only this case, we consider all 12 electronic
states in Fig. 24(a) up to the state with energy 58.54 meV.

(i) For temporal control in Sec. III B, we sampled 20
photon Fock states for each of the modes 1, 2, and 3.

(iii) In Secs. V-VII we sampled 30 photon Fock states for
the individual modes 1, 2, and 3. The choice of 30 photon
Fock states is to well represent the coherent state.

— A=0.020

— A=0.017

— A=0.014

(11]w(®)]?

[(21]w()]?

~ 0.000004 4

= 0.000003

=

3 0.000002
—

2 0.000001

0.000000 44
0 5 10 15 20 25 30 35 40

t (ps)

FIG. 28. Real-time Fock state occupations of pump mode 1 in a
single-photon Fock state from weak to ultrastrong coupling.
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FIG. 29. Real-time Fock state occupations of pump mode 1 in a
coherent state from weak to ultrastrong coupling.

APPENDIX E: DENSITY MATRIX
OF THE COUPLED SYSTEM

We quantify features of entanglement in the electron-
photon coupled system by defining appropriate one-body
reduced density matrices [72,73] for the individual subsys-
tems

(@, r') = ///dmd612d6]3‘1’(1‘, a1 @2, V(Y ,q1,92,93),
vi(q1, 4)) = ///drdqzdch‘l'(r, g1, g2, @3V (T, 41, g2, q3),
(g2, ¢5) = ///drdqldqa\lf(r, q1, g2, g3V (T, g1, g5, q3),

v3(q3, ¢5) = ///drdqldqz‘l'(r, q1, @2, VT, q1, 42, 43),

where ym(r, '), v1(q1, 1), ¥2(q2, 43), and y3(g3, q3) are the
one-body reduced density matrices of the electronic and pho-
tonic subsystems. We choose a normalization of these reduced
density matrices to one, such that the following holds:

Te(]W)(W*]) = Tr(ym) = Tr(y1) = Tr(yz) = Tr(ys) = 1.

From this normalization, the reduced density matrices can
be used to compute the purity of the subsystems by

— A=0.020 — A=0.017 A=0.014

0.00015 A

(a)
0.00010 4
le—8 I I I I I I I I

[(13]@(t))|?

0.00000 -

6(b)

[(23]g(t)]?

le—10

154(c)

1.01

0.5 4
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0.0 1 =

0 5 10 15 20 25 30 35 40
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FIG. 30. Real-time Fock state occupations of signal mode 3 from
weak to ultrastrong coupling for the input coherent state. (a) The one-
photon Fock state is mostly populated in comparison to the (b) two-
photon and (c) three-photon Fock states.

requiring that

Tr(yy) = Tr(v) = Te(y5) = Te(y5) = 1. (ED)

We consider only the evolution of the purity of the photonic
subsystems.

APPENDIX F: FOCK STATE OCCUPATIONS
FOR DIFFERENT INPUT FIELDS

In this Appendix we show the Fock state occupations for
the different fields, i.e., single-photon input field and the co-
herent state with n;(0) = 4 photons.

In Fig. 28 with the input field in a single-photon Fock state,
the population of the two-photon Fock state is zero throughout
the time evolution, while that of the three-photon Fock state
is weakly populated. In accordance with the Fock state pop-
ulations in Figs. 4 and 5, this shows that the down-converted
photons are of a single-photon nature.

In the case when the input field is a coherent state, the
one-, two-, and three-photon Fock states are populated with
increasing amplitude from |1;), |21), and |3;). This is true for
the input mode Fig. 29 and also for the signal modes Figs. 9
and 30.
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