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Abstract. The present article attempts to optimize the process parameters of artificial ageing
for an AA6063 Al-Mg-Si alloy using multi-objective genetic algorithm (MOGA) to
simultaneously achieve the maximum ultimate tensile strength (UTS) and percentage of
elongation (%El). For this, a feed-forward multi-layered perceptron artificial neural network
(ANN) has been developed which is trained by the scale conjugate gradient back propagation
algorithm. The dataset required for the model has been compiled from the experimental results
of this study, as well as, from the open literature. The network consists of solutionizing time
and temperature, storage time/pre-ageing, rate of quenching, ageing time and temperature as
input variables and UTS, %El as their outputs. The developed ANN model establishes the
interrelationships between the input and output variables which can serve as objective
functions for the optimization, following the theory of Pareto-optimality. The Pareto solution
generated from MOGA between UTS and %El assists to conclude that the desired combination
of high strength and ductility has been achieved through slow cooling after solutionizing, high
pre-ageing time and high temperature of ageing. Furthermore, the designed heat treatment
schedule through MOGA has been applied to the selected alloy on an experimental basis which
shows satisfactory results.

1. Introduction
Age hardenable aluminium alloys are the attractive materials for various applications because of their
excellent combination of mechanical properties. Al-Mg-Si alloys are an important group in both cast
and wrought form whose mechanical properties can be enhanced by varying the amount of alloying
elements [1], via thermal treatment [2] and by thermo mechanical processing [3]. To achieve these,
huge experimental efforts had to be put in, which is a costly affair and requires lot of manpower as
well. Therefore, the modern day engineers are primarily focused towards designing the materials
through optimization techniques [4]. In case of age hardenable Al alloys, optimization of the
microstructure is a challenging task as it is governed by the process involving some critical parameters
such as: (i) solutionizing temperature [5], (ii) solutionizing time, (iii) quenching medium, (iv) rate of
quenching [6], (v) deformation [7,8], (vi) ageing temperature [9], and (vii) ageing time [9].



Establishing the complex inter-relations between these parameters would assist in designing the alloy.
In this regard, researchers from past couple of decades have been employing the optimization
techniques like multi-objective genetic algorithms (MOGA) based artificial neural networks (ANN) in
different areas [10 12] to overcome the difficulty posed by complex non-linear relationships in
processing the materials [13]. Song et al. [10] have employed an ANN model to investigate the aging
dynamics of 7175 alloy. Back propagation feed-forward neural network has been used by providing
three inputs nodes i.e., different values of deformations in percentage, various solution and aging
times, 10 nodes in hidden layer and the experimental hardness values were the only output provided
for training the network. After training and generalization the hardness values and their associated
relative errors are obtained. Su et al. [12] have used artificial neural network along with genetic
algorithm to optimize and predict the artificial aging process parameters of Cu-Cr-Zr-Mg alloy to
obtain hardness and electrical conductivity. It has been identified that reports on designing of age
hardenable alloy with enhanced properties using intelligent based methods are scanty in the open
literature; to the best knowledge none are related to AA6063 Al-Mg-Si alloy.
     The present investigation deals with the optimization of parameters for the heat treatment schedule
to attain optimum strength and ductility for an AA6063 alloy using artificial neural network (ANN)
and multi-objective genetic algorithm (MOGA) in tandem. A large set of data including various heat
treatment parameters as inputs and ultimate tensile strength and percentage of elongation as outputs
are collected from previous literature to train the ANN. Objective functions from ANN are supplied to
MOGA for the optimization process. The suitability of the model has been examined by applying the
designed heat treatment schedule on experimental basis.

2. Database generation
The dataset for the present study has been acquired from the open literature as well as through the
experimentation concerning the AA6063 alloy. A total data of 214 numbers comprising of
solutionizing temperature, solutionizing time, rate of quenching, storage/pre-ageing time at ambient
temperature, stretching/working, ageing temperature and ageing time as input parameters and ultimate
tensile strength and total elongation as output parameters. For the experiments, AA6063 Al-Mg-Si
alloy hot extruded rods of 16 mm diameter have been procured on commercial basis. Solutionizing of
specimens have been carried out at 525 oC ± 2 oC for 2 h and quenching in ice water followed by
exposing them at different ageing temperatures of  100-250 oC for 0.083 to 1008 h.
     Ageing response of the selected alloy has been assessed by measuring the micro hardness using a
Vickers hardness tester (VMHT Leica, Germany) at a load of 2 Kgf for dwell time of 10 s. At least ten
readings have been taken on each sample and the average values along with the standard error are
reported. Uniaxial tensile tests have been carried out on specimens (Gauge length - 25mm and Gauge
diameter  6mm) using servo hydraulic controlled Universal testing 8801 Instron machine at a
crosshead speed of 1.92mm/min which is equal to a nominal strain rate of 0.001 ms -1. A minimum of
three tests have been performed on each ageing condition and the obtained tensile properties stored in
software are utilized in this model. The dataset used for developing the models are presented in
table. 1 consists of the maximum, minimum, mean and the standard deviation values of each variable.

3. Results and discussion

3.1. Development of models
The present study utilizes a feed forward multi-layered perceptron network trained by standard scale
conjugate back propagation algorithm [14,15]. Initially, the normalization of inputs and outputs has
been carried out within the range of -1 to 1 using the following equation:

max

max min

( )( )N x x b ax a
x x

(1)



where, the normalized value of x is represented as xN, the values of a and b are given as -1 and 1
respectively; xmax and xmin are the maximum and minimum values of x.

Table 1. Summary of the minimum, maximum, mean and standard deviation values
of input and output variables used in the developed model.

Parameters Min Max Mean Std. dev
Input variables

Solutionizing temperature (oC) 480 580 515.0342 26.46726
Solutionizing time (h) 0.5 4 1.335616 0.759105
Rate of quenching (oC s-1) 0.231 4.25 2.668933 1.956332
Storage/pre-ageing time at RT (h) 0 720 267.4521 347.9414
Stretching / Working (%) 0 75 24.68493 28.90693
Ageing temperature (oC) 130 400 174.9247 34.60936
Ageing time (h) 0.016 200 17.00589 33.11995

Output variables
Ultimate tensile strength (MPa) 128.1 309.1 258.46 38.54
Total elongation (%) 10.5 34.8 22.24 5.636

     Later, a tangent hyperbolic transfer function which is a summation of the normalized inputs, N
ix in

combination with the weights, wji in addition with the bias value, bj is supplied as input to the hidden
neuron (hj) whose expression is given as:

tanh N
j ji i jh w x b (2)

here, the suffixes j and i denote the hidden and input neuron numbers respectively.
The output is given by the following equation as:

j jy W h b (3)
The developed network has been trained to obtain the optimum input-output relation by minimizing
the error function through iterative process. This process has been carried out by comparing the target
values with the obtained output values followed by arbitrarily varying the individual weights given as
input and output to the hidden neurons [16,17].
     Two independent ANN models have been developed which maps the input variables to the UTS
and %El. The optimum number of hidden nodes in a single hidden layer of the two developed ANN
models for UTS and %El are 46 and 35, respectively. The scatter plots in Fig. 1 show a reasonably
good prediction of the target versus output values of UTS and %El based on the developed ANN
models. The relation in Figs. 1(a) and (b) has been used as an objective function for further
optimization studies.

3.2. Process parameter optimization with genetic algorithm
The superior performance of age-hardenable Al alloys can be achieved through simultaneous
improvement of the strength and ductility. A simultaneous enhancement of these two properties,
however, is conflicting with each other. Thereby, the multi-objective genetic algorithm (MOGA) [18]
has been used for optimizing the individual objective functions of ultimate tensile strength and
percentage of total elongation, which can be expressed in general form as:

max[ tanh( ) ]
LB UB
i i i
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x x x
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where, xi symbolizes the variable for which the maximization search is attempted within the search
space, LB

ix  and UB
ix  as lower and upper bounds respectively.



     The genetic search for conflicting objectives has been performed based on the principle of Pareto-
optimality. The optimized Pareto-front developed using MOGA for ultimate tensile strength and
percentage of total elongation is presented in Fig. 2. The suitable Pareto-front is identified by running

(a) (b)
Figure 1. Illustrating the scatter plots for (a) ultimate tensile strength and (b) total elongation of the
targets and output values from the desighned model.

the genetic algorithm for various population sizes and numbers of generations to ensure the sub-
optimal solutions are not achieved. For the present scenario, population size of 279 has been chosen
for 279 generations. Where, the Pareto solutions are positioned in an ascending order with the
elongation. In the present case, the lower solution numbers represent maximum UTS and higher
solution numbers represent minimum %El.

Figure 2. The Pareto-front of percentage
total elongation and ultimate tensile
strength generated using multi-objective
genetic algorithm.

     The non-dominated Pareto-solutions generated from multi-objective optimization studies are sorted
with increasing strength and different input parameters for each solution as presented in Fig. 3. For



each solution number the variation in the input parameters are identified and related with the change in
the UTS and %El. It can be observed from Fig. 3 that the rate of quenching, storage time, and ageing
temperature are found to highly influence the strength and ductility of AA6063 alloy. It is a fact that
the best combination of strength and ductility is achieved when the Mg2Si precipitates are completely
dissolved in the matrix before ageing [19]. Here the solutionizing temperature of 480oC and
solutionizing time of 4 hr have been chosen for the optimization study and is almost same for all
solutions. The rate of quenching is found to influence the variation in the UTS values. Higher
quenching rate is preferred for higher strength and lesser ductility (Fig. 3a). Vacancies that are
generated while forming the single-phase solid solution gets trapped with fast quenching and serve as
diffusion sites for solute atoms in forming of fine precipitation; the maximum strength is attributed to
this phenomenon. Whereas, the slow quenching generates less number of precipitates during ageing
which are easily sheared by the dislocations accounting to high elongation [20]. The UTS is maximum
when the storage time is as minimum as possible at lower ageing temperatures (Fig. 3b).

Figure 3. The optimized Pareto-front of (a) rate of quenching, (b) storage/pre-ageing time, (c) ageing
temperature, and (d) ageing time against the solutions, numbered for increasing ultimate tensile
strength and decreasing percentage of total elongation.

Pre-aging at room temperature generates Guinier-Preston (GP) zones, which provides more
precipitation sights during subsequent artificial ageing and thus increases the strength. It is seen that



higher ageing temperature is preferred for higher ductility (Fig. 3c). Higher ageing temperatures
leading to over-ageing due to coarsening of the precipitates provide more space for dislocation
movement and thus higher ductility. For almost all solutions the ageing time was same (Fig. 3d).
     To summarize, the analyses of optimum solutions reveal that slow cooling after solutionizing, high
pre-ageing time and ageing at high temperature lead to the balance between high strength and
ductility. The heat treatment schedule designed through these models has been applied to the selected
alloy on experimental basis which shows satisfactory results.

4. Conclusions
The scheme of designing an alloy for the simultaneous achievement of optimum strength and ductility
is convoluted. Therefore, for this objective the present article is directed at optimizing the artificial
ageing process parameters for AA6063 alloy through computational intelligent based techniques such
as artificial neural network model and multi-objective genetic algorithm (MOGA) in tandem. The
interrelations established from the developed ANN models are found to satisfactorily serve as the
objective functions for the MOGA. The Pareto solutions suggests that for AA6063 balanced strength
of 344 MPa and ductility of 22% can be achieved by lower rate of quenching after the solution
treatment and higher storage time before ageing and higher temperature of ageing.
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