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Abstract

In this contribution, the effect of nanoparticle additivation on the microstructure and microhardness of oxide dispersion strengthened steels (ODS)
manufactured by laser powder bed fusion (L-PBF) and directed energy deposition (DED) additive manufacturing (AM) is studied. The powder
composites are made of micrometer-sized iron-chromium-alloy based powder which are homogenously decorated with Y203 nanoparticles
synthesized by pulsed laser fragmentation in water. Consolidated by L-PBF and DED, an enhanced microhardness of the AM-built ODS sample

is found. This increase is related to the significant microstructural differences found between the differently processed samples.
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1. Introduction

The manufacturing of steel components represents a pillar of
the industrial development due to their high demand in
fundamental areas like construction, automation or aeronautics
[1,2]. In that sense, the aim to develop steel parts with complex
geometries and specific properties requires the development
and employment of different manufacturing technologies.
Powder and laser based additive manufacturing (powder LAM)
englobes the techniques based on the processing of powders by
high power lasers to manufacture the final pieces based on the
melting and solidification of the base material [3]. The
flexibility of the technique for the employment of a wide library
of base materials relies on the possibility of optimizing the laser
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and processing parameters for each specific material [4]. The
scanning methodology and the layer by layer deposit and
growth procedure leads to an enhanced versatility when
complex geometries are desired [5]. Inside the general term
powder LAM, two main technologies can be highlighted due to
their standard use in metal powders processing, i.e. directed
energy deposition (DED) and laser powder bed fusion (L-PBF).
While both are based on the same general principle, their
differences rely on the depositing methodology of the powder
material, which can affect the dynamics of the process [6]. Both
techniques are conventionally applied in the processing of
metallic powders. Consequently, their comparison is necessary
to select the optimum technique for all individual processing
conditions.
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There exist a wide library of processable powders, even
more, if modifications for enhanced performance are taken into
account [7]. In this context, the controlled addition of oxide
nanoparticles to the steel powders has been proved to modify
the properties of the generated steel pieces, giving rise to oxide
dispersion strengthened (ODS) steels [8]. Yttrium based oxides
have been extensively employed in the modification of steel
powders due to their proven mechanical reinforcement [9] and
radiation sink effect [10]. Generally, due to their lattice
mismatch with the metal matrix they act as dispersoids,
hindering dislocation propagation and acting as sinks for
radiation-induced defects [11]. The most common route for
their fabrication is reactive ball milling and annealing [12,13].
Nevertheless, achieving control over nanoparticle dispersion
and size is important as it influences the performance of the
final pieces [14]. Consequently, a fabrication route based on the
synthesis of colloidal nanoparticles by laser fragmentation in
liquids  (LFL), followed by their pH-controlled
dielectrophoretic supporting on the steel powder has been
proposed for an enhanced control of the nanoparticle dispersion
and size evolution during the different steps towards the
development of ODS steel samples [15-17].

In the present study, the achieved control over nanoparticle
features during the processing steps for ODS steel preparation
by the LFL synthesis route is explored. To do so, the
nanoparticle size, dispersion, and composition is analyzed after
fragmentation, supporting on the steel micro-powder and
processing by DED and L-PBF. This way, nanoparticle
evolution during the complete additive manufacturing process
of an ODS steel sample is monitored for a better understanding
of the influence of each technique over the nanoparticle
distribution, microstructure of the fabricated piece, and hence
over the ODS steel final properties.

2. Materials and methods

The materials employed for the ODS steel manufacture by
DED and L-PBF are Y03 nanoparticles and a PM2000 ferritic
steel powder. The raw Y»03 nanoparticles are commercially
acquired from Sigma Aldrich and dispersed in ultrapure
deionized water (pH adjusted to 3.5 for stability) for
deagglomeration and size reduction by laser fragmentation in
liquids (LFL) employing an f= 100 mm cylindrical lens, Fig. 1
top part [18]. This technique offers numerous advantages for
the preparation of colloidal nanomaterials as it yields a wide
library of processable materials [19-21], reduced waste
generation and high nanoparticle output [22,23]. The
supporting of the generated nanoparticles on the steel powder
is achieved by the addition of the PM2000 to the colloidal Y,03
nanoparticles and the modification of the pH to a value between
the isoelectric point of both materials, Fig. 1 bottom part, by
NaOH addition [24].

The prepared powder material is then processed by DED and
L-PBF, respectively. In the first case, Fig. 2a, the powder is
directly sent to the laser beam by a nozzle, the interaction with
the high power laser beam melts it and gets the powder material
deposited on the workpiece.
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Fig. 1. Schematic illustration of the passage reactor LFL setup and
dielectrophoretic nanoparticle adsorption on the steel powder by pH control.

Then the material solidifies, obtaining the final ODS steel
samples and controlling the sample geometry by a scanning
system. In the case of the L-PBF, Fig. 2b, the powder is spread
over a substrate and the laser beam controlled by a scanning
system melts the interacting areas. Again, the melted material
solidifies forming the ODS steel sample. The non-irradiated
powder material can be removed and reutilized.
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Fig. 2. Representative scheme of the (a) DED and (b) L-PBF laser additive
manufacturing technologies.

Different analytical techniques are employed to characterize
the nanoparticle size at the different stages of the process as
well as their dispersion. After LFL, transmission electron
microscopy (TEM) measurements are performed to evaluate
the nanoparticle size, Fig. 3a. When the Y,0; nanoparticles are
supported on the steel powder, scanning electron microscopy
(SEM) images are acquired to visualize nanoparticle size and
dispersion on the surface of the steel powder, Fig. 3b. It should
be noted that SEM is needed to visualize the nanoparticles on
the steel surface, however, the spatial resolution achievable is
lower than TEM and small nanoparticles may not appear.
Finally, after processing the samples by DED and L-PBF, are
analyzed by SEM-energy dispersive X-ray spectroscopy (EDS)
and electron backscatter diffraction (EBSD). Microhardness
measurements (HV0.1) are conducted with an applied load of
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0.9807 N. The mean hardness is calculated by performing at
least five indents.

3. Results and discussion

The evolution of the nanoparticles during LAM processing
is compared from the Y,0;3 nanoparticles synthesized by LFL.
The TEM image in Fig. 3a displays that a bimodal distribution
is found, a smaller population of 3.2 + 0.6 nm and larger
particles with a 28 = 8 nm size distribution. The presence of
two differentiated particle populations is potentially beneficial
to observe the effect of the manufacturing process for both
nanoparticle sizes. Besides, nanoparticle size is reported to
influence the strengthening mechanism in ODS steels [25]. In
particular, for small particles, dislocation cutting is the
predominant effect, while for larger ones dislocation looping
around the particle is the main strengthening mechanism [26].
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Fig. 3. (a) Y,O; nanoparticle size distribution after LFL. measured by TEM.
(b) Dispersion and size of the Y,0; nanoparticles supported on PM2000
powder by electrostatic deposition.

After deposition of the nanoparticles on the PM2000 steel
powder, the SEM image, Fig. 3b, demonstrates a fine
dispersion on the surface with the addition of only a 0.08 wt%
of Y>03 nanoparticles. It should be noted that SEM images are
limited by the spatial resolution of the technique, and so smaller
nanoparticles could be present in the steel surface, lowering the
average nanoparticle size and reducing the interparticle
distance.

Fig. 4. Image quality (band contrast) maps with superimposed grain boundaries
(misorientation: 2-5° green, 5-15° red, >15° blue), left, detailed view of
nanoinclusions, right (backscatter electron micrograph), of the ODS steel
pieces manufactured by (a) DED and (b) L-PBF.

After parts were printed with the nano-decorated powder by
DED and L-PBF, the distribution and size of the resulting
nanoinclusions are characterized by SEM and EBSD, Fig. 4.

The manufacturing method is shown to influence the grain
size, which is known to have a fundamental impact on the
mechanical properties of the metal [25,26]. It is visible that the
grain size is significantly bigger in the DED sample, Fig. 4a,
than in the L-PBF sample, Fig. 4b. The differences are
attributed to the higher cooling rate in L-PBF and suggest a
superior mechanical strength of the L-PBF sample due to the
smaller grain size [27]. Besides, higher magnification images
of the samples show the presence of larger particles in the DED
piece. To investigate which elements might be contained in
these particles, EDS analysis is performed, Fig. 5.
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Fig. 5. Backscatter electron SEM images of the nanoinclusions, left, and EDS
analysis of the particles marked by the arrow, right, of the ODS steel pieces
manufactured by (a) DED and (b) L-PBF. Note that the spectrum is not
exclusively from the particle itself but might contain some contribution from
the matrix as the excitation volume in SEM-EDS might be larger than the
particle.

The measurements reveal the presence of Y, O and Al in the
particle and its surrounding, Fig. 5a and Fig. 5b. This result,
together with the differences in particle size observed in Fig. 4,
suggests that stronger agglomeration and particle size growing
of the initial Y»Os; nanoparticles occurs during DED
manufacturing, while these effects are reduced by L-PBF
processing. The presence of Al in both samples is associated to
its precipitation during processing.

Microhardness measurements (HV0.1) of the cross-sections
show different hardness values depending on the processing
route. The results are given in Table 1. As evident, processing
with L-PBF results in a slightly higher hardness compared to
DED. A possible explanation for this variation can be found in
the higher cooling rates in L-PBF resulting in a finer
microstructure compared to the DED [28] process as can be
seen in Fig. 4a) and b), thus, causing differing hardness values.
Additionally, the larger size of nanoinclusions as shown in Fig.
4a) in the DED steel specimens leads to a potentially lower
effect of dispersion strengthening. However, the amount of
nanoinclusions inherited in the steel is considerably low so that
a considerable influence of the dispersion strengthening on the
measured microhardness is not to be expected, especially at
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room temperature [29]. Nevertheless, it is expected that a
significant difference in terms of material strength at high
temperatures due to the two processing routes will be
identifiable.

Table 1. Microhardness (HV0.1) of the DED and L-PBF samples

Microhardness
HVO.1

DED
223+£9

L-PBF
247+ 8

4. Conclusions

A study of the evolution and effect of nanoparticles in
powder LAM of an ODS steel has been performed. The
influence of the processing technique has been studied by
comparing the microstructure and composition of DED with L-
PBF manufactured parts. Regarding the microstructure, L-PBF
processing is shown to reduce the grain size and increase grain
boundaries compared to DED, which is expected to result in an
enhanced strengthening of the built parts.

Concerning the evolution of the initially added 0.08 wt%
Y,05 nanoparticles, a fine dispersion is achieved on the steel
powder decoration process by electrostatic deposition. After
processing, an enrichment of Y, O and Al in the particles and
its surrounding is shown by EDS analysis. The composition
analysis together with SEM visualization of the nanoinclusions
indicates that L-PBF is reducing agglomeration of the Y,03
particles. During DED processing, apparently agglomeration of
the nanoparticles is taking place. Since a fine dispersion and
small nanoparticles are desired to enhance the strengthening
effect due to the Orowan mechanism, L-PBF is potentially a
more suitable technique compared to DED for the
manufacturing of ODS steels from Y>03 nanoparticle decorated
PM2000 powder.
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