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Triangulation supports agricultural spread 
of the Transeurasian languages

Martine Robbeets1 ✉, Remco Bouckaert1,2, Matthew Conte3, Alexander Savelyev1,4, Tao Li1,5,6, 
Deog-Im An7, Ken-ichi Shinoda8, Yinqiu Cui9,10, Takamune Kawashima11, Geonyoung Kim3, 
Junzo Uchiyama12,13, Joanna Dolińska1, Sofia Oskolskaya1,14, Ken-Yōjiro Yamano15, 
Noriko Seguchi16,17, Hirotaka Tomita18,19, Hiroto Takamiya20, Hideaki Kanzawa-Kiriyama8, 
Hiroki Oota21, Hajime Ishida22, Ryosuke Kimura22, Takehiro Sato23, Jae-Hyun Kim24, 
Bingcong Deng1, Rasmus Bjørn1, Seongha Rhee25, Kyou-Dong Ahn25, Ilya Gruntov4,26, 
Olga Mazo4,26, John R. Bentley27, Ricardo Fernandes1,28,29, Patrick Roberts1, 
Ilona R. Bausch12,30,31, Linda Gilaizeau1, Minoru Yoneda32, Mitsugu Kugai33, Raffaela A. Bianco1, 
Fan Zhang9, Marie Himmel1, Mark J. Hudson1,34 ✉ & Chao Ning1,35 ✉

The origin and early dispersal of speakers of Transeurasian languages—that is, 
Japanese, Korean, Tungusic, Mongolic and Turkic—is among the most disputed issues 
of Eurasian population history1–3. A key problem is the relationship between linguistic 
dispersals, agricultural expansions and population movements4,5. Here we address 
this question by ‘triangulating’ genetics, archaeology and linguistics in a unified 
perspective. We report wide-ranging datasets from these disciplines, including a 
comprehensive Transeurasian agropastoral and basic vocabulary; an archaeological 
database of 255 Neolithic–Bronze Age sites from Northeast Asia; and a collection of 
ancient genomes from Korea, the Ryukyu islands and early cereal farmers in Japan, 
complementing previously published genomes from East Asia. Challenging the 
traditional ‘pastoralist hypothesis’6–8, we show that the common ancestry and primary 
dispersals of Transeurasian languages can be traced back to the first farmers moving 
across Northeast Asia from the Early Neolithic onwards, but that this shared heritage 
has been masked by extensive cultural interaction since the Bronze Age. As well as 
marking considerable progress in the three individual disciplines, by combining their 
converging evidence we show that the early spread of Transeurasian speakers was 
driven by agriculture.

Recent breakthroughs in ancient DNA sequencing have made us rethink 
the connections between human, linguistic and cultural expansions 
across Eurasia. Compared to western Eurasia9–11, however, eastern 
Eurasia remains poorly understood. Northeast Asia—the vast region 
encompassing Inner Mongolia, the Yellow, Liao and Amur River basins, 
the Russian Far East, the Korean peninsula and the Japanese Islands—
remains especially under-represented in the recent literature. With a 
few exceptions that are heavily focused on genetics12–14 or limited to 

reviewing existing datasets4, truly interdisciplinary approaches to 
Northeast Asia are scarce.

The linguistic relatedness of the Transeurasian languages—also 
known as ‘Altaic’—is among the most disputed issues in linguistic 
prehistory. Transeurasian denotes a large group of geographically 
adjacent languages stretching across Europe and northern Asia, and 
includes five uncontroversial linguistic families: Japonic, Koreanic, 
Tungusic, Mongolic, and Turkic (Fig. 1a). The question of whether 
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these five groups descend from a single common ancestor has been 
the topic of a long-standing debate between supporters of inheritance 
and borrowing. Recent assessments show that even if many common 
properties between these languages are indeed due to borrowing15–17, 
there is nonetheless a core of reliable evidence for the classification 
of Transeurasian as a valid genealogical group1,2,18,19.

Accepting this classification, however, gives rise to new questions 
about the time depth, location, cultural identity and dispersal routes 
of ancestral Transeurasian speech communities. Here we challenge the 
traditional ‘pastoralist hypothesis’ that identifies the primary dispersals 
of the Transeurasian languages with nomadic expansions starting in 
the eastern steppe in the fourth millennium before present (bp)6–8, by 
proposing a ‘farming hypothesis’, which places those dispersals within 
the scope of the ‘farming/language dispersal hypothesis’5,20,21. As these 
issues reach far beyond linguistics, we address them by integrating 
archaeology and genetics in a single approach termed ‘triangulation’.

Linguistics
We collected a new dataset of 3,193 cognate sets that represent 254 
basic vocabulary concepts for 98 Transeurasian languages, including 
dialects and historical varieties (Supplementary Data 1). We applied 
Bayesian methods to infer a dated phylogeny of the Transeurasian 
languages (Supplementary Data 24). Our results indicate a time-depth 

of 9181 bp (5595–12793 95% highest probability density (95% HPD)) 
for the Proto-Transeurasian root of the family; 6811 bp (4404–10166 
95% HPD) for Proto-Altaic, the unity of Turkic, Mongolic and Tungusic 
languages; 4491 bp (2599–6373 95% HPD) for Mongolo-Tungusic; and 
5458 bp (3335–8024 95% HPD) for Japano-Koreanic (Fig. 1b). These dates 
estimate the time-depth of the initial break-up of a given language 
family into more than one foundational subgroup.

We used our lexical dataset to model the expansion of Transeurasian 
languages in space (Supplementary Data 3, 4). We applied Bayesian 
phylogeography to complement classical approaches, such as lexicos-
tatistics, the diversity hotspot principle and cultural reconstruction1–3,8.

In contrast to previously proposed homelands, which range from the 
Altai6–8 to the Yellow River22 to the Greater Khingan Mountains23 to the 
Amur basin24, we find support for a Transeurasian origin in the West Liao 
River region in the Early Neolithic. After a primary break-up of the fam-
ily in the Neolithic, further dispersals took place in the Late Neolithic 
and Bronze Age. The ancestor of the Mongolic languages expanded 
northwards to the Mongolian Plateau, Proto-Turkic moved westwards 
over the eastern steppe and the other branches moved eastwards: 
Proto-Tungusic to the Amur–Ussuri–Khanka region, Proto-Koreanic 
to the Korean Peninsula and Proto-Japonic over Korea to the Japanese 
islands (Fig. 1b).

Through a qualitative analysis in which we examined agropasto-
ral words that were revealed in the reconstructed vocabulary of the 
proto-languages (Supplementary Data 5), we further identified items 
that are culturally diagnostic for ancestral speech communities in a 
particular region at a particular time. Common ancestral languages that 
separated in the Neolithic, such as Proto-Transeurasian, Proto-Altaic, 
Proto-Mongolo-Tungusic and Proto-Japano-Koreanic, reflect a small 
core of inherited words that relate to cultivation (‘field’, ‘sow’, ‘plant’, 
‘grow’, ‘cultivate’, ‘spade’); millets but not rice or other crops (‘millet 
seed’, ‘millet gruel’, ‘barnyard millet’); food production and preserva-
tion (‘ferment’, ‘grind’, ‘crush to pulp’, ‘brew’); wild foods suggestive 
of sedentism (‘walnut’, ‘acorn’, ‘chestnut’); textile production (‘sew’, 
‘weave cloth’, ‘weave with a loom’, ‘spin’, ‘cut cloth’, ‘ramie’, ‘hemp’); 
and pigs and dogs as the only domesticated animals.

By contrast, individual subfamilies that separated in the Bronze Age, 
such as Turkic, Mongolic, Tungusic, Koreanic and Japonic, inserted new 
subsistence terms that relate to the cultivation of rice, wheat and barley; 
dairying; domesticated animals such as cattle, sheep and horses; farm-
ing or kitchen tools; and textiles such as silk (Supplementary Data 5). 
These words are borrowings that result from linguistic interaction 
between Bronze Age populations speaking various Transeurasian and 
non-Transeurasian languages.

In summary, the age, homeland, original agricultural vocabulary and 
contact profile of the Transeurasian family support the farming hypoth-
esis and exclude the pastoralist hypothesis (Supplementary Data 5).

Archaeology
Although Neolithic Northeast Asia was characterized by widespread 
plant cultivation25, cereal farming expanded from several centres of 
domestication, the most important of which for Transeurasian was 
the West Liao basin, where cultivation of broomcorn millet started by 
9000 bp26–29. Extracting data from the published literature, we scored 
172 archaeological features for 255 Neolithic and Bronze Age sites (Sup-
plementary Data 6, Fig. 2a) and compiled an inventory of 269 directly 
carbon-14-dated early crop remains (Supplementary Data 9) in northern 
China, the Primorye, Korea and Japan.

The main results of our Bayesian analysis (Supplementary Data 25), 
which clusters the 255 sites according to cultural similarity, are visu-
alized in Fig. 2b. We find a cluster of Neolithic cultures in the West 
Liao basin, from which two branches associated with millet farming 
separate: a Korean Chulmun branch and a branch of Neolithic cultures 
covering the Amur, Primorye and Liaodong. This confirms previous 
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findings about the dispersal of millet agriculture to Korea by 5500 bp 
and via the Amur to the Primorye by 5000 bp30,31.

Our analysis further clusters Bronze Age sites in the West Liao area 
with Mumun sites in Korea and Yayoi sites in Japan. This mirrors how 
during the fourth millennium bp, the agricultural package of the Liao-
dong–Shandong area was supplemented with rice and wheat. These 
crops were transmitted to the Korean Peninsula by the Early Bronze 
Age (3300–2800 bp) and from there to Japan after 3000 bp (Fig. 2b).

Although population movements were not linked with monothetic 
archaeological cultures, Neolithic farming expansions in Northeast Asia 
were associated with some diagnostic features, such as stone tools for 
cultivation and harvesting and textile technology32 (Supplementary 
Data 7). Domesticated animals and dairying had an important role in 
the spread of the Neolithic in western Eurasia but, except for dogs and 
pigs, our database shows little evidence for animal domestication in 
Northeast Asia before the Bronze Age (Supplementary Data 6). The link 
between agriculture and population migrations is especially clear from 
similarities between ceramics, stone tools, and domestic and burial 
architecture between Korea and western Japan33.

Building on previous studies, we provide an overview of demo-
graphic changes associated with the introduction of millet farming 
across the regions in our study (Extended Data Fig. 3). Having invested 
in elaborate paddy fields, wet rice farmers tended to stay in one place, 
absorbing population growth through extra labour, whereas millet 
farmers typically adopted a more expansionary settlement pattern34. 
Neolithic population densities increased across Northeast Asia before 
a population crash in the Late Neolithic 35,36. The Bronze Age then saw 
exponential population increases in China, Korea and Japan.

Genetics
We report genomic analyses of 19 authenticated ancient individuals 
from the Amur, Korea, Kyushu and the Ryukyus and combined them 
with published genomes that cover the eastern steppe, West Liao, 
Amur and Yellow River regions, Liaodong, Shandong, the Primorye 

and Japan between 9500 and 300 bp (Fig. 3a, Extended Data Fig. 4, 
Supplementary Data 11, 13, 17). We projected them onto a principal 
component analysis (PCA) of 149 present-day Eurasian populations 
and 45 East Asian populations (Extended Data Figs. 5–8). Figure 3b 
models our key ancient populations as an admixture of five genetic 
components, whereby Jalainur represents Amur, Yangshao the Yel-
low River and Rokutsu the Jomon genome, whereas Hongshan and 
Upper Xiajiadian in the West Liao River are composed of Yellow River 
and Amur genomes (qpAdm admixture of various East Asian genetic 
components in Supplementary Data 16).

Contemporary Tungusic as well as Nivkh speakers in the Amur form 
a tight cluster13 (Extended Data Fig. 5). Neolithic hunter-gatherers from 
Baikal, Primorye and the southeastern steppe, as well as farmers from 
the West Liao and Amur, all project within this cluster (Extended Data 
Figs. 8–10).

Late Neolithic Angangxi (Supplementary Data 12) show a high pro-
portion of Amur-like ancestry, whereas West Liao Neolithic millet 
farmers show a considerable proportion of Amur-like ancestry with a 
gradual shift towards the Yellow River genome over time12 (Extended 
Data Figs. 8–10, Fig. 3b). Although we lack Early Neolithic genomes in 
the West Liao River, Amur-like ancestry thus is likely to represent the 
original genetic profile of indigenous pre-Neolithic (or late Palaeolithic) 
hunter-gatherers covering Baikal, Amur, Primorye, the southeastern 
steppe and West Liao, continuing in the early farmers from this region. 
This contradicts a recent genetic study13, which concludes that the 
absence of Yellow River influence in ancient genomes from Mongolia 
and the Amur does not support the West Liao genetic correlate of the 
Transeurasian language family.

The PCA (Extended Data Figs. 8–10) shows a general trend for Neo-
lithic individuals from Mongolia to contain high Amur-like ancestry with 
extensive gene flow from western Eurasia increasing from the Bronze 
to Middle Ages37. Whereas the Turkic-speaking Xiongnu38, Old Uyghur 
and Türk are extremely scattered, the Mongolic-speaking39 Iron Age 
Xianbei fall closer to the Amur cluster than the Shiwei, Rouran, Khitan 
and Middle Mongolian Khanate from Antiquity and the Middle Ages.
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time and space. The distribution of archaeological sites in Fig. 2 is smaller than 
that of contemporary languages in Fig. 1 because we focus on the early 
dispersal of the linguistic subgroups in the Neolithic and the Bronze Age and on 
the links between the eastward spread of farming and language dispersal.
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As Amur-related ancestry can be traced down to speakers of Japanese 
and Korean13, it appears to be the original genetic component com-
mon to all speakers of Transeurasian languages. By analysing ancient 
genomes from Korea (Supplementary Data 12), we find that Jomon 
ancestry was present on the Peninsula by 6000 bp (Fig. 3b, Supple-
mentary Data 13).

The proximal qpAdm modelling (Supplementary Data 13) suggests 
that Neolithic Ando can be entirely derived from an ancestry related 

to Hongshan, whereas Yŏndaedo and Changhang can be modelled as 
an admixture of Jomon with a high proportion of Hongshan ances-
try, although Yŏndaedo has only limited resolution (Supplementary 
Data 16, Fig. 3b). Yokchido, on the southern coast of Korea, contains 
nearly 95% Jomon ancestry. Although our genetic analysis cannot 
itself distinguish between possible East Asian ancestries for Bronze 
Age Taejungni, given the Bronze Age date it can be best modelled as 
Upper Xiajiadian; a possible minor Jomon admixture is not statistically 

Sea of Japan
(East Sea)

East 
China Sea 

Yellow 
Sea

L. Baykal

Ye
ni

se
y

Yangtze

Am
ur

Amur

Ye
llo

w
 R

iv
er

P a c i f
O c e a n

i c

West Liao River

Sea of Okhotsk

G o b i  D e s e r t

N
N

JJ

H
m

H
g

LY

A

A

D

J

X S

M

U

SS

S S
S

SSS
M

M

M

M

M

M

M

M

S

UU
U

T

TTT

T

S

S

S
S

S

S

S

S
X

R
U

T T
K

M

H
HH

H

Y

L
L L

Q

Y

Y

C

H
m

H
g

L

U

A

Y

Y

C

T

K

A

S

N

N

Z

T

A
A

I
R

F
D

B

Y

SK
Y

X

X

X X

T N

130° E125° E120° E115° E110° E105° E100° E95° E90° E 135° E 140° E 145° E 150° E

130° E125° E120° E115° E110° E105° E100° E95° E

Devil’s Gate Taejungni

Kuma-Nishioda Yayoi

Antokudai Yayoi

Shimomotoyama Yayoi

Nagabaka late

Nagabaka historic

Okinawa (Oki)

Miyako (Miy)

Yaeyama (Yae)

Japanese (Jpn)

Angangxi

Hamin

Hongshan

Lower Xiajiadian

Upper Xiajiadian

Ando

Yondaedo˘

Changhang

Yokchido

0 0.2 0.4 0.6

Admixture proportion

Jalainur HongshanYangshao Upper Xiajiadian Rokutsu Jomon

0.8 1.0 0 0.2 0.4 0.6

Admixture proportion

0.8 1.0

90° E 135° E 140° E 145° E 150° E

40° N

55° N

50° N

45° N

35° N

25° N

30° N

40° N

55° N

50° N

45° N

35° N

25° N

30° N

20° N 20° N

Early Neolithic Middle
Neolithic

Late Neolithic Bronze Age Iron Age Middle Ages/
Antiquity

a

b

Fig. 3 | Spatiotemporal distribution and admixture of ancient genomes.  
a, Ancient genomes located in time and space. For detailed legend, see 
Extended Data Fig. 4. b, QpAdm proximal admixture modelling of 20 key 

ancient populations from this study. The x axis shows ancestry proportion 
estimates for the target populations in the y axis; the error bars represent ± 1 
s.e.m. range, estimated by 5-cM block jackknifing.



620 | Nature | Vol 599 | 25 November 2021

Article
significant (P = 0.228; Supplementary Data 16). We therefore observe 
a heterogeneous presence of Jomon ancestry in Neolithic Koreans 
(0–95%) and its eventual disappearance over time, as shown by a negli-
gible Jomon contribution to present-day Koreans. The lack of a signifi-
cant Jomon component in Taejungni indicates that early populations, 
without detectable Jomon ancestry linked to present-day Koreans, 
migrated to the Korean peninsula in association with rice farming, and 
replaced Neolithic populations with some Jomon admixture—although 
our genetic data currently do not have resolution to test this hypothesis, 
owing to limited sample size and coverage. We therefore associate the 
spread of farming to Korea with different waves of Amur and Yellow 
River gene flow, modelled by Hongshan for the Neolithic introduction 
of millet farming and by Upper Xiajiadian for the Bronze Age addition 
of rice agriculture.

Analysing the genomes from Yayoi farmers (Supplementary Data 12), 
we found that, like Taejungni, they can be modelled as indigenous 
Jomon ancestry admixed with Bronze Age Upper Xiajiadian ancestry. 
Our results support massive migration from Korea into Japan in the 
Bronze Age.

The Nagabaka genomes from Miyako Island (Supplementary Data 12) 
represent the first—to our knowledge—ancient genome-wide data from 
the Ryukyus. Contrary to previous findings that Holocene populations 
reached the southern Ryukyus from Taiwan40, our results suggest that 
the prehistoric Nagabaka population originated in Jomon cultures to 
the north (Extended Data Fig. 7). The genetic turn-over from Jomon- to 
Yayoi-like ancestry before the early modern period mirrors the late 
arrival of agriculture and Ryukyan languages in this region.

Discussion
Triangulation of linguistic, archaeological and genetic evidence shows 
that the origins of the Transeurasian languages can be traced back to 
the beginning of millet cultivation and the early Amur gene pool in 
Neolithic Northeast Asia. The spread of these languages involved two 
major phases that mirror the dispersal of agriculture and genes (Fig. 4). 
The first phase, represented by the primary splits in the Transeurasian 
family, goes back to the Early–Middle Neolithic, when millet farmers 
associated with Amur-related genes spread from the West Liao River 
to contiguous regions. The second phase, represented by linguistic 
contacts between the five daughter branches, goes back to the Late 
Neolithic, Bronze and Iron Ages, when millet farmers with substantial 
Amur ancestry gradually admixed with Yellow River, western Eurasian 
and Jomon populations and added rice, west Eurasian crops and pas-
toralism to the agricultural package.

Bringing together the spatiotemporal and subsistence patterns, we 
find clear links between the three disciplines (Supplementary Data 26). 
The onset of millet cultivation in the West Liao region around the ninth 
millennium bp can be associated with substantial Amur-related ancestry 
and overlaps in time and space with the ancestral Transeurasian speech 
community. In line with recent associations between the Sino-Tibetan 
family estimated at 8000 bp41,42 and Neolithic farmers from the Upper 
and Middle Yellow River13,14, our results associate the two centres of 
millet domestication in Northeast Asia with the origins of two major 
language families: Sino-Tibetan on the Yellow River and Transeurasian 
on the West Liao River. The lack of evidence for Yellow River influence in 
the ancestral Transeurasian language and genes is consistent with the 
multi-centric origins of millet cultivation suggested in archaeobotany28.

The early stages of millet domestication in the ninth to seventh mil-
lennia bp are accompanied by population growth (Extended Data Fig. 3), 
leading to the formation of environmentally or socially separated 
subgroups in the West Liao region and broken connectivity between 
speakers of Altaic and Japano-Koreanic.

Around the mid-sixth millennium bp, some of these farmers started 
to migrate eastwards, around the Yellow Sea into Korea and north-
east into the Primorye, bringing Koreanic and Tungusic languages to 

these regions and bringing from the West Liao region additional Amur 
ancestries to the Primorye and mixed Amur–Yellow River ancestries to 
Korea. Our newly analysed Korean genomes are notable in that they 
testify to the presence of and admixture with Jomon-related ancestries 
outside Japan.

The Late Bronze Age saw extensive cultural exchange across the Eura-
sian steppe, which resulted in the admixture of populations from the 
West Liao region and the Eastern steppe with western Eurasian genetic 
lineages. Linguistically, this interaction is mirrored in the borrowing of 
agropastoral vocabulary by Proto-Mongolic and Proto-Turkic speakers, 
especially relating to wheat and barley cultivation, herding, dairying 
and horse exploitation.

Around 3300 bp, farmers from the Liaodong–Shandong area 
migrated to the Korean peninsula, adding rice, barley and wheat to 
millet agriculture. This migration aligns with the genetic component 
modelled as Upper Xiajiadian in our Bronze Age sample from Korea 
and is reflected in early borrowings between Japonic and Koreanic 
languages. Archaeologically it can be associated with agriculture in the 
larger Liaodong–Shandong area without being specifically restricted 
to Upper Xiadiajian material culture.

In the third millennium bp, this agricultural package was transmit-
ted to Kyushu, triggering a transition to full-scale farming, a genetic 
turn-over from Jomon to Yayoi ancestry and a linguistic shift to Japonic. 
By adding unique samples from Nagabaka in the southern Ryukyus, we 
traced the farming/language dispersal to the edge of the Transeurasian 
world. Demonstrating that Jomon ancestry stretched as far south as 
Miyako Island, our results contradict previous assumptions of a north-
ward expansion by Austronesian populations from Taiwan. Together 
with the Jomon profile discovered at Yokchido in Korea, our results 
show that Jomon genomes and material culture did not always overlap.

By advancing new evidence from ancient DNA, our research thus 
confirms recent findings that Japanese and Korean populations have 
West Liao River ancestry, whereas it contradicts previous claims that 
there is no genetic correlate of the Transeurasian language family13.

Although some previous research regarded the Transeurasian zone as 
beyond the area suitable for farming20, our research confirms that the 
farming/language dispersal hypothesis remains an important model 
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for understanding Eurasian population dispersals21. Triangulation of 
linguistics, archaeology and genetics resolves the competition between 
the pastoralist and farming hypotheses and concludes that the early 
spread of Transeurasian speakers was driven by agriculture.
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Methods

Linguistics
Bayesian phylogenetics. Combining dictionary search with fieldwork, 
we collected a comparative dataset including 3,193 datapoints repre-
senting 254 basic vocabulary concepts for 98 Transeurasian languag-
es, including contemporary and historical varieties (Supplementary 
Data 1). These concepts are based on a merger of the Leipzig–Jakarta 
200 (ref. 43) and Jena 200 (ref. 44) lists (Supplementary Data 2). The 
Turkic and Tungusic basic vocabulary included is based on a revision 
of recently published datasets45,46. Cognate coding is supported by an 
inventory of basic vocabulary etymologies and sound correspondences 
across the Transeurasian languages presented in Supplementary Data 2.

We performed a Bayesian phylogenetic analysis with cognates 
encoded as binary data47. Because the data were collected such that 
at least one cognate was present, the data were ascertained to not con-
tain any sites having all zeros. Ascertainment correction was applied 
to cater for this47.

We considered the following substitution models, which govern 
the evolutionary process of cognates along branches of a tree: con-
tinuous time Markov chain (CTMC), which assumes a constant rate of 
mutations; covarion, which assumes a slow and fast rate and the model 
switching between these two states; and the pseudo Dollo covarion 
model, which is based on the Dollo principle that a cognate can only 
appear once, but can be lost many times. Detailed descriptions of the 
CTMC and covarion models47 and the pseudo Dollo covarion model48 
are available in the literature. For all models, we assume that each mean-
ing class has its own relative rate to capture the variation between rates 
of evolution of different words.

Although language evolves on average at a constant rate, we find 
that there can be considerable variation in rates between branches on a 
tree47,48. Such variation can be captured using the uncorrelated relaxed 
clock49, assuming rates are log-normally distributed.

A birth death model is used to describe the generative process of 
language creation. As the data contain ancient languages that may 
be ancestral to current languages, we allow the tree to have ancestral 
nodes. A fossilized birth death model50, which allows such ancestral 
nodes, is used as prior on the tree. Language family node ages were 
informed by age priors ( Japonic 2100 bp ± 175, Koreanic 800 bp ± 175, 
Turkic 2100 bp ± 175, Mongolic 750 bp ± 50, Tungusic 1900 bp ± 275). 
These calibrations are supported by chronological estimations pro-
posed in linguistic literature (Supplementary Data 18). We found that 
these node age priors helped to reduce uncertainty slightly in the root 
age distribution.

We compared the fit of different models by estimating the marginal 
likelihoods using nested sampling51 (Supplementary Data 18), and con-
clude that the pseudo Dollo covarion model with a relaxed clock has the 
best fit, and covarion with relaxed clock the next best fit. Both models 
produce compatible time estimates, though covarion estimates tend 
to have larger uncertainty (that is, have larger 95% HPD intervals). Time 
estimates of the CTMC model with relaxed clock are still compatible 
but even wider, and tend to have a higher mean.

All posterior estimates were performed using BEAST v.2.652 using 
adaptive coupled Markov chain Monte Carlo (MCMC)53. Detailed speci-
fication of the models, priors, hyperpriors and settings used to run 
these models can be found in the BEAST XML files (Supplementary 
Data 19). The results of our Bayesian analysis are visualized as a dated 
phylogenetic tree of the Transeurasian languages (Supplementary 
Data 24).

Bayesian phylogeography. We assumed that the dispersal of people 
through Eurasia can be described as a random walk, so is best captured 
by diffusion on a sphere54. To get an impression about the uncertainty 
in locating origins by such model, we performed a post hoc analysis 
using the posterior tree set from the lexical analysis. We assigned point 

positions to the tips and randomly sampled trees from the posterior 
while estimating geographical parameters through MCMC. Even in this 
relatively restricted set-up, the uncertainty in root location does not 
allow us to distinguish the different geographical origin hypotheses. 
The results of our analysis are represented on a map (Supplementary 
Data 3). As Bayesian phylogeography must contend with a number of 
limitations55,56, we complemented it with other homeland detection 
methods such as linguistic palaeontology and the diversity hotspot 
principle to reach a balanced location for the homelands of the root 
and nodes of the Transeurasian family (Supplementary Data 4).

Linguistic palaeontology. We compiled comparative agropastoral 
vocabularies for each Transeurasian subfamily: Turkic (Supplementary 
Data 5a), Mongolic (Supplementary Data 5b), Tungusic (Supplementary 
Data 5c), Koreanic (Supplementary Data 5d) and Japonic (Supplemen-
tary Data 5e). We applied linguistic reconstruction, a procedure for 
inferring an unattested ancestral state of a language on the evidence 
of data that are available from a later period, to corresponding words 
(Supplementary Data 5).

To distinguish between inherited and borrowed correspondence 
sets, we used standard criteria based on the phonology, semantics, 
morphology and distribution of the word involved, as specified in Sup-
plementary Data 5. Dividing our dataset into inherited versus borrowed 
subsistence vocabulary, we determined distinctive spatiotemporal and 
cultural patterns for each category (Supplementary Data 5).

We applied linguistic palaeontology to our subsistence vocabulary, 
a historical comparative method that enables us to study human pre-
history by correlating our linguistic reconstructions with information 
from archaeology about the culture of the ancient speech communi-
ties that used these words. In this way, we drew inferences about the 
subsistence strategies available to speakers of the different Transeura-
sian proto-languages in the Neolithic and Bronze Age (Supplementary 
Data 5) and identified a plausible location for the homeland of the 
ancient speech communities involved (Supplementary Data 4).

Diversity hotspot principle. To estimate the location of the ancient 
speech communities involved, we combined Bayesian phylogeogra-
phy and linguistic palaeontology with the diversity hotspot principle. 
The principle is based on the assumption that the homeland is closest 
to the greatest diversity with regard to the deepest subgroups of the 
language family. We located these areas on the map and took them as 
an approximation of the area where a certain proto-language began to 
diversify (Supplementary Data 4). Although this method must contend 
with certain limitations (Supplementary Data 4), taken together with 
the other techniques for homeland location discussed here, it can give 
us a reasonably robust estimation of the location of an ancient speech 
community.

Archaeology
Archaeological database. We scored 172 cultural traits for 255  
Neolithic–Bronze Age archaeological sites or phases from the West 
Liao river basin (36), the Amur ( Jilin, Heilongjiang and inland Liaoning) 
(32), the Primorye (4), the Liaodong peninsula (37), the eastern steppes 
(1), the Shandong peninsula (4), the Yellow River basin (2), the Korean 
peninsula (58) and the Japanese islands (85).

Sites with several major cultural phases were scored separately. The 
sites date from 8400–1700 bp and include the Early Neolithic to Bronze 
Age in northeast China, the Middle Neolithic Zaisanovka culture in the 
Primorye, the Middle–Late Neolithic Chulmun and Bronze Age Mumun 
cultures in Korea, and the Late Neolithic–Bronze Age Final Jomon and 
Yayoi cultures in western Japan. Categories of cultural traits scored com-
prised ceramics (70), stone tools (38), buildings (9), plant and animal 
remains (26), shell and bone artefacts (17) and burials (12). Definitions 
of scored features are found in Supplementary Data 6 (sheet 2) and 
further discussion of scoring methods can be found in Supplementary 



Data 7. All features were scored as present (1) or absent (0) following 
published site reports or other literature.

The database was used to analyse changes in the distribution of 
Neolithic and Bronze Age artefacts over time, especially in relation to 
the spread of agricultural systems in Northeast Asia (Supplementary 
Data 7).

In addition, the cultural data in our archaeological database were ana-
lysed using Bayesian phylogenetic methods. There is a large amount of 
phylogenetic work with archaeological data57, some parsimony-based58, 
others distance-based59. The benefit of Bayesian approaches is that 
they are model-based, have sound formal mathematical foundations 
in probability theory allowing us to estimate uncertainty around all 
estimates, and allow integration of information from various sources 
in a single analysis (like cognate and geographic data) based on prob-
ability theory. BEAST is aimed specifically at inferring rooted time 
trees, and uncertainty of time estimates, which sets it apart from other 
Bayesian packages that target unrooted trees. Furthermore, BEAST 
supports models that are currently not available in other packages, 
hence the use of this package.

The cultural data are encoded as a binary alignment, and we 
applied the same substitution and clock models as for the lexical data.  
The pseudo Dollo model with relaxed clock fits the data best (Supple-
mentary Data 20). Because the coefficient of variation of the relaxed 
clock exceeded 1, which indicates a considerable amount of variation, 
we also ran the analysis with the standard deviation capped at 1, which 
only slightly affected time estimates.

The large number of sampling dates and uncertainty on number 
of missing cultures made it hard to apply the fossilized birth death 
prior, so we opted for the flexible Bayesian skyline plot instead60. Tim-
ing information is based on sampling dates of archaeological finds.  
As there is uncertainty in dating these findings, tip dates were uniformly 
sampled in these intervals during the MCMC. In line with previous 
archaeological studies61–63, we constrained the clades ‘Xinglongwa–
Zhabaogou–Hongshan’ and ‘Yabuli–Primorye’ to be monophyletic 
(Supplementary Data 8). All analyses were performed in BEAST v.2.652 
using adaptive coupled MCMC53. Details on models, priors, hyperpriors 
and settings can be found in the BEAST XML (Supplementary Data 21). 
The results of our Bayesian analysis are visualized as a phylogenetic tree 
of archaeological cultures in Northeast Asia (Supplementary Data 25) 
and interpreted in Supplementary Data 8.

Archaeobotanical database. In addition to the database of archaeo-
logical features, we compiled a list of the earliest crop remains from 
each region of Northeast Asia directly dated by radiocarbon (Sup-
plementary Data 9). This list comprises 269 samples (China, 82; Pri-
morye, 12; Korea, 31; Japan (excluding Ryukyus), 120; Ryukyu Islands, 
24). Radiocarbon dates in this database were re-calibrated using OxCal 
v.4.4. We used kernel density mapping to plot the spread of cereals in 
this database over time Supplementary Data 7). Our databases were 
supplemented by published datasets for faunal remains64,65, dolmens66 
and spindle whorls67.

Genetics
Laboratory procedures. Ancient DNA wet laboratory work, including 
DNA extraction and library preparation, was performed in a dedicated 
ancient DNA clean room facility at the Max Planck Institute for the Sci-
ence of Human History (MPI-SHH) and in an ancient DNA laboratory at 
Jilin University following established protocols68. A double-stranded 
library was built with 8-mer index sequences at both P5 and P7 Illumina 
adapters. Four individuals from China characterized in Jilin were di-
rectly shotgun-sequenced on the Illumina HiSeq X10 instrument in the 
150-bp paired-end sequencing design to obtain an adequate coverage. 
Eighty-three double-stranded libraries for 33 individuals from Korea 
and Japan were generated and characterized in the MPI-SHH either 
by shotgun sequencing or by insolution capture at approximately 

1.2 million informative nuclear single-nucleotide polymorphisms 
(SNPs). After initial screening of the preservation of those libraries, 
a further 108 single-stranded libraries were built aiming at retrieving 
more endogenous DNA from the samples, and again, those libraries 
were directly shotgun-sequenced and in-solution-captured at around  
1.2 million SNPs (Supplementary Data 17) and sequenced on the Illumina 
HiSeq 4000 platform following the manufacturer’s protocols.

Sequence data processing. Raw sequencing reads were processed 
by an automated workflow with the EAGER v.1.92.55 programme69. 
Illumina adapter sequences were trimmed from the sequencing data 
and overlapping pairs were merged with AdapterRemoval v.2.2.070. 
We mapped the merged reads with a minimum of 30 bp to the human 
reference genome (hs37d5; GRCh37 with decoy sequences) using BWA 
v.0.7.1271. We removed PCR duplicates by DeDup v.0.12.260. To minimize 
the effect of post-mortem DNA damage on genotyping, we masked  
2 bp for nonUDG libraries and 10 bp for half-UDG libraries on both ends 
per read using the trimbam function on bamUtils v.1.0.1372. The cleaned 
reads with both base quality (Phred-scale quality) and mapping quality 
(Phred-scale mapping quality) over 30 were piled up by SAMtools 1.360 
with the mpileup function. We called pseudo-diploid genotypes using 
the pileupCaller program (https://github.com/stschiff/sequenceTools) 
against SNPs in the ‘1240k’ panel73,74 under the random haploid calling 
mode. For C/T and G/A SNPs, we used the masked BAM files; for the rest 
we used the original unmasked BAM files.

Reference datasets. We compared our ancient individuals to three sets 
of world-wide genotype panels, one based on the Affymetrix HumanO-
rigins Axiom Genome-wide Human Origins 1 array (‘HumanOrigins’; 
593,124 autosomal SNPs)75, the ‘1240k’ panel73, and the ‘Illumina’ data-
set76. We augmented these datasets by adding the Simons Genome Di-
versity Panel77 and published ancient genomes (Supplementary Data 11).

Ancient DNA authentication. We applied multiple criteria to confirm 
the authentication of the newly published ancient genomes from Korea 
and Japan. First, we characterized the post-mortem chemical modifica-
tions characteristic for ancient DNA using mapDamage v.2.0.678. Second, 
we estimated mitochondrial contamination rates for all individuals us-
ing Schmutzi v.1.5.179. Third, we measured the nuclear genome contami-
nation rate in males on the basis of X chromosome data as implemented 
in ANGSD v.0.91080. As males have only a single copy of the X chromo-
some, mismatches between bases, aligned to the same polymorphic 
position, beyond the level of sequencing error are considered as evi-
dence of contamination. Fourth, we assessed the potential West Eura-
sian contamination with all reads available and the damage-restricted 
reads on single-stranded libraries implemented in the PMDtools81 with 
a PMD score of at least 3 and compared their positions in a Eurasia PCA 
with all reads and damaged reads alone. Fifth, we applied qpAdm74 per 
individual to further characterize the West Eurasian contamination with 
West Eurasian characteristic groups such as Sintashta_MLBA or LBK_EN 
as sources (see Supplementary Data 17, 22 for details).

Population structure analysis. We performed a PCA with the smartpca 
v.1600082 using a set of 2,077 present-day Eurasian individuals from 
the ‘HumanOrigins’ dataset and the ‘1240kIllumina’ dataset with the 
option ‘lsqproject: YES’ and ‘shrinkmode: YES’. We used outgroup-f3 
statistics83,84 to obtain a measurement of genetic affinity between two 
populations since their divergence from an African outgroup. We calcu-
lated f4 statistics with the ‘f4mode: YES’ function in admixtools31. Both 
f3 and f4 statistics were calculated using qp3Pop v.435 and qpDstat v.755 
in the admixtools package.

Genetic sexing and uniparental haplogroup assignment. We de-
termined the molecular sex of our ancient samples by comparing the 
ratio of X and Y chromosome coverages to autosomes85. For women, we 
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would expect an approximately even ratio of X to autosome coverage 
and a Y ratio of 0. For men we would expect roughly half of the coverage 
on X and Y than autosomes.

Admixture modelling with qpAdm. We modelled the ancient indi-
viduals in this study using the qpWave/qpAdm framework (qpWave 
v.410 and qpAdm v.810) in the admixtools v.5.1 package74. We used 
the following 7 populations in ‘1240k’ datasets as outgroup (‘OG’): 
Mbuti, Onge, Iran_N, Villabruna, Karitiana, Naxi and Funadomari Jomon. 
This set includes an African outgroup (Mbuti), Andamanese islanders 
(Onge), early Neolithic Iranians from the Tepe Ganj Dareh site (Iran_N), 
late Pleistocene European hunter-gatherers (Villabruna), indigenous 
Karitiana from Brazil, a Tibetan-Burman speaking group from southern 
China (Naxi) and ancient hunter-gatherers from Japan (Funadomari 
Jomon) (Supplementary Data 13, 16).

Triangulation
The term ‘triangulation’ is borrowed from a navigational technique 
that determines a single point in space with the convergence of meas-
urements taken from two other distinct points. In qualitative research 
it designates a method used to capture different dimensions of the 
same phenomenon by using evidence from three distinct scientific 
disciplines. To avoid circularity in the argumentation, data collection, 
analyses and results are performed or reached within the limits of each 
individual discipline, independently from the other two. Only in the 
final phase of the triangulation process are the inferences drawn by 
the three disciplines mapped on each other by comparing a number 
of variables describing the phenomenon. The purpose of triangulation 
is to increase the credibility and validity of the results by evaluating 
the extent to which the evidence from the three disciplines converges 
and by identifying correlations, inconsistencies, uncertainties and 
potential biases across the different perspectives on the investigated 
phenomena.

Building on previous applications of triangulation in anthropology86, 
we applied the method to the dispersal of the Transeurasian languages, 
integrating linguistics, archaeology and genetics to contribute a better 
understanding of the phenomenon. We collected different datasets and 
applied the methods described above to draw independent inferences 
with regard to a number of variables such as location, chronology, 
migratory dynamics, continuity versus diffusion, and subsistence (Sup-
plementary Data 26). Each discipline inferred the most parsimonious 
model involving these variables on the basis of the application of tools 
internal to its own field, whether qualitative or quantitative, based on 
direct or indirect evidence. Taken by itself, a single discipline alone 
cannot conclusively resolve the question about farming/language 
dispersals, but taken together the three disciplines increase the cred-
ibility and validity of this scenario. Aligning the evidence offered by the 
three disciplines, we gained a more balanced and richer understanding 
of Transeurasian migration than each of the three disciplines could 
provide us with individually.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
Linguistic and archaeological datasets are available through the Sup-
plementary Information. Files that require applications were 
uploaded to FigShare. The links to FigShare are as follows: Supple-
mentary Data 3: Bayesian phylogeographic analysis modelling the 
spatiotemporal expansion of the Transeurasian languages (https://
figshare.com/s/b9c67ca3ea47faf51d48); Supplementary Data 19: 
BEAST XML files specifying the models, priors, hyperpriors and 
settings used to run the analyses of the linguistic database (https://

figshare.com/s/748bf751fe3ba7752046); Supplementary Data 21: 
BEAST XML files specifying the models, priors, hyperpriors and set-
tings used to run the analyses of the archaeological database (https://
figshare.com/s/99f5aab9a2e43eb2ffd4); Supplementary Data 24: dated 
Bayesian phylogeny of the Transeurasian languages (https://figshare.
com/s/709f239fa45982911b87); and Supplementary Data 25: Bayesian 
phylogenetic analysis of the archaeological database (https://figshare.
com/s/65615dddc0817bc0184f). The link to the figtree application 
is: https://github.com/rambaut/figtree/releases/tag/v1.4.3 For our 
genetic datasets, the DNA sequences reported in this paper have been 
deposited in the European Nucleotide Archive (ENA) under accession 
PRJEB46162. Haploid genotype data of ancient individuals in this study 
on the ‘1240k’ panel are available in the EIGENSTRAT format from the 
following link: https://edmond.mpdl.mpg.de/imeji/collection/59JG
AaOpSxRb96Vh.

Code availability
Readers can access the code that underlies our Bayesian analyses of 
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Extended Data Fig. 1 | Legend for Fig. 1. Detailed legend to accompany main 
Fig. 1.



Extended Data Fig. 2 | Legend for Fig. 2. Detailed legend to accompany main 
Fig. 2.



Article

Extended Data Fig. 3 | Demographic changes with agriculture in Neolithic 
and Bronze Age. Northeast Asia. A1 shows changes following the adoption of 
millet farming ca. 8000–4000 BP, using quantity of pottery for the West Liao29 
and B2 shows these changes using radiocarbon proxy dates for Korea87. Figures 
A to E show long-term dynamics ca. 8000–2000 BP following the integration of 
millet with rice, barley and wheat in the Bronze Age and based on site numbers 
for NE China88, radiocarbon dates for Korea87 and site numbers for Japan89. For 
references and methods used to derive demographic information from the 
proxies, see Supplementary Data 7.



Extended Data Fig. 4 | Ancient genomes located in time and space. Includes detailed legend to accompany main Fig. 3 and Extended Data Figs. 7–10.



Article

Extended Data Fig. 5 | PCA displaying the genetic structure of present-day 
Eurasians. PC1 separates Western and Eastern Eurasian populations, PC2 
Southern and Northern Eurasian populations. Transeurasian populations are 
coloured according to subfamily (Turkic in grey, Mongolic in orange, Tungusic 

in yellow, Koreanic in pink, Japonic in light grey). Non-Transeurasian 
populations are coloured according to families. Populations are labelled with 
three letters, for a list of abbreviations, see Supplementary Data 10.



Extended Data Fig. 6 | PCA displaying the genetic structure of present-day East Asians. Populations are labelled with three letters, for a list of abbreviations, 
see Supplementary Data 10.



Article

Extended Data Fig. 7 | Ancient genomes plotted on PCA displaying the genetic structure of present-day East Asians. For a detailed legend, see Extended Data 
Fig. 4.



Extended Data Fig. 8 | Ancient genomes plotted on PCA displaying the genetic structure of present-day Eurasians. For a detailed legend, see Extended Data 
Fig. 4.



Article

Extended Data Fig. 9 | Ancient genomes from Bronze Age, Iron Age, West Liao and Amur plotted on PCA displaying the genetic structure of present-day 
Eurasians. For a detailed legend. see Extended Data Fig. 4.



Extended Data Fig. 10 | Ancient genomes from Primorye, eastern steppe and Yellow River plotted on PCA displaying the genetic structure of present-day 
Eurasians. For a detailed legend, see Extended Data Fig. 4.
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Dating methods We dated the root of our linguistic family and the nodes in the family using Bayesian estimation methods, based on calibrating 
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