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Multipartite entanglement is a key resource allowing quantum devices to outperform their classical
counterparts, and entanglement certification is fundamental to assess any quantum advantage. The
only scalable certification scheme relies on entanglement witnessing, typically effective only for
special entangled states. Here we focus on finite sets of measurements on quantum states (hereafter
called quantum data); and we propose an approach which, given a particular spatial partitioning
of the system of interest, can effectively ascertain whether or not the data set is compatible with a
separable state. When compatibility is disproven, the approach produces the optimal entanglement
witness for the quantum data at hand. Our approach is based on mapping separable states onto
equilibrium classical field theories on a lattice; and on mapping the compatibility problem onto an
inverse statistical problem, whose solution is reached in polynomial time whenever the classical field
theory does not describe a glassy system. Our results pave the way for systematic entanglement
certification in quantum devices, optimized with respect to the accessible observables.

Introduction. Preparing and processing strongly entan-
gled many-body states, in both a controlled and scalable
way, is the goal of all quantum simulators and comput-
ers. Indeed, as the efficient representation of generic en-
tangled many-body states is impossible on classical ma-
chines, entanglement represents the key computational
resource of these devices [1, 2]. As a consequence, devel-
oping generic and scalable methods to certify entangle-
ment in multipartite systems stands as a grand challenge
of quantum information science. Even more fundamen-
tally, entanglement certification is a central task to probe
the resilience of quantum correlations from the micro-
scopic world to the macroscopic one [3].

Any practical method must circumvent the tomo-
graphic reconstruction of the full density matrix [4, 5]
(which implies a number of measurements scaling expo-
nentially with system size), and it should instead infer
entanglement from the partial information contained in a
given data set of measurement results (hereafter referred
to as quantum data). When one adopts this data-driven
strategy, the goal of entanglement certification is to es-
tablish whether or not the quantum data are compatible
with a separable state [5–7]. Given an extended quantum
system composed of Ntot degrees of freedom, grouped to-
gether into N ≤ Ntot clusters [see Fig. 1(a)], the state ρ̂
of the system is separable [8] if it can be written in the
form

ρ̂p :=

∫
dλ p(λ) ρ̂prod(λ) (1)

where ρ̂prod(λ) = ⊗Ni=1|ψi(λi)〉〈ψi(λi)| is a product state
of the partition, |ψi(λi)〉 being the state of the i-th clus-
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ter, parametrized by parameters λ = (λ1, ...,λi, ...,λN ),
distributed according to p(λ) ≥ 0. The distribution
p fully specifies classical correlations across the parti-
tion. A multipartite entangled state ρ̂, on the other
hand, cannot be written in the above form. Given a
set of observables Âa (a = 1, ..., R), multipartite entan-
glement is therefore witnessed by the quantum data set
{〈Âa〉ρ̂}Ra=1 [where 〈Âa〉ρ̂ = Tr(Âaρ̂)] if one proves that
the latter cannot be reproduced by any separable state.
This task is accomplished by proving that the quantum
data violate an entanglement witness (EW) inequality,

〈Ŵ〉ρ̂p =
∑
aWa〈Âa〉ρ̂p ≥ Bsep, valid for all separable

states ρ̂p [9]. Here Wa are suitable coefficients and Bsep

is the so-called separable bound.

EW operators Ŵ are generally defined based on the
properties of special entangled states (e.g. squeezed
states, total spin singlets, etc.) [9], and failure of a data
set to violate a given EW inequality does not exclude the
existence of a different violated inequality involving the
same data, yet to be discovered. This may erroneously
suggest that entanglement witnessing is limited by cre-
ativity and physical insight; and that the entanglement
witnessing problem (“is a quantum data set compatible
with a separable state?”) [5–7] is generically undecidable.
The goal of our work is to show that this is not the
case, and that the entanglement witnessing capability of
a quantum data set can be exhaustively tested. Our key
insight is that the problem of finding the distribution
p(λ), which defines the separable state reproducing at
best the quantum data, is a statistical inference problem;
and remarkably it has the structure of a convex optimiza-
tion problem, whose solution can be attained in a time
scaling polynomially with the partition size (under mild
assumptions), and with the Hilbert space dimension of
the subsystems composing the partition. When the opti-
mal separable state fails to reproduce the quantum data,
the distance between the quantum data set {〈Âa〉ρ̂} and
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FIG. 1: (a) Partition of a quantum device into N clusters, each of which is subject to Mi measurements; (b) A separable state
of the system is described as a probability distribution p(λ) of local states defined by the {λi} parameters; (c) Our algorithm
builds a trajectory of separable states (parametrized by couplings {Ka} defining p(λ)) which converges to the optimal state
approximating at best some target quantum data. If the state fails to reproduce the quantum data exactly, the vector joining
the optimal separable data and the quantum data reconstructs the optimal EW inequality.

the optimal separable set {〈Âa〉ρ̂p} allows one to recon-
struct the optimal EW inequality violated by the quan-
tum data. We benchmark our approach by establish-
ing new EW inequalities satisfied by the low-temperature
states of the Heisenberg antiferromagnetic chain and the
quantum Ising chain; in the latter case, our new EW in-
equalities outperform all previously known EW criteria
for multipartite entanglement. Our work parallels the re-
cent mapping of the Bell-nonlocality detection problem
onto an inverse statistical problem [10], and it offers an
efficient scheme for entanglement detection in state-of-
the-art quantum devices within a device-dependent sce-
nario.

Quantum data set. For definiteness, we assume that on

each subsystem i = 1, ..., N , Mi local observables Ô
(i)
m

can be measured (m = 1, . . .Mi; e.g. the Pauli matrices

σ̂
(i)
a , a ∈ {x, y, z} for individual qubits taken as sub-

systems). For convenience, we denote the local iden-

tity operator by Ô
(i)
0 := 1. In order to reveal entan-

glement, these local observables must be non-commuting

([Ô
(i)
m , Ô

(i)
n ] 6= 0 for 1 ≤ m < n ≤ Mi) [11]. From these

local observables, we build p-body correlators of the form

Ôm = ⊗Ni=1Ô
(i)
mi where mi = 0 for N−p subsystems. Ar-

bitrary observables can be built as linear combinations of
correlators – such as e.g. powers of collective spin vari-

ables [12, 13] Ĵa =
∑
i σ̂

(i)
a /2 (a = x, y, z) for systems

of qubits. Hence we shall assume that R observables

of the form Âa =
∑

m x
(a)
m Ôm can be measured, where

the sum runs over all strings m = (m1, . . .mN ), and

x
(a)
m are arbitrary real coefficients. The quantum data
{〈Âa〉ρ̂}Ra=1 form the basis for entanglement certification
in our scheme. The problem of entanglement certification
based on a data set has been discussed in the past, but
the proposed methods either lack scalability [6], or are
scalable only under some restrictive assumptions (short-
range correlations, low-dimensional geometry) [7]. Our
method aims at surpassing these limitations.

Mapping onto an inverse statistical problem. The key
aspect behind our approach is the limited information
content of separable states. The parameters λ specify-

ing the product state ρ̂prod(λ) can indeed be chosen as∑
i(2di − 2) ∼ O(N) real parameters, where di is the di-

mension of the local Hilbert space of the i-th subsystem
[14]. The average of the Âa observable on a separable
state reads

〈Âa〉ρ̂p =

∫
dλ p(λ)Aa(λ) =: 〈Aa〉p (2)

where Aa(λ) =
∑

m x
(a)
m

∏N
i=1 o

(i)
mi(λi) and o

(i)
mi(λi) =

〈ψi(λi)|Ô(i)
mi |ψi(λi)〉. Given a product state, the calcu-

lation of each term in the sum defining Aa(λ) is clearly
an operation scaling as O(N). Once the quantum nature
of the state has been absorbed in Aa(λ), the calcula-

tion of 〈Âa〉ρ̂p , Eq. (2), is a classical statistical average
over the distribution p which, from a statistical physics
viewpoint, can be regarded as the Boltzmann distribu-
tion p(λ) =: exp[−H(λ)]/Z of a classical field theory on
a lattice (normalized by the Z factor), with a vector field
λi defined on each of the N clusters [Fig. 1(b)]. The com-
plexity of separable states is fundamentally inscribed in
the effective Hamiltonian H(λ), which is a priori arbi-
trary, namely it is specified by a number O(exp(N)) of
parameters.

Once the classical statistical structure of the expecta-
tion values on separable states is exposed, the problem
of reproducing the quantum data with a separable state
takes the form of a statistical inference problem, whose
solution is well known in statistical physics [15]. First
of all, applying a maximum-entropy principle [16], the
Hamiltonian can be parametrized without loss of gen-
erality with as many parameters as the elements of the
quantum data set [17]:

H(λ) = −
R∑
a=1

KaAa(λ) . (3)

The parameters K = {Ka}Ra=1 – the coupling constants
of the classical field theory – are Lagrange multipli-
ers whose optimization allows one to build the separa-
ble state ρ̂p whose expectation values {〈Âa〉ρ̂p} best ap-

proximate the quantum data {〈Âa〉ρ̂}. The optimiza-
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tion of K can be efficiently achieved upon minimiz-
ing the cost function L(K) := logZ(K) −

∑
aKa〈Âa〉ρ̂

[10, 15]. The a-th component of the gradient of L is

ga := ∂L
∂Ka

= 〈Aa〉p − 〈Âa〉ρ̂, and its Hessian matrix is
∂2L

∂Ka∂Kb
= 〈AaAb〉p−〈Aa〉p〈Ab〉p, namely the covariance

matrix of the Aa(λ) functions. Since the latter is a semi-
definite positive matrix, L is a convex function. There-
fore, a simple gradient-descent algorithm, which consists
in iterating the update rule K ′a = Ka − ε[〈Aa〉p − 〈Âa〉ρ̂]
with ε � 1, or any improvement thereof, is guaranteed
to reach the global optimum of the problem. In practice,
this requires to repeatedly compute 〈Aa〉p as in Eq. (2), a
task efficiently accomplished e.g. by Markov-chain Monte
Carlo sampling of p(λ), whenever the Hamiltonian H
does not describe a glassy system. The restriction to
non-glassy systems is the only practical limitation of our
approach [17]; and is ensured in the examples considered
below by considering translationally invariant systems.
Construction of an optimal entanglement witness. As il-
lustrated on Fig. 1(c), the algorithm converges to the
distribution p which minimizes |g| – the norm of the
gradient of L. If the minimal distance g(min) van-
ishes (within the error on the quantum data), i.e. if

〈Âa〉ρ̂(min)
p

= 〈Âa〉ρ̂ for all a = 1, . . . R, then entangle-

ment cannot be assessed from the available data. But in
the opposite case, the coupling constants Ka increase in-
definitely along the optimization, and the coefficients of

the gradient g
(min)
a = 〈Âa〉ρ̂(min)

p
−〈Âa〉ρ̂ allow us to build

a violated EW inequality. First, we define the normal-

ized coefficients Wa := −g(min)
a /|g(min)|. The condition

|g(min)|2 > 0 is then rewritten as:

−
∑
a

Wa〈Âa〉ρ̂ < min
ρ̂p

{
−
∑
a

Wa〈Âa〉ρ̂p

}
=: Bsep (4)

The linear combination Ŵ := −
∑R
a=1WaÂa is the data-

driven EW operator. The separable bound Bsep, namely

the minimal value of Tr(ρ̂Ŵ) over separable states, is vi-
olated by the data set, ultimately proving that entangle-
ment is present among the subsystems. The operator Ŵ
is optimal, in that any other normalized linear combina-
tion Ŵ ′ = −

∑
aW

′
aÂa defines an EW inequality whose

violation cannot exceed the violation of the inequality in-
volving Ŵ. This property follows from the convexity of
the set of separable states.
Complexity of the algorithm. If the quantum data contain
correlation functions involving up to k points, the effec-
tive Hamiltonian H contains O(Nk) terms; therefore the
computational cost of evaluating statistical averages of
the kind of Eq. (2) with a precision of ε (using Monte
Carlo sampling) scales as O(d2ε−2Nk), where O(d2) is

the cost of evaluating the local observables o
(i)
mi(λi) when

di = d. The polynomial scaling of the computational cost
with the number N of parties and with the local Hilbert
space dimension is the central asset of our approach.
Ensembles of qubits. Hereafter we shall specify our atten-
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FIG. 2: Data-driven entanglement witness for the Heisenberg
chain at T/J = 1. (a) Distance between the quantum data (all
spin-spin correlators) and the optimized separable state (g:
gradient of the cost function), as a function of optimization
steps in a Nesterov accelerated gradient descent (ε = 0.01).
Each step contains 105 − 107 Monte Carlo steps to achieve a
relative precision of 10% on the modulus of the gradient [17].
(b) Normalized coupling constants Kr in the classical Hamil-
tonian defining the separable state (solid lines, left axis), and
overall amplitude |K| (dashed-dotted line, right axis). (c)
Normalized couplings Kr at the end of the algorithm; (d)
The separable bound can be obtained via simulated anneal-
ing [18] by calculating 〈Wcl〉(β) against exp[−βWcl], ramping

β from 0 to 1000. The minimumW(min)
cl is actually the lowest

value recorded for Wcl throughout the ramp.

tion to the case of systems of N qubits partitioned into
subsystems consisting of single qubits; and quantum data
will be assumed to consist of one- and two-point correla-

tions, 〈σ̂(i)
a 〉ρ̂ and 〈σ̂(i)

a σ̂
(j)
b 〉ρ̂ respectively, fully specifying

all one- and two-qubit reduced density matrices. Product
states are parametrized by the orientations {λi} = {n(i)}
of each qubit on the Bloch sphere (where n(i) are unit
vectors), so that the effective Hamiltonian describes clas-
sical Heisenberg spins (namely, rotators), coupled via bi-
linear interactions and immersed in an external field:

H({n(i)}) = −
N∑
i=1

∑
a=x,y,z

K(i)
a n(i)a −

∑
i<j

∑
a,b

K
(ij)
ab n(i)a n

(j)
b .

Heisenberg antiferromagnetic chain. The first example
of entangled states that we study with our approach is
the thermal equilibrium state of the S = 1/2 Heisenberg

chain Ĥ = J
∑N
i=1 Ŝ

(i) · Ŝ(i+1), where Ŝ(i) are S = 1/2
spin operators, J is the exchange energy, and periodic
boundary conditions (PBC) are assumed. Thermal equi-

librium states ρ̂ (∝ exp[−Ĥ/kBT ]) give 〈σ̂(i)
a 〉ρ̂ = 0 and

〈σ̂(i)
a σ̂

(j)
b 〉ρ̂ = δab C(|i − j|), due to rotational invariance
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of the spin-spin couplings and translational invariance.
These elementary symmetries of the quantum data are
directly inherited by the classical Hamiltonian defining
separable states aimed at reproducing them. The Hamil-
tonian takes the form of a classical long-range Heisen-
berg model H({n(i)}) = −

∑
i<j K|i−j|n

(i) · n(j) with
Kr = KN−r. The most effective existing multipartite
entanglement criterion for this quantum data is based on
the collective spin, namely 〈Ĵ2〉 =

∑
ij〈Ŝ(i) ·Ŝ(j)〉 < N/2

[19, 20], which is verified for t = T/J . 1.4. This crite-
rion is a permutationally invariant EW (PIEW), treat-
ing correlations at all distances on the same footing, and
it cannot be optimal at sufficiently high temperatures,
namely when the correlation length ξ becomes of the or-
der of a few lattice spacings.

As a first validation of our approach, we search for the

optimal EW based on two-body correlations 〈σ̂(i)
a σ̂

(j)
a 〉 by

using as input quantum data the correlations (obtained
via quantum Monte Carlo - QMC [17]) at t = 1 for N =
64 spins, at which ξ = 0.72. Because of their finite range
we only used correlations up to a distance rmax = 10.
Fig. 2 illustrates the results of our approach. The satura-
tion to a finite value of the distance between the quantum
data and those of the optimized separable state (mea-
sured by the norm of the vector g, see Fig. 2(a)) and
the divergence of the couplings Kr (Fig. 2(b)) clearly
indicate the success of entanglement witnessing. The
optimal EW operator can be reconstructed in principle
from the asymptotic value of the gradient vector g(∞) as

Ŵ = −
∑N
i=1

∑
a∈{x,y,z}

∑rmax

r=1 wr σ̂
(i)
a σ̂

(i+r)
a with wr =

−g(∞)
r /|g(∞)|. In practice, we found a more strongly vi-

olated EW inequality using the asymptotic couplings of

the effective Hamiltonian, namely wr = K
(∞)
r /|K(∞)| –

which display a clear spatial structure, shown in Fig. 2(c)
(see [17] for the numerical values). The final step of the
approach consists in determining the separable bound
Bsep = minρ̂p Tr(ρ̂pŴ). The latter can be obtained as
the solution of a set of algebraic equations [21, 22]; here
we rather obtain it by finding the ground-state energy of

the classical Hamiltonian Wcl = −
∑N
i=1

∑rmax

r=1 wr n
(i) ·

n(i+r) via temperature annealing [18] [Fig. 2(d)]. We ob-
serve that Bsep/N = −0.5032, while the quantum data

reach 〈Ŵ〉ρ̂/N = −0.6089. In contrast, the best PIEW
– properly normalized [17] – is violated by an amount of
0.04552. This result is not incremental, because the EW
inequality we find is optimal among all those contain-
ing two-body correlators. Interestingly, for temperatures
t & 1.4 (at which the PIEW ceases to work) we found
numerically impossible to prove that ρ̂(T ) is entangled
solely based on two-point correlators: this in turn shows
that the maximal set of thermal states whose entangle-
ment can be witnessed using two-point correlators is es-
sentially captured by the PIEW. This will not be the case
in our next example, in which our approach significantly
extends the range of witnessed entangled thermal states.
Quantum Ising chain. Our final example is
the quantum Ising model with Hamiltonian
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FIG. 3: Data-driven EW for the quantum Ising chain. Phase
diagram around the QCP. The star corresponds to t = 0.28,
g = 0.5, at which the quantum data used as input were cal-
culated. The color represents the violation ∆ = (〈Ŵ〉ρ̂ −
Bsep)/N of our data-driven EW. The various curves corre-
spond to the temperature below which different entanglement
criteria are satisfied (nearest-neighbour concurrence [23]; best

PIEW [12]; and quantum Fisher information (QFI) of Ĵz [24].

Ĥ = −J
∑N
i=1(Ŝ

(i)
z Ŝ

(i+1)
z + gŜ

(i)
x ), where J is the

interaction strength and Jg the transverse field. In the
ground state, the system displays a quantum critical
point (QCP) at g = gc = 1/2 between a ferromagnetic
phase (g < gc) and a paramagnetic phase (g > gc) [25].
At finite temperature around the QCP, the system is
known to exhibit robust entanglement [24, 26, 27]. Given

the symmetries of the correlation functions (〈σ̂(i)
a 〉ρ̂ = 0

for a = y, z; 〈σ̂(i)
a σ̂

(j)
b 〉ρ̂ ∼ δab), the classical Hamiltonian

tailored to reproduce them is of the form: H({n(i)}) =

−Kx

∑N
i=1 n

(i)
x −

∑
a=x,y,z

∑
i<j K

|i−j|
a n

(i)
a n

(j)
a . As

input quantum data, we consider the correlation
functions of a chain of N = 64 spins with PBC at
a temperature t = T/J = 0.28 for g = 0.5 - ob-
tained as well via QMC. Given the finite correlation
length, we only used correlators up to a distance
rmax = 20. Following the same procedure as described
for the Heisenberg chain, we find an optimal EW
operator which is spatially structured, of the form

Ŵ = −wx
∑N
i=1 σ̂

(i)
x −

∑
a=x,y,z

∑
i<j w

(|i−j|)
a σ̂

(i)
a σ̂

(j)
a

(coefficients and separable bound in the Supplemental
Material [17]). On Fig. 3, we show that this new EW cri-
terion, optimal for the thermal state at t = 0.28, g = 0.5,
allows one to prove entanglement for a larger set of ther-
mal states than all the existing criteria in the literature
(namely the nearest-neighbour concurrence [23], the
PIEW [12], and the quantum Fisher information [24] –
see [17] for further details).

Conclusions. We introduced a data-driven method to
probe multipartite entanglement in many-body systems.
This method relies on mapping separable states onto
Boltzmann distributions for a classical field theory on a
lattice. The classical degrees of freedom of this field the-
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ory are dictated by the considered partitioning of the sys-
tem. The structure of the corresponding classical Hamil-
tonian is dictated by the quantum data at hand; and its
parameters are optimized in order to fit at best the quan-
tum data. This method allows to exhaustively test the
entanglement witnessing capability of a set of quantum
data in a time scaling polynomially with the number of
parties in the partition (if the size of quantum data is
also polynomial); this is guaranteed whenever the classi-
cal field theory is not a model of a glass (namely when
it does not feature disorder and frustration). This opens
the way to the systematic certification of entanglement
in intermediate-scale quantum devices.

Acknowledgments

We are very grateful to Antonio Aćın for insight-
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[10] Fréérot, I. & Roscilde, T. Detecting many-body bell non-

locality by solving ising models (2020). URL https://

arxiv.org/abs/2004.07796. 2004.07796.
[11] Otherwise one can always reproduce the correlations

among these observables using separable states by choos-
ing the local states |ψi〉 to be joint eigenstates of the
observables, and reproducing with p the classical corre-

lations among the observables.
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Supplemental Material

In this Supplemental Material, we provide: 1) further
technical details on the variational algorithm described
and implemented for the data presented in the main text;
2) on the generation of quantum data, used as input to

our algorithm, by quantum Monte Carlo; 3) on the rel-
ative versus absolute violation of the entanglement wit-
nesses; 4) on the comparison with existing entanglement
criteria. In the attached .csv files, the numerical coef-
ficients of the entanglement witnesses discussed in the
main text are given.

Appendix A: Details on the algorithm

1. Mapping of the separability problem onto an
inverse statistical problem

General strategy. Following the notations of the main
text, we assume that the quantum data consist of a col-
lection of expectation values {〈Â〉ρ}Ra=1 measured on the
quantum device. Our constructive strategy to solve the
separability problem is to try and reproduce these data
with a separable state – the failure of this attempt mark-
ing the success of entanglement detection. As discussed
in the main text, a separable state ρ̂p is defined by an
arbitrary probability distribution p(λ) over local quan-
tum states |ψi(λi)〉. Our strategy is then to build an
optimal popt(λ), such that the corresponding separable
state ρ̂popt produces the best possible approximation to
the available data attainable using separable states. For
a given separable state ρ̂p, we have:

〈Âa〉ρ̂p =

∫
dλ p(λ)Aa(λ) =: 〈Aa〉p (A1)

where Aa(λ) =
∑

m x
(a)
m

∏N
i=1 o

(i)
mi(λi) and o

(i)
mi(λi) =

〈ψi(λi)|Ô(i)
mi |ψi(λi)〉 (see the main text for the precise

definition of the Ô’s operators).
Our approach is in essence a variational approach, in

which we parametrize the distribution p(λ) as a Boltz-
mann distribution p(λ) = exp[−H(λ)]/Z(K) associated

with a classical Hamiltonian H(λ) = −
∑R
a=1KaAa(λ).

Two crucial properties, on which we further elaborate in
this section, make this choice of Ansatz especially suited
to solve the separability problem. Firstly, the expressive
power of this Ansatz is complete, which means that there
is no loss of generality in looking for a separable state of
this specific form: if a separable state of this form can-
not reproduce the data, then no separable state whatso-
ever can do so. Secondly, the variational parameters Ka

can be optimized by minimizing a convex cost function,
whose gradient can be evaluated at a cost scaling poly-
nomially with N (the number of local subsystems) and
with d (the local Hilbert space dimension), under mild
assumptions (specifically, the absence of glassiness of the
classical model H(λ)).

Completeness of the Ansatz. If a distribution p(λ)

exists which reproduces the data set: 〈Aa〉p = 〈Â〉ρ̂
for all a = 1, . . . R, it is generically not unique. One
may therefore choose the distribution which, as a further
specification, maximizes the Shannon entropy functional
S[p] = −
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dλ p(λ) log p(λ). This amounts to removing
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any other constraints on the distribution except that of
reproducing the data set with its averages. Following the
seminal work of Jaynes [16], maximizing S[p] under the
constraint of reproducing the data is achieved upon in-
troducing Lagrange multipliers Ka, and minimizing the

functional F [p] = −S[p]−
∑R
a=1Ka[〈Aa〉p−〈Âa〉ρ̂]. Set-

ting to zero the functional derivative with respect to
p(λ) yields as a solution the Boltzmann distribution
p(λ) = exp[

∑
aKaAa(λ)]/Z(K). The parameters Ka

are hence exactly the tuning knobs that allow p(λ) to
satisfy the constraints to the best that a classical proba-
bility distribution can do.

To further understand this point, let us stress that
throughout our work we assume (as it is reasonable to
do) that the size of the quantum data set scales at most
polynomially with system size, so that the number of con-
straints associated with the reproduction of the quantum
data also scales polynomially. On the other hand a distri-
bution p(λ) is uniquely defined by an exponentially large
number of constrains – as many as the possible values
of the argument λ. The exponentially many constraints,
to be added in order to specify the distribution uniquely,
cannot help it in any way in reproducing the quantum
data. On the other hand, maximizing the entropy of the
distribution precisely gets rid of the useless constraints
beyond the ones imposed by the quantum data them-
selves. Once the least constrained distribution is achieved
upon maximizing the entropy (subject to the constraint),
varying the parameters Ka of the distribution exactly al-
lows one to reproduce all the data sets which could poten-
tially be produced by the most general distribution p(λ).
The Boltzmann distribution associated with the classical
Hamiltonian H(λ) = −

∑
aKaAa(λ) can therefore be

viewed as an Ansatz whose expressive power of quantum
data sets of is as high as one can possibly achieve with a
classical distribution.

Optimizing the variational parameters. We then show
that the parameters Ka can be optimized upon minimiz-
ing a convex cost function. Convexity is a crucial prop-
erty of the whole procedure: if the optimization relied
on a heuristic algorithm, then the failure to reproduce
the quantum data could simply mean that the optimiza-
tion has been trapped in some local minimum [28], and
therefore the result would be inconclusive. As stated in
the main text, a convex cost function for our problem
is given by L(K) = logZ(K) −

∑
aKa〈Âa〉ρ̂. Another

crucial aspect for the scalability of our algorithm is that
the cost function L(K) itself is never computed. Only its

gradient ga = ∂L/∂Ka = 〈Aa〉p−〈Âa〉ρ̂ is evaluated, and
used to update the parameters Ka in a gradient-descent
algorithm, or any improvement thereof (in this paper, we
used the accelerated gradient-descent algorithm of Nes-
terov). Even though the cost function itself is never com-
puted, its existence and its convexity are key to ensure
the monotonous convergence of our algorithm towards
the global optimum of the problem [28]. Specifically, to-
gether with the cost function, the norm of its gradient
converges towards its minimal value; namely, the distri-

bution p(λ) converges towards the best possible approx-
imation to the data with a separable state. If a distri-
bution p(λ) exists which reproduces the data, then the
gradient of the cost function vanishes, and it is impossible
to detect entanglement from the available data. Notice
that this is not a limitation of our approach, but on the
contrary it represents a fundamental property of the data
that our method exhibits. On the other hand, if the data
lie outside of the convex region reachable by separable
states, the cost function L is not bounded from below,
and the gradient will stabilize to a finite value, leading
to a runaway to infinity of the coupling constants Ka,
and marking the success of entanglement detection – as
further discussed in the main text.

Computational complexity. Finally, we would like to
remark that the computational cost required to evaluate
the gradient ga = 〈Aa〉p − 〈Âa〉ρ̂ with a given relative
precision of ε via Monte Carlo methods scales as 1/ε2.
One could imagine a fine-tuned situation in which the
distance between the data under investigation and the
separable set is exponentially small in the system size:
|g| = O[exp(−N)], which would translate into a com-
putational cost of our algorithm diverging exponentially
with N . While such a situation cannot be excluded a
priori, in any practical instance the quantum data come
with a finite uncertainty – certainly not decreasing ex-
ponentially with the system size. Indeed, the best scal-
ing of the relative uncertainty that one can expect is as
N−1/2, when considering collective observables which are
the sums of O(N) nearly independent degrees of freedom
(as it happens in systems with a finite correlation length),
and the same benign scaling is shared by Monte Carlo
estimates of the same quantities. On the other hand, ex-
ponentially decreasing precision would require exponen-
tially large statistics, which is not a realistic assumption
for any source of the quantum data set (be it experiments
or numerical calculations). As a consequence, quantum
data whose distance to the separable set scales exponen-
tially with system size would inevitably be reproduced
by our algorithm using a separable state within their un-
certainty, and at a polynomial cost.

In the literature, the separability problem has been
proved to be NP-hard in the bipartite case [29]. This im-
plies that there exists instances requiring an exponential
cost in the local Hilbert space dimension d. On the other
hand, we are not aware of a similar complexity result
in the multipartite case, namely for a fixed d (d = 2 in
the qubit examples treated explicitly in this work), but
increasing the number N of parties. For the multipar-
tite separability problem with N qubits, we state in the
main text that classical glassy models define the practical
limitation to the scalability of our approach. We would
like to emphasize that this assumption is rather conser-
vative. Indeed, the classical models one has to sample in
our approach involve continuous degrees of freedom (e.g.
N classical rotators representing vectors on the Bloch
sphere, defining the local quantum states, see Section
A 2 below). While Ising spin glasses, which involve ±1
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variables, have been proved to be NP-hard [30], a similar
result does not exist for frustrated disordered classical
models involving rotators (to the best of our knowledge).
This (classical) statistical-physics observation is consis-
tent with the absence of formal proof of NP-hardness of
the (quantum) multipartite separability problem.

Concerning the bipartite case (N = 2, increasing d),
whose NP-hardness is proven [29], our algorithm has a
cost which is polynomial in d, in apparent contradiction
with the complexity result. First, we notice that the
NP-hardness [29] concerns the situation where the full
bipartite state ρAB (which is a d2× d2 Hermitian matrix
of unit trace) is used as input. Our algorithm treats a
more general situation, where 1- and 2-body correlations
of the form 〈Âa〉, 〈B̂b〉, 〈ÂaB̂b〉 are known [where Âa (a ∈
{1, . . . , RA}), and Âb (a ∈ {1, . . . , RB}) are local observ-
ables on A and B subsystems, respectively]. This knowl-

edge is equivalent to the knowledge of ρAB if Âa and B̂b
form tomographically complete sets of observables (for
instance, the RA = RB = d2 − 1 generalized Gell-Mann
matrices, which are the generators of SU(d)). In our
approach, we parametrize separable states as Boltzmann
distributions related to H(ψA, ψB) = −

∑
aKaAa(ψA)−∑

bKbBb(ψB) −
∑
abKabA(ψA)Bb(ψB), where ψA and

ψB represent local quantum states, parametrized by
2d−2 classical variables, and where Ka,Kb,Kab are RA+
RB + RARB variational parameters. The NP-hardness
result [29] implies that if one considers tomographically-
complete sets of observables, then there exists instances
of parameters Ka,Kb,Kab for which sampling the corre-
sponding Boltzmann distribution takes a time diverging
exponentially with d. We cannot immediately identify
to which hard statistical physics problem this situation
would correspond – but certainly such hard instances
must exist, as imposed by the result of Ref. [29]. In
analogy with glassy problems, for these instances the en-
ergy landscape described by H(ψA, ψB) should display
a myriad of local minima separated by energy barriers
whose height is proportional to d, making the sampling
of the model via Monte-Carlo methods inefficient.

On a more constructive tone, we would like to remark
that such complexity results only refer to worst-case in-
stances. In the context of our approach, such worst-case
instances could correspond to glassy models, and in the
case of translationally invariant data considered in this
paper, such glassiness is avoided by construction. Such
instances are not expected to be generically encountered
when analyzing data from present-day quantum simula-
tors of non-disordered systems. Finally, we would like to
emphasize that there is no risk of erroneously conclud-
ing that entanglement is present if such hard instances
manifest themselves. We have already argued above that
realistic quantum data cannot reveal entanglement in the
case of exponentially small violations of witness inequal-
ities. In the presence of glassiness, instead, one would be
unable to run the simulation forward due to very large er-
ror bars in the Monte Carlo evaluation of the expectation
values for separable states. As a consequence, one would

conclude that entanglement cannot be detected within
the accuracy of the method.

2. Special case: partitioning the system into N
qubits

In this work we introduce a variational algorithm to
fit a given data set of expectation values by using sep-
arable states. In the case of qubits taken as individual
subsystems, separable states are represented without loss
of generality as Boltzmann distributions over classical
Heisenberg spins n(i) on the unit sphere (which represent
pure states on the Bloch sphere for individual qubits).
In the examples discussed in the main text, the data set

contains one-qubit expectation values 〈σ̂(i)
a 〉ρ̂ and two-

qubit correlations 〈σ̂(i)
a σ̂

(j)
b 〉ρ̂. In the examples we con-

sidered (namely, the one-dimensional antiferromagnetic
Heisenberg model, and the Ising model in a transverse
field, both with periodic boundary conditions), correla-

tions 〈σ̂(i)
a σ̂

(j)
b 〉ρ̂ vanish if a 6= b. Since we used transla-

tionally invariant chains (with periodic boundary condi-
tions), the one-qubit data reduces to the average mag-

netization 〈ma〉ρ̂ =
∑N
i=1〈σ̂

(i)
a 〉ρ̂/N , and the the two-

qubit correlations depend only on the inter-qubit dis-

tance: 〈C(r)
a 〉ρ̂ = 〈σ̂(i)

a σ̂
(i+r)
a 〉ρ̂. In the case of the Heisen-

berg model, which displays SU(2) invariance, we have
ma = 0. In this case, we considered as quantum data

〈C(r)〉ρ̂ = 〈C(r)
x + C

(r)
y + C

(r)
z 〉ρ̂.

Correspondingly, the classical Hamiltonian aiming at
reproducing the quantum data contains one- and two-
body interactions terms (the latter truncated beyond a
given distance rmax). For the Heisenberg model, we get

H = −
∑
i

rmax∑
r=1

K(r)n(i) · n(i+r) ; (A2)

while for the quantum Ising model, where my = mz = 0,
we have

H = −Kx

N∑
i=1

n(i)x −
∑

a=x,y,z

∑
i

rmax∑
r=1

K(r)
a n(i)a n(i+r)a . (A3)

The K’s coefficients are the variational parameters of our
algorithm, which are optimized in an iterative manner.
A simple gradient-descent algorithm consists in iterating
the following update rule (for the Ising model):

K ′x = Kx − ε[〈mx〉p − 〈mx〉ρ̂] (A4)

(K(r)
a )′ = K(r)

a − ε[〈C(r)
a 〉p − 〈C(r)

a 〉ρ̂] (A5)

for a ∈ {x, y, z}, and r ∈ {1, 2, · · ·N/2}; and (for the
Heisenberg model):

(K(r))′ = K(r) − ε[〈C(r)〉p − 〈C(r)〉ρ̂] . (A6)

In the above equations, 〈·〉p is the expectation value on
the Boltzmann distribution for the classical Hamiltonian
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(whose couplings are the K’s coefficients), while 〈·〉ρ̂ are
the target quantum data. As discussed in the main text
(see also [10]), ε is a small parameter, implementing a
numerical gradient descent of the (convex) L function.
In practice, we implemented the Nesterov’s accelerated
gradient-descent (NAG) algorithm, with ε = 0.01.

Each step of the NAG algorithm requires to compute
the Euclidean distance g between the separable data and

the quantum data, namely to compute 〈mx〉p and 〈C(r)
a 〉p

for the Ising model and 〈C(r)〉p for the Heisenberg model.
This was implemented using Markov-chain Monte Carlo.
The number of Monte Carlo steps (defined below) imple-
mented at each step of the NAG algorithm was chosen
such that the relative error on g be smaller than a given
threshold η, which we chose as η = 0.05 for the Ising
model, and η = 0.1 for the Heisenberg model. In other
words, one step of the NAG algorithm is completed when:

2
∑
α |gα| Err(gα)

|g|2
< η , (A7)

where Err(gα) is the error on gα, as estimated from the
Monte Carlo algorithm. Each step of the Monte Carlo al-
gorihm consisted of 2N iterations of single-spin Metropo-
lis updates and of single-spin microcanonical overrelax-
ation updates [31]. The amplitude of the proposed
Metropolis updates was adapted along the Monte Carlo
simulation so that the move be accepted with frequency
0.5±0.1. Therefore, a single Monte Carlo step consists of
2N microcanonical updates, and of N accepted Metropo-
lis updates (on average).

As the variational optimization of the K’s parameters
progresses along the NAG algorithm, the norm of the
gradient g decreases, and therefore an increasing num-
ber of Monte Carlo steps is required at each step of the
NAG algorithm in order to achieve the required relative
precision of η. When the quantum data cannot be fitted
by a separable state, g stabilizes to a finite value. The
number of steps of the NAG algorithm to achieve this
convergence (and therefore the total number of Monte
Carlo steps along the whole optimization) depends on
the value of |g| as obtained at the end of the optimiza-
tion. For the examples presented in the main text, about
103 steps of the NAG algorithm were necessary, each of
them comprising 104 ÷ 107 Monte Carlo steps.

Appendix B: Quantum data from Quantum Monte
Carlo

Data-driven entanglement witnessing is fundamentally
based on reliable quantum data on quantum many-
body systems. Here we chose to use quantum Monte
Carlo data for quantum spin chains at finite tempera-
ture, obtained using Stochastic Series Expansion [32],
which provides numerically exact correlation functions
for the model of interest (within the statistical error
bar). Finite-temperature equilibrium calculations offer

the most reliable source of data for mixed states – which
pose the real challenge in terms of entanglement detec-
tion, while for pure states any form of connected corre-
lation is an entanglement witness. Beyond their signifi-
cance in condensed matter physics and quantum statisti-
cal physics, the models we chose (quantum Heisenberg
and quantum Ising chain) are also of direct relevance
to several experiments in quantum simulation, see e.g.
[33, 34] for recent examples.

Appendix C: Existing entanglement witnesses

In this section, we provide additional details on
the existing entanglement witnesses against which the
quantum data of the quantum Ising model were tested
(Fig. 3 of the main text).

Concurrence. The concurrence [23] defines a necessary
and sufficient condition for the separability of a two-
qubits density matrix. We computed the concurrence
between nearest-neighbours, after reconstructing the
density matrix ρ̂12 from the knowledge of one- and two-

qubits expectation values 〈σ̂(1)
a 〉ρ̂, 〈σ̂(2)

b 〉ρ̂ and 〈σ̂(1)
a σ̂

(2)
b 〉ρ̂

(with a, b ∈ {x, y, z}) [4]. The dashed line on Fig. 3
defines the temperature below which ρ̂12 is entangled.
Since the concurrence criterion [23] is based on a subset
of the full quantum data we considered (which contains
all one- and two-qubits correlations functions, which
is equivalent to all two-body reduced density matrices
ρ̂ij , and not only ρ̂12), by construction our data-driven
method must detect entanglement in a region of the
phase diagram strictly larger than the one detected by
the concurrence – a fact clearly visible on Fig. 3.

Permutationally-invariant entanglement witnesses. In
Ref. [12], a complete family of 8 entanglement witnesses
based on the two-qubits reduced density matrix av-
eraged over all pairs, ρ̂av,2 = 2

∑
i 6=j ρ̂ij/[N(N − 1)],

was derived. Equivalently, ρ̂av,2 is reconstructed from
the knowledge of all one- and two-body correlations

averaged over all permutations: ma :=
∑N
i=1〈σ̂

(i)
a 〉ρ̂

and Cab :=
∑
i6=j〈σ̂

(i)
a σ̂

(i)
b 〉ρ̂. Since ma and Cab are

coarse-grained features of the quantum data we have
considered, if an EW inequality is violated by ma and
Cab (namely if one of the 8 EW inequalities of ref. [12]
is violated), then our data-driven algorithm must also
reconstruct a violated entanglement witnesses – in
general, a more strongly violated one. As illustrated on
Fig. 3 for the quantum Ising model, for which we tested
all 8 criteria for each parameters (t, g) (temperature and
transverse field), this is clearly the case.

Quantum Fisher information. The quantum Fisher in-
formation (QFI) is another multipartite entanglement
witness. Formally, the QFI quantifies the sensitiv-
ity of the state ρ to unitary transformations ρ̂(φ) =
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e−iφÔρ̂eiφÔ with Ô a quantum observable [35]. The

QFI can be expressed as QFI(Ô, ρ̂) = 2
∑
n 6=m(pn −

pm)2|〈n|Ô|m〉|2/(pn + pm), where ρ̂ is diagonalized as

ρ̂ =
∑
n pn|n〉〈n|. Here, we chose for Ô the collective spin

Jz =
∑N
i=1 σ̂

(i)
z /2, which is optimal to witness entangle-

ment around the quantum critical point of the quantum
Ising model [24, 26]. The inequality QFI(Ĵz, ρ̂) ≤ N is
satisfied by all separable states, so that a QFI exceed-
ing the system size is an entanglement witness [35]. In
general, computing the QFI involves the knowledge of
the full density matrix ρ, but the mapping of the quan-
tum Ising chain onto a free-fermion model [25] makes this
computation tractable [24]. Notice that computing the
QFI requires knowledge beyond one- and two-body corre-
lators, and therefore it goes beyond the data set we have
considered. Hence there is no guarantee a priori that
our method exceeds the EW capability of the QFI. Nev-
ertheless, as illustrated on Fig. 3, the parameter region
where entanglement is detected by the QFI is broadly in-
cluded in the region where entanglement is detected via
our data-driven algorithm.

Appendix D: Absolute versus relative violation of
the entanglement witnesses

By construction, the optimal witness found by our
approach is the one whose absolute violation is maxi-
mized. Namely, among all possible witness operators
Ŵ = −

∑
aWaÂa, properly normalized with the eu-

clidian norm
∑
aW

2
a = 1, our witness operator max-

imizes the difference Bsep − Tr(ρ̂Ŵ), where Bsep =

minρ̂sep Tr(ρ̂sepŴ). As a consequence, it is the witness
operator which is most robust to the uncertainty present
on the quantum data, namely the one that requires the
lowest amount of statistics producing the quantum data
themselves.

On the other hand, it is also relevant to consider the
noise robustness of a given entanglement witness, namely
the robustness to a noisy, imperfect preparation of the
quantum state ρ̂ that should produce the quantum data.
Noisy state preparation can be generically modeled as
turning the target state into (1 − η)ρ̂ + η1/D, where η
parametrizes the strength of the noise, and D is the total
Hilber space dimension. Assuming that all operators Âa
composing the witness are traceless (which is the case for
tensor products of local Pauli matrices, as considered in
this paper), this leads us to define the noise robustness

as the maximal value of η such that (1− ηmax)Tr(ρ̂Ŵ) =

Bsep, namely ηmax = 1−Bsep/Tr(ρ̂Ŵ). There is no guar-
antee that the witnesses found by our approach are those
whose noise robustness is maximal, and in fact it turns
out not to be the case, as shown by the following exam-
ple.

In the case of the Heisenberg chain, we have considered
translationally-invariant entanglement witnesses of the

form Ŵ = −
∑
a∈{x,y,z}

∑N
i=1

∑rmax

r=1 wrσ̂
(i)
a σ̂

(i+r)
a .

Our convention has been to normalize them to∑
r w

2
r = 1. For a meaningful comparison with the PIEW

〈[
∑N
i=1 Ŝ

(i)]2〉 ≥ N/2, the latter should be properly
normalized according to the same convention, namely:

ŴPIEW = (N − 1)−1/2
∑
a∈{x,y,z}

∑N
i=1

∑
j 6=i σ̂

(i)
a σ̂

(j)
a ,

with a separable bound given by −N/
√
N − 1. For the

data considered in the main text (namely, a thermal state
of the one-dimensional Heisenberg model at temperature
T/J = 1.00 with N = 64 spins), we find a violation

−N/
√
N − 1 − Tr(ρ̂ŴPIEW) = 0.04552. In contrast,

the optimal witness found by our data-driven approach
exhibits a larger violation of 0.10570. On the other
hand, the noise robustness of the PIEW is ηmax = 0.255,
while the noise robustness of the data-driven EW found
by our approach is ηmax = 0.174. This is qualitatively
consistent with the observation that the PIEW is vio-
lated up a temperature of T/J ≈ 1.400, which is higher
than the temperature up to which the data-driven EW
(optimal by construction at T/J = 1.00) is violated.

Appendix E: Detailed numerical values of the
entanglement witnesses

The numerical coefficients of the entanglement wit-
nesses reconstructed by our algorithm are given in this
Section. For the Heisenberg model at temperature T/J =
1 (Fig. 2 of the main text), we discarded the correlations
at distances beyond r = 10. The coefficients K(r) of
the entanglement witness are given in Table I. The sep-
arable bound is E/N = −0.503248446 (N = 64). For

distance K(r)

1 -0.84192229
2 -0.50632705
3 -0.16643027
4 0.03072345
5 0.06820392
6 0.02322838
7 -0.01850183
8 -0.02146924
9 0.00126596
10 0.01267421

TABLE I: Coefficients of the data-driven entanglement wit-
ness presented on Fig. 2 of the main text (Heisenberg chain
T/J = 1.00).

the quantum Ising model (Fig. 3 of the main text), the

corresponding coefficients Kx, K
(r)
x , K

(r)
y and K

(r)
z are

presented on Table II. The separable bound is E/N =
−0.465475151529285 (N = 64).



11

distance Kx Kxx Kyy Kzz

0 0.078863109939705
1 0.336212178177562 -0.53946940308646 0.701821871161535
2 0.006136971013906 -0.186782505835586 -0.213519552791139
3 -0.001090090530485 -0.00257250626173 -0.098573694386247
4 -0.016994651046548 0.023567559817685 0.057667124559048
5 0.003961220213939 -0.003352864510561 0.032995580923791
6 0.006728876469642 -0.006668943216078 -0.024548154286714
7 -0.001277958269768 0.003102691532182 -0.016751237825024
8 -0.000351393929815 0.001659840517445 0.012307823520514
9 0.002460403552907 -0.001929489352437 0.010912062898113
10 0.000818810042566 5.60569829502012E-05 -0.007413177478221
11 0.001440162056544 0.000798869250342 -0.00808541701429
12 0.001464201727649 -0.0003416423396 0.00459909928294
13 0.001744703197231 -0.000212938810296 0.006913583983173
14 0.001100010416802 0.000223069933552 -0.00293630357091
15 0.001061273315343 4.66867175896627E-06 -0.006226408282977
16 0.001462284817869 -0.000101546964095 0.001484817717649
17 0.001304160305372 3.77065191741915E-05 0.006024060541615
18 0.001179839161665 3.78654896794631E-05 -0.00071186404194
19 0.000350620499287 -2.25876364328412E-05 -0.006559629225319
20 0.004041162071268 -8.36015569473183E-06 0.003989414923715

TABLE II: Coefficients of the data-driven entanglement witness used on Fig. 3 of the main text (tranverse-field Ising chain for
g = 0.5 and T/J = 0.28).


