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1 Introduction

A prominent class of gapped quantum phases of matter are given by so-called topological
phases of matter. Such phases can be defined as equivalence classes of gapped quantum
models whose low-energy effective descriptions realise topological quantum field theories
(TQFTs) [1]. In (2+1)d, spherical fusion categories can be used to define a state-sum
TQFT known as the Turaev-Viro-Barrett-Westbury TQFT [2, 3]. Given such data, one
can define an exactly solvable Hamiltonian model on a closed manifold, in a canonical
manner, that describes non-chiral topological phases in (2+1)d [4–6]. Such models support
topological excitations referred to as anyons, which display exotic braiding and fusion
statistics. Topological excitations are typically described via the so-called Drinfel’d center
of the input spherical fusion category [7]. For any spherical fusion category, the center
construction defines a modular tensor category, which is widely accepted as being the right
classification tool for anyons in (2+1)d [8, 9].

Given an open manifold, it is often possible to extend the lattice Hamiltonian to the
boundary, while preserving the gap. Equivalence classes of such extensions define the notion
of gapped boundaries, which realise anomalous TQFTs. These are found to be described by
indecomposable module categories over the input spherical category. Furthermore, bound-
ary Hamiltonians yield point-like excitations that can be classified through the language
of module category functors [10]. Domain walls between distinct topological phases can
be considered in a similar fashion. By iterating the procedure, it is possible to further
extend such models to interfaces between different gapped boundaries. The correspond-
ing zero-dimensional Hamiltonians yield point-like excitations in their own right. These
different settings have received a lot of attention in recent years within the topological
order community [10–20], partly due to their application to the field of topological quantum
computation [16, 21]. Mathematically, these fit in the wider topic of defect TQFTs [22–29].

Despite tremendous progress in our understanding of (2+1)d topological models, a lot
of questions remain open regarding generalizations to higher dimensions. It is expected that
topological models in (3+1)d should take as input a spherical fusion bicategory. Although
the precise definition of such notion remains partly elusive, a compelling definition has
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been recently put forward by Douglas et al. in [30]. In this manuscript, the authors show
that their definition encompasses a large class of four-dimensional state-sum invariants.
Ultimately, we would like to derive properties of (3+1)d topological models within this
general higher category theoretical framework, which is admittedly tantalizing but difficult.
In order to make progress in this direction, we decide to focus on so-called gauge models
of topological phases, i.e. models that have a lattice gauge theory interpretation [8, 31–
33]. These models are interesting for diverse reasons. Technically, they are particularly
manageable allowing to carry out computations in full detail, and they are easily definable
in any dimensions. Physically, they happen to be extremely relevant in (3+1)d as they
seem to encapsulate a large class of Bosonic models displaying topological order [34–37].

In (2+1)d, topological gauge models are obtained by choosing as input the category
of G-graded vector spaces, with G a finite group and monoidal structure twisted by a
cohomology class in H3(G,U(1)). The corresponding state-sum invariant is referred to as
the Dijkgraaf-Witten invariant [38]. In this context, (bulk) anyonic excitations, defined as
a region whose energy is higher than that of the ground state, are described in terms of the
so-called twisted quantum double of the group, whose irreducible representations provide
the simple objects of the Drinfel’d centre of the category of G-graded vector spaces [39, 40].
Gapped boundaries are found to be labelled by a simple set of data, namely a subgroup of
the input group and a 2-cochain that is compatible with the input 3-cocycle [12, 14, 41–43],
and their excitations have been considered for instance in [16, 18, 29, 44, 45].

More generally, given a closed (d+1)-manifold, the input data of Dijkgraaf-Witten the-
ory is a finite group G and a cohomology class [ω] ∈ Hd+1(G,U(1)). It is always possible
to define a lattice Hamiltonian realization of the theory on a d-dimensional hypersurface Σ,
such that the ground state subspace of the model is provided by the image of the partition
function assigned to the cobordism Σ × [0, 1]. In (3+1)d, the resulting gauge models are
known to yield loop-like excitations, i.e. excitations with the topology of a circle. In general
such a loop-like excitation corresponds to a loop-like magnetic flux to which a point-like
charge is attached, while being threaded by an auxiliary flux. This threading flux plays a
crucial role as it can constrain the quantum numbers associated with the other flux and the
charge. In [33, 46], the classification and statistics of these loop-like excitations were found
to be described in terms of the so-called twisted quantum triple of the group, which is a natu-
ral extension of the twisted quantum double.1 Although a general theory of gapped bound-
aries in (3+1)d is still lacking, examples have already been proposed in the case of topo-
logical gauge models [15, 20]. These are labelled by a set of data akin to (2+1)d, namely a
subgroup of the input group and a 3-cochain compatible with the input 4-cocycle. The main
objective of our manuscript is to study excitations for such gapped boundaries in (3+1)d.

In order to reveal the algebraic structure underlying the bulk excitations in arbitrary
spatial dimension, several strategies exist. Our focus is on the so-called tube algebra ap-
proach [5, 33, 44, 46–50], which is a generalization of Ocneanu’s tube algebra [51, 52]. In
general, the ‘tube’ refers to the manifold ∂Σ × [0, 1], where ∂Σ is the boundary left by

1Akin to the twisted quantum double, the quantum triple is equipped with a quasi-coassociative comul-
tiplication map as well as compatible R-matrix and antipode map. However, this data does not quite fulfil
all the requirements necessary to define a quasi-triangular quasi-Hopf algebra [33].
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removing a regular neighbourhood of the excitation in question, and the ‘algebra’ to an
algebraic extension of the gluing operation (∂Σ× [0, 1])∪∂Σ (∂Σ× [0, 1]) ' (∂Σ× [0, 1]) to
the Hilbert space of states on the tube. For instance, the twisted quantum double and the
twisted quantum triple are found to be isomorphic to the tube algebras associated with
the manifolds S1 × [0, 1] and T2 × [0, 1], respectively. This approach relies on the fact that
properties of a given excitation, which, let us recall, is defined as a region for which the
energy is higher than that of the ground state, are encoded into the boundary conditions
that the model assigns to the boundary ∂Σ [33]. This strategy has been extensively applied
to general two-dimensional models, and more recently to gauge and higher gauge models
in three dimensions [33, 50].

The tube algebra approach can be adapted in order to study excitations on defects and
gapped boundaries, and has been employed in some specific cases in [10, 44, 45, 53]. In
this context, the tube possesses two kinds of boundary: a physical gapped boundary that
corresponds to the one of the spatial manifold, and a boundary obtained by removing a local
neighbourhood of an excitation incident on the boundary of the spatial manifold. Although,
the method is very general and could be used to study any pattern of excitations in (3+1)d,
we shall focus on a specific configuration, namely bulk string-like excitations that terminate
at gapped boundaries. Let us clarify that ‘string-like’ refers to the topology of a defect
whose tubular neighbourhood is a region of the physical system where the energy is higher
than that of the ground state. In general, such string-like excitations are composites of
electric charges and magnetic fluxes. There are several motivations to consider these specific
excitations. The first one is that, due to the topology of the problem, we can relate the
corresponding tube algebra to the one relevant to the study of point-like excitations at the
zero-dimensional interface of two gapped boundaries in (2+1)d. This is a generalization of
what happens in the bulk, where upon dimensional reduction, bulk loop-like excitations can
be treated as point-like anyons [54, 55]. In [33], this mechanism was made precise in terms
of so-called lifted models, where we showed that higher-dimensional tube algebras could
be recast in terms of lower-dimensional analogues using the language of loop groupoids.
We generalize these techniques in this manuscript by introducing the notion of relative
groupoid algebras, which we use to unify both the (2+1)d and (3+1)d tube algebras.

Although this correspondence between two seemingly very different types of excita-
tions is interesting per se, it turns out to be a precious technical tool. Indeed, since it
allows us to recast the (3+1)d tube algebra as a (2+1)d one, we can use the (2+1)d sce-
nario, which is easier to visualise and intuit, as a guideline for the more complex (3+1)d
case. Using this framework, we derive the irreducible representations of the (3+1)d tube
algebra, which classify the elementary string-like excitations whose endpoints lie on gapped
boundaries. We further define a notion of tensor product that encodes the concatenation
of these excitations, and compute the Clebsch-Gordan series compatible with this tensor
product. Moreover, we find the 6j-symbols that ensure the quasi-coassociativity of this
tensor product. All these mathematical notions can then be put to use in order to define
canonical bases of ground states or excited states in the presence of gapped boundaries.

The second reason we decide to focus on such open string-like excitations pertains to
category theory. The same way the relevant category theoretical data to describe gauge
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models in (2+1)d is the category of G-graded vector spaces, the one relevant to describe
(3+1)d gauge models is the bicategory of G-graded 2-vector spaces. In a recent work [56],
Kong et al. applied the generalised centre construction to this bicategory and demonstrated
that the result was given by the bicategory of module categories over the multi-fusion
category of loop-groupoid-graded vector spaces. This is a categorification of the well-
know result that the centre of the category of group-graded vector spaces can be described
as the category of modules for the loop-groupoid algebra [57]. The latter relation can be
appreciated from the point of view of the tube algebra approach, which we use to argue that
the centre of the bicategory of G-graded 2-vector spaces describes string-like excitations
together with boundary conditions for the string endpoints.

In order to prove this statement, we construct explicitly the bicategory of module
categories over the multi-fusion category of groupoid-graded vector spaces. To do so,
we rely on the familiar correspondence between indecomposable module categories and
category of module over algebra objects [58–60]. When applied to the group treated as
a one-object groupoid, this provides a description for (2+1)d point-like excitations at the
interface between two gapped boundaries. When applied to the loop-groupoid of the group,
we demonstrate that it describes the string-like excitations and their endpoints boundary
conditions, which string-like excitations ending at gapped boundaries is a subclass of.

Organisation of the paper. In section 2 we review the construction of the lattice
Hamiltonian realization of Dijkgraf-Witten theory in any spatial dimension. We then de-
scribe an extension of the Hamiltonian model to introduce gapped boundary conditions.
In the subsequent discussion, we apply the tube algebra approach to point-like excitations
at the interface of two one-dimensional gapped boundaries in section 3. In section 4, we
consider string-like bulk excitations that terminate at gapped boundaries and apply the
tube algebra approach to this scenario. We also introduce in this section the notion of
relative groupoid algebra that unifies the (2+1)d and (3+1)d computations. The repre-
sentation theory of the tube algebras is presented in full detail in section 5. Finally, the
category theoretical structures capturing the properties of boundary excitations in (2+1)d
and (3+1)d are developed in section 6. The correspondence with the centre construction
of the bicategory of group-graded 2-vector spaces is also established in this section.

2 Dijkgraaf-Witten Hamiltonian model

In this section, we first review the definition of the Dijkgraaf-Witten theory and the con-
struction of its Hamiltonian realisation. We then generalise the construction to include
gapped boundaries.

2.1 Partition function

The input for the (d+1)-dimensional Dijkgraaf-Witten theory is given by a pair (G, [ω])
where G is a finite group and [ω] ∈ Hd+1(G,U(1)) is a (d+1)-cohomology class.2 Given a

2Here U(1) denotes the circle group as a G-module with action . : G×U(1)→ U(1) given by g . u = u

for all g ∈ G and u ∈ U(1).
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closed manifold, this theory can be conveniently expressed as a sigma model with target
space the classifying space BG of the group G. In order to extend the definition of the
partition function to open manifolds, it is necessary to endow the manifold with a triangu-
lation, in which case the partition function is obtained by summing over G-labellings of the
1-simplices that satisfy compatibility constraints. Ultimately, we are interested in lattice
Hamiltonian realisations of such theory, for which we need the expression of the partition
function that the Dijkgraaf-Witten theory assigns to a special class of open manifolds re-
ferred to as pinched interval cobordisms. We shall directly define the partition function for
this special class of manifolds. Details regarding more basic aspects of this theory can be
found in [33, 38].

Let Ξ be a compact, oriented d-manifold with a possibly non-empty boundary. We
define the pinched interval cobordism Ξ×p I over Ξ as the quotient manifold

Ξ×p I ≡ Ξ× I / ∼ , (2.1)

where I ≡ [0, 1] denotes the unit interval, and the equivalence relation ∼ is such that
(x, i) ∼ (x, i′), for all (x, i), (x, i′) ∈ ∂Ξ × I. By definition, we have ∂(Ξ ×p I) = Ξ ∪∂Ξ Ξ
and Ξ ∩ Ξ = ∂Ξ, where Ξ is the manifold Ξ with reversed orientation. In contrast, the
boundary of the interval cobordism Ξ × I over Ξ reads ∂(Ξ × I) = Ξ ∪ Ξ ∪ (∂Ξ × I). To
illustrate this distinction, we can consider the following simple examples:

[0, 1]×p [0, 1] = , [0, 1]× [0, 1] = .

Naturally, if ∂Ξ = ∅, then we have the identification Ξ×p I = Ξ× I.
In order to define the Dijkgraaf-Witten partition function, we shall further require our

pinched interval (spacetime) manifold be equipped with a choice of triangulation, i.e. a
∆-complex whose geometric realisation is homeomorphic to the manifold. We shall further
assume that every triangulation has a chosen total ordering of its 0-simplices (vertices),
referred to as a branching structure. A choice of branching structure for a triangulation
naturally encodes the structure of a directed graph on the corresponding one-skeleton.
By convention, we choose the 1-simplices (edges) to be directed from the lowest ordered
vertex to the highest ordered vertex. Given a compact, oriented d-manifold Ξ, we notate
a triangulation of the pinched interval cobordism Ξ ×p I by 4′Ξ4, such that ∂(4′Ξ4) =
Ξ4 ∪∂Ξ4′ Ξ4′ , where Ξ4 and Ξ4′ denote two possibly different triangulations of Ξ. Let us
remark that by definition, we have ∂(Ξ4) = ∂(Ξ4′).

Let Ξ ×p I be a (d+1)-dimensional pinched interval cobordism endowed with a tri-
angulation 4′Ξ4. We define a G-colouring of 4′Ξ4 as an assignment of group elements
gvivj ∈ G to every oriented 1-simplex (vivj) ⊂ 4′Ξ4, with vi < vj , such that for ev-
ery 2-simplex (vivjvk) ⊂ 4′Ξ4, with vi < vj < vk, the condition gvivjgvjvk = gvivk is
satisfied. The set of G-colourings on 4′Ξ4 is notated by Col(4′Ξ4, G). Given a G-
colouring g ∈ Col(4′Ξ4, G) and an n-simplex 4(n) = (v0v1 . . . vn) ⊂ 4′Ξ4, we denote by
g[v0v1 . . . vn] ≡ (gv0v1 , . . . , gvn−1vn) ∈ Gn, the n group elements specifying the restriction
of g to a G-colouring of (v0v1 . . . vn). Using this notation, we further define the evaluation
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of a (d+1)-cocycle ω ∈ Zd+1(G,U(1)) on a G-colouring g ∈ Col(4′Ξ4, G) restricted to a
(d+1)-simplex (v0 . . . vd+1) ⊂ 4′Ξ4 as

ω(g[v0 . . . vd+1]) ≡ ω(gv0v1 , . . . , gvdvd+1) .

Equipped with the above, let us now define the partition function that the (d+1)-
dimensional Dijkgraaf-Witten theory assigns to a given pinched interval cobordism. Let-
ting Ξ be a compact, oriented d-manifold and 4′Ξ4 a triangulation of Ξ×p I, the partition
function defines a linear operator

ZGω [4′Ξ4] : HGω [Ξ4]→ HGω [Ξ4′ ] ,

where the Hilbert spaces HGω [Ξ4] and HGω [Ξ4′ ] are defined according to

HGω [Ξ∗] ≡
⊗

4(1)⊂Ξ∗

C[G] . (2.2)

In the equation above, the tensor product is over all 1-simplices 4(1) in the corresponding
triangulation, and C[G] denotes the Hilbert space spanned by {|g〉}∀ g∈G with inner product
〈g|h〉 = δg,h, ∀ g, h ∈ G. Explicitly, the linear operator ZGω [4′Ξ4] reads

ZGω [4′Ξ4] ≡ 1
|G|#(4′Ξ4)

∑
g∈Col(4′Ξ4,G)

∏
4(d+1)⊂4′Ξ4

ω(g[4(d+1)])ε(4(d+1))

⊗
4(1)⊂Ξ4′

|g[4(1)]〉
⊗

4(1)⊂Ξ4

〈g[4(1)]| ,

where #(4′Ξ4) := |4′Ξ4(0)| − 1
2 |∂4′Ξ4

(0)| − 1
2 |∂Ξ(0)

4 | and ε(4(d+1)) ∈ ±1 denotes the
orientation of the (d+1)-simplex 4(d+1) ⊂ 4′Ξ4.

Before concluding this section, let us describe some of the salient features of the par-
tition function above. Firstly, given a pinched interval cobordism Ξ ×p I and two choices
of triangulation 4′Ξ4 and 4′Ξ̃4 such that ∂(4′Ξ4) = ∂(4′Ξ̃4), we find the operators
ZGω [4′Ξ4] = ZGω [4′Ξ̃4] to be equal. This property follows directly from the (d+1)-cocycle
condition satisfied by ω, i.e. d(d+1)ω = 1. This implies that the operator ZGω is boundary
relative triangulation independent, i.e. it remains invariant under retriangulation of the
interior int(4′Ξ4) := 4′Ξ4\∂(4′Ξ4) of 4′Ξ4 but does depend on a choice of boundary
triangulation. Using this boundary relative triangulaton independence, we find the crucial
relation

ZGω [4′′Ξ4′ ]ZGω [4′Ξ4] = ZGω [4′′Ξ4] .

Secondly, given a d-manifold Σ equipped with a triangulation Σ4 and Ξ4 a subcomplex
of int(Σ4), there is a natural action of ZGω [4′Ξ4] on HGω [Σ4] such that

ZGω [4′Ξ4] : HGω [Σ4]→ HGω [Σ4′ ]

– 6 –
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where Σ4′ is a triangulation of Σ induced from Σ4 by replacing the subcomplex Ξ4 ⊂
int(Σ4) with Ξ4′ , while keeping the remaining triangulation the same. On the subspace

VGω [Σ4] := ImZGω [4′Ξ4] ⊂ HGω [Ξ4] , (2.3)

the operator ZGω [4′Ξ4] further defines a unitary isomorphism

ZGω [4′Ξ4] : VGω [Σ4] ∼−→ VGω [Σ4′ ] . (2.4)

This follows directly from the boundary relative triangulation independence of ZGω as well
as the Hermicity condition

ZGω [4′Ξ4]† = ZGω [4Ξ4′ ] . (2.5)

2.2 Hamiltonian realisation of Dijkgraaf-Witten theory

Let us now construct an exactly solvable model that is the lattice Hamiltonian realisation
of Dijkgraaf-Witten theory in d spatial dimensions [31–33]. The input of the model is a
pair (G,ω) where G is a finite group and ω a normalised representative of a cohomology
class in Hd+1(G,U(1)). Given an oriented (possibly open) d-manifold Σ representing the
spatial manifold of the theory, and a choice of triangulation Σ4, the microscopic Hilbert
space of the model is given by

HGω [Σ4] ≡
⊗

4(1)⊂Σ4

C[G] ,

as in (2.2). A natural choice of basis for HGω [Σ4] is given by an assignment of gvivj ∈ G for
each oriented edge (vivj) ⊂ Σ4 defined by the vertices vi < vj . Henceforth, we shall refer
to such states as graph-states.

The bulk Hamiltonian is obtained as a sum of mutually commuting projectors that
come in two families. Firstly, to every 2-simplex (v0v1v2) ⊂ int(Σ4) of the interior of Σ4,
we assign an operator B(v0v1v2) that is defined via the following action on a graph-state
|g〉 ∈ HGω [Σ4]:

B(v0v1v2) : |g〉 7→ δgv0v1gv1v2 , gv0v2 |g〉 .

This definition can be extended linearly to an operator on any state |ψ〉 ∈ HGω [Σ4]. Sec-
ondly, to every 0-simplex (v0) ⊂ int(Σ4), we assign an operator A(v0) which acts on a local
neighbourhood of (v0) defined as the subcomplex Ξv0 := cl ◦ st(v0) ⊂ Σ4. Here st(−) and
cl(−) are the star and the closure operations, respectively, so that Ξv0 corresponds to the
smallest subcomplex of Σ4 that include all the simplices of which (v0) is a subsimplex. The
definition of A(v0) requires the triangulated pinched interval cobordism Ξv0Ξ Ξv0 defined as

Ξv0Ξ Ξv0 := (v′
0) tj cl ◦ st(v0) ,

where − tj − denotes the join operation. Given two simplices 4(n) ≡ (v0v1 . . . vn) and
4(n′) ≡ (vn+1vn+2 . . . vn+n′+1), the join operation creates the new simplex 4(n) tj4(n′) ≡
(v0v1 . . . vn+n′+1). In the definition above, (v′0) refers to an auxiliary vertex such that
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v0 < v′0 < v1, and which follows the ordering of (v0) with respect to the other vertices in
Σ4. For the sake of concreteness, we illustrate these various definitions with the following
two-dimensional example:

Σ4 = 0 and (0′) tj cl ◦ st(0) = (0′) tj 0 =

0′

0 .

Finally, given a state |ψ〉 ∈ HGω [Σ4], the action of the operator A(v0) is defined via

A(v0) : |ψ〉 7→ ZGω [(v′
0) tj cl ◦ st(v0)] |ψ〉 . (2.6)

For instance, in (3+1)d the action of the operator A(4) on a vertex (4) shared by four
3-simplices explicitly reads

A(4)

∣∣∣∣∣
0

1

2

3
4

〉
= ZGπ

[ 0

1

2

3

4′

4

] ∣∣∣∣∣
0

1

2

3
4

〉

= 1
|G|

∑
k∈G

π(g01g12, g23, g34, g44′)π(g01, g12, g23g34, g44′)
π(g12, g23, g34, g44′)π(g01, g12g23, g34, g44′)

∣∣∣∣∣
0

1

2

3
4′

〉
,

where π ∈ Z4(G,U(1)). The lattice Hamiltonian is finally obtained as

HG
ω [Σ4]bulk = −

∑
4(2)⊂int(Σ4)

B4(2) −
∑

4(0)⊂int(Σ4)

A4(0) , (2.7)

where the sums run over all the 2-simplices and 0-simplices in the interior of Σ4, respec-
tively. It follows from the definitions and the boundary relative triangulation independence
that the operators {A4(0) ,B4(2)}∀4(0),4(2)⊂int(Σ4) satisfy the algebra

A(vi)A(vi) = A(vi) , A(vi)A(vj) = A(vj)A(vi) ,

B(vjvkvl)B(vjvkvj) = B(vjvkvl) , B(vjvkvl)B(v′jv
′
k
v′
l
) = B(vj′vk′vl′ )B(vjvkvl) ,

A(vi)B(vjvkvl) = B(vjvkvl)A(vi) ,

for all (vi), (vi′), (vjvkvl), (v′jv′kv′l) ⊂ Σ4. All the operators are mutually commuting pro-
jectors and the Hamiltonian is exactly solvable. It follows that the ground state projector
Pbulk

Σ4 simply reads

Pbulk
Σ4 :=

∏
4(0)⊂int(Σ4)

A4(0)

∏
4(2)⊂int(Σ4)

B4(2) . (2.8)
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Notice that the ordering in the product is superfluous by the commutativity of the opera-
tors. Furthermore it follows from inspection that

Pbulk
Σ4 = ZGω [4Σ4] , (2.9)

such that the ground state subspace of HG
ω [Σ4]bulk is given by

ImPbulk
Σ4 = ImZGω [4Σ4] ≡ VGω [Σ4] , (2.10)

with the last equality following from (2.3). This is the space spanned by linear su-
perpositions |ψ〉 of graph-states fulfilling the stabiliser constraints A4(0) |ψ〉 = |ψ〉 and
B4(2) |ψ〉 = |ψ〉 at every 4(0),4(2) ⊂ int(Σ4).

Let us conclude this construction by making two observations. The first one is that we
showed in (2.4) how given two triangulations Σ4 and Σ4′ of Σ such that ∂Σ4 = ∂Σ′4, the
subspaces VGω [Σ4] and VGω [Σ4′ ] were unitarily isomorphic. This signifies that it is always
possible to perform local changes of the triangulation in the interior of Σ while remaining
in the same gapped phase. This will turns out to be very useful when performing explicit
computations. In particular, we shall often apply unitary isomorphisms obtained from
pinched interval cobordisms describing so-called Pachner moves. The second observation
is that the Hamiltonian operators do not mix ground states with differing boundary G-
colourings, so that there exists a natural decomposition of the Hilbert space as

VGω [Σ4] =
⊕

a∈Col(∂Σ4,G)
VGω [Σ4]a (2.11)

where VGω [Σ4]a ⊆ VGω [Σ4] denotes the subspace of states identified by the boundary colour-
ing a ∈ Col(∂Σ4, G). More details regarding the construction up to that point can be found
in [33].

2.3 Gapped boundary partition function

Given an open d-dimensional surface Σ endowed with a triangulation Σ4, we reviewed
above how to define an exactly solvable model as the Hamiltonian realisation of Dijkgraaf-
Witten theory whose input data is a finite group G and normalised (d+1)-cocycle in
Hd+1(G,U(1)). The lattice Hamiltonian HG

ω [Σ4]bulk was obtained as a sum of mutu-
ally commuting projectors that act on the interior of Σ4. We would like to extend this
Hamiltonian to ∂Σ4 while preserving the gap of the system, giving rise to the notion of
gapped boundaries. In order to do so, we shall first define a generalisation of the partition
function introduced in section 2.1 for spacetime (d+1)-manifolds presenting two types of
boundaries.

Let us begin by introducing the notion of relative pinched interval cobordisms. Let
Ξ be a compact, oriented, d-manifold with non-empty boundary and Ω ⊆ ∂Ξ a choice of
(d−1)-dimensional submanifold of the boundary. The relative pinched interval cobordism
Ξ×Ω

p I over Ξ with respect to Ω is defined as the quotient manifold

Ξ×Ω
p I ≡ Ξ× I/ ∼Ω, (2.12)
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where ∼Ω is defined such that (x, i) ∼Ω (x, i′), for all (x, i), (x, i′) ∈ (∂Ξ\int(Ω)) × I. By
definition, we have ∂(Ξ×Ω

p I) = Ξ ∪Ω (Ω×p I) ∪∂Ξ Ξ and Ξ ∩ Ξ = ∂Ξ\int(Ω). To illustrate
this definition we consider the following simple examples:

[0, 1]×p [0, 1] = , [0, 1]×Ω
p [0, 1] = ,

with Ω ≡ 0 ⊂ {0, 1} = ∂I. Henceforth, we shall utilise the convention that Ξ ×Ω
p I defines

a cobordism

Ξ×Ω
p I : Ξ→ Ξ , (2.13)

and refer to Ω×p I ⊂ ∂(Ξ×Ω
p I) as a time-like boundary. A triangulation of Ξ×Ω

p I can be
constructed as follows: let Ξ4, Ξ4′ be a pair of triangulations of Ξ such that Ω4 ⊂ ∂Ξ4
and Ω4′ ⊂ ∂Ξ4′ define two possibly different triangulations of Ω satisfying

∂Ξ4\int(Ω4) = ∂Ξ4′\int(Ω4′) . (2.14)

Considering a triangulation 4′Ω4 of the time-like boundary Ω ×p I, we define 4′ΞΩ
4 as

the triangulation of the relative pinched interval cobordism Ξ×Ω
p I whose boundary reads

Ξ4 ∪Ω4 4′Ω4 ∪∂Ξ4′ Ξ4′ .
Given a triangulation 4′ΞΩ

4 of Ξ×Ω
p I, let us now define a generalisation of the (d+1)-

dimensional Dijkgraaf-Witten theory with input data (G,ω) such that the corresponding
partition function evaluated on 4′ΞΩ

4 remains invariant under triangulation changes of
both the interior of 4′ΞΩ

4 and the interior of the time-like boundary 4′Ω4. Let Ω = tiΩi

be a decomposition of Ω into connected components Ωi, each with triangulations Ω4,i ⊂
∂Ξ4 and Ω4′,i ⊂ ∂Ξ4′ . The generalised theory associates to each connected component
Ωi a pair (Ai, φi), where Ai ⊂ G is a subgroup and φi ∈ Cd(Ai,U(1)) a normalised group
d-cochain such that d(d)φi = ω−1|Ai . We refer to the data (Ai, φi) as a choice of gapped
boundary condition.3 We define a (G, {Ai})-colouring g of 4′ΞΩ

4 as a G-colouring such
that g[4′Ω4,i] ∈ Col(4′Ω4,i, Ai). The set of (G, {Ai})-colourings on 4′ΞΩ

4 is denoted
by Col(4′ΞΩ

4, G, {Ai}). Equipped with such choices, we define the generalised partition
function as follows:

ZG,{Ai}ω,{φi} [4′ΞΩ
4] = 1

|G|#(4′ΞΩ4)∏
i |Ai|#(4′Ω4,i)

(2.15)

∑
g∈Col(4′ΞΩ4,G,{Ai})

∏
i

( ∏
4(d)⊂4′Ω4,i

φi(g[4(d)])ε(4(d))
)

∏
4(d+1)⊂4′ΞΩ4

ω(g[4(d+1)])ε(4(d+1)) ⊗
4(1)⊂Ξ4′

|g[4(1)]〉
⊗

4(1)⊂Ξ4

〈g[4(1)]| ,

where

#(4′ΞΩ
4) := |int(4′Ξ4)(0)|+ 1

2 |int(Ξ4′)(0)|+ 1
2 |int(Ξ4)(0)|

and #(4′Ω4,i) := |int(4′Ω4,i)(0)|+ 1
2 |int(Ω4′,i)(0)|+ 1

2 |int(Ω4,i)(0)| .

3In section 6, we shall revisit gapped boundary conditions from a category theoretical point of view.
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As stated previously, the partition function remains invariant under retriangulation of the
interior of 4′Ω4 as well as the interior of 4′ΞΩ

4. In this manner, the partition function
ZG,{Ai}ω,{φi} [4ΞΩ

4] defines a projection operator and we associate to the triangulation Ξ4 the
following Hilbert space:

VG,{Ai}ω,{φi} [Ξ4] := Im ZG,{Ai}ω,{φi} [4ΞΩ
4] . (2.16)

Furthermore, akin to equations (2.4) and (2.5), the triangulation invariance properties of
the partition function together with the Hermicitiy condition

ZG,{Ai}ω,{φi} [4′ΞΩ
4]† = ZG,{Ai}ω,{φi} [4ΞΩ

4′ ] (2.17)

demonstrate that the operator

ZG,{Ai}ω,{φi} [4′ΞΩ
4] : VG,{Ai}ω,{φi} [Ξ4] ∼−→ VG,{Ai}ω,{φi} [Ξ4′ ] (2.18)

defines a unitary isomorphism of Hilbert spaces.

2.4 Hamiltonian model in the presence of gapped boundaries

In section 2.2, we described the Hamiltonian realisation HG
ω [Σ4]bulk of the Dijkgraaf-Witten

theory in d spatial dimensions in the presence of open boundary conditions. Utilising
the partition function (2.15) introduced in the previous section, we shall now define an
extension of the Hamiltonian model to include gapped boundary conditions [14, 15].

Let us consider an oriented d-manifold Σ with non-empty boundary and a choice of
triangulation Σ4. The input of the model is a pair (G,ω) and a choice of gapped boundary
conditions {(Ai, φi)} for each connected component ∂Σ4,i ⊂ Σ4, where Ai ⊂ G is a
subgroup and φi ∈ Cd(Ai,U(1)) is a normalised group d-cochain satisfying the condition
d(d)φi = ω−1|Ai . In the interior of Σ4, the (bulk) Hamiltonian was defined in eq. (2.7).
Given such a choice of gapped boundary conditions, let us now define an operator that acts
on a local neighbourhood of a boundary vertex (v0) ⊂ ∂Σ4,i. Mimicking the definition of
the bulk vertex operator, we consider the subcomplex Ξv0 := cl ◦ st(v0), which corresponds
to the smallest subcomplex that includes all the simplices of which (v0) is a subsimplex.
We next define the triangulated relative pinched interval cobordism over Ξv0 with respect
to Ω := cl ◦ st(v0) ∩ ∂Σ4,i

Ξv0Ξ Ξv0 := (v′0) tj cl ◦ st(v0) , (2.19)

whose boundary is given by

∂(Ξv0Ξ Ξv0 ) = Ξv0 ∪Ω (Ωv0Ω Ωv0 ) ∪∂Ξv0 Ξv0 (2.20)

where Ωv0 := (v′0)tj Ω. Given this relative pinched interval cobordism, we define the action
of the operator AAi,φi(v0) on a state |ψ〉 ∈ HG,Aiω,φi

[Σ4] via

AAi,φi(v0) : |ψ〉 7→ ZG,Aiω,φi
[Ξv0Ξ Ξv0 ]|ψ〉 . (2.21)
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The gapped boundary Hamiltonian is finally defined as

HG,{Ai}
ω,{φi} [Σ4] = HG

ω [Σ4]bulk +
∑

∂Σ4,i⊂∂Σ4

HG,Ai
ω,φi

[∂Σ4,i]bdry , (2.22)

where

HG,Ai
ω,φi

[∂Σ4,i]bdry := −
∑

4(0)⊂∂Σ4,i

AAi,φi4(0) . (2.23)

From the triangulation invariance properties of the partition function ZG,{Ai}ω,{φi} follows that
the Hamiltonian is a sum of mutually commuting projection operators, and as such it is
still exactly solvable. Furthermore, analogously to the bulk Hamiltonian, we can identify
the ground-state subspace VG,{Ai}ω,{φi} [Σ4] with

Im ZG,{Ai}ω,{φi} [4Σ∂Σ
4] ≡ VG,{Ai}ω,{φi} [Σ4] , (2.24)

and verify that the unitary isomorphism

ZG,{Ai}ω,{φi} [4′Σ∂Σ
4] : VG,{Ai}ω,{φi} [Σ4] ∼−→ VG,{Ai}ω,{φi} [Σ4′ ] (2.25)

commutes with the Hamiltonian. This last statement implies that we can always replace
a given triangulated subcomplex Ω4 ⊂ ∂Σ4 by Ω4′ while remaining in the ground state
sector.

Note finally that in the subsequent discussion, we shall also refer to gapped interfaces
between several gapped boundaries. However, we will not require an explicit form of the
Hamiltonian for such interfaces, and as such we omit here the explicit definition. Despite
such an omission, the corresponding Hamiltonian can be explicitly defined in close analogy
with the construction of the gapped boundary Hamiltonian presented in this section.

In order to illustrate the definition and some properties of the gapped boundary
Hamiltonian, let us now specialize to two dimensions (see also [14]). We consider a two-
dimensional surface Σ endowed with a triangulation Σ4 and a single connected boundary
component ∂Σ4. The input data for the bulk Hamiltonian is a finite group G and a nor-
malised group 3-cocycle α. Furthermore, we define on ∂Σ4 a gapped boundary whose
input data is a pair (A, φ), where A ⊂ G is a subgroup and φ a group 2-cochain satisfying
d(2)φ = α−1|A which is explicitly expressed via

α−1(a, a′, a′′) != d(2)φ(a, a′, a′′) = φ(a′, a′′)φ(a, a′a′′)
φ(aa′, a′′)φ(a, a′) , (2.26)

for every a, a′, a′′ ∈ A ⊂ G. We consider the following situation:

0 1 2

3

where the dashed area represents the bulk of the manifold, whereas the coloured line
stands for the gapped boundary. The black lines represent the 1-simplices on the interior
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Σ4 that are included in cl ◦ st(1). We first want to write down the action of the boundary
operator at the vertex (1) on graph-states of the form

SpanC

{∣∣∣∣g[
0 1 2

3

]〉}
∀ g∈Col(cl◦st(1),G,A)

≡ SpanC

{∣∣∣∣ ag a′−1gg

a a′0 1 2

3

〉}
∀ g∈G
∀ a,a′∈A

.

(2.27)
The boundary vertex operator AA,φ(1) boils down to evaluating the partition function (2.15)
on the relative pinched interval cobordism (023)×(02)

p I defined by

0
1

2

3

1̃

, (2.28)

such that 0 < 1 < 1̃ < 2 < 3 and the orange edges represent the time-like boundary.
Explicitly, the action of this boundary vertex operator reads

AA,φ(1)

∣∣∣∣ ag a′−1gg

a a′0 1 2

3

〉
= 1
|A|

∑
ã∈A

α(a, ã, ã−1g)φ(ã, ã−1a′)
α(ã, ã−1a′, a′−1g)φ(a, ã)

∣∣∣∣ ag
a′−1g

ã−1g

aã ã−1a′0 1 2

3

〉
. (2.29)

Let us now compute a triangulation changing boundary operator on a graph state (2.27).
More specifically, let us construct the isomorphism that replaces the boundary subcomplex
(01)∪ (12) by a single 1-simplex (02). The corresponding operator is conveniently obtained
by evaluating the partition function (2.15) on the relative pinched interval cobordism

0

1

2

3 , (2.30)

with time-like boundary (012), implementing the isomorphism

∣∣∣∣ ag a′−1gg

a a′0 1 2

3

〉
' 1
|A|

1
2

α(a, a′, a′−1g)
φ(a, a′)

∣∣∣∣ ag a′−1g

aa′0 2

3

〉
. (2.31)

We can now confirm that this triangulation changing operator does commute with
the Hamiltonian operator. This follows from the cocycle relations d(2)φ(a, ã, ã−1a′) =
α−1(a, ã, ã−1a′) and d(3)α(a, ã, ã−1a′, a′−1g) = 1.

3 Tube algebra for gapped boundary excitations in (2+1)d

In this section, we apply the tube algebra approach in order to derive the algebraic structure
underlying the boundary point-like excitations in two spatial dimensions.
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3.1 Definition

Let us consider an open two-dimensional surface Σ. Its boundary ∂Σ is referred to as the
physical boundary of the system. In the previous section, we explained how to construct
the lattice Hamiltonian realisation of Dijkgraaf-Witten theory on a triangulation of Σ. We
further detailed how this model could be extended to the physical boundary of Σ in such
way as to remain gapped. Bulk excitations of this model were studied in detail in general
dimensions in [33]. In addition to bulk excitations, the lattice Hamiltonian yields point-
like boundary excitations that are excitations obtained by violating some of the stabiliser
constraints on the boundary. We are interested in the classification and the statistics of
such gapped boundary excitations. More specifically, we consider the situation where two
different one-dimensional gapped boundaries meet at a zero-dimensional interface, and are
interested in the point-like excitations living at such interface. This situation can be locally
depicted as follows:

Aφ Bψ

. (3.1)

Given that the input data for the bulk theory is a pair (G,α), where α is a normalized
representative of a cohomology class in H3(G,U(1)), the thick coloured lines stand for two
gapped boundaries characterized by the boundary conditions Aφ ≡ (A, φ) and Bψ ≡ (B,ψ),
respectively, while the black dot illustrates the binary interface between them. The bound-
ary conditions Aφ and Bψ, which were defined in the previous section, are such that
A,B ⊂ G, d(2)φ = α−1|A and d(2)ψ = α−1|B. We denote the lattice Hamiltonian for
this specific choice of boundary conditions by HG,A,B

α,φ,ψ [Σ], and its associated ground state
subspace by VG,A,Bα,φ,ψ [Σ]. In the following discussion, we will suppose that the Hamiltonian
is further extended to the interface, but we do not require the explicit form of the corre-
sponding operator. Note that although we restrict our attention to gapped boundaries, our
exposition could be easily generalised to accommodate domain walls, which can be thought
of as shared gapped boundaries between two (possibly different) topological phases.

By definition, given a point-like excitation at the interface of two one-dimensional
gapped boundaries, there is a local neighbourhood of Σ for which the energy density is
higher than the one of the ground state. Removing such a local neighbourhood leaves a
new boundary component, referred to as the excitation boundary, that is incident on the
physical boundary ∂Σ of the manifold. We denote the resulting manifold by Σo and the
excitation boundary by ∂Σo|ex.. We illustrate this configuration as follows:

→ , (3.2)

where the dashed area represents the region whose energy density is higher than the one
of the ground state. The black line represents the excitation boundary, whose topology is
the one of the unit interval I ≡ [0, 1]. Endowing Σo with a triangulation, we are interested in
the lattice Hamiltonian HG,A,B

α,φ,ψ [Σo
4\∂Σo

4|ex.] obtained by removing all the operators whose
supports are on ∂Σo

4|ex.. In a way reminiscent to the bulk Hamiltonian in section 2.2, this
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Hamiltonian displays open boundary conditions such that the corresponding ground state
subspace can be decomposed over them. Properties of the point-like excitations can then be
encoded into the boundary conditions, so that a classification of the boundary conditions
induces a classification of the corresponding point-like excitations. In other words, ground
states in VG,A,Bα,φ,ψ [Σo

4], which are characterised by a given excitation boundary colouring,
define specific excitations with respect to ground states in the Hilbert space VG,A,Bα,φ,ψ [Σ4].
In general, any such excitation is a superposition of elementary point-like excitations. In
order to find these point-like elementary boundary excitations, we apply the tube algebra
approach, whose general construction can be found in [33].

Let us consider the manifold ∂Σo|ex.×I. Naturally, it has the topology of a 2-cell but we
would like to emphasize the fact that it has two kinds of boundary components, namely a
pair of physical boundary components and a pair of excitation boundary components. More
precisely, it is the system obtained by removing from the two-disk D2 local neighbourhoods
at the interface of two different physical boundaries:

→ ' , (3.3)

where the nomenclature is the same as before. A crucial, yet trivial, fact is that we can
always glue a copy of ∂Σo|ex. × I to Σo along ∂Σo|ex. without modifying its topology, i.e.

∪
→ ' .

As explained in more detail in [33], given a triangulation of Σo and making use of the
triangulation changing unitary isomorphisms, this simple gluing operation induces a sym-
metry map on the ground state subspace, whose simple modules classify the boundary
conditions on ∂Σo|ex. and as such the corresponding point-like boundary excitations. In
order to compute these simple modules, we further remark that it is always possible to
apply a diffeomorphism so that a local neighbourhood of ∂Σo|ex. is of the form ∂Σo|ex. × I
so that the corresponding ground state subspaces are isomorphic. The effect of such dif-
feomorphism is to localise the action of the symmetry map so that it only involves degrees
of freedom living within ∂Σo|ex. × I. Consequently, it is enough to consider the symmetry
map that corresponds to the gluing of two copies of the manifold ∂Σo|ex. × I, i.e.

(∂Σo|ex. × I) ∪∂Σo|ex.
(∂Σo|ex. × I) ' ∂Σo|ex. × I . (3.4)
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We pictorially summarize these operations below:

∪
'

∪

reduces−−−−→
to

∪
→ ' .

Given a triangulation of ∂Σo|ex. × I, this symmetry map in turn endows the associated
ground state subspace with a finite-dimensional algebraic structure referred to as the tube
algebra. Irreducible representations of the tube algebra label the simple modules of the
original symmetry map, classifying boundary conditions on ∂Σo|ex., and thus the corre-
sponding point-like boundary excitations.

3.2 Computation of the tube algebra

Let us now derive the tube algebra for the configuration described above so as to deter-
mine the elementary boundary excitations at the interface of two one-dimensional gapped
boundaries. First, we need to specify the ground state subspace on ∂Σo|ex.× I by picking a
triangulation. Crucially, the choice of triangulation does not matter. Indeed, given a trian-
gulation of the excitation boundary, changing the discretisation of the physical boundary
or the bulk of ∂Σo|ex.× I yields an isomorphic ground state subspace, which would in turn
induce an isomorphic tube algebra. Furthermore, a different choice of triangulation for the
excitation boundary would yield a Morita equivalent tube algebra, which by definition has
the same simple modules as the original algebra. As such, we should make the simplest
choice of triangulation possible. We choose to discretise the excitation boundary by a single
1-simplex and ∂Σo|ex. × I as a triangulated 2-cell. The resulting triangulated manifold is
denoted by T[I4] and the corresponding ground state subspace explicitly reads4

VG,A,Bα,φ,ψ [T[I]] := SpanC

{∣∣∣∣g[
0 1

0′ 1′

]〉}
∀ g∈Col(T[I],G,A,B)

≡ SpanC

{∣∣∣∣ g a−1gb

b

a0 1

0′ 1′

〉}
∀ g∈G
∀ (a,b)∈A×B

≡ SpanC
{∣∣g a−→

b

〉}
∀ g∈G
∀ (a,b)∈A×B

, (3.5)

where some labellings are left implicit since they can be deduced from the flatness con-
straints, i.e. the stabiliser constraints with respect to the B4(2)-operators. The tube al-
gebra can be computed using the following algorithm:5 Recall that the tube algebra is
an extension of the gluing operation T[I] ∪I T[I] ' T[I] to the ground state subspace

4Note that we rotated the drawings by 90◦ for convenience.
5We refer the reader to [33] for a general and more detailed definition of the tube algebra.
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VG,A,Bα,φ,ψ [T[I]]. Using the relation (2.11), we obtain the following decomposition of the Hilbert
space VG,A,Bα,φ,ψ [T[I]]:

VG,A,Bα,φ,ψ [T[I]] =
⊕

g1∈Col(I×{0},G)
g2∈Col(I×{1},G)

VG,A,Bα,φ,ψ [T[I]]g1,g2 .

The gluing itself is then performed via an injective map GLU defined according to

GLU : VG,A,Bα,φ,ψ [T[I]]⊗ VG,A,Bα,φ,ψ [T[I]]→
⊕

g1,g′1∈Col(I×{0},G)
g2,g′2∈Col(I×{1},G)

VG,A,Bα,φ,ψ [T[I]]g1,g2 ⊗ V
G,A,B
α,φ,ψ [T[I]]g′1,g′2 ,

which acts on states |ψg1,g2〉 ∈ V
G,A,B
α,φ,ψ [T[I]]g1,g2 and |ψ′g′1,g′2〉 ∈ V

G,A,B
α,φ,ψ [T[I]]g′1,g′2 via identifi-

cation of the boundary conditions along the gluing interface, i.e.

GLU : |ψg1,g2〉 ⊗ |ψ′g′1,g′2〉 7→ δg2,g′1
|ψg1,g2〉 ⊗ |ψ′g2,g′2

〉 .

This map can be linearly extended to states displaying mixed grading. Importantly, the
image of this map typically differs from the ground state subspace VG,A,Bα,φ,ψ [T[I]∪IT[I]] since
all the stabiliser constraints might not be satisfied along the gluing interface. This can be
resolved by applying the Hamiltonian projection operator PT[I]∪IT[I] with respect to the full
Hamiltonian HG,A,B

α,φ,ψ [T[I]∪I T[I]], which was defined in section 2.4. Finally, we can apply a
triangulation changing isomorphism in order to obtain a final state in VG,A,Bα,φ,ψ [T[I]]. Putting
everything together, this defines a ?-product, which together with VG,A,Bα,φ,ψ [T[I]] defines the
tube algebra:

? :VG,A,Bα,φ,ψ [T[I]]⊗ VG,A,Bα,φ,ψ [T[I]] GLU−−→ HG,A,Bα,φ,ψ [T[I] ∪I T[I]]
PT[I]∪IT[I]−−−−−−→ VG,A,Bα,φ,ψ [T[I] ∪I T[I]] ∼−→ VG,A,Bα,φ,ψ [T[I]] .

Given two basis states of VG,A,Bα,φ,ψ [T[I]] as defined in (3.5), let us now compute explicitly this
?-product. Firstly, the G-colourings along the gluing interface are identified via the map
GLU, i.e.

GLU
(∣∣∣∣ g a−1gb

b

a0 1

0′ 1′

〉
⊗
∣∣∣∣ g′ a′−1g′b′

b′

a′1 2

1′ 2′

〉)
= δg′,a−1gb

∣∣∣∣ g (aa′)−1gbb′

b b′

a a′0 1

0′ 1′ 2′

2 〉
.

Secondly, we apply the Hamiltonian projector PT[I]∪IT[I] in order to enforce the gauge invari-
ance at the physical boundary vertices that are along the gluing interface. This operator
is obtained by evaluating the partition function (2.15) on the relative pinched interval
cobordism

0′ 1′ 2′

1̃′

0
1 2

1̃

, (3.6)
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and its action explicitly reads

PT[I]∪IT[I]

(∣∣∣∣ g (aa′)−1gbb′

b b′

a a′0 1

0′ 1′ 2′

2 〉)

= 1
|A||B|

∑
(ã,b̃)∈A×B

ϑABg (a, ã|b, b̃)
ϑABa−1gb(ã, ã−1a′|b̃, b̃−1b′)

∣∣∣∣ g (aa′)−1g′bb′

bb̃ b̃−1b′

aã ã−1a′0 1

0′ 1′ 2′

2 〉
,

where we introduced the cocycle data

ϑABg (a, a′|b, b′) := ψ(b, b′)
φ(a, a′)

α(a, a′, a′−1a−1gbb′)α(g, b, b′)
α(a, a−1gb, b′) . (3.7)

It follows from α−1|A = d(2)φ and α−1|B = d(2)ψ, as well as the cocycle conditions

d(3)α(a, a′, a′′, a′′−1a′−1a−1gbb′b′′) = 1 d(3)α(a, a−1gb, b′, b′′) = 1

d(3)α(a, a′, a′−1a−1gbb′, b′′) = 1 d(3)α(g, b, b′, b′′) = 1

that ϑAB satisfies

d(2)ϑABg (a, a′, a′′|b, b′, b′′) :=
ϑABa−1gb(a

′, a′′|b′, b′′)ϑABg (a, a′a′′|b, b′b′′)
ϑABg (aa′, a′′|bb′, b′′)ϑABg (a, a′|b, b′) = 1 , (3.8)

which in particular implies the following property

ϑABa−1gb(a
−1, a|b−1, b) = ϑABg (a, a−1|b, b−1) . (3.9)

Furthermore, given that α, φ and ψ are normalized cocycles, we have the normalisation
conditions:

ϑABg (1A, a′|1B, b′) = ϑABg (a,1A|b,1B) = 1 = ϑABg (1A, a′|b,1B) = ϑABg (a,1A|1B, b′) .
(3.10)

Going back to the tube algebra, it remains to apply a triangulation changing isomorphism
in order to recover the initial triangulation. This can be done by evaluating the partition
function for the pinched interval cobordism (012)+ × I endowed with the triangulation
depicted below:

(012)+ × I :=
0′ 2′

1′

0 2

1
≡ (00′1′2′)+ ∪ (011′2′)− ∪ (0122′)+ . (3.11)

The corresponding operator implements the isomorphism

∣∣∣∣ g (aa′)−1g′bb′

bb̃ b̃−1b′

aã ã−1a′0 1

0′ 1′ 2′

2 〉
' 1
|A|

1
2 |B|

1
2
ϑABg (aã, ã−1a′|bb̃, b̃−1b′)

∣∣∣∣ g (aa′)−1gbb′

bb′

aa′1 2

1′ 2′

〉
.
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Putting everything together, we obtain

∣∣∣∣ g a−1gb

b

a0 1

0′ 1′

〉
?

∣∣∣∣ g′ a′−1g′b′

b′

a′1 2

1′ 2′

〉
=

δg′,a−1gb

|A|
1
2 |B|

1
2
ϑABg (a, a′|b, b′)

∣∣∣∣ g (aa′)−1gbb′

bb′

aa′1 2

1′ 2′

〉
,

where we used the cocycle relation d(2)ϑABg (a, ã, ã−1a′|b, b̃, b̃−1b′) = 1. Using the more
symbolic notation introduced in (3.5), the ?-product reads

∣∣g a−→
b

〉
?
∣∣g′ a′−−→

b′

〉
=

δg′,a−1gb

|A|
1
2 |B|

1
2
ϑABg (a, a′|b, b′)

∣∣g aa′−−→
bb′

〉
. (3.12)

3.3 Groupoid algebra

Before concluding this section about boundary point-like excitations in (2+1)d, we are
going to show that the tube algebra derived above can be recast as a twisted groupoid
algebra[57]. Although this might seem a little bit artificial at the moment, this will turn
out to be very useful in the subsequent sections. Indeed, we will show that in the language
of groupoid algebras, both the tube algebras in (2+1)d and in (3+1)d can be unified
allowing for a simultaneous study of the corresponding representation theories.

Let us first review some basic category theoretical definitions. More details can be
found for example in [59, 61]. Given a category C, the set of objects and the set of mor-
phisms between objects are denoted by Ob(C) and Hom(C), respectively. Given two objects
X,Y ∈Ob(C), the set of morphisms from X to Y is written HomC(X,Y )3 f :X→Y , such
that X = s(f) and Y = t(f) are the source and target objects of f , respectively. Composi-
tion rule of morphisms is defined according to

X
f−−→ Y

f ′−−−→ Z = X
ff ′−−−→ Z .

Furthermore, for every object X ∈ Ob(C), the corresponding identity morphisms is denoted
by idX ∈ HomC(X,X). Finally, we notate the set of n composable morphims in C by
Cncomp := {(f1, . . . , fn) ∈ Hom(C)n | t(fi) = s(fi+1), ∀ i ∈ 1, . . . , n−1}. Let us now specialize
to groupoids:

Definition 3.1 (Groupoids). A (finite) groupoid G is a category whose object and mor-
phism sets are finite and all morphisms are invertible, i.e. for each morphism g ∈
HomG(X,Y ), there exists a morphism g−1 ∈ HomG(Y,X) such that gg−1 = idX and
g−1g = idY .

Every finite group provides a finite one-object groupoid refers to as the delooping of the
group:

Example 3.1 (Delooping of a group). Let G be a finite group. The delooping of G is
the one-object groupoid G with Ob(G) = {•} and morphism set HomG(•, •) = G with the
composition rule being provided by the group multiplication in G.
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Henceforth, we shall identify any group G and its delooping G, denoting both by G.
Generalizing the notion of group cohomology in an obvious way, we obtain the notion of
groupoid cohomology:6

Definition 3.2 (Groupoid cohomology). Let G be a finite groupoid and M a G-module.
Given the set of n composable morphisms Gncomp in G, we define an n-cochain on G as a
map ωn : Gncomp → M. On the space Cn(G,M) of n-cochains, the coboundary operator
d(n) : Cn(G,M)→ Cn+1(G,M) is defined via

d(n)ωn(g1, . . . , gn+1) (3.13)
:= g1 . ωn(g2, . . . , gn+1)ωn(g1, . . . gn)(−1)n+1

n∏
i=1

ωn(g1, . . . , gi−1, gigi+1, gi+2, . . . , gn+1)(−1)i .

The n-th cohomology group of groupoid cocycles is then defined as usual by

Hn(G,M) := Ker d(n)

Im d(n−1) ≡
Zn(G,M)
Bn(G,M) . (3.14)

Throughout this manuscript, we always consider cohomology groups of the form
Hn(G,U(1)), where U(1) is taken to be the G-module with the trivial groupoid action.
Naturally, the cohomology of a group coincides with the groupoid cohomology of its de-
looping. Furthermore, we shall often require, without loss of generality, that cocycles are
normalised:

Definition 3.3 (Normalised cocycles). Given a groupoid n-cocycle [ωn] ∈ Hn(G,U(1)),
we call ωn ∈ [ωn] a normalised representative if ωn(g1, . . . , gn) = 1, whenever any of
the arguments is an identity morphism. In particular there always exists a normalised
representative of each n-cocycle equivalence class [ωn] ∈ Hn(G,U(1)).

Utilising the technology of groupoid cohomology, we can now introduce twisted groupoid
algebras, generalising the theory of twisted group algebras [57]:

Definition 3.4 (Twisted groupoid algebra). Given a finite groupoid G and a normalised
2-cocycle ϑ ∈ Z2(G,U(1)), the twisted groupoid algebra C[G]ϑ is the algebra defined over
the vector space

SpanC{|g〉 | ∀ g ∈ Hom(G)} (3.15)

with algebra product

|g〉 ? |g′〉 := δt(g),s(g′) ϑ(g, g′) |gg′〉 . (3.16)

The requirement that ϑ is a 2-cocycle ensures that C[G]ϑ is an associative algebra.
6Analogously to group cohomology, groupoid cohomology of a groupoid is implicitly defined as the

simplicial cohomology of its classifying space.
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Putting everything together, let us now recast the (2+1)d tube algebra as a twisted
groupoid algebra. Let GAB be the (finite) groupoid whose objects are given by group
elements in G, and whose morphisms read g a−→

b
a−1gb ≡ g

a−→
b
, where (a, b) ∈ A × B with

the composition given by the multiplication in G:

g
a−→
b
a−1gb

a′−−→
b′

a′−1a−1gbb′ = g
aa′−−→
bb′

a′−1a−1gbb′ . (3.17)

Utilising this definition, we can conveniently redefine ϑAB as a normalised groupoid 2-
cocycle in H2(GAB,U(1)), in such a way that the tube algebra defined earlier is isomorphic
to the groupoid algebra C[GAB]ϑAB ≡ C[GAB]αφψ of GAB twisted by ϑAB.7

4 Tube algebra for gapped boundary excitations in (3+1)d

In this section, we apply the tube algebra approach to study excitations in the presence
of gapped boundaries in (3+1)d. Although the excitation content of the model is rich in
(3+1)d, we focus on a special configuration, which turns out to be related to that considered
in the previous section via a dimensional reduction argument.

4.1 Definition

The strategy we presented in section 3 applies identically in three dimensions. Given a
pattern of two-dimensional gapped boundaries, excitations can be classified by considering
boundary conditions of the manifold obtained by removing local neighbourhoods of these
excitations. Given that the input data for the bulk theory is a pair (G, π), where is
π a normalized representative of a cohomology class in H4(G,U(1)), we are interested in
the situation where two two-dimensional gapped boundaries characterized by the boundary
conditions Aλ ≡ (A, λ) and Bµ ≡ (B,µ) meet at a one-dimensional interface. The boundary
conditions are such that A,B ⊂ G, d(3)λ = π−1|A and d(3)µ = π−1|B. We denote the
Hamiltonian defined according to (2.7) for these boundary conditions as HG,A,B

π,λ,µ [Σ].
Given this situation, several types of excitations could be studied. For instance, we

could investigate point-like boundary excitations at the one-dimensional interface. Instead,
we consider a bulk string-like excitation that terminates at two (possibly different) gapped
boundaries. This situation can be depicted as follows:

Aλ Bµ

→ , (4.1)

where the dark volume represents a local neighbourhood of the string-like excitation, and
thus the region whose energy density is higher than that of the ground state. Removing

7Notice that the normalization conditions (3.10) do not state that the cocycle is equal to one whenever
any of the entry is one, but instead whenever any of the morphism in the corresponding groupoid is the
identity. It is therefore compatible with the definition given earlier.
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this local neighbourhood leaves an excitation boundary ∂Σo|ex. that has the topology of
cylinder. Classifiying boundary conditions on such cylinder corresponds to classifying the
string-like excitations.

Let us consider the manifold ∂Σo|ex. × I. This manifold has the topology of a hollow
cylinder, which has two kinds of boundary components, namely a pair of physical boundary
components and a pair of excitation boundary components. Given the 3-ball endowed with
two gapped boundaries, the same manifold can be obtained by removing local neighbour-
hoods of the interface and of a string terminating at the two gapped boundaries:

' .

By construction, this manifold can be glued to the original system along the excitation
boundary ∂Σo|ex. without affecting its topology. It follows from the discussion in section 3
that there is a tube algebra associated with the gluing of two copies of this tube-like man-
ifold, whose irreducible representations classify this special type of string-like excitations.

4.2 Computation of the tube algebra

Let us derive the tube algebra for the special configuration described above. As before, we
first need to specify the ground state subspace on ∂Σo|ex. × I by choosing a discretisation.
We choose to discretise ∂Σo|ex.×I as a triangulated cube with two opposite faces identified.
The resulting triangulated manifold is denoted by T[S1 × I] and the corresponding ground
state subspace explicitly reads

VG,A,Bπ,λ,µ [T[S1 × I]] := SpanC

{∣∣∣∣∣

a1

g

a2

b2

b10′ 1′

10

0̃′
1̃′

1̃0̃

〉}
∀ g∈G | g=a−1

2 gb2
∀ a1,a2∈A
∀ b1,b2∈B

(4.2)

≡ SpanC
{∣∣(g, a2, b2) a1−−→

b1

〉}
∀ g∈G | g=a−1

2 gb2
∀ a1,a2∈A
∀ b1,b2∈B

, (4.3)

where we make the identifications (0) ≡ (0̃), (0′) ≡ (0̃′), (1) ≡ (1̃), (1′) ≡ (1̃′), (00′) ≡ (0̃0̃′),
(01) ≡ (0̃1̃), (0′1′) ≡ (0̃′1̃′) and (11′) ≡ (1̃1̃′). As before, some labellings are left implicit since
they can be deduced from the flatness constraints. Let us now compute the ?-product for
two such states adapting in the obvious way the definition of the previous section. Firstly,
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colourings along the gluing interface are identified via the map GLU, i.e.

GLU
(∣∣∣∣∣

a1

g

a2

b2

b10′ 1′

10

0̃′
1̃′

1̃0̃

〉
⊗
∣∣∣∣∣

a′1

g′

a′2

b′2

b′11′ 2′

21

1̃′
2̃′

2̃1̃

〉)

= δg′,a−1
1 gb1

δa′2,a
a1
2
δ
b′2,b

b1
2

∣∣∣∣∣

a′1

b′1

a1

g

a2

b2

b10′ 1′

10

0̃′ 1̃′

1̃0̃

2′

2

2̃′
2̃

〉
,

where we introduced the notation xy := y−1xy. Secondly, we apply the Hamiltonian
projector PT[S1×I]∪S1×IT[S1×I] in order to enforce the twisted gauge invariance at the physical
boundary vertices along the gluing interface. This operator can be expressed by evaluating
the partition function (2.15) on the relevant pinched cobordism. The result reads

PT[S1×I]∪S2×IT[S1×I]

(∣∣∣∣∣

a′1

b′1

a1

g

a2

b2

b10′ 1′

10

0̃′ 1̃′

1̃0̃

2′

2

2̃′
2̃

〉)
(4.4)

= 1
|A||B|

∑
(ã,b̃)∈A×B

%ABg,a2,b2
(a1, ã|b1, b̃)

%AB
a−1

1 gb1,a
a1
2 ,b

b1
2

(ã, ã−1a′1|b̃, b̃−1b′1)

∣∣∣∣∣

ã−1a′1

b̃−1b′1

a1ã

g

a2

b2

b1b̃0′ 1′

10

0̃′ 1̃′

1̃0̃

2′

2

2̃′
2̃

〉
,

where we introduced the cocycle data

%ABg,a2,b2(a1, a
′
1|b1, b′1) := Tb2(µ)(b1, b′1)

Ta2(λ)(a1, a′1)
Ta2(π)(a1, a

′
1, a
′−1
1 a−1

1 gb1b
′
1) Ta2(π)(g, b1, b′1)

Ta2(π)(a1, a
−1
1 gb1, b′1)

(4.5)

in terms of the cocycle data T(λ), T(µ) and T(π) that are itself defined according to

Tx(α)(y1, y2) := α(x, y1, y2)α(y1, y2, x
y1y2)

α(y1, xy1 , y2) ,

Tx(π)(y1, y2, y3) := π(y1, x
y1 , y2, y3)π(y1, y2, y3, x

y1y2y3)
π(x, y1, y2, y3)π(y1, y2, xy1y2 , y3) ,
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for any group elements x, y1, y2, y3 ∈ H in a finite group H and cochains α ∈ C3(H,U(1)),
π ∈ C4(H,U(1)). Defining

d(2)Tx(α)(y1, y2, y3) := Txy1 (α)(y2, y3) Tx(α)(y1, y2y3)
Tx(α)(y1y2, y3) Tx(α)(y1, y2) , (4.6)

d(3)Tx(π)(y1, y2, y3, y4) := Txy1 (π)(y2, y3, y4) Tx(α)(y1, y2y3, y4) Tx(π)(y1, y2, y3)
Tx(π)(y1y2, y3, y4) Tx(α)(y1, y2, y3y4) , (4.7)

it follows from the cocycle conditions d(4)π= 1, d(3)λ=π−1|A and d(3)µ=π−1|B that
d(3)T(π) = 1, d(2)T(λ) = T(π)−1|A and d(2)T(µ) = T(π)−1|B. Utilising the cocycle conditions

d(3)Ta2(π)(a1, a
′
1, a
′′
1, a
′′−1
1 a′−1

1 a−1
1 gb1b

′
1b
′′
1) = 1 d(3)Ta2(π)(a1, a

−1
1 gb1, b

′
1, b
′′
1) = 1

d(3)Ta2(π)(a1, a
′
1, a
′−1
1 a−1

1 gb1b
′
1, b
′′
1) = 1 d(3)Ta2(π)(g, b1, b′1, b′′1) = 1 ,

we finally obtain that %AB satisfies

d(2)%ABg,a2,b2(a1, a
′
1, a
′′
1|b1, b′1, b′′1) :=

%AB
a−1

1 gb1,a
a1
2 ,b

b1
2

(a′1, a′′1|b′1, b′′1) %ABg,a2,b2
(a1, a

′
1a
′′
1|b1, b′1b′′1)

%ABg,a2,b2
(a1a′1, a

′′
1|b1b′1, b′′1) %ABg,a2,b2

(a1, a′1|b1, b′1)
= 1 .

(4.8)

Going back to the tube algebra, it remains to apply a triangulation changing isomorphism
in order to recover the initial triangulation, and thus a state in VG,A,Bπ,λ,µ [T[S1 × I]]. This is
done by evaluating the partition function for the pinched interval cobordism (012)+×S1×I
endowed with the triangulation defined as

(012)+ × S1 × I= (0122′2̃′)+ ∪ (0122̃2̃′)− ∪ (011̃2̃2̃′)+ ∪ (00̃1̃2̃2̃′)−

∪ (011′2′2̃′)− ∪ (011′1̃′2̃′)+ ∪ (011̃1̃′2̃′)− ∪ (00̃1̃1̃′2̃′)+

∪ (00′1′2′2̃′)+ ∪ (00′1′1̃′2̃′)− ∪ (00′0̃′1̃′2̃′)+ ∪ (00̃0̃′1̃′2̃′)− . (4.9)

The corresponding operator implements the isomorphism

∣∣∣∣∣

ã−1a′1

b̃−1b′1

a1ã

g

a2

b2

b1b̃0′ 1′

10

0̃′ 1̃′

1̃0̃

2′

2

2̃′
2̃

〉

' 1
|A|

1
2 |B|

1
2
%ABg,a2,b2(a1ã, ã

−1a′1|b1b̃, b̃−1b′1)
∣∣∣∣∣

a1a′1

g

a2

b2

b1b′10′ 2′

20

0̃′
2̃′

2̃0̃

〉
.
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Putting everything together, we obtain

∣∣∣∣∣

a1

g

a2

b2

b10′ 1′

10

0̃′
1̃′

1̃0̃

〉
?

∣∣∣∣∣

a′1

g′

a′2

b′2

b′11′ 2′

21

1̃′
2̃′

2̃1̃

〉
(4.10)

=
δg′,a−1

1 gb1
δa′2,a

a1
2
δ
b′2,b

b1
2

|A|
1
2 |B|

1
2

%ABg,a2,b2(a1, a
′
1|b1, b′1)

∣∣∣∣∣

a1a′1

g

a2

b2

b1b′10′ 2′

20

0̃′
2̃′

2̃0̃

〉
,

where we used the cocycle relation d(2)%ABg,a2,b2
(a1, ã, ã

−1a′1|b1, b̃, b̃−1b′1). Using the more
symbolic notation introduced in (4.2), we obtained

∣∣(g, a2, b2) a1−−→
b1

〉
?
∣∣(g′, a′2, b′2)

a′1−−→
b′1

〉
=
δg′,a−1

1 gb1
δa′2,a

a1
2
δ
b′2,b

b1
2

|A|
1
2 |B|

1
2

%ABg,a2,b2(a1, a
′
1|b1, b′1)

∣∣(g, a2, b2)
a1a′1−−−→
b1b′1

〉
.

4.3 Relative groupoid algebra

Similarly to its (2+1)d analogue, the tube algebra found above can be recast as a twisted
groupoid algebra. Interestingly, due to the topology of the problem, we shall notice how in
this language the (3+1)d tube algebra can be recast in terms of the (2+1)d one, unifying
both computations. This is reminiscent of the notion of lifted models and lifted tube
algebras developed in [33] in the context of bulk excitations.

An important ingredient of our construction is the notion of loop groupoid:

Definition 4.1 (Loop groupoid). Given a finite groupoid G, the loop groupoid ΛG is the
groupoid with object set {g ∈ EndG(X) | ∀X ∈ Ob(G)} and morphisms of the form h : g→
h−1gh, for every g ∈ EndG(X) and h ∈ HomG(X,Y ). Composition in ΛG is inherited from
the one in G.

Specialising to the case where the finite groupoid is taken to be the delooping of a finite
group G, we obtain that ΛG is the groupoid with object set Ob(ΛG) = G and morphism
set Hom(ΛG) = {g a−→ a−1ga | ∀ g, a ∈ G}. Composition is given by multiplication in G

such that
g

a−→a−1ga
a′−−→(aa′)−1gaa′ = g

aa′−−→ (aa′)−1gaa′ ,

for all g, a, a′ ∈ G. Using this terminology, we can check that the cocycle data T(π), T(λ)
and T(µ) defined in (4.5) actually correspond to loop groupoid cocycles in Z3(ΛG,U(1)),
Z2(ΛA,U(1)) and Z2(ΛB,U(1)), respectively. More generally, for any group G, we have
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a map T : Z•(G,U(1)) → Z•−1(ΛG,U(1)) referred to as the S1-transgression map. More
details regarding this map can be found in [33, 57, 62]. We further require the notion of
relative groupoid:

Definition 4.2 (Relative groupoid). Given a groupoid G, and a pair of subgroupoids
A,B ⊆ G, the relative groupoid GAB is the groupoid with object set Ob(GAB) := {g ∈
Hom(G) | s(g) ∈ Ob(A), t(g) ∈ Ob(B)} and morphism set provided by

g
a−→
b

a−1gb ≡ g
a−→
b
, (4.11)

for all g ∈ Ob(GAB), a ∈ HomA(s(g),−) and b ∈ HomB(t(g),−). Composition is defined by

g
a−→
b

a−1gb
a′−−→
b′

a
′−1a−1gbb′ = g

aa′−−→
bb′

a
′−1a−1gbb′ , (4.12)

for all composable pairs (a, a′) ∈ A2
comp and (b, b′) ∈ B2

comp.

It follows immediately from the definition above that the groupoid GAB, whose twisted
groupoid algebra is isomorphic to the (2+1)d tube algebra, actually corresponds to the
relative groupoid defined for the delooping of the groups. We are almost ready to define
the (3+1)d tube algebra in this language. The last item we require is a notion of normalised
cocycle for relative groupoid. To this end we introduce (G, α)-subgroupoids:

Definition 4.3. Given a finite groupoid G and a normalised 3-cocycle α ∈ Z3(G,U(1)),
we call a pair (A, φ) a (G, α)-subgroupoid when A ⊆ G is a subgroupoid of G and φ ∈
C2(A,U(1)) is a 2-cochain satisfying the condition d(2)φ(a, a′, a′′) = α−1(a, a′, a′′)|A for all
composable (a, a′, a′′) ∈ A3

comp.

For any pair of (G, α)-subgroupoids (A, φ) and (B, ψ), we construct a normalised 2-cocycle
ϑAB ∈ Z2(GAB,U(1)) for the relative groupoid GAB via:

ϑAB(g a−→
b
, a−1gb

a′−−→
b′

) := ψ(b, b′)
φ(a, a′)

α(a, a′, a′−1a−1gbb′)α(g, b, b′)
α(a, a−1gb, b′) (4.13)

≡ ϑABg (a, a′|b, b′) (4.14)

for all composable morphisms

g
a−→
b
, a−1gb

a′−−→
b′
∈ GAB , (4.15)

where we are using the shorthand notation introduced in (4.11). It follows from α−1|A =
d(2)ψ and α−1|B = d(2)φ, as well as the cocycle conditions

d(3)α(a, a′, a′′, a′′−1a′−1a−1gbb′b′′) = 1 d(3)α(a, a−1gb, b′, b′′) = 1

d(3)α(a, a′, a′−1a−1gbb′, b′′) = 1 d(3)α(g, b, b′, b′′) = 1

that ϑAB satisfies the 2-cocycle relation

d(2)ϑABg (a, a′, a′′|b, b′, b′′) :=
ϑABa−1gb(a

′, a′′|b′, b′′)ϑABg (a, a′a′′|b, b′b′′)
ϑABg (aa′, a′′|bb′, b′′)ϑABg (a, a′|b, b′) = 1 . (4.16)
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Unsurprisingly, this equation mimics (3.8). Furthermore, given that α is a normalized
cocycle, we have the normalisation conditions:

ϑABg (ids(a′), a
′|ids(b′), b

′) = ϑABg (a, idt(a)|b, idt(b)) = 1
ϑABg (ids(a′), a

′|b, idt(b)) = ϑABg (a, idt(a)|ids(b′), b
′) = 1 ,

which further imply

ϑABa−1gb(a
−1, a|b−1, b) = ϑABg (a, a−1|b, b−1) . (4.17)

Let G be a finite group and π ∈ Z4(G,U(1)). We consider two subgroups A,B ⊂ G

and λ ∈ C3(A,U(1)), µ ∈ C3(B,U(1)) such that d(3)λ = π−1|A and d(3)µ = π−1|B. It
follows from the computations in section 4 that (ΛA,T(λ)) and (ΛB,T(µ)) are (ΛG,T(π))-
subgroupoids. We define ϑΛAΛB by applying the formula (4.13) for α ≡ T(π), φ ≡ T(λ)
and ψ ≡ T(µ). Putting everything together, we obtain the twisted relative groupoid algebra
C[ΛGΛAΛB]ϑΛAΛB . We can show that this twisted relative groupoid algebra is isomorphic
to the (3+1)d tube algebra by identifying

(g, a2, b2) a1−−→
b1
≡ g

a1−−→
b1

, (4.18)

such that a2
g−→ b2 ≡ g ∈ Ob(ΛGΛAΛB), a2

a1−→ aa1
2 ≡ a1 ∈ HomΛA(s(g),−) and b2

b1−→ bb12 ≡
b1 ∈ HomΛB(t(g),−), as well as ϑΛAΛB ≡ %AB, which was defined in (4.5).

Thereafter, we shall make use of the shorthand notations Λ(GAB) ≡ ΛGΛAΛB and
C[Λ(GAB)]ϑΛ(AB) ≡ C[Λ(GAB)]αφψ ≡ C[ΛGΛAΛB]ϑΛAΛB to refer to this relative groupoid
algebra. We purposefully choose a notation very similar to describe the (2+1)d and (3+1)d
tube algebras in order to emphasize the fact that the framework presented in this section
unifies both. As a matter of fact, we can obtain the (2+1)d algebra from the (3+1)d one
by restricting the loop groupoid ΛG to morphisms whose source and target objects are
the identity in G and by replacing the loop groupoid 3-cocycle α ≡ T(π) ∈ Z3(ΛG,U(1)),
where π ∈ Z4(G,U(1)), by a group 3-cocycle α ∈ Z3(G,U(1)). In virtue of this last remark,
we may now focus on the algebra relevant to the (3+1)d scenario, namely C[Λ(GAB)]αφψ,
and deduce the results for the (2+1)d gapped boundary excitations as a limiting case.

We conclude this section with a remark regarding the notation. Since the morphisms
a1 ∈ HomΛA(s(g),−) and b1 ∈ HomΛB(t(g),−) in (4.18) are specified by a choice of group
variables in the finite groups A and B, respectively, we shall often loosely identify both in
the following for notational convenience.

5 Representation theory and elementary gapped boundary excitations

In this section, we derive the irreducible representations of the algebra C[Λ(GAB)]αφψ, and
elucidate their physical interpretation as a classifier for the elementary string-like excita-
tions in (3+1)d. As mentioned earlier, due to the topology of the problem, and the common
description as relative groupoid algebras, this study can be straightforwardly applied to
describe elementary boundary excitations in (2+1)d.
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5.1 Simple modules

Given a finite group G, two subgroups A,B ⊂ G and cocycle data π ∈ Z4(G,U(1)),
λ ∈ C3(A,U(1)), µ ∈ C3(B,U(1)) satisfying d(4)π = 1, d(3)λ = π−1|A, d(3)µ = π−1|B,
respectively, we define α ≡ T(π) ∈ Z3(ΛG,U(1)), φ ≡ T(λ) ∈ C2(ΛA,U(1)) and ψ ≡
T(µ) ∈ C2(ΛB,U(1)). We explained above that the simple modules of the groupoid algebra
C[Λ(GAB)]αφψ ≡ C[Λ(GAB)]ϑΛ(AB) classify elementary string-like excitations terminating at
gapped boundaries. Let us now derive these simple modules. We shall find that they are
labelled by a pair (O, R), where O is an equivalence class of boundary colourings with
respect to the action of the tube algebra, and R is a projective group representation that
decomposes the symmetry action of the tube algebra on a given boundary colouring.

We begin by first decomposing the algebra C[Λ(GAB)]αφψ into a direct sum of subalge-
bras. To this end, we notice that the tube algebra defines an action on the set of boundary
colourings yielding an equivalence relation on Ob(Λ(GAB)) given by

g ∼ g′ , if ∃ g a−→
b
∈ Hom(Λ(GAB)) such that g′ = t

(
g

a−→
b

)
.

The subsets of Ob(Λ(GAB)), i.e. boundary colourings of the tube, that are in the same
equivalence class form a partition of Ob(Λ(GAB)) into disjoint sets. Let us denote by
OAB,O′AB ⊆ Ob(Λ(GAB)) two such equivalence classes. Considering two basis elements of
the form ∣∣g a−→

b

〉
,
∣∣g′ a′−−→

b′

〉
(5.1)

such that g ∈ OAB and g′ ∈ O′AB, it follows from the definition of the algebra that the
product of these two states necessarily vanishes. Consequently, each equivalence class
of Ob(Λ(GAB)) defines a subalgebra (C[Λ(GAB)]αφψ)OAB ⊂ C[Λ(GAB)]αφψ whose defining
vector space is

SpanC
{∣∣g a−→

b

〉}
∀ g

a−→
b
∈Hom(Λ(GAB))

s.t. g∈OAB

. (5.2)

Since orbits OAB form a partition of Ob(Λ(GAB)), we have the following decomposition

C[Λ(GAB)]αφψ =
⊕
OAB⊂G

(C[Λ(GAB)]αφψ)OAB . (5.3)

Given an equivalence class OAB, we notate its elements by {oi}i=1,...,|OAB | and call o1
the representative element of OAB. We further consider the set {pi, qi}i=1,...,|OAB | ⊆
Hom(ΛA)×Hom(ΛB) defined by a choice of morphism

oi
pi−→
qi

o1 ∈ Hom(Λ(GAB)) , ∀ oi ∈ OAB

and the requirement (p1, q1) = (ids(o1), idt(o1)). The stabiliser group of OAB is then defined
as

ZOAB := {(a, b) ∈ Hom(ΛA)×Hom(ΛB) | o1 = a−1o1b} . (5.4)

Remark that the orbit-stabiliser theorem implies |ZOAB | · |OAB| = |A||B|. Finally, we
construct the twisted group algebra C[ZOAB ] as the algebra with defining vector space

SpanC
{∣∣ a−→

b

〉}
∀ (a,b)∈ZOAB

(5.5)
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and product rule ∣∣ a−→
b

〉
?
∣∣ a′−−→

b′

〉
= ϑ

Λ(AB)
o1 (a, a′|b, b′)

∣∣ aa′−−→
bb′

〉
. (5.6)

Given that α is normalized, it follows from definition (4.13) that ϑΛ(AB)
o1 is a represen-

tative normalised group 2-cocycle in H2(ZOAB ,U(1)). For each simple unitary ϑ
Λ(AB)
o1 -

projective representation (DR, VR) of ZOAB , we can define a simple representation of the
relative groupoid algebra C[Λ(GAB)]αφψ via a homomorphism DOAB ,R : C[Λ(GAB)]αφψ →
End(VOAB ,R) where

VOAB ,R := SpanC{|oi, vm〉}∀ i=1,...,|OAB |
∀m=1,...,dim(VR)

. (5.7)

For i, j ∈ {1, . . . , |OAB|}, m,n ∈ {1, . . . , dim(VR)} the matrix elements are defined to be

DOAB ,R[im][jn]
(∣∣g a−→

b

〉)
= δg,oi δa−1gb,oj

ϑ
Λ(AB)
o1 (p−1

i , a|q−1
i , b)

ϑ
Λ(AB)
o1 (p−1

i apj , p
−1
j |q

−1
i bqj , q

−1
j )
DRmn

(∣∣ p−1
i apj−−−−−→
q−1
i bqj

〉)
(5.8)

such that

|oi, vm〉 .DOAB ,R
(∣∣g a−→

b

〉)
=
|OAB |∑
i,j=1

dim(VR)∑
m,n=1

DOAB ,R[im][jn]
(∣∣g a−→

b

〉)
|oj , vn〉 . (5.9)

Henceforth, we make use of the shorthand notation ρAB ≡ (OAB, R), I ≡ [im], J ≡ [jn]
and dρAB ≡ dOAB ,R = |OAB| · dim(VR). It follows immediately from the definition and the
linearity of the ϑΛ(AB)

o1 -projective representations of ZOAB that these matrices define an
algebra homomorphism, i.e.∑

K

DρABIK

(∣∣g a−→
b

〉)
DρABKJ

(∣∣g′ a′−−→
b′

〉)
= δg′,a−1gb ϑ

Λ(AB)
g (a, a′|b, b′)DρABIJ

(∣∣g aa′−−→
bb′

〉)
. (5.10)

Furthermore, the matrix elements satisfy the conjugation relation

DρABIJ

(∣∣g a−→
b

〉)
= 1
ϑ

Λ(AB)
g (a, a−1|b, b−1)

DρABJI

(∣∣a−1gb a−1
−−−→
b−1

〉)
, (5.11)

which follows from the unitarity of the projective representation DR of the stabilizer sub-
group ZOAB , inducing a unitary representation of C[Λ(GAB)]αφψ. This endows C[Λ(GAB)]αφψ
with the structure of a *-algebra which in turn implies its semi-simplicity due to finiteness.
Finally, the representations matrices satisfy the following orthogonality and completeness
conditions

1
|A||B|

∑
g

a−→
b
∈Λ(GAB)

DρABIJ

(∣∣g a−→
b

〉)
Dρ
′
AB
I′J ′

(∣∣g a−→
b

〉)
=
δρAB ,ρ′AB
dρAB

δI,I′ δJ,J ′ (5.12)

1
|A||B|

∑
ρAB

∑
I,J

dρABD
ρAB
IJ

(∣∣g a−→
b

〉)
DρABIJ

(∣∣g′ a′−−→
b′

〉)
= δg,g′ δa,a′ δb,b′ . (5.13)

A proof of the orthogonality relation can be found in appendix A.1, the completeness
following from similar arguments.
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5.2 Comultiplication map and concatenation of string-like excitations

The simple modules of the relative groupoid algebra C[Λ(GAB)]αφψ classify string-like bulk
excitations terminating at gapped boundaries labelled by Aλ and Bµ, such that φ ≡ T(λ)
and ψ ≡ T(µ). Let us now delve deeper into the exploration of the properties of this
algebra, in relation to the concatenation of the corresponding excitations. We consider
the following system of three gapped boundaries and string-like excitations terminating at
these gapped boundaries:

Aλ Bµ Cν

. (5.14)

The two string-like excitations depicted above are characterized by the relative groupoid
algebras C[Λ(GAB)]αφψ and C[Λ(GBC)]αψϕ, respectively, where ϕ ≡ T(ν). We will show
that these string-like excitations can be concatenated, and the result of this concatenation
is a string-like excitation terminating at the gapped boundaries labelled by Aλ and Cν .8

More specifically, we will demonstrate that a pair of modules for the relative groupoid
algebras C[Λ(GAB)]αφψ and C[Λ(GBC)]αψϕ can be composed to form a module for the relative
groupoid algebra C[Λ(GAC)]αφϕ.

Let us consider a pair of elementary string-like excitations with internal Hilbert spaces
VρAB and VρBC , respectively. In the absence of external constraints, the corresponding join
Hilbert space is provided by the tensor product VρAB⊗VρBC . It remains to understand how
the tube algebra acts on this join Hilbert space. We introduce an algebra homomorphism
∆B : C[Λ(GAC)]αφϕ → C[Λ(GAB)]αφψ ⊗ C[Λ(GBC)]αψϕ defined by

∆B

(∣∣g a−→
c

〉)
:= 1
|B|

∑
g1∈Ob(Λ(GAB))
g2∈Ob(Λ(GBC))

g1g2=g
b∈HomΛB(t(g1),s(g2))

ζ
Λ(ABC)
a,b,c (g1, g2)

∣∣g1
a−→
b

〉
⊗
∣∣g2

b−→
c

〉
(5.15)

where

ζ
Λ(ABC)
a,b,c (g1, g2) := α(g1, g2, c)α(a, a−1g1b, b

−1g2c)
α(g1, b, b−1g2c)

. (5.16)

As mentioned earlier, when no confusion is possible, we shall loosely identify the morphism
b ∈ HomΛB(t(g1), s(g2)) and the group variable b ∈ B it evaluates to in order to make the
notation lighter. By analogy with the theory of Hopf algebras, we refer in the following to
∆B as the B-comultiplication map of the twisted groupoid algebra C[Λ(GAC)]αφϕ. It follows

8Because of the geometry of the operation under consideration, we refrain from referring to this process
as the ‘fusion’ of the corresponding string-like excitations. That being said, in (2+1)d, the same map defines
the usual fusion of point-like excitations.
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from the cocycle conditions

d(3)α(a, a′, a′−1a−1g1bb
′, b′−1b−1g2cc

′) = 1 d(3)α(a, a−1g1b, b
−1g2c, c

′) = 1

d(3)α(a, a−1b, b′, b′−1b−1g2cc
′) = 1 d(3)α(g1, b, b

−1g2c, c
′) = 1

d(3)α(g1, b, b
′, b′−1b−1g2cc

′) = 1 d(3)α(g1, g2, c, c
′) = 1

that ζΛ(ABC)
a,b,c satisfies the relation

ϑ
Λ(AB)
g1 (a, a′|b, b′)ϑΛ(BC)

g2 (b, b′|c, c′)
ϑ

Λ(AC)
g1g2 (a, a′|c, c′)

=
ζ

Λ(ABC)
aa′,bb′,cc′(g1, g2)

ζ
Λ(ABC)
a,b,c (g1, g2) ζΛ(ABC)

a′,b′,c′ (a−1g1b, b−1g2c)
(5.17)

ensuring that the map ∆B is an algebra homomorphism, i.e.

∆B

(∣∣g a−→
c

〉)
◦∆B

(∣∣g′ a′−−→
c′

〉)
= ∆B

(∣∣g a−→
c

〉
?
∣∣g′ a′−−→

c′

〉)
. (5.18)

Putting everything together, given the relative groupoid algebras C[Λ(GAB)]αφψ,
C[Λ(GBC)]αψϕ and a pair of representations (DρAB , VρAB ) and (DρBC , VρBC ), the comul-
tiplication ∆B allows us to define the tensor product representation ((DρAB ⊗ DρBC ) ◦
∆B, VρAB ⊗ VρBC ), where

(DρAB ⊗DρBC ) ◦∆B : C[Λ(GAB)]αφψ ⊗ C[Λ(GBC)]αψϕ → End(VρAB ⊗ VρBC ) (5.19)

such that

(DρAB ⊗DρBC )
(
∆B

(∣∣g a−→
c

〉))
= 1
|B|

∑
g1∈Ob(Λ(GAB))
g2∈Ob(Λ(GBC))

g1g2=g
b∈B

ζ
Λ(ABC)
a,b,c (g1, g2)DρAB

(∣∣g1
a−→
b

〉)
⊗DρBC

(∣∣g2
b−→
c

〉)
,

where we loosely identified b ∈ HomΛB(t(g1), s(g2)) and the corresponding group variable
for notational convenience. In the following, it will be often useful to write the so-called
truncated tensor product ⊗B of representation matrices defined as

DρAB ⊗B DρBC := (DρAB ⊗DρBC ) ◦∆B . (5.20)

Using the semisimplicity of relative groupoid algebras, the tensor product representations
defined above are generically not simple and as such admit a decomposition into direct
sum of simple representations, i.e.

DρAB ⊗B DρBC ∼=
⊕
ρAC

NρAC
ρAB ,ρBC

DρAC , (5.21)

where the integer number NρAC
ρAB ,ρBC

∈ Z+
0 is referred to as the multiplicity of the simple

C[Λ(GAC)]αφϕ representation (DρAC , VρAC ) appearing in the tensor product of the repre-
sentations (DρAB , VρAB ) and (DρBC , VρBC ). Henceforth, we assume multiplicity-freeness of
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the multifusion category of representations, i.e. NρAC
ρAB ,ρBC

∈ {0, 1} in order to simplify
the notations. Note however that it is straightforward to lift this assumption. Using the
orthogonality relations of the irreducible representations, we find a useful expression to
compute explicitly this number, namely

NρAC
ρAB ,ρBC

= 1
|A||C|

∑
g

a−→
c
∈Λ(GAC)

tr
[

(DρAB ⊗B DρBC )
(∣∣g a−→

c

〉)
DρAC

(∣∣g a−→
c

〉) ]
. (5.22)

Note finally that given the algebras C[Λ(GAA)]αφφ and C[Λ(GBB)]αψψ, the regular modules9

C[Λ(GAA)]αφφ C[Λ(GBB)]αψψ satisfy the unit module properties

C[Λ(GAA)]αφφ ⊗A ρAB ∼= ρAB ∼= ρAB ⊗B C[Λ(GBB)]αψψ (5.23)

as C[Λ(GAB)]αφψ modules.
As explained above, thanks to our formulation in terms of relative groupoid algebras,

we can easily extract all the relevant structures for the (2+1)d algebra as a limiting case.
This is done in the next section, where we define a canonical basis of excited states. In
this scenario, the comultiplication map yields the fusion of the corresponding point-like
excitations.

5.3 Clebsch-Gordan series

In preparation for the later discussion, let us study further the properties of the comulti-
plication map introduced earlier. Since the comultiplication map ∆B is an algebra homo-
morphism, there exist intertwining unitary maps

UρAB ,ρBC :
⊕
ρAC

VρAC → VρAB ⊗B VρBC , (5.24)

where the sum is over labels ρAC such that DρAC ∈ DρAB⊗BDρBC , that satisfy the defining
relation

(DρABIABJAB
⊗BDρBCIBCJBC

)
(∣∣g a−→

c

〉)
=

∑
ρAC

IAC ,JAC

UρAB ,ρBC[IABIBC ][ρACIAC ]D
ρAC
IACJAC

(∣∣g a−→
c

〉)
UρAB ,ρBC[JABJBC ][ρACJAC ].

Henceforth, we will denote the matrix elements of this unitary map as[
ρAB
IAB

ρBC
IBC

∣∣∣ρACIAC

]
:= UρAB ,ρBC[IABIBC ][ρACIAC ] ,

and refer to them as Clebsch-Gordan coefficients. Using the orthogonality of the represen-
tation matrices, we obtain the equivalent defining relation[

ρAB
IAB

ρBC
IBC

∣∣∣ρACIAC

][
ρAB
JAB

ρBC
JBC

∣∣∣ρACJAC

]
(5.25)

= dρAC
|A||C|

∑
g

a−→
c
∈Λ(GAC)

(DρABIABJAB
⊗B DρBCIBCJBC

)
(∣∣g a−→

c

〉)
DρACIACJAC

(∣∣g a−→
c

〉)
.

9The regular module of an algebra is defined as the algebra viewed as a module over itself.
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The unitarity of UρAB ,ρBC imposes the following orthogonality and completeness relations:
∑

IAB ,IBC

[
ρAB
IAB

ρBC
IBC

∣∣∣ρACIAC

][
ρAB
IAB

ρBC
IBC

∣∣∣ρ′ACI′AC

]
= δIAC ,I′ACδρAC ,ρ

′
AC

(5.26)

∑
ρAC ,IAC

[
ρAB
IAB

ρBC
IBC

∣∣∣ρACIAC

][
ρAB
I′AB

ρBC
I′BC

∣∣∣ρACIAC

]
= δIAB ,I′ABδIBC ,I

′
BC

. (5.27)

Furthermore, the Clebsch-Gordan coefficients satisfy the following crucial property[
ρAB
IAB

ρBC
IBC

∣∣∣ρACIAC

]
(5.28)

=
∑

g∈Hom(s(a),s(c))

∑
{J}

(DρABIABJAB
⊗B DρBCIBCJBC

)
(∣∣g a−→

c

〉)
DρACIACJAC

(∣∣g a−→
c

〉)[ρAB
JAB

ρBC
JBC

∣∣∣ρACJAC

]

referred to as the gauge invariance of the coefficients. This property can be checked as
follows: firstly, utilise the unitarity of the intertwining maps to rewrite the defining equation
as the intertwining property∑
JAB ,JBC

(DρABIABJAB
⊗BDρBCIBCJBC

)
(∣∣g a−→

c

〉)[ρAB
JAB

ρBC
JBC

∣∣∣ρACJAC

]
=
∑
IAC

[
ρAB
IAB

ρBC
IBC

∣∣∣ρACIAC

]
DρACIACJAC

(∣∣g a−→
c

〉)
.

Secondly, multiply this equation on both side by DρACKACJAC

(∣∣g a−→
c

〉)
and use the identity

∑
g∈Hom(s(a),s(c))

∑
JAC

DρACIACJAC

(∣∣g a−→
c

〉)
DρACKACJAC

(∣∣g a−→
c

〉)
=

∑
g∈Hom(s(a),s(c))

∑
JAC

1
ϑ

Λ(AC)
g (a, a−1|c, c−1)

DρACIACJAC

(∣∣g a−→
c

〉)
DρACJACKAC

(∣∣a−1gc a−1
−−−→
c−1

〉)
=

∑
g∈Hom(s(a),s(c))

DρACIACKAC

(∣∣g 1A−−→
1C

〉)
= δIAC ,KAC ,

where we used (5.11). Note that we use the notation 1A to refer to the morphism in
Hom(s(a),−) characterized by the group variable 1A ∈ A, and similarly for 1C . Summing
over JAC = 1, . . . , dρAC finally yields the gauge invariance. This invariance of the Clebsch-
Gordan coefficients further implies∑

{J}
DρABIABJAB

(∣∣g1
a−→
b

〉)
DρBCIBCJBC

(∣∣g2
b′−−→
c

〉)[ρAB
JAB

ρBC
JBC

∣∣∣ρACJAC

]
DρACJACIAC

(∣∣g3
a′−−→
c′

〉)
(5.29)

= 1
|B|

∑
b̃∈B

ϑ
Λ(AB)
g1 (a, ã|b, b̃)ϑΛ(BC)

g2 (b′, b̃|c, c̃) ζΛ(ABC)
ã,b̃,̃c

(a−1g1b, b
′−1g2c)

ϑ
Λ(AC)
g3 (ã, ã−1a′ |̃c, c̃−1c′)

×
∑
{K}

δg3,a−1g1bb′−1g2cD
ρAB
IABKAB

(∣∣g1
aã−−→
bb̃

〉)
DρBCIBCKBC

(∣∣g2
b′b̃−−→
c̃c

〉)
×
[
ρAB
KAB

ρBC
KBC

∣∣∣ρACKAC

]
DρACKACIAC

(∣∣ã−1g3c̃
ã−1a′−−−−→
c̃−1c′

〉)
,

which is true for all composable morphisms a, ã in ΛA and c, c̃ in ΛC. A proof of this
identity can be found in appendix A.2. It is straightforward to check that this last relation
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induces another one, namely∑
{J}
DρABJABIAB

(∣∣g1
a−→
b

〉)
DρBCJBCIBC

(∣∣g2
b′−−→
c

〉)[ρAB
JAB

ρBC
JBC

∣∣∣ρACJAC

]
DρACIACJAC

(∣∣g3
a′−−→
c′

〉)
(5.30)

= 1
|B|

∑
b̃∈B

ϑ
Λ(AB)
g1 (ã, ã−1a|b̃, b̃−1b)ϑΛ(BC)

g2 (b̃, b̃−1b′ |̃c, c̃−1c) ζΛ(ABC)
ã,b̃,̃c

(g1, g2)

ϑ
Λ(AC)
g3 (a′, ã|c′, c̃)

×
∑
{K}

δa′−1g3c′,g1g2 D
ρAB
KABIAB

(∣∣ã−1g1b̃
ã−1a−−−−→
b̃−1b

〉)
DρBCKBCIBC

(∣∣b̃−1g2c̃
b̃−1b′−−−−→
c̃−1c′

〉)
×
[
ρAB
KAB

ρBC
KBC

∣∣∣ρACKAC

]
DρACIACKAC

(∣∣g3
a′ã−−→
c′ c̃

〉)
.

5.4 Associativity and 6j-symbols

Given two relative groupoid algebras C[Λ(GAB)]αφψ, C[Λ(GBC)]αψϕ and a pair of represen-
tations defined by (DρAB , VρAB ), (DρBC , VρBC ), we constructed earlier the tensor product
representation ((DρAB⊗DρBC )◦∆B, VρAB⊗VρBC ) of C[Λ(GAC)]αφϕ. Let us now consider the
quasi-invertible algebra element ΦABCD ∈ C[Λ(GAB)]αφψ ⊗ C[Λ(GBC)]αψϕ ⊗ C[Λ(GCD)]αϕχ
defined as

ΦABCD :=
∑

g1∈Ob(Λ(GAB))
g2∈Ob(Λ(GBC))
g3∈Ob(Λ(GCD))

α−1(g1, g2, g3)
∣∣g1

1A−−→
1B

〉
⊗
∣∣g2

1B−−→
1C

〉
⊗
∣∣g3

1C−−→
1D

〉
, (5.31)

such that g1, g2 and g3 are composable morphisms in ΛG. The cocycle conditions

d(3)α(a, a−1g1b, b
−1g2c, c

−1g3d) = 1 d(3)α(g1, g2, c, c
−1g3d) = 1

d(3)α(g1, b, b
−1g2c, c

−1g3d) = 1 d(3)α(g1, g2, g3, d) = 1

imply the identity

ζ
Λ(BCD)
b,c,d (g2, g3) ζΛ(ABD)

a,b,d (g1, g2g3)

ζ
Λ(ACD)
a,c,d (g1g2, g3) ζΛ(ABC)

a,b,c (g1, g2)
= α(g1, g2, g3)
α(a−1g1b, b−1g2c, c−1g3d) , (5.32)

which in turn ensures that the comultiplication is quasi-coassociative, i.e

(∆B ⊗ id)∆C

(∣∣g a−→
d

〉)
= ΦABCD ?

[
(id⊗∆C)∆B

(∣∣g a−→
d

〉)]
? Φ−1

ABCD ,

∀
∣∣g a−→

d

〉
∈ C[Λ(GAB)]αφχ .

(5.33)

This signifies that the truncated tensor product of representations (DρAB⊗BDρBC )⊗CDρCD
and DρAB ⊗B (DρBC ⊗C DρCD) defined as

(DρAB ⊗B DρBC )⊗C DρCD := (DρAB ⊗DρBC ⊗DρCD) ◦ (∆B ⊗ id)∆C (5.34)
DρAB ⊗B (DρBC ⊗C DρCD) := (DρAB ⊗DρBC ⊗DρCD) ◦ (id⊗∆C)∆B (5.35)

must be isomorphic as C[Λ(GAD)]αφχ-modules. More specifically, it follows immediately
from the quasi-coassociativity condition that the maps

ΦρAB ,ρBC ,ρCD := (DρAB ⊗DρAB ⊗DρAB )(ΦABCD) ∈ End(VρAB ⊗ VρBC ⊗ VρCD) (5.36)
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define intertwiners between the tensor product of representations above such that

ΦρAB ,ρBC ,ρCD [DρAB⊗B(DρBC⊗CDρCD)] = [(DρAB⊗BDρBC )⊗CDρCD ]ΦρAB ,ρBC ,ρCD . (5.37)

Let us consider two vector spaces VρAB and VρBC . These are spanned by vectors |ρABIAB〉
and |ρBCIBC〉, respectively, such that the corresponding groupoid algebras act on these
basis vectors from the right. We define the truncated tensor product of two such vectors as

|ρABIAB〉 ⊗B |ρBCIBC〉 :=
(
|ρABIAB〉 ⊗ |ρBCIBC〉

)
.∆B(1AC) , (5.38)

which span the vector space VρAB ⊗B VρBC ⊂ VρAB ⊗ VρBC . More specifically. we have

|ρABIAB〉 ⊗B |ρBCIBC〉 =
∑
ρAC
IAC

|ρAB ⊗B ρBC ; ρAC , IAC〉
[
ρAB
IAB

ρBC
IBC

∣∣∣ρACIAC

]
, (5.39)

where we define

|ρAB ⊗B ρBC , ρACIAC〉 :=
∑

IAB ,IBC

[
ρAB
IAB

ρBC
IBC

∣∣∣ρACIAC

](
|ρABIAB〉 ⊗ |ρBCIBC〉

)
. (5.40)

Noting that

|ρAB ⊗B ρBC , ρACIAC〉(DρAB ⊗B DρBC )
(∣∣g a−→

c

〉)
= |ρAB ⊗B ρBC , ρACIAC〉DρAC

(∣∣g a−→
c

〉)
,

(5.41)

we realize that SpanC{|ρAB ⊗B ρBC , ρACIAC〉}∀ IAC ∼= VρAC as C[Λ(GAC)]αφϕ representa-
tions through the map |ρAB ⊗B ρBC , ρACIAC〉 7→ |ρACIAC〉. Similarly, we can define the
following truncated tensor product of vectors

(
|ρABIAB〉 ⊗B |ρBCIBC〉

)
⊗C |ρCDICD〉

:=
(
|ρABIAB〉 ⊗ |ρBCIBC〉 ⊗ |ρCDICD〉

)
. [(∆B ⊗ id)∆C ](1AD)

|ρABIAB〉 ⊗B
(
|ρBCIBC〉 ⊗C |ρCDICD〉

)
:=
(
|ρABIAB〉 ⊗ |ρBCIBC〉 ⊗ |ρCDICD〉

)
. [(id⊗∆C)∆B](1AD) ,

which define basis vectors in (VρAB ⊗B VρBC ) ⊗C VρBC and VρAB ⊗B (VρBC ⊗C VρBC ), re-
spectively. We then find that ΦABCD induces the following isomorphism:

(VρAB ⊗B VρBC )⊗C VρBC ∼= VρAB ⊗B (VρBC ⊗C VρBC ) . (5.42)

Vectors
(
|ρABIAB〉⊗B |ρBCIBC〉

)
⊗C |ρCDICD〉 are typically not linearly independent, how-

ever a basis for the vector space (VρAB ⊗B VρBC )⊗C VρBC is provided by the vectors

∑
{I}

[
ρAB
IAB

ρBC
IBC

∣∣∣ρACIAC

][
ρAC
IAC

ρCD
ICD

∣∣∣ρADKAD

]
|ρABIAB〉 ⊗ |ρBCIBC〉 ⊗ |ρCDICD〉 . (5.43)
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We obtain that ΦABCD acts on such basis vectors as∑
ρAC

∑
{I}

{
ρAB
ρAD

ρBC
ρAC

ρCD
ρBD

}[
ρAB
IAB

ρBC
IBC

∣∣∣ρACIAC

][
ρAC
IAC

ρCD
ICD

∣∣∣ρADKAD

]
× |ρABIAB〉 ⊗ |ρBCIBC〉 ⊗ |ρCDICD〉 . ΦABCD

=
∑
{I}

[
ρAB
IAB

ρBD
IBD

∣∣∣ρADKAD

][
ρBC
IBC

ρCD
ICD

∣∣∣ρBDIBD

]
|ρABIAB〉 ⊗ |ρBCIBC〉 ⊗ |ρCDICD〉 (5.44)

such that the so-called 6j-symbols are defined as{
ρAB
ρAD

ρBC
ρAC

ρCD
ρBD

}
(5.45)

:= 1
dρAD

∑
{I}

α(oiAB , oiBC , oiCD)
[
ρAB
IAB

ρBC
IBC

∣∣∣ρACIAC

][
ρAC
IAC

ρCD
ICD

∣∣∣ρADIAC

][
ρAB
IAB

ρBD
IBD

∣∣∣ρADIAD

][
ρBC
IBC

ρCD
ICD

∣∣∣ρBDIBD

]
,

where the notation is the one of definition (5.8) of the representation matrices. This es-
tablishes the isomorphism (5.42). A detailed proof of the defining relation (5.44) can be
found in appendix A.3.

Furthermore, given the vector space ((VρAB ⊗B VρBC )⊗C VρCD)⊗D VρDE , we find that

[(id⊗ id⊗∆Dχ)(ΦABCE)] ? [(∆B ⊗ id⊗ id)(ΦACDE)]

and

(1AB ⊗ ΦBCDE) ? [(id⊗∆C ⊗ id)(ΦABDE)] ? (ΦABCD ⊗ 1DE) (5.46)

induce the same isomorphism. This is referred to as the so-called pentagon identity and
ensures the self-consistency of the quasi-coassociativity. A proof of the pentagon identity
can be found in appendix A.4.

In a similar vein, it can be shown that the regular C[Λ(GBB)]αψψ-module satisfies the
so-called triangle identity such that the following diagram commutes

(ρAB⊗BC[Λ(GBB)]αψψ)⊗BρBC ρAB⊗B (C[Λ(GBB)]αψψ⊗BρBC)

ρAB⊗BρBC

ΦABBC

∼=∼=

(5.47)

as C[Λ(GAB)]αφϕ-modules for all C[Λ(GAB)]αφψ-modules ρAB and C[Λ(GBC)]αψϕ-modules
ρBC .

5.5 Canonical basis for (2+1)d boundary excited states

So far we have been dealing with the groupoid algebra C[Λ(GAB)]αφψ, which is isomorphic to
the (3+1)d tube algebra derived in 4. We have defined its simple modules, which classify
elementary string-like excitations terminating at gapped boundaries, and introduced a
comultiplication map that defines a notion of concatenation for these string-like excitations.
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Furthermore, we constructed the Clebsch-Gordan series and 6j-symbols associated with
this comultiplication map. As mentioned earlier, we have been using the language of
relative groupoid algebras, since it unifies both the tube algebras in (2+1)d and in (3+1)d.
More specifically, we explained earlier how to obtain the (2+1)d algebra from the (3+1)d
one by restricting the object in Λ(GAB) to group variables in G and by replacing the loop
groupoid 3-cocycle α ≡ T(π) ∈ Z3(ΛG,U(1)), where π ∈ Z4(G,U(1)), by a group 3-cocycle
α ∈ Z3(G,U(1)). We shall now use this mechanism to adapt all the notions derived so
far to the study of elementary point-like excitations at the interface between two gapped
boundaries in (2+1)d. Thanks to our formulation, the notations remain almost identical.
Concretely, it simply amounts to replacing g ∈ Ob(Λ(GAB)) by g ∈ G, and (a, b) ∈ ΛA×ΛB
by (a, b) ∈ A × B, and to picking α in H3(G,U(1)), the other cocycle data descending
from it. Note that replacing (a, b) by (a, b) is merely formal as we have often identified
the morphisms a and b with the group variables they are characterized by for notational
convenience.

Using the definition of the representation matrices together with the Clebsch-Gordan
series, we shall now illustrate the mathematical structures introduced earlier by defining a
complete and orthonormal basis of excited states for any pattern of elementary point-like
excitations in (2+1)d. The same basis can also be used to define ground state subspaces in
the absence of excitations. Naturally, the same construction could be carried out in (3+1)d
since we have derived all the relevant notions in this case, which encompasses the (2+1)d
one. However, we choose to focus in (2+1)d where it is easier to visualise the construction.

First, let us derive the canonical basis for a pair of dual elementary point-like exci-
tations living at the interfaces of two gapped boundaries labelled by the data (A, φ) and
(B,ψ). This corresponds to the situation depicted in (3.3) so that we are merely looking for
a canonical basis for the vector space C[GAB]αφψ. For each simple module labelled by ρAB,
this basis is defined by the set of elements |ρABIJ〉 ∈ C[GAB]αφψ, with I, J ∈ {1, . . . , dρAB},
such that

|ρABIJ〉 =
(
dρAB
|A||B|

) 1
2 ∑

g∈G
(a,b)∈A×B

DρABIJ

(∣∣g a−→
b

〉) ∣∣g a−→
b

〉
. (5.48)

This transformation defines an isomorphism such that the inverse is provided by the formula

∣∣g a−→
b

〉
=
( 1
|A||B|

) 1
2 ∑

ρ

d
1
2
ρAB

∑
I,J

DρABIJ

(∣∣g a−→
b

〉)
|ρABIJ〉 . (5.49)

The latter formula expresses the fact that a given state describing such point-like boundary
excitations can be written as a sum of states describing elementary excitations. It follows
immediately from the orthonormality (5.12) of the representation matrices that this basis
is orthonormal:

〈
ρ′ABI

′J ′
∣∣ρABIJ〉 =

d
1
2
ρABd

1
2
ρ′AB

|A||B|
∑

g,g′∈G
(a,b),(a′,b′)∈A×B

Dρ
′
AB
I′J ′

(∣∣g′ a′−−→
b′

〉
DρABIJ

(∣∣g a−→
b

〉) 〈
g′

a′−−→
b′

∣∣g a−→
b

〉

= δρ′AB ,ρAB δI
′,I δJ ′,J (5.50)
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and complete:

∑
ρAB ,I,J

〈
ρABIJ

∣∣ρABIJ〉 =
∑

ρAB ,I,J

dρAB
|A||B|

∑
g∈G

(a,b)∈A×B

DρABIJ

(∣∣g a−→
b

〉
DρABIJ

(∣∣g a−→
b

〉)

=
∑
g∈G

(a,b)∈A×B

1 = |G| · |A| · |B| =
∣∣C[GAB]αφψ

∣∣ . (5.51)

Crucially, the canonical basis diagonalizes the ?-product (see proof in appendix B.1):

|ρABIJ〉 ? |ρ′ABI ′J ′〉 = |A|
1
2 |B|

1
2
δρAB ,ρ′AB δJ,I

′

d
1
2
ρAB

|ρIJ ′〉 . (5.52)

As a useful corollary, we have that∣∣g a−→
b

〉
? |ρABIJ〉 =

∑
I′

DρABII′
(∣∣g a−→

b

〉)
|ρI ′J〉 (5.53)

|ρABIJ〉 ?
∣∣g a−→

b

〉
=
∑
I′

DρABJ ′J

(∣∣g a−→
b

〉)
|ρIJ ′〉 . (5.54)

Let ZC[GAB ]α
φψ

be the centre of C[GAB]αφψ consisting of all elements |ψ〉 ∈ C[GAB]αφψ that
satisfy

|ψ〉 ?
∣∣g a−→

b

〉
=
∣∣g a−→

b

〉
? |ψ〉 , ∀

∣∣g a−→
b

〉
∈ C[GAB]αφψ . (5.55)

Let us consider the states
|ρAB〉 := 1

d
1
2
ρAB

∑
I

|ρABII〉 . (5.56)

It follows immediately from corollaries (5.53) and (5.54) that these states are central, i.e.

|ρAB〉 ?
∣∣g a−→

b

〉
=
∣∣g a−→

b

〉
? |ρAB〉 , ∀

∣∣g a−→
b

〉
∈ C[GAB]αφψ , (5.57)

from which we can easily deduce that |ρAB〉 form a complete and orthonormal basis for the
centre:

ZC[GAB ]α
φψ

= SpanC
{
|ρAB〉

}
∀ ρAB

. (5.58)

We now would like to show that this centre describes the ground state subspace of our
model for the annulus O depicted below:

. (5.59)

A triangulation O4 for O can be inferred from T[I] defined in (3.5) by imposing the
identifications (0) ≡ (1), (0′) ≡ (1′) and (00′) ≡ (11′). It further follows that we can identify
the space of coloured graph-states on O4 as the subspace of coloured graph-states on T[I]
that satisfy g = a−1gb. The ground state subspace can be finally obtained by enforcing
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the twisted gauge invariance at the two vertices via the Hamiltonian projector PO4 . This
operator can be easily deduced from the one appearing in the definition of the (2+1)d open
tube algebra:

PO4 = 1
|A||B|

∑
g∈G

(a,b)∈A×B

∑
(ã,b̃)∈A×B

δg,a−1gb

ϑABg (a, ã|b, b̃)
ϑABg (ã, ã−1aã|b̃, b̃−1bb̃)

∣∣ ã−1gb̃
ã−1aã−−−−→
b̃−1bb̃

〉〈
g

a−→
b

∣∣ .
(5.60)

Crucially, this operator can be identically expressed in terms of algebra elements in
C[GAB]αφψ as follows (cf. proof in appendix B.2)

PO4 = 1
|A||B|

∑
g∈G

(a,b)∈A×B

∑
g̃∈G

(ã,b̃)∈A×B

(∣∣g̃ ã−→̃
b

〉−1
?
∣∣g a−→

b

〉
?
∣∣g̃ ã−→̃

b

〉)〈
g

a−→
b

∣∣ , (5.61)

where ∣∣g̃ ã−→̃
b

〉−1 = 1
ϑABg̃ (ã, ã−1|b̃, b̃−1)

∣∣ã−1g̃b̃
ã−1
−−−→
b̃−1

〉
. (5.62)

Note furthermore that we can express the identity algebra element in C[GAB]αφψ as∣∣1AB〉 =
∑
g̃∈G

(ã,b̃)∈A×B

∣∣g̃ ã−→̃
b

〉−1
?
∣∣g̃ ã−→̃

b

〉
(5.63)

such that∣∣1AB〉 ? ∣∣g a−→
b

〉
=
∣∣g a−→

b

〉
=
∣∣g a−→

b

〉
?
∣∣1AB〉 , ∀

∣∣g a−→
b

〉
∈ C[GAB]αφψ . (5.64)

It implies that the image of the Hamiltonian projector PO4 is spanned by states |ψ〉 ∈
C[GAB]αφψ satisfying

|ψ〉 ?
∣∣g a−→

b

〉
=
∣∣g a−→

b

〉
? |ψ〉 , ∀

∣∣g a−→
b

〉
∈ C[GAB]αφψ , (5.65)

which is precisely the definition of the centre of |ψ〉 ∈ C[GAB]αφψ. We deduce that the
ground state subspace on O4 is spanned by the states |ρAB〉:

VG,A,Bα,φ,ψ [O4] = ImPO4 = ZC[GAB ]α
φψ

= SpanC
{
|ρAB〉

}
∀ ρAB

. (5.66)

As an immediate consequence of this statement is the fact that the ground state degeneracy
of the annulus equals the number of elementary boundary point-like excitations at the
interface of two gapped boundaries. This mimics the well-know result that the number of
bulk point-like excitations equals the ground state degeneracy on the torus.

Let us pursue our construction by defining the canonical basis associated with the
following configuration:

Aφ

Bψ Cϕ

→ ' , (5.67)
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i.e. the two-disk D2 from which local neighbourhoods at the interface of the three gapped
boundaries have been removed. This manifold is referred to as the thrice-punctured two-
disk and is denoted by Y. We choose a triangulation Y4 for this manifold and consider
the following space of coloured graph-states:

SpanC

{∣∣∣∣∣g
[

2

2′

1′

3′

3′′

0 0′′

1 1′′

]〉}
∀g∈Col(Y4,G,A,B,C)

≡ SpanC

{∣∣∣∣∣
a′g1g2c′−1

a
−

1 g
1
b b ′−

1
g2 c

a

a′ c′

c

b b′

2

2′

1′

3′

3′′

0 0′′

1 1′′

〉}
∀ g1,g2∈G
∀ a,a′∈A
∀ b,b′∈B
∀ c,c′∈C

≡ |g1, a, b, g2, b
′, c, a′, c′〉Y4 .

We are interested in the ground state subspace VG,A,B,Cα,φ,ψ,ϕ [Y4] on this manifold. In order
to obtain this Hilbert space, we need to apply the Hamiltonian projector PY4 simultane-
ously at all three physical boundary vertices. This operator is obtained by evaluating the
partition function (2.15) on the relative pinched interval cobordism

0 0′′

1
2

2′

3′′

1̃′

1̃′′

1′′

1′

1̃

3′

(5.68)

and its action explicitly reads

PY4
(
|g1, a, b, g2, b

′, c, g3, a
′, c′〉Y4

)
(5.69)

= 1
|A||B||C|

∑
ã∈A
b̃∈B
c̃∈C

ϑACa′g1g2c′−1(a′, ã|c′, c̃)
ϑABg1 (ã, ã−1a|b̃, b̃−1b)ϑBCg2 (b̃, b̃−1b′|c̃, c̃−1c) ζABC

ã,b̃,c̃
(g1, g2)

× |ã−1g1b̃, ã
−1a, b̃−1b, b̃−1g2c̃, b̃

−1b′, c̃−1c, a′ã, c′c̃〉Y4 . (5.70)

Let us now define the following basis states

|ρABIAB, ρBCIBC , ρACIAC〉Y4

:=
∑
{g∈G}

∑
a,a′∈A
b,b′∈B
c,c′∈C

∑
{J}

DρABJABIAB

(∣∣g1
a−→
b

〉)
DρBCJBCIBC

(∣∣g2
b′−−→c
〉)[ρAB

JAB
ρBC
JBC

∣∣∣ρACJAC

]
×DρACIACJAC

(∣∣a′g1g2c′−1 a′−−→
c′

〉)
|g1, a, b, g2, b

′, c, a′, c′〉Y4 .

We can show using the invariance property (5.30) of the Clebsch-Gordan coefficients
that these basis states diagonalise the action of the Hamiltonian projector, i.e. for every
{ρxIx}x=AB,BC,AC we have

PY4
(
|ρABIAB, ρBCIBC , ρACIAC〉Y4

)
= |ρABIAB, ρBCIBC , ρACIAC〉Y4 . (5.71)
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A proof of this crucial relation can be found in appendix B.3. We refer to these states as the
canonical basis states for Y4. It follows from the orthogonality and the completeness of the
representation matrices as well as the Clebsch-Gordan series, that this basis is orthogonal
and complete.

It is now possible to use the canonical basis states we have derived so far in order to
define excited states associated with more complicated boundary patterns. For instance,
the case of D2 with four different gapped boundaries can be treated easily by noticing
that the manifold resulting from removing local neighbourhoods at every interface can
be realised as the gluing of two copies of Y4. Similarly, canonical basis states for this
manifold are obtained via the ?-product by contracting two states of Y4 along one magnetic
index. Interestingly, two different bases can be defined following this scheme, but they
are equivalent. This is ensured by the quasi-coassociativity, and more specifically the
isomorphism (5.42). As a matter of fact, the two bases can be explicitly related to each
other via the 6j-symbols as defined in (5.44), which was the motivation for introducing
them. More generally, any number of gapped boundaries can be treated in a similar
fashion by gluing several copies Y4 according to a fusion binary tree. Thanks to the
quasi-coassociativity, the choice of tree is not relevant as the corresponding bases are all
equivalent.

6 Gapped boundaries and higher algebras

In this section, we describe a higher categorical construction capturing the salient fea-
tures of the gapped boundary excitations considered in the previous sections. We begin
by reviewing the definitions of monoidal categories and bicategories before introducing
the theory of module categories. For more details on such constructions, see for exam-
ple [30, 59, 62, 63]. Building upon such notions, we then demonstrate the relation between
gapped boundary excitations and bicategories of module categories. In particular we review
that the bicategory MOD(VecαG) provides a convenient description of gapped boundary ex-
citations in (2+1)d Dijkgraaf-Witten theory [10], and show that MOD(VecT(π)

ΛG ) describes
string-like bulk excitations terminating at the boundary in (3+1)d Dijkgraaf-Witten theory.

6.1 Higher category theory

We begin this section by first introducing higher category theory. In order to motivate the
ethos of higher category theory, it is illuminating to first consider the notion of categorifi-
cation. Generally, categorification refers to a collection of techniques in which statements
about sets are translated into statements about categories. Let us consider a simple ex-
ample. Given a pair of sets X,Y and a triple of functions f, g, h : X → Y , it is natural
to pose relations between such functions in terms of equations. For instance, we may have
f = g and g = h as functions from X to Y , from which we can infer the relation f = h by
transitivity. In this setting, categorification is the process whereby each set X is replaced
by a category CX , and each function f : X → Y is sent to a functor Ff : CX → CY . Using
the additional structure proper to categories, we have a choice about the way we lift the
equations f = g and g = h. We could either require the corresponding functors to be equal,
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i.e. Ff = Fg and Fg = Fh implying Ff = Fh, or alternatively, we could instead require
only the existence of natural isomorphisms, i.e. ηfg : Ff

∼−→ Fg and ηgh : Fg
∼−→ Fh. In the

latter case, we use equations on the natural transformations in order to prescribe a natural
transformation ηfh = ηfg ◦ ηgh : Ff → Fh replacing transitivity.

Building upon the idea of categorification, let us now introduce bicategories, which
will form the model of higher category theory utilised in the following discussion. Given a
(small) category C, recall that we denote by HomC(X,Y ) the set of (1-)morphisms (hom-
set) between the objects X,Y ∈ Ob(C). Roughly speaking, a bicategory is obtained by
applying the categorification mechanism spelt out above to such sets of morphisms. More
specifically, we replace HomC(X,Y ) with a category that we denote by HomC(X,Y ). The
composition function ◦ : HomC(X,Y )×HomC(Y,X)→ HomC(X,Z) is then replaced with a
composition bifunctor ⊗ : HomC(X,Y )×HomC(Y, Z)→ HomC(X,Z). Moreover, equations
between morphisms are replaced with natural transformations between functors together
with equations defined for such natural transformations. With this idea in mind, we now
define our notion of bicategory:

Definition 6.1 (Bicategory). A bicategory Bi consists of:

• A set of objects Ob(Bi).

• For each pair of objects X,Y ∈ Ob(Bi), a category HomBi (X,Y ), whose objects and
morphisms are referred to as 1- and 2-morphisms, respectively. Given a 1-morphism
f ∈ HomBi (X,Y ), X =: s(f) and Y =: t(f) are referred to as the ‘source’ and the
‘target’ objects of f , respectively. The composition of 2-morphisms in HomBi (X,Y )
is designated as the ‘vertical’ composition.

• For each triple of objects X,Y, Z ∈ Ob(Bi), a binary functor ⊗ : HomBi (X,Y ) ×
HomBi (Y,Z)→ HomBi (X,Z) designated as the ‘horizontal’ composition.

• For each object X ∈ Ob(Bi), a 1-morphism 1X ∈ Ob(HomBi (X,X)), and for each
morphism f : X → Y , a pair of natural isomorphism `f : 1X ⊗ f → f and rY :
f ⊗ 1Y → f called the ‘left’ and ‘right’ unitors, respectively.

• For each triple of composable 1-morphisms f, g, h, a natural isomorphism αf,g,h :
(f ⊗ g)⊗ h→ f ⊗ (g ⊗ h) called the 1-associator.

This data is subject to coherence relations encoded in the commutativity of the diagrams

((f ⊗ g)⊗ h)⊗ k

(f ⊗ (g ⊗ h))⊗ k (f ⊗ g)⊗ (h⊗ k)

f ⊗ ((g ⊗ h)⊗ k) f ⊗ (g ⊗ (h⊗ k))

α
f⊗g,h,k

αf,g,h⊗k

αf,g
,h
⊗idk

αf,g⊗h,k

idf⊗αg,h,k
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and

(f ⊗ 1t(f))⊗ g f ⊗ (1t(f) ⊗ g)

f ⊗ g

αf,1t(f),g

idf⊗`grf⊗idg
(6.1)

for all composable 1-morphisms f, g, h, k, referred to as the pentagon and the triangle rela-
tions, respectively.

As in conventional category theory, it is customary to depict relations in a bicategory using
diagrammatic calculus. Unlike the directed graph structure utilised in category theory, the
diagrammatic presentation of bicategories is given in terms of so-called pasting diagrams
of the form

X Y

f

g

F (6.2)

where X,Y ∈ Ob(Bi) are objects, f, g ∈ Ob(HomBi (X,Y )) are 1-morphisms and F ∈
HomHomBi (X,Y )(f, g) is a 2-morphism. In this notation, horizontal and vertical compositions
are depicted as

X Y Z

f

g

F

f ′

g′

F ′ = X Z

f⊗f ′

g⊗g′

F⊗F ′ , X Y

f

f ′′

F

G
= X Y

f

f ′′

FG ,

respectively. Explicit examples of bicategories will be provided in section 6.5 and 6.6

6.2 Higher groupoid algebra VecαG
We shall now apply the idea of categorification to groupoid algebras, yielding a notion of
‘higher groupoid algebra’. First, let us review the relation between monoids and categories.
A monoid is defined by a set X equipped with a function · : X×X → X called the product,
and a distinguished element 1 ∈ X called the unit, satisfying the relations 1 ·x = x = x ·1,
∀x ∈ X. Alternatively, a monoid can be defined as a (small) category C with a single
object • and Hom(C) = HomC(•, •) such that the composition function ◦ : HomC(•, •) ×
HomC(•, •) → HomC(•, •) provides the monoid product on HomC(•, •), and the identity
morphism id• provides the corresponding monoid unit. Using this presentation of a monoid
as a one-object category, we recover upon categorification the notion of monoidal category
as a one-object bicategory: given a bicategory Bi with a single object Ob(Bi) = {•}, the
category of homorphisms HomBi (•, •) defines a monoidal category equipped with a tensor
product structure provided by the bifunctor ⊗ : HomBi (•, •) × HomBi (•, •) → HomB(•, •).
In particular, the 1-associator in Bi induces the (0-)associator in the monoidal category
HomBi (•, •).
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Akin to the categorification of a monoid to a monoidal category, one can consider a
categorification of an algebra over a field. Instead of presenting the general case, we shall
restrict ourselves to the categorification of groupoid algebras. Recall that given a finite
groupoid G, the (complex) groupoid algebra C[G] is the algebra defined over the vector
space SpanC{|g〉 | ∀ g ∈ Hom(G)} with algebra product |g〉 ? |g′〉 := δt(g),s(g′) |gg′〉. One
natural categorification of C[G] is given by replacing the complex field with the (symmet-
ric) monoidal category Vec of finite dimensional complex-vector spaces, which yields the
monoidal category of groupoid-graded vector spaces:

Definition 6.2 (Category of G-graded vector spaces). Let G be a finite groupoid. A G-
graded vector space is a vector space of the form V =

⊕
g∈Hom(G) Vg. We call a G-graded

vector space V ‘homogeneous’ of degree g ∈ Hom(G) if Vg′ is the zero vector space 0 for
all g′ 6= g. The monoidal category VecG is then defined as the category whose objects are
G-graded complex-vector spaces, and morphisms are grading preserving linear maps. The
tensor product is defined on homogeneous components Vg and Wg′ according to

Vg ⊗Wg′ =

(V ⊗W )gg′ if t(g) = s(g′)
0 otherwise

(6.3)

with unit object 1 =
⊕

g∈Hom(G) δidg. There are |Hom(G)| simple objects denoted by Cg, ∀ g ∈
Hom(G). Every object is isomorphic to a direct sum of simple objects, making VecG semi-
simple. Finally, the associator is given by the canonical map

idCgg′g′′ : (Ug ⊗ Vg′)⊗Wg′′
∼−→ Ug ⊗ (Vg′ ⊗Wg′′) . (6.4)

Note that by choosing the groupoid to be the delooping of a finite group, we recover
the more familiar fact that the category of G-graded vector spaces is a categorification
of the notion of group algebra. Analogously to the twisting of a groupoid algebra by a
groupoid 2-cocycle, we can twist the associator of VecG by a normalised groupoid 3-cocycle
α ∈ Z3(G,U(1)) so as to define the monoidal category VecαG , whereby the associator on
simple objects is provided by

αCg,Cg′ ,Cg′′ = α(g, g′, g′′) · idCgg′g′′ : (Cg ⊗ Cg′)⊗ Cg′′
∼−→ Cg ⊗ (Cg′ ⊗ Cg′′) . (6.5)

The monoidal category VecαG has the additional property of being a multi-fusion category:

Definition 6.3 (Multifusion category). A category C is called multi-fusion if C is a finite
semi-simple, C-linear, abelian, rigid monoidal category such that tensor product ⊗ : C×C →
C is bilinear on morphisms. If additionally HomC(1,1) ∼= C then we call C a fusion
category.

We shall not expand on this definition here, but instead refer the reader to the chapter 4
of [59]. Conceptually, the observation that VecαG is a multi-fusion category plays a similar
role to semi-simplicity in the theory of algebras. Recall that given a semi-simple algebra A,
every module is isomorphic to a direct sum of simple modules. These simple modules can
be found via the notion of primitive orthogonal idempotents. An idempotent in an algebra
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A is an element e ∈ A such that e ·e = e, and a pair of idempotents e, e′ ∈ A are orthogonal
if e · e′ = δe,e′ e. Such an idempotent is called primitive if it cannot be written as sum of
non-trivial idempotents. Specifying a complete set of primitive orthogonal idempotents
{e1, . . . , en} for A, we can define a simple right A-module Mi = ei ·A, for each i ∈ 1, . . . , n.
In the following, we will review the notion of module category over a multi-fusion category,
categorifying the notion of module over a semi-simple algebra. In this setting the analogue
of idempotent will be given by so called separable algebra objects.

6.3 Module categories

In this part, we introduce the notions of module category over multi-fusion category C, and
module category functors following closely [59]. These happen to be relevant notions to
describe gapped boudaries and their excitations [10]. However, as we explain below, we
use in practice an equivalent description in terms of separable algebra objects. First, let
us define a module category:

Definition 6.4 (C-Module category). Given a multi-fusion category C ≡ (C,⊗,1, `, r, α),
a (left) C-module category is defined by a triple (M,�, α̇) consisting of a category M, an
action bifunctor � : C ×M→M and a natural isomorphism

α̇X,Y,M : (X ⊗ Y )�M ∼−→ X � (Y �M) , ∀X,Y ∈ Ob(C) and M ∈ Ob(M) , (6.6)

referred to as the module associator, such that the diagram

((X ⊗ Y )⊗ Z)�M

(X ⊗ (Y ⊗ Z))�M (X ⊗ Y )� (Z �M)

X � ((Y ⊗ Z)�M) X � (Y � (Z �M))

α̇
X⊗Y,Z,M

α̇X,Y,Z�M

αX,Y
,Z
⊗idM

α̇X,Y⊗Z,M

idX⊗α̇Y,Z,M

(6.7)

commutes for every X,Y, Z ∈ Ob(C) and M ∈ Ob(M). Additionally there is a unit
isomorphism `M : 1 �M ∼−→ M , where 1 is the tensor unit of C, such that the following
diagram commutes:

(X ⊗ 1)�M X ⊗ (1�M)

X �M

α̇X,1,M

idX⊗`MrX⊗idM
, (6.8)

for all X ∈ Ob(C), M ∈ Ob(M).

Every module category can be decomposed into so-called indecomposable module cate-
gories [58]:
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Definition 6.5 (Indecomposable module category). A C-module categoryM is said to be
‘indecomposable’ whenM is not equivalent to a direct sum of non-zero C-module categories.

Indecomposable module categories will turn out to be the relevant data to label gapped
boundaries. To describe excitations, we further require the notion module category func-
tors:

Definition 6.6 (Module category functor). Given a multi-fusion category C and a pair
(M1,M2) of C-module categories with module associators α̇ and α̈, respectively, a C-module
functor is a pair (F, s) where F : M1 → M2 is a functor, and s is natural isomorphism
given by

sX,M : F (X �M)→ X � F (M) , ∀X ∈ Ob(C) and M ∈ Ob(M1) , (6.9)

such that the diagram

F (X � (Y �M)) F ((X ⊗ Y )�M) (X ⊗ Y )� F (M)

X � F (Y �M) X � (Y � F (M))

F (α̇X,Y,M )

sX,Y⊗M

idX�sY,M

sX⊗Y,M

α̈X,Y,F (M) (6.10)

commutes for every X,Y ∈ Ob(C) and M ∈ Ob(M).

We are almost ready to define a bicategory, the remaining ingredient is a notion of morphism
for module functors:

Definition 6.7 (Morphism of module functors). Given a multi-fusion category C and two
C-module functors (F, s) and (F ′, s′), a morphism of module functors between F and F ’ is
a natural transformation η : F → F ′ such that the diagram

F (X �M) X � F (M)

F ′(X �M) X � F ′(M)

sX,M

idX�ηMηX�M

s′X,M

(6.11)

commutes for every X ∈ Ob(C) and M ∈ Ob(M).

Putting everything together, we obtain the following definition of a bicategory of module
categories

Definition 6.8 (Bicategory of module categories). Given a multi-fusion category C, we
denote by MOD(C) the bicategory with objects, C-module categories, 1-morphisms, C-module
functors, and 2-morphisms, C-module natural transformations.

The remainder of this section is dedicated to providing a more practical formulation of
this bicategory using the fact that for a multi-fusion category C, every indecomposable
C-module category is equivalent to the category of module objects for a separable algebra
object in C [59]. Using this latter formulation, we shall then explain how the bicategory of
module categories is indeed the relevant notion to describe gapped boundaries and their
excitations in gauge models of topological phases.

– 46 –



J
H
E
P
0
7
(
2
0
2
1
)
0
2
5

6.4 Algebra objects in VecαG

Let us now present the notion of algebra objects in the multi-fusion category VecαG thought
as a categorification of the groupoid algebra over G. In the subsequent discussion, we will
build upon this notion in order to define module categories over higher groupoid algebras
as a categorification of modules over semi-simple algebras.

Definition 6.9 (Algebra object). Given a multi-fusion category C ≡ (C,⊗,1, `, r, α), an
(associative) algebra object in C is defined by a triple (A,m, u) consisting of an object A as
well as morphisms m : A ⊗ A → A and u : 1 → A in C referred to as multiplication and
unit, respectively, such that the diagrams below commute:

• Associativity:

(A⊗A)⊗A A⊗ (A⊗A) A⊗A

A⊗A A

α idA⊗m

m

m⊗idA m , (6.12)

• Unit:

A A⊗ 1 A⊗A

1⊗A A⊗A A

r−1 idA⊗u

m`−1

u⊗idA m

idA , (6.13)

where α, `, r refer to the associator, left unitor and right unitor for the monoidal struc-
ture of C, respectively.

Given the above definition, an important observation is that algebra objects in the fusion
category Vec correspond to associative, unital, finite-dimensional, complex algebras. Let
us now consider algebra objects in VecαG . For each (G, α)-subgroupoid (A, φ), as defined in
section 4.3, we construct an algebra object Aφ ≡ (

⊕
a∈Hom(A) Ca,m, u) with multiplication

and unit defined according to

m : Aφ ⊗Aφ → Aφ
: a⊗ a′ 7→ δt(a),s(a′) φ(a, a′) aa′

and u(1VecαG ) :=
∑

X∈Ob(Aφ)
idX ,

respectively. In particular, we remark that the algebra object Aφ in VecαG corresponds to
a generalisation of a twisted groupoid algebra over A, where the twisting by a 2-cocycle is
instead given by the 2-cochain φ. Since φ is not a groupoid 2-cocycle, algebra objects are
not associative as conventional algebras, but instead are only associative within VecαG due to
the condition d(2)φ = α−1|A. We leave it to the reader to check that every algebra object in
VecαG is in one-to-one correspondence with a (G, α)-subgroupoid and VecαG algebra objects.
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Given an algebra object A in a multi-fusion category C, we are interested in modules
over A referred to as A-module objects:

Definition 6.10 (Right module object). Let C be a multi-fusion category and A ≡ (A,m, u)
an algebra object in C. A right module object over A (or right A-module) consists of a pair
(M,p), with M ∈ Ob(C) and p : M ⊗ A → M ∈ Hom(C) such that the diagrams below
commute:

• Compatibility:

(M ⊗A)⊗A M ⊗A

M ⊗ (A⊗A) M ⊗A M

p⊗idA

pα

idM⊗m p

, (6.14)

• Unit:

M M

M ⊗ 1 M ⊗A

idM

pr−1

u

. (6.15)

Homorphisms between modules over a given algebra object are then defined in an obvious
way:

Definition 6.11 (Module object homomorphism). Given an algebra object A in a multi-
fusion category C, let (M1, p1) and (M2, p2) be two right A-modules. An A-homomorphism
between these A-modules is a morphism f ∈ HomC(M1,M2) such that the diagram

M1 ⊗A M2 ⊗A

M1 M2

f⊗idA

p2p1

f

(6.16)

commutes.

It follows from the definition above that A-homomorphisms between a pair of A-module
objects (M1, p1) and (M1, p1) in C define a subspace of HomC(M1,M2), which is notated via
HomA(M1,M2) in the following. Moreover, composing A-homomorphisms yields another
A-homomorphism so that we can define a category of A-modules as follows:

Definition 6.12 (Category of module objects). Given a multi-fusion category C and an
algebra object A = (A,m, u), we define the category ModC(A) as the category with objects
A-module objects in C and morphisms A-module homomorphisms.

In a similar vein, we can define a left A-module objects and left A-module homomorphisms.
We leave it to the reader to derive the corresponding axioms. Combining both left and
right modules over an algebra object yields the notion bimodule object:
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Definition 6.13 (Bimodule object). Let C be a multi-fusion category and (A,B) a pair of
algebra objects in C. We define an (A,B)-bimodule object in C as a triple (M,p, q) such
that (M,p) is a right B-module object, (M, q) is a left A-module object and the diagram

(A⊗M)⊗B M ⊗B

A⊗ (M ⊗B) A⊗M M

q⊗idB

pα

idA⊗p q

. (6.17)

commutes.

Noticing that the monoidal identity of any multi-fusion category C naturally defines an
algebra object, we can identify the (1, A)-bimodule (M, `M , p), for a given algebra object
A, with the right A-module (M,p), and similarly the (A,1)-bimodule (M, rM , q) with the
left A-module (M, q).

Definition 6.14 (Bimodule object homomorphism). Let (M1, p1, q1) and (M2, p2, q2) be
a pair of (A,B)-bimodule objects in a multi-fusion category C. An (A,B)-homomorphism
between these (A,B)-bimodules is a morphism f ∈ HomC(M1,M2) such that f : (M1, p1)→
(M2, p2) is a right B-module homomorphism, f : (M1, q1) → (M2, q2) is a left A-module
homomorphism, and the following diagram commutes:

(A⊗M1)⊗B M1 ⊗B

(A⊗M2)⊗B M2 ⊗B

A⊗ (M2 ⊗B) A⊗M2 M2

A⊗ (M1 ⊗B) A⊗M1 M1

q2⊗idB

p2α

idA⊗p2 q2

q1⊗idB

p1α

idA⊗p1 q1

(id
A⊗f)⊗id

B

idA⊗
(f⊗

idB) idA⊗f

f⊗
idB

f

.

It follows from the definition that (A,B)-homomorphisms between a pair of (A,B)-
bimodule object (M1, p1, q1) and (M2, p2, q2) in C define a subspace of HomC(M1,M2),
which will be denoted by HomA,B(M1,M2) in the following. Moreover, composing two
(A,B)-homomorphisms yields another (A,B)-homomorphism so that we can define the
following category of (A,B)-bimodules:

Definition 6.15 (Category of bimodule objects). Given a multi-fusion category C and a
pair of algebra objects A and B, we define the category BimodC(A,B) as the category with
objects (A,B)-bimodules and morphisms (A,B)-bimodule homomorphisms.

Let us now go back to our example of interest, namely the higher groupoid algebras VecαG ,
and describe the corresponding bimodule objects. We consider a pair (A, φ), (B, ψ) of
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(G, α)-subgroupoids, and the corresponding algebra objects Aφ ≡ (
⊕

a∈Hom(A) Ca,mA, uA),
and Bψ ≡ (

⊕
b∈Hom(B) Cb,mB, uB). Let (M,p, q) be an (Aφ,Bψ)-bimodule in VecαG such that

M =
⊕

g∈Hom(G)Mg, p : M ⊗ Bψ → M and q : Aφ ⊗M → M . Let us consider the VecαG
morphism pq ≡ q ◦ (idA ⊗ p) such that

pq : Aφ ⊗ (M ⊗ Bψ) → M

: Ca ⊗ (Mg ⊗ Cb) 7→ δt(a),s(g) δs(b),t(g) [Mg . pq (Mg,Ca,Cb)] ∈Magb

where pq (Mg,Ca,Cb) : Mg → Magb is a linear map which includes a G-grading shift. In
virtue of the compatibility conditions satisfied by p and q, the diagram

Aφ ⊗ ((Aφ ⊗ (M ⊗ Bψ))⊗ Bψ) Aφ ⊗ (M ⊗ Bψ)

Aφ ⊗ (M ⊗ Bψ) M

idA⊗( pq ⊗idB)

pqAmB

pq

, (6.18)

commutes, where AmB decomposes as

AmB : Aφ ⊗ ((Aφ ⊗ (M ⊗ Bψ))⊗ Bψ)
idA⊗αA,M⊗B,B−−−−−−−−−−→ Aφ ⊗ (Aφ ⊗ ((M ⊗ Bψ)⊗ Bψ))
idA⊗(idA⊗αM,B,B)
−−−−−−−−−−−−→ Aφ ⊗ (Aφ ⊗ (M ⊗ (Bψ ⊗ Bψ)))
idA⊗(idA⊗(idM⊗mB))−−−−−−−−−−−−−−→ Aφ ⊗ (Aφ ⊗ (M ⊗ Bψ))
α−1
A,A,M⊗B−−−−−−→ (Aφ ⊗Aφ)⊗ (M ⊗ Bψ)
mA⊗idM⊗B−−−−−−−→ Aφ ⊗ (M ⊗ Bψ) . (6.19)

Furthermore, it acts on non-zero basis vectors (a, a′, b, b′) ∈ Ca×Ca′×Cb×Cb′ and vg ∈Mg

as

AmB : a′ ⊗ ((a⊗ (vg ⊗ b))⊗ b′) 7→ δt(a′),s(a) δt(b),s(b′)$
AB
g (a, a′|b, b′) [a′a⊗ (vg ⊗ bb′)]

(6.20)

for any set of a′, a, g, b, b′ composable morphisms in G, where we introduced the cocycle
data

$ABg (a, a′|b, b′) := α(a, gb, b′)α(g, b, b′)
α(a′, a, gbb′) φ(a′, a)ψ(b, b′) . (6.21)

Writing
pq : Aφ ⊗ (M ⊗ Bψ) → M

: a⊗ (vg ⊗ b) 7→ vg . pq (vg, a, b) ∈Magb
,

it follows from equation (6.20) that pq (vg, a, b) ∈ End(M) satisfies the algebra

pq (vg, a, b) . pq (vg′ , a′, b′) = δt(a′),s(a) δt(b),s(b′) δg′,agb$
AB
g (a, a′|b, b′) pq (vg, a′a, bb′) (6.22)

for all morphisms g, g′ ∈ HomG(Ob(A),Ob(B))), a ∈ HomA(−, s(g)), a′ ∈ HomA(−, s(g′)),
b ∈ HomB(t(g),−) and b′ ∈ HomB(t(g′),−). Such data can be concisely described by
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introducing the groupoid G̃AB with object set HomG(Ob(A),Ob(B)) and morphism set
given by

g−−→
a,b

agb ≡ g−−→
a,b

, (6.23)

for all g ∈ Ob(G̃AB), a ∈ HomA(−, s(g)) and b ∈ HomB(t(g),−). Composition is defined by

g−−→
a,b

agb−−−→
a′,b′

a′agbb′ = g−−−−−→
a′a,bb′

a′agbb′ , (6.24)

for all composable pairs (a′, a) ∈ A2
comp. and (b, b′) ∈ B2

comp.. Since [$AB] ∈ H2(G̃AB,U(1))
defines a G̃AB 2-cocycle, pq can be described via a weak functor

F pqM : G̃AB → Vec
: g ∈ Ob(G̃AB) 7→ Mg ⊂M
: g−−→

a,b
∈ Hom(G̃AB) 7→ pq (vg, a, b) : Mg →Magb

,

such that every isomorphism pq (vg, a, b) satisfies the composition relation (6.22). Using the
equivalence between representations and modules of algebraic structures, we can thus view
the pair (M,F pqM ) as a module over the twisted groupoid algebra C[G̃AB]$AB . Considering
the diagram

Aφ ⊗ (M1 ⊗ Bψ) Aφ ⊗ (M2 ⊗ Bψ)

M1 M2

idA⊗(f⊗idB)

pq 2pq 1

f

, (6.25)

for a pair of (Aφ,Bψ)-bimodules (M1, pq 1(−)) and (M2, pq 2(−)), we conclude that an
(Aφ,Bψ)-bimodule homomorphism is defined via a natural transformation f : pq 1 → pq 2,
or equivalently, as an intertwiner for representations of C[G̃AB]$AB . Putting everything
together, we obtain the equivalence BimodVecαG (Aφ,Bψ) ' Mod(C[G̃AB]$AB).

6.5 Bicategory of separable algebra objects in VecαG
Pursuing our construction, we shall now introduce a special class of algebra objects known
as separable algebra objects. We will then construct a bicategory whose objects are separable
objects, and morphisms are bimodule objects between them. First, let us define what it
means for an algebra object to be separable:

Definition 6.16 (Separable algebra object). Let C be a multi-fusion category and A ≡
(A,m, u) an algebra object in C. The algebra object A is said to be ‘separable’ if the
multiplication map m : A⊗A→ A admits a ‘section’ map ∆ : A→ A⊗A such that

A
∆−→ A⊗A m−→ A = A

idA−−→ A ,

as an (A,A)-bimodule homomorphism.
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Let us now define a binary functor. Let A,B,C be three separable algebra objects in a
multi-fusion category C, MAB ≡ (MAB, qA, pB) ≡ (MAB, pqMAB

) an (A,B)-bimodule, and
MBC ≡ (MBC , qB, pC) ≡ (MBC , pqMBC

) a (B,C)-bimodule. Using this data, we want to
construct an (A,C)-bimodule, which we shall notate via (MAB ⊗BMBC , pqMAB

⊗B pqMBC
).

First, let us define the morphism pqMAB⊗MBC
: A⊗ ((MAB ⊗MBC) ⊗ C) → MAB ⊗MBC

that decomposes as

A⊗((MAB⊗MBC)⊗C)
idA⊗αMAB,MBC,C−−−−−−−−−−−−→A⊗(MAB⊗(MBC⊗C)) (6.26)
α−1
A,MAB,MBC⊗C−−−−−−−−−−−→ (A⊗MAB)⊗(MBC⊗C)

(`−1
A⊗MAB

)⊗idMBC⊗C−−−−−−−−−−−−−−→ ((A⊗MAB)⊗1)⊗(MBC⊗C)
(idA⊗MAB⊗uB)⊗idMBC⊗C−−−−−−−−−−−−−−−−−→ ((A⊗MAB)⊗B)⊗(MBC⊗C)
(idA⊗MAB⊗∆B)⊗idMBC⊗C−−−−−−−−−−−−−−−−−−→ ((A⊗MAB)⊗(B⊗B))⊗(MBC⊗C)
α−1
A⊗MAB,B,B

⊗idMBC⊗C−−−−−−−−−−−−−−−−→ (((A⊗MAB)⊗B)⊗B)⊗(MBC⊗C)
(αA,MAB,B⊗idB)⊗idMBC⊗C−−−−−−−−−−−−−−−−−−→ ((A⊗(MAB⊗B))⊗B)⊗(MBC⊗C)
αA⊗(MAB⊗B),B,MBC⊗C−−−−−−−−−−−−−−−→ (A⊗(MAB⊗B))⊗(B⊗(MBC⊗C))
pqMAB⊗ pqMBC−−−−−−−−−→MAB⊗MBC .

Using this morphism, let us further define the endomorphism eMAB⊗MBC
: MAB ⊗MBC →

MAB ⊗MBC that decomposes as

MAB ⊗MBC

r−1
MAB⊗MBC−−−−−−−−→ (MAB ⊗MBC)⊗ 1

`−1
(MAB⊗MBC )⊗1−−−−−−−−−−→ 1⊗ ((MAB ⊗MBC)⊗ 1)

uA⊗(idMAB⊗MBC⊗uC)
−−−−−−−−−−−−−−−→ A⊗ ((MAB ⊗MBC)⊗ C)

pq MAB⊗MBC−−−−−−−−→MAB ⊗MBC .

(6.27)

By the requirement that ∆ : B → B ⊗ B is a (B,B)-bimodule section to the (B,B)-
bimodule homomorphism m : B ⊗ B → B, together with the compatibility conditions
spelt out above and the naturalness of the associator α, we can show that eMAB⊗MBC

is an idempotent endomorphism in C, i.e. eMAB⊗MBC
◦ eMAB⊗MBC

= eMAB⊗MBC
. The

requirement that the multi-fusion category C is abelian ensures that every idempotent is a
split idempotent:

Definition 6.17 (Split idempotent). An idempotent a e−→ a is called split when there exists
an object b and morphisms a s−→ b, b r−→ a such that b r◦s−−→ b = b

idb−−→ b and a s◦r−−→ a = a
e−→ a.

We define the object MAB ⊗B MBC ∈ C as a choice of splitting object for the idempotent
eMAB⊗MBC

such thatMAB⊗MBC

sMAB,MBC−−−−−−−→MAB⊗BMBC andMAB⊗BMBC

rMAB,MBC−−−−−−−→
MAB ⊗ MBC , where sMAB ,MBC

◦ rMAB ,MBC
= eMAB⊗MBC

and rMAB ,MBC
◦ sMAB ,MBC

=
idMAB⊗MBC

. Crucially, a choice of splitting object is unique up to isomorphism, and
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independent of a choice of section up to isomorphism. Using this data, let us further define
the following morphism:

pqMAB
⊗B pqMBC

:= rMAB ,MBC
◦ ( pqMAB⊗MBC

) ◦ sMAB ,MBC
. (6.28)

Putting everything together, we obtain that (MAB ⊗B MBC , pqMAB
⊗B pqMBC

) defines an
(A,C)-bimodule in C. So we have obtained a way to define an (A,C)-bimodule out of an
(A,B)- and a (B,C)-bimodule given three separable algebra objects A,B,C. This can
expressed in terms of the bifunctor

⊗B : BimodC(A,B)× BimodC(B,C)→ BimodC(A,C) , (6.29)

where objects MAB ∈ Ob(BimodC(A,B)) and MBC ∈ Ob(BimodC(B,C)) are mapped via

⊗B : MAB ×MBC 7→MAB ⊗B MBC , (6.30)

and bimodule homomorphisms fAB ∈ Hom(BimodC(A,B)), fBC ∈ Hom(BimodC(B,C))
are sent to

⊗B : fAB × fBC 7→ fAB ⊗B fBC := sMAB ,MBC
◦ (fAB ⊗ fBC) ◦ rMAB ,MBC

. (6.31)

In order to obtain a bicategory, we are left to define a left unitor, a right unitor and an
associator. Considering A and B as (A,A)- and (B,B)-bimodules, respectively, one can
verify that for any (A,B)-bimodule MAB

A⊗AMAB
∼= MAB

∼= MAB ⊗B B , (6.32)

as (A,B)-bimodule in C. This property demonstrates that an algebra A seen as an (A,A)-
bimodule defines a notion a unit morphism for an algebra object A. The corresponding
left unitor isomorphism, which is an (A,B)-bimodule, is defined via the maps

A⊗AMAB

rA,MAB−−−−−→ A⊗MAB
qA−→MAB

and

MAB

`−1
MAB−−−−→ 1⊗MAB

∆⊗idMAB−−−−−−→ (A⊗A)⊗MAB

αA,A,MAB−−−−−−→ A⊗ (A⊗MAB)
idA⊗qA−−−−−→ A⊗MAB

sA,MAB−−−−−→ A⊗AMAB ,

which can be shown to satisfy the triangle relations. The right unitor can be defined in
a similar fashion. Finally, for any quadruple of algebra objects A,B,C,D and (A,B)-
bimodule MAB, (B,C)-bimodule MBC and (C,D)-bimodule MCD, the morphism

(MAB⊗BMBC)⊗CMCD

rMAB⊗MBC,MCD−−−−−−−−−−−→ (MAB⊗BMBC)⊗MCD

rMAB,MBC⊗idMCD−−−−−−−−−−−−→ (MAB⊗MBC)⊗MCD

αMAB,MBC,MBC−−−−−−−−−−−→MAB⊗(MBC⊗MCD)
idMAB⊗sMBC,MCD−−−−−−−−−−−−−→MAB⊗(MBC⊗CMCD)

idMAB⊗sMBC,MCD−−−−−−−−−−−−−→MAB⊗B (MBC⊗CMCD)

defines an isomorphism of (A,D)-bimodules in C satisfying the pentagon relation. Putting
everything together, we obtain the following bicategory:
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Definition 6.18 (Bicategory of separable algebra objects). Given a multi-fusion C, we
notate via sAlg(C) the bicategory with objects, separable algebras objects in C, and hom-
category HomsAlg(C)(A,B) := BimodC(A,B) for all separable algebra objects A,B in C. The
composition bifunctor is provided by ⊗B : BimodC(A,B)× BimodC(B,C)→ BimodC(A,C)
as defined in this section.

Let us now apply the definition above to the multi-fusion category VecαG . First of all,
every algebra object in VecαG can be shown to be separable. Indeed, given an algebra object
Aφ in VecαG , a choice of section ∆ : Aφ → Aφ ⊗ Aφ is provided by the following map on
basis elements:

∆ : a 7→ 1
|HomA(s(a),−)|

∑
a1,a2∈Hom(A)

a1a2=a

1
φ(a1, a2)a1 ⊗ a2 . (6.33)

Algebra objects equipped with the section defined above form the objects of the bicat-
egory sAlg(VecαG). Let Aφ, Bψ, Cϕ be three objects in sAlg(VecαG), we consider the 1-
morphisms MAB ≡ (MAB, pqMAB) ∈ Ob(BimodVecαG (Aφ,Bψ)) and MBC ≡ (MBC , pqMBC ) ∈
Ob(BimodVecαG (Bψ, Cϕ)). Following (6.26), the map pqMAB⊗MBC acts on basis elements of
Ca ⊗ (([MAB]g1 ⊗ [MBC ]g2)⊗ Cc) as

pqMAB⊗MBC : a⊗ ((vABg1 ⊗ v
BC
g2 )⊗ c)

7→ 1
|Hom(B)|

∑
b∈Hom(B)

α(g1, g2, c)α(a, g1, b)α(ag1b, b
−1, g2c)

ψ(b, b−1)α(a, g1, g2c)α(ag1, b, b
−1)

× vABg1 . pq (vABg1 , a, b)⊗ vBCg2 . pq (vBCg2 , b
−1, c) .

Applying the formula above to a = ids(g1) and c = idt(g2), we obtain that the map sMAB,MBC :
MAB ⊗MBC →MAB ⊗BMBC acts on basis elements as

sMAB,MBC : vABg1 ⊗ v
BC
g2

7→ 1
|Hom(B)|

∑
b∈Hom(B)

1
ψ(b, b−1)

α(g1b, b
−1, g2)

α(g1, b, b−1)

× vABg1 . pq (vABg1 , ids(g1), b)⊗ vBCg2 . pq (vBCg2 , b
−1, idt(g2)) ,

whereas rMAB,MBC : MAB ⊗BMBC →MAB ⊗MBC is given by the inclusion. We can finally
check that the binary functor simplifies such that

pqMAB ⊗B pqMBC = pqMAB⊗MBC . (6.34)

Left unitor, right unitor and associator can now be readily obtained. Finally, let us remark
that the above bifunctor can be conveniently rephrased as a comultiplication map ∆̃B :
C[G̃AC ]$

AC → C[G̃AB]$AB ⊗ C[G̃BC ]$
BC defined by

∆̃B

(∣∣g−−→
a,c

〉)
:= 1
|Hom(B)|

∑
g1∈Ob(G̃AB)
g2∈Ob(G̃BC)

g1g2=g
b∈HomB(t(g1),t(g2))

α(g1, g2, c)α(a, g1, b)α(ag1b, b
−1, g2c)

ψ(b, b−1)α(g, g1, g2g)α(gg1, g, g−1)

×
∣∣g1−−→

a,b

〉
⊗ |g2−−−−→

b−1,c

〉
. (6.35)
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6.6 Bicategory of VecαG-module categories

We are now ready to describe the bicategory MOD(VecαG) by spelling out equivalence with
the bicategory sAlg(C) described above. In the following, we will describe how this is the
relevant structure to describe boundary excitations in gauge models of topological phases.

Letting Aφ be a (separable) algebra object in VecαG , the category ModVecαG (Aφ) of right
Aφ-modules is a left module category for VecαG . Let us spell out this correspondence. The
module functor

� :VecαG ×ModVecαG (Aφ)→ ModVecαG (Aφ) (6.36)

is defined on objects V ∈ Ob(VecαG) and (MA, pA) ∈ Ob(ModVecαG (Aφ)) by

� : V ×MA 7→ V ⊗MA , (6.37)

where V ⊗MA ∈ Ob(ModVecαG (Aφ)) is the Aφ-module with action defined by the following
composition of morphisms in VecαG :

(V ⊗MA)⊗Aφ
αV,MA,A−−−−−→ V ⊗ (MA ⊗Aφ) idV ⊗pA−−−−−→ V ⊗MA . (6.38)

The functor takes morphisms to their tensor product over the field C. The module associ-
ator α̇V,W,M reduces to the associator in Homα

G such that for V,W ∈ Ob(VecαG) one has

(V ⊗W )⊗MA
αV,W,MA−−−−−−→ V ⊗ (W ⊗MA) . (6.39)

A VecαG-module category ModVecαG (Aφ) is then indecomposable if and only if the algebra
object Aφ is not isomorphic a direct sum of two non-trivial algebra objects [59].

Let us now describe VecαG-module functors. Let Aφ and Bψ be any pair of algebra
objects in VecαG , with ModVecαG (Aφ) and ModVecαG (Bψ) the corresponding category of module
objects. To each (Aφ,Bψ)-bimodule object MAB, we can define a VecαG-module functor

−⊗AMAB : ModVecαG (Aφ)→ ModVecαG (Bψ) , (6.40)

which acts on objects MA ∈ Ob(ModVecαG (Aφ)) via the map

−⊗AMAB : MA 7→MA ⊗AMAB , (6.41)

and sends morphisms f ∈ Hom(ModVecαG (Aφ)) to f ⊗ idMAB . The natural isomorphism

s : (VecαG ⊗ModVecαG (Aφ))⊗A Bimod(Aφ,Bψ)→ VecαG ⊗ (ModVecαG (Aφ)⊗A Bimod(Aφ,Bψ))
(6.42)

is given on objects V ∈ Ob(VecαG) and MA ∈ ModVecαG (Aφ) via the associator α in VecαG
such that:

sV,MA : (V ⊗MA)⊗AMAB
rV⊗MA,MAB−−−−−−−−→ (V ⊗MA)⊗MAB
αV,MA,MAB−−−−−−−−→ V ⊗ (MA ⊗MAB)
idV ⊗sMA,MAB−−−−−−−−−→ V ⊗ (MA ⊗AMAB) . (6.43)

In a similar vein, morphisms of VecαG-module functors are induced by natural transforma-
tions between bimodules. Together, this yields the desired equivalence:
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Proposition 6.1. There exists an equivalence of bicategories sAlg(VecαG) and MOD(VecαG)
by sending separable algebra objects in VecαG to their category of (right) modules in VecαG,
bimodule objects MAB ∈ HomsAlg(VecαG)(Aφ,Bψ) are sent to the VecαG-module functor −⊗A
MAB : ModVecαG (A)→ ModVecαG (B) and bimodule natural transformations are sent to mor-
phisms of VecαG-module functors.

6.7 Bicategory of boundary excitations in (2+1)d gauge models

Using the technology developed in this section, we are now ready to describe gapped
boundaries and their excitations in (2+1)d gauge models of topological phases within
the language of bicategories. More specifically, we shall define a bicategory BdryαG whose
objects are given by gapped boundary conditions, 1-morphisms provide gapped boundary
excitations, and 2-morphisms define fusion processes of gapped boundary excitations. We
shall then demonstrate that BdryαG is equivalent, as a bicategory, to MOD(VecαG).

Let us begin with a brief review of the results obtained in the first part of this
manuscript within the tube algebra approach. Hamiltonian realisations of (2+1)d Dijkgraf-
Witten theory are defined in terms of pairs (G,α), where G is a finite group and α is a
normalised 3-cocycle in H3(G,U(1)). In section 2, it was argued that gapped boundaries
can be indexed by pairs (A, φ), where A ⊂ G is a subgroup of G and φ ∈ C2(A,U(1)) is a
2-cochain satisfying the condition d(2)φ = α−1|A. In section 3, we showed that boundary
excitations at the interface of two one-dimensional gapped boundaries labelled by (A, φ)
and (B,ψ), respectively, were classified via representations of the boundary tube algebra
that is isomorphic to the twisted groupoid algebra C[GAB]αφψ.

We now collect the previous results into a bicategory BdryαG. The objects of BdryαG are
given by the set of all gapped boundary conditions {(A, φ)}. For each pair (A, φ), (B,ψ)
of gapped boundary conditions, we assign the hom-category

HomBdryαG((A, φ), (B,ψ)) := Mod(C[GAB]αφψ) , (6.44)

where Mod(C[GAB]αφψ) denotes the category of C[GAB]αφψ-modules and intertwiners. In this
way, the 1-morphisms ρAB ∈ Ob(HomBdryαG((A, φ), (B,ψ))) correspond to boundary exci-
tations incident at the interface between gapped boudaries labelled by (A, φ) and (B,ψ).
The composition bifunctor

⊗ : Mod(C[GAB]αφψ)×Mod(C[GBC ]αψϕ)→ Mod(C[GAC ]αφϕ) (6.45)

is defined on 1-morphisms ρAB ∈ Ob(Mod(C[GAB]αφψ)) and ρBC ∈ Ob(Mod(C[GBC ]αψϕ))
via

⊗ : ρAB × ρBC 7→ ρAB ⊗B ρBC := (ρAB ⊗ ρBC) .∆B(1AC) , (6.46)

as described in section 5.2, and on 2-morphisms fAB : ρAB→ ρ′AB ∈Hom(Mod(C[GAB]αφψ)),
fBC : ρBC→ ρ′BC ∈Hom(Mod(C[GBC ]αψϕ)) via

⊗ : fAB × fBC 7→ (fAB ⊗B fBC : ρAB ⊗B ρBC → ρ′AB ⊗B ρ′BC) , (6.47)
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where the morphism on the r.h.s. decomposes as

fAB ⊗B fBC : ρAB ⊗B ρBC ↪−→ ρAB ⊗ ρBC
fAB⊗fBC−−−−−−→ ρ′AB ⊗ ρ′BC → ρ′AB ⊗B ρ′BC . (6.48)

In the sequence of linear maps above, the first arrow notates the injection of ρAB ⊗B ρBC
into ρAB ⊗ ρBC , and the last arrow notates the projection map

ρ′AB ⊗ ρ′BC 7→ (ρ′AB ⊗ ρ′BC) .∆B(1AC) = ρ′AB ⊗B ρ′BC . (6.49)

Furthermore, a 2-morphism of the form ζ : ρAB ⊗B ρBC → ρAC ∈ Hom(Mod(C[GAC ]αφϕ))
is an intertwiner interpreted as describing the process of fusing a pair of boundary excita-
tions at the interfaces of gapped boundaries labelled by (A, φ), (B,ψ) and (B,ψ), (C,ϕ),
respectively:

Aφ Bψ Cϕ

. (6.50)

The identity morphism associated with the object (A, φ) is given by the regular module
C[GAA]αφφ ∈ Ob(Mod(C[GAA]αφφ)) with left and right unitors the intertwiner isomorphisms

` : C[GAA]αφφ ⊗A ρAB
∼−→ ρAB , r : ρAB ⊗B C[GBB]αψψ

∼−→ ρAB , (6.51)

as described in section 5.2. Finally, the 1-associator the triple of BdryαG 1-morphisms
ρAB ∈ Ob(Mod(C[GAB]αφψ)), ρBC ∈ Ob(Mod(C[GBC ]αψϕ)), ρCD ∈ Ob(Mod(C[GCD]αϕχ)) is
given by the intertwiner isomorphism in Hom(Mod(C[GAD]αφχ))

ΦρABρBCρCD : (ρAB ⊗B ρBC)⊗C ρCD → ρAB ⊗B (ρBC ⊗C ρCD) , (6.52)

as described explicitly in section 5.2.10 It follows from the results of the first part of this
manuscript that such data satisfy the pentagon and triangle relations ensuring we do obtain
a bicategory.

So we have recast our results obtained in the first part of this manuscript in terms of
the boundary tube algebra and its representation theory as the bicategory BdryαG. We shall
now establish the following equivalence of bicategories:

BdryαG ' MOD(VecαG) . (6.53)

10Recall that the derivations in section 5.2, and more generally in section 5, were carried out explicitly
for the boundary tube algebra in (3+1)d. However, we explained that the (2+1)d boundary tube algebra,
which is the one relevant here, is obtained as a limiting case.
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More precisely, we shall establish the equivalence of the bicategories BdryαG ' sAlg(VecαG),
from which we can induce the equivalence above through prop. 6.1, by noting equivalence
of bicategories is transitive. First, we need to introduce a notion of homomorphism between
bicategories:

Definition 6.19 (Strict homomorphism of bicategories). Given a pair of bicategories Bi
and Bi ′, a strict homomorphism F : Bi → Bi ′ of bicategories consists of

• a function F : Ob(Bi)→ Ob(Bi′),

• a family of functors FXY : HomBi (X,Y ) → HomBi ′(F(X),F(Y )) referred to as
hom-functors, for each pair of objects X,Y ∈ Ob(Bi),

such that

FX,Y (f)⊗FY,Z(g) = FX,Z(f ⊗ g) ,

1
Bi ′
F(X) = FX,X(1Bi

X ) ,

F(αBi
f,g,h) = αBi ′

FX,Y (f),FY,Z(g),FZ,W (h) ,

F(rBi
X ) = rBi ′

F(X) ,

F(`Bi
X ) = `Bi ′

F(X) ,

for all objects W,X, Y, Z ∈ Ob(Bi) and triple of morphisms f ∈ Ob(HomBi (X,Y )), g ∈
Ob(HomBi (Y, Z)), h ∈ Ob(HomBi (Z,W )).

Recall that a functor between categories defines an equivalence if and only if it is full,
faithful and essentially surjective. In a similar vein, a sufficient condition for a strict
homomorphism of bicategories F to define an equivalence of bicategories is that the map
is surjective on objects, and the functors FX,Y for all X,Y ∈ Ob(Bi) define equivalences
of the categories HomBi (X,Y ) ' HomBi ′(F(X),F(Y )).

Using this sufficient condition, let us now establish the equivalence of bicategories F :
BdryαG

'−→ sAlg(VecαG). We begin by defining the function F : Ob(BdryαG)→Ob(sAlg(VecαG)).
It is given by sending each boundary condition (A,φ) to the corresponding separable algebra
object Aφ in VecαG. From the previous discussion, we know that both boundary conditions
and separable algebra objects are indexed by subgroups of G and 2-cochains satisfying the
compatibility conditions with α. It follows that the function F is a bijection, and thus
surjective. The hom-functors are required to define the following equivalence of categories:

HomBdryαG((A, φ), (B,ψ)) := Mod(C[GAB]αφψ) ' Mod(C[G̃AB]$AB ) =: HomsAlg(VecαG)(Aφ, Bψ) ,

where the groupoid G̃AB and its 2-cocycle $AB is obtained by applying the definition at
the end of section 6.4 to the delooping of G. In order to establish this equivalence, it suffices
to demonstrate the isomorphism of twisted groupoid algebras C[G̃AB]$AB ' C[GAB]αφψ ≡
C[GAB]ϑAB , for all boundary conditions (A, φ) and (B,ψ). The equivalence of their module
categories Mod(C[GAB]αφψ) ' Mod(C[G̃AB]$AB ) then follows by pre-composition. Noting
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from the definition that both groupoids have the same dimension, the isomorphism is
provided by the following map on basis elements:

∣∣g−−→
a,b

〉
7→ φ(a−1, a)

α(a−1, a, gb)
∣∣g a−1
−−−→
b

〉
, ∀

∣∣g−−→
a,b

〉
∈ C[G̃AB]$AB . (6.54)

Furthermore, one can check that such isomorphism is compatible with the respective co-
multiplication maps through the following commuting diagram

C[GAC ]αφϕ C[GAB]αφψ ⊗ C[GBC ]αψϕ

C[G̃AC ]$AC C[G̃AB]$AB ⊗ C[G̃BC ]$BC

∆B

''

∆̃B

. (6.55)

Commutativity is ensured by the relation

φ(a−1, a)
α(a−1, a, g1b)

ψ(b, b−1)
α(b, b−1, g2c)

α(g1, g2, c)α(a, g1, b)α(ag1b, b
−1, g2c)

ψ(b, b−1)α(a, g1, g2c)α(ag1, b, b−1)

= φ(a−1, a)
α(a−1, a, g1g2c)

α(g1, g2, c)α(a−1, ag1b, b
−1g2c)

α(g1, b, b−1g2c)
,

which follows from the cocycle relation

d(3)α(a−1, a, g1b, b
−1g2c) = 1 ,

d(3)α(a−1, a, g1g2c) = 1 ,

d(3)α(ag1, b, b
−1, g2c) = 1 .

Since the composition functors in both bicategories are induced from the respective comul-
tiplication maps, it can be verified that such hom-functors satisfy the conditions of a strict
homomorphism of bicategories, hence establishing the required equivalence of bicategories.

6.8 Pseudo-algebra objects and gapped boundaries in (3+1)d gauge models

In the previous discussion, we argued that, given a lattice Hamiltonian realisation of (2+1)d
Dijkgraaf-Witten theory with input data (G,α), gapped boundary conditions are in bijec-
tion with algebra objects in the fusion category VecαG. We shall now outline the analogue
of this statement for lattice Hamiltonian realisations of (3+1)d Dijkgraaf-Witten theory.

Given a fixed input data (G, π), where G is a finite group and π is normalized group 4-
cocycle in H4(G,U(1)), it has been argued that the relevant category theoretical structure
is provided by the monoidal bicategory 2VecπG of G-graded 2-vector spaces [30, 33, 34, 56,
64, 65]. Let us begin by describing the salient features of the monoidal bicategory 2Vec as
a categorification of Vec. There exist several definitions of this bicategory, see e.g. [66–68],
in the following we shall consider 2Vec as the bicategory of finite dimensional, semi-simple
Vec-module categories, Vec-module functors and Vec-module functor homomorphisms. As
customary, objects of 2Vec will be referred to as 2-vector spaces. There is a single simple
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object provided by the Vec-module category Vec, which implies that for all objects X ∈
Ob(2Vec), there exists a Vec-module equivalence X ' �i Vec. The monoidal structure of
2Vec is defined on objects via the weak 2-functor

� : 2Vec× 2Vec → 2Vec
: X × Y 7→ X � Y

,

for all X,Y ∈ Ob(2Vec), where � denotes the Deligne tensor product of abelian cat-
egories [69]. In particular, for a pair of 2-vector spaces X and Y , the Deligne tensor
product yields the category X � Y , whose set of objects is Ob(X � Y ) := Ob(X)×Ob(Y )
and set of morphisms given by Hom(X � Y ) := Hom(X) ⊗C Hom(Y ). The composition
in Hom(X � Y ) is induced from the ones in Hom(X) and Hom(Y ), accordingly. This
monoidal structure is equipped with a pseudo-natural adjoint equivalence of Vec-module
categories11

(X � Y ) � Z
αX,Y,Z−−−−→ X � (Y � Z) , (6.56)

together with a Vec-module functor isomorphism π known as the pentagonator :

((X � Y ) � Z) �W

(X � (Y � Z)) �W (X � Y ) � (Z �W )

X � ((Y � Z) �W ) X � (Y � ((Z �W ))

α
X�Y,Z,W

ααX,Y,Z�W

αX,Y
,Z

� idW

αX,Y�Z,W

idX �αY,Z,W

πX,Y,Z,W
.

(6.57)
Both α and π can be shown to evaluate to the identity 1- and 2-morphisms, respectively.
Note that the pseudo-naturality of α specifies that for any triple of 2-vector spaces X,Y, Z
and Vec-module functors fX : X → X ′, fY : Y → Y ′ and fZ : Z → Z ′ there exists a
2-isomorphism

(X � Y ) � Z X � (Y � Z)

(X ′ � Y ′) � Z ′ X ′ � (Y ′ � Z ′)

αX,Y,Z

fX � (fY � fZ)(fX � fY )� fZ

αX,Y,Z

' . (6.58)

Henceforth, we shall not draw arrows for such 2-isomorphisms but instead notate the 2-cell
with the ' symbol.

Akin to a monoidal category, the monoidal bicategory 2Vec admits a monoidal unit
1 ∈ Ob(2Vec), which is equipped with the Vec-module category pseudo-natural adjoint
equivalences

X � 1
rX−−→ X and 1 � X

`X−−→ X , (6.59)
11Although we use a similar notation, the associator of the monoidal structure is not to be confused with

the 1-associator natural isomorphism of the underlying bicategory.
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for all X ∈ Ob(2Vec), together with Vec-module functor isomorphisms τ1, τ2, τ3 referred to
as triangulators:

(1 � X) � Y 1 � (X � Y )

X � Y

α1,X,Y

`X�Y
`X � idY

τ1 ,

(X � 1) � Y X � (1 � Y )

X � Y

αX,11,Y

idX � `Y
rX � idY

τ2 , (6.60)

(X � Y ) � 1 X � (Y � 1)

X � Y

αX,Y,1

idX � rYrX�Y

τ3 . (6.61)

These isomorphisms can be all be shown to evaluate to the identity 1- and 2-morphisms,
respectively. More generally, for an arbitrary monoidal bicategory, such data is subject to
a series of coherence data which we shall not provide here, instead pointing the reader to
e.g. [63, 66, 70].

Having described the most notable features of 2Vec, we now describe the monoidal
bicategory 2VecπG, which is obtained following a process analogous to the lift of Vec to
VecαG. Let G be a finite group and π a normalised group 4-cocycle in H4(G,U(1)). A
G-graded 2-vector space is a 2-vector space of the form X = �g∈GXg. We call a G-graded
2-vector space homogeneous of degree g ∈ G if X = Xg. The monoidal bicategory 2VecπG
is then defined as the bicategory whose objects are given by G-graded 2-vector spaces,
1-morphisms are G-grading preserving Vec-module functors, and 2-morphisms are Vec-
module functor homomorphisms. The simple objects of 2VecπG are given by the categories
Vecg, for all g ∈ G, and every object is equivalent to a direct sum of simple objects. The
monoidal structure of 2VecπG is given on homogeneous components via the weak 2-functor

� : Vecg × Vecg′ → Vecgg′ , (6.62)

for all g, g′ ∈ G. Since π is a normalised representative of [π] ∈ H4(G,U(1)), the adjoint
equivalences

(Vecg � Vecg′) � Vecg′′
αVecg,Vecg′ ,Vecg′′−−−−−−−−−−→ Vecg � (Vecg′ � Vecg′′) , (6.63)

Vecg � Vec1G
rVecg−−−→ Vecg, , Vec1G � Vecg

`Vecg−−−→ Vecg (6.64)

are the identity 1-morphisms, the triangulators τ1, τ2, τ3 are the identity 2-morphisms,
whereas the pentagonator 2-isomorphism is given by πVecg ,Vecg′ ,Vecg′′ ,Vecg′′′ :=π(g,g′,g′′,g′′′)·
idVecgg′g′′g′′′ for all g,g

′,g′′,g′′′ ∈G. It is straightforward to verify that the requirement that
π is a 4-cocycle ensures the coherence relations for the pentagonator are satisfied.

Having defined the monoidal bicategory 2VecπG, we shall now argue that gapped bound-
ary conditions in (3+1)d gauge models of topological phases correspond to pseudo-algebra
objects [71] in 2VecπG, categorifying the relation between algebra objects in VecαG and gapped
boundaries in (2+1)d gauge models:
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Definition 6.20 (Pseudo-algebra object). Let Bi ≡ (Bi , � ,1, α, r, `, π, τ1, τ2, τ3) be a
monoidal bicategory. A pseudo-algebra object in Bi is a sextuple (A,m, u, ςm, ςr, ς`) con-
sisting of an object A ∈ Ob(Bi), a pair of 1-morphisms m : A � A→ A, u : 1→ A, and a
triple of 2-isomorphisms ςm, ςr, ς` defined according to

(A � A) � A A � (A � A) A � A

A � A A

α idA �m

m

m� idA m
ςm

,

A A � 1 A � A Ar−1 idA �u m

idA

ςr

,

A 1 � A A � A A`−1 u� idA m

idA

ς`

,

and subject to the following coherence relations:

((A � A) � A) � A (A � A) � A A � A

(A � (A � A)) � A (A � A) � A

A

A � ((A � A) � A) A � (A � A)

A � (A � (A � A)) A � (A � A) A � A

(m� idA)� idA m� idA

m
αA,A,A � idA

αA,A�A,A

idA �αA,A,A

(idA � idA)�m

idA �m

m

(A�m)� idA

idA � (m� idA)

αA,A,A

m� idA

id
A �m

'

ςm

ςm
� idA

idA
� ςm

is equal to

((A � A) � A) � A (A � A) � A A � A

(A � (A � A)) � A A � (A � A)

(A � A) � (A � A) A � A A

A � ((A � A) � A) (A � A) � A

A � (A � (A � A)) A � (A � A) A � A

(m� idA)� idA m� idA

m
αA,A,A � idA

αA,A�A,A

idA �αA,A,A

idA �m

m

idA � (m� idA)

α
A
�
A
,A
,A

αA
,A
,A
�
A

m� (idA� idA) idA �m

(idA � idA)�m m� idA

m

αA,A,A

αA,A,A

'π

'

' ςm

ςm
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and

(A � 1) � A (A � A) � A A � A

A � A A

A � (1 � A) A � (A � A) A � A

r−1 � idA

(A�u)� idA m� idA

m

idA � `−1

idA � (u� idA) idA �m

m

idA� idA

m

idA � idA

ςr � idA
'

'

idA� ς
−1
`

is equal to

(A � 1) � A (A � A) � A A � A

A � A A

A � (1 � A) A � (A � A) A � A

r
−1 �

idA

(idA �u)� idA m� idA

m

id
A � ` −1

idA � (u� idA) idA �m

m

αA,1,A αA,A,A

τ2

' ςm .

Given the above definition, a first observation is that a pseudo-algebra object in 2Vec
corresponds to a finite-dimensional, semi-simple monoidal category. This relies in particular
on the fact that semi-simple abelian categories always have a unique structure of semi-
simple Vec-module category [72]. Let us now apply this definition to 2VecπG. For each pair
(A, λ) indexing a choice of gapped boundary condition, where A ⊂ G is a subgroup and λ ∈
C3(A,U(1)) is a 3-cochain satisfying the condition d(3)λ = π−1|A, we construct a pseudo-
algebra object VecA,λ ≡ (�a∈A Veca,m, u, ςm, ςr, ς`) such that: the multiplication m :
VecA,λ � VecA,λ → VecA,λ is given on homogeneous components via the functormVeca,Veca′ :
Veca � Veca′ 7→ Vecaa′ for all a, a′ ∈ A, the unit map u is defined in an obvious way, the
2-isomorphisms ςr and ς` are trivial, and the 2-isomorphism

ςm : αVecA,λ,VecA,λ,VecA,λ ◦ (idVecA,λ ◦m �m)⇒ (m � idVecA,λ) ◦m (6.65)

defines an associator for the product map m that is determined by λ. This associator acts
on homogenous components labelled by a, a′, a′′ ∈ A as

λa,a′,a′′ : αVeca,Veca′ ,Veca′′◦ (idVeca�mVeca′ ,Veca′′ )◦mVeca,Veca′a′′

⇒ (mVeca,Veca′ � idVeca′′ )◦mVecaa′ ,Veca′′ .

The condition d(3)λ = π−1|A demonstrates that VecA,λ is not a monoidal category in
the conventional sense since the associator λ fails to satisfy the pentagon equation (6.1).
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Instead, the associator satisfies the following equation on homogeneous components labelled
by a, a′, a′′, a′′′ ∈ A:

(λa,a′,a′′ � idVeca′′′ ) ◦ λa,a′a′′,a′′′ ◦ (idVeca � λa′,a′′,a′′′) ◦ πa,a′,a′′,a′′′ = λaa′,a′′,a′′′ ◦ λa,a′,a′′a′′′ .
(6.66)

In this way, we see that VecA,λ defines a monoidal category which is associative inside
2VecπG but not as a conventional monoidal category. This result provides a categorification
of the observation that an algebra object Aφ in VecαG defines a twisted groupoid algebra,
which is associative inside VecαG but not as a conventional algebra.

6.9 Bicategory of gapped boundary excitations in (3+1)d gauge models

Mimicking the analysis carried out in section 6.7, we shall now introduce a category theo-
retical formulation of gapped boundaries in (3+1)d gauge models and string-like excitations
terminating at gapped boundaries, which we studied from a tube algebra point of view in
section 4. In particular, we shall define a bicategory 2BdryπG that is analogous to BdryαG.
We shall then relate this construction to the work of Kong et al. in [56] arguing that 2BdryπG
forms a full sub-bicategory of Z(2VecπG), i.e. the centre of 2VecπG.

Let us begin with a brief review of the results obtained in the first part of this
manuscript within the tube algebra approach. Hamiltonian realisations of (3+1)d
Dijkgraaf-Witten theory are defined in terms of pairs (G, π), where G is a finite group and
π a normalised 4-cocycle in H4(G,U(1)). In section 2.4, it was argued that gapped bound-
aries can be indexed by pairs (A, λ), where A ⊂ G is a subgroup of G and λ ∈ C3(A,U(1))
is a 3-cochain satisfying the condition d(3)λ = π−1|A. In the previous section, we explained
that such data is in bijection with pseudo-algebra objects VecA,λ in 2VecπG. Moreover, we
showed in section 4 within the tube algebra approach that given a pair of two-dimensional
gapped boundaries labelled by (A, λ) and (B,µ), respectively, string-like excitations thread-
ing through the bulk from the former boundary to the latter were defined as modules of
the twisted relative groupoid algebra C[Λ(GAB)]T(π)

T(λ)T(µ), where Λ(GAB) ≡ ΛGΛAΛB and
T : Z•(G,U(1)) → Z•−1(ΛG,U(1)).12 Via the introduction of a comultiplication map, we
further described the concatenation of such string-like excitations in section 5.

Let us now collect these results into a bicategory 2BdryπG, in a way akin to the definition
of BdryαG. The objects of 2BdryπG are given by pairs (ΛA,T(λ)) for every gapped boundary
condition labelled by (A, λ). Given a pair of objects (ΛA,T(λ)), (ΛB,T(µ)), we define the
hom-category

Hom2BdryπG
(
(ΛA,T(λ)), (ΛB,T(µ))

)
:= Mod

(
C[Λ(GAB)]T(π)

T(λ)T(µ)
)
, (6.67)

where Mod(C[Λ(GAB)]T(π)
T(λ)T(µ)) denotes the category of C[Λ(GAB)]T(π)

T(λ)T(µ)-modules and
intertwiners. The composition functors, associator and unitors are given analogously to
the construction of BdryαG.

12Recall that ΛG refers to the loop groupoid of the group G treated as a one-object groupoid (see
section 4).
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From this definition, we interpret the objects (ΛA,T(λ)) of 2BdryπG as defining bound-
ary conditions for the endpoints of a string-like excitation that terminates on a gapped
boundary labelled by (A, λ). An isomorphism class of objects in ΛA specifies possible
fluxes for a string-like excitation terminating on the boundary (A, λ). This flux corre-
sponds to the closed holonomy going along the non-contractible cycle perpendicular to
the length of the string. Given a pair of objects (ΛA,T(λ)), (ΛB,T(µ)) a 1-morphism
ρAB ∈ Ob(Hom2BdryπG ((A, λ), (B,µ))) specifies a magnetic quantum number describing the
gauge orbit of parallel transports along the length of the string — generically, such a paral-
lel transport must be compatible with the possible boundary conditions for the endpoints of
the string — as well as a charge quantum number decomposing the symmetries of the gauge
action on the string. In this way, we view such strings as dyonic excitations. The bifunctor
on 1-morphisms provides a notion of concatenation for a pair of string-like excitations that
share a boundary endpoint, as described in section 5.2. The 2-morphisms correspond to
intertwiners, so that a 2-morphism of the form ζ : ρAB⊗B ρBC → ρAC can be interpreted as
implementing the renormalization of a pair of concatenated string-like excitations. Identity
1-morphisms and unitors are defined analoguously to BdryαG. Similarly, the 1-associator for
a triple of 1-morphisms ρAB, ρBC , ρCD in the appropriate hom-categories is given by the
intertwiner isomorphism ΦρABρBCρCD : (ρAB ⊗B ρBC) ⊗C ρCD → ρAB ⊗B (ρBC ⊗C ρCD),
as described explicitly in section 5.2.

It is well-known that, given a lattice Hamiltonian realisation of (2+1)d Dijkgraaf-
Witten theory with input data (G,α), algebraic properties of the (bulk) anyonic excitations
can be encoded into the centre Z(VecαG) of the fusion category VecαG, this centre being in
particular a braided monoidal category. The objects of Z(VecαG) are interpreted as the
elementary excitations of the model, or anyons, and the morphisms implement space-time
processes of such anyons. The monoidal structure describes the fusion and splitting pro-
cesses of the excitations, whereas the braiding structure encodes their exchange statistics.
Recently, Kong et al. studied in [56] the analogue of this result in (3+1)d. The relevant cat-
egory theoretical structure in (3+1)d being the monoidal bicategory 2VecπG, they computed
the braided monoidal bicategory Z(2VecπG) obtained as the categorified centre of 2VecπG,
arguing that such a bicategory should describe string-like excitations and their statistics in
(3+1)d gauge models. More specifically, they demonstrated that as a bicategory Z(2VecπG)
is equivalent to the bicategory MOD(VecT(π)

ΛG ). Using this equivalence, they suggested that
objects of Z(2VecπG) could be interpreted as string-like topological excitations, 1-morphisms
as particle-like topological excitations, and 2-morphisms as instantons. Relating this bi-
category to the boundary tube algebra in (3+1)d, we shall argue that objects of Z(2VecπG)
should be interpreted as boundary conditions for the endpoints of a string-like excitation
— such a boundary condition specifying in particular allowed fluxes for the excitation —
the 1-morphisms as quantum numbers associated with string-like topological excitations
that are constrained by a choice of endpoints boundary conditions, and 2-morphisms as
implementing the renormalisation of concatenated string-like excitations.

In order to establish the interpretation spelt out above, we begin by showing
that 2BdryπG is equivalent as a bicategory to a full sub-bicategory 6MOD(VecT(π)

ΛG ) of
MOD(VecT(π)

ΛG ). Our argument mirrors the equivalence of bicategories BdryαG ' MOD(VecαG)
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established in section 6.7. Utilising prop. 6.1, we know that, up to equivalence, all VecT(π)
ΛG -

module categories can be expressed as the category of module objects for an algebra object
in VecT(π)

ΛG . Moreover, we established in section 6.4 that all such algebra objects were
indexed by (ΛG,T(π))-subgroupoids, as defined in section 4.3. Given the data (A, λ) of
gapped boundary condition in (3+1)d, we explained in section 4 that the loop groupoid ΛA
together with the groupoid 2-cochain T(λ) defines such a (ΛG,T(π))-subgroupoid. Hence-
forth, we shall refer to groupoids of this form as 6(ΛG,T(π))-subgroupoids. In this vein,
we define the bicategory 6MOD(VecT(π)

ΛG ) as the full sub-bicategory of MOD(VecT(π)
ΛG ) whose

objects are VecT(π)
ΛG -module categories induced from 6(ΛG,T(π))-subgroupoids, and hom-

categories are the corresponding ones in MOD(VecT(π)
ΛG ). Similarly, we define 6sAlg(VecT(π)

ΛG )
as the full sub-bicategory of sAlg(VecT(π)

ΛG ), whose objects are algebra objects in VecT(π)
ΛG of

the form ΛAT(λ), and hom-categories are the corresponding categories of bimodule objects
in VecT(π)

ΛG . Mimicking our proof of the equivalence BdryαG ' sAlg(VecαG), we can show the
equivalence between 2BdryπG and 6sAlg(VecT(π)

ΛG ). This equivalence relies in particular on
the isomorphism C[Λ(GAB)]T(π)

T(λ)T(µ) ≡ C[ΛGΛAΛB]ϑΛAΛB ' C[Λ̃GΛAΛB]$ΛAΛB of twisted
relative groupoid algebras, which is realised by an obvious generalisation of (6.54). Utilis-
ing the proof of prop. 6.1, it follows that ∂sAlg(VecαG) ' ∂MOD(VecT(π)

ΛG ), hence establishing
the equivalence

2BdryπG ' 6MOD(VecT(π)
ΛG ) . (6.68)

Let us now explain how we can generalise our approach so as to obtain the bicategory
MOD(VecT(π)

ΛG ), which we recall was shown to be equivalent to Z(2VecπG). When considering
the boundary tube algebra for the (3+1)d gauge models in section 4, we could have allowed
for a larger spectrum of boundary colourings beyond the ones inherited from the gapped
boundary conditions. More specifically, we could have considered G-colourings that are
provided by morphisms in any (ΛG,T(π))-subgroupoid (X , φ) such that d(2)φ = T(π)|−1

X .
Given a pair of (ΛG,T(π))-subgroupoids (X , φ) and (Y, ψ), we could have then considered
G-coloured graph-states of the form

∣∣g x−→
y

〉
≡
∣∣∣∣∣

x1

g

x2

y2

y10′ 1′

10

0̃′
1̃′

1̃0̃

〉
≡
∣∣∣∣∣

g

x1 x−1
1 gy1 y1

y
y1
2x

x1
2 y2x2

〉
(6.69)

where we borrowed the notation from section 4 and

x = x2
x1−→ xx1

2 ∈ Hom(X ) , y = y2
y1−→ yy1

2 ∈ Hom(Y) , g
x−→
y
,∈ Hom(ΛGXY) ,

such that ΛGXY denotes the relative groupoid over ΛG defined by X and Y. In this
setting, there exists a natural multiplication of such boundary tubes defining an algebra
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isomorphic to the twisted groupoid algebra C[ΛGXY ]T(π)
φψ . Letting StringπG denote the bi-

category defined in the same manner as 2BdryπG with objects all (ΛG,T(π))-subgroupoids
and hom-categories

HomStringπG((X , φ), (Y, ψ)) := Mod(C[ΛGXY ]T(π)
φψ ) , (6.70)

we obtain the following equivalence of bicategories:

StringπG ' MOD(VecT(π)
ΛG ) . (6.71)

Utilising this equivalence of bicategories, together with the physical interpretation inherited
from the tube algebra approach, we interpret the VecT(π)

ΛG -module category ModVecT(π)
ΛG

(Xφ)
for a (ΛG,T(π))-subgroupoid (X , φ) as the 2-Hilbert space [73] of boundary conditions
that appear at the endpoint of a string-like (bulk) excitation. As before, 1-morphisms are
naturally interpreted as the quantum numbers of string-like excitations.

The motivation for calling VecT(π)
ΛG -module categories ModVecT(π)

ΛG
(Xφ) 2-Hilbert spaces

is as follows. In finite-dimensional quantum mechanics, given a finite set X of classical field
configurations, the corresponding Hilbert space H[X] is given by the free vector space of
functions f : X → C. Categorifying the set of classical field configurations to a groupoid G,
whose objects correspond to classical field configurations and morphisms, the symmetries
of the field configurations. The category [G,Vec]β of (weak) functors F : G → Vec for
[β] ∈ H2(G,U(1)) provides a natural categorification of H[X] which defines a finite 2-
vector space (see section 6.8). The category [G,Vec]β can then be shown to admit a
categorification of the inner-product of finite Hilbert spaces given by the hom-functor

〈−,−〉 : ([G,Vec]β)op � [G,Vec]β → Vec . (6.72)

Recalling that ModVecT(π)
ΛG

(Xφ) is defined by a category of weak functors from a groupoid
to Vec, the term 2-Hilbert space seems most appropriate.

We conclude this section by showing that, in general, objects in 6MOD(VecT(π)
ΛG ) are not

indecomposable as VecT(π)
ΛG -module categories. For convenience, we shall focus on the limit-

ing case where the group G is abelian, but our analysis can be extended to the non-abelian
scenario. Analogously to indecomposable modules over an algebra, an indecomposable
module category is a module category which is not equivalent to the direct sum of non-
zero module categories. Using the equivalence between VecT(π)

ΛG -module categories and the
categories of module objects for a separable algebra object in VecT(π)

ΛG , we have that a
VecT(π)

ΛG -module category is indecomposable if only if the corresponding algebra object is
not Morita equivalent to a direct sum of non-zero algebra objects. Given a (3+1)d gauge
model with input data (G, π), and a choice of gapped boundary condition (A, λ), an algebra
object ΛAT(λ) in VecT(π)

ΛG naturally decomposes as a direct sum via

ΛAT(λ) =
⊕
a∈A

(ΛAa)Ta(λ) , (6.73)
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where ΛAa denotes the groupoid with unique object a ∈ A and set of morphisms {a a′−→
a}∀ a′∈A. The 2-cochain Ta(λ) ∈ C2(ΛAa,U(1)) is then given by the restriction of T(λ) ∈
C2(ΛA,U(1)) to ΛAa. This decomposition yields

ModVecT(π)
ΛG

(ΛAT(λ)) '
⊕
a∈A

ModVecT(π)
ΛG

((ΛAa)Ta(λ)) (6.74)

as VecT(π)
ΛG -module categories, so that the category of module objects is not indecomposable

as a module category unless A = 1G is the trivial subgroup of G. Generically, for possibly
non-abelian G an indecomposable VecT(π)

ΛG -module category can be specified by a triple
(O, H, φ), where O denotes a conjugacy class of G, H is a subgroup of the centralizer
Zo1 ⊆ G for a representative o1 ∈ O, and φ ∈ C2(H,U(1)) is 2-cochain satisfying d(2)φ =
T(π)|H [56]. The corresponding algebra object is then given by (Ho1)φo1 , where Ho1 denotes
the groupoid with unique object o1 ∈ O and hom-set {h : o1 → o1}∀h∈H with composition
given by multiplication in H, and the 2-cochain φo1 ∈ C2(Ho1 ,U(1)) is defined by the
relation φo1(h : o1 → o1, h

′ : o1 → o1) := φ(h, h′) for all h, h′ ∈ H.

7 Discussion

Gapped boundaries of topological models have been under scrutiny in the past years.
Focusing on lattice Hamiltonian realisations of Dijkgraaf-Witten theory, a.k.a gauge models
of topological phases, we studied gapped boundaries and their excitations in (2+1)d and
(3+1)d. More specifically, the goal of this paper was two-fold: apply the tube algebra
approach to classify gapped boundary excitations and, using these results, elucidate the
higher-category theoretical formalism relevant to describe gapped boundaries in (3+1)d.

As explained in detail in [33], local operators of lattice Hamiltonian realisations of
Dijkgraaf-Witten theory can be conveniently expressed in terms of the partition function
of the theory applied to so-called pinched interval cobordisms. We introduced a generalisa-
tion of the Dijkgraaf-Witten partition function, from which the gapped boundary Hamil-
tonian operators could be defined in analogy with the bulk Hamiltonian operators using
the language of relative pinched interval cobordisms. Given gapped boundaries labelled by
subgroups of the input group and cochains compatible with the input cocycle, we applied
the tube algebra approach in order to reveal the algebraic structure underlying two types of
excitations: (i) Point-like excitations at the interface of two gapped boundaries in (2+1)d,
where the ‘tube’ has the topology of I×I, and (ii) string-like (bulk) excitations terminating
at gapped boundaries, where the ‘tube’ has the topology of (S1×I)×I. Crucially, both tube
algebras can be related via a lifting (or dimensional reduction) argument, and as such can
be studied in parallel. This statement was formalised using the notion of relative groupoid
algebra. When applied to the input group treated as a one-object groupoid, this notion
yields the (2+1)d tube algebra, whereas it yields the (3+1)d tube algebra when applied to
the loop groupoid of the group. We subsequently studied the representation theory of the
(3+1)d tube algebra in full detail, which encompasses the (2+1)d one as a limiting case,
deriving the irreducible representations as well as the corresponding recoupling theory.
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In the second part of this manuscript, we reformulated the previous statements in
category theoretical terms. In (2+1)d, the relevant notion to describe gapped boundaries
and their excitations is the bicategory MOD(VecαG) of module categories over the category
VecαG of group-graded vector spaces. In practice, a module category can be obtained as
a category of modules over an algebra object in the input category. The bicategory of
module categories above can then be shown to be equivalent to a bicategory of separable
algebra objects, such that objects correspond to the gapped boundary conditions and mor-
phisms to representations of a groupoid algebra isomorphic to the (2+1)d tube algebra.
The identification with the tube algebra allowed us to elucidate the physical interpretation
of the category theoretical notions at play. Mimicking this (2+1)d construction, we further
defined a bicategory that encodes the string-like excitations terminating at gapped bound-
aries and found that is was equivalent to a sub-bicategory of the bicategory MOD(VecT(π)

ΛG )
of modules categories over the category VecT(π)

ΛG of loop-groupoid-graded vector spaces.
Comparing with the work of Kong et al. [56], MOD(VecT(π)

ΛG ) is equivalent to the higher
categorical centre Z(2VecπG) of the category 2VecπG of G-graded 2-vector spaces, which is
the input category of (3+1)d gauge models. In virtue of the physical interpretation inher-
ited from the tube algebra approach, we thus suggested that Z(2VecπG) describes dyonic
bulk string-like excitations whose end-points are pinned to the boundary of the spatial
manifold. This is the higher-dimensional analogue of the well-known statement that bulk
point-like excitations in (2+1)d are described by the centre Z(VecαG) of the input category.

The distinction between the gapped boundary string-like excitations we focused on,
and the more general ones encoded in the centre Z(2VecπG) can be appreciated from an
extended TQFT point of view. We should think of Z(2VecπG) as describing the quantum
invariant the extended 4-3-2-1 Dijkgraaf-Witten TQFT assigns to the circle. It follows from
our analysis that such an extended TQFT is more general than what gapped boundary
conditions provide. Working out the details of this more general scenario will be the
purpose of another paper.

The study carried out in this manuscript can be generalized in several ways. First of all,
we could study gapped domains walls instead of gapped boundaries and consider string-like
excitations that terminate at gapped domains walls point-like excitations. In (2+1)d, the
so-called folding trick can be used in order to map a gapped domain wall configuration to a
gapped boundary one. It would certainly be interesting to consider how this generalizes in
higher dimensions. Once this more general scenario is well-understood, we could then apply
our results to so-called fracton models, which were recently suggested in [74–76] to have an
interpretation in terms of defect TQFTs. A related question would be to study invertible
domain walls such as duality defects and derive the underlying mathematical structure in
category theoretical terms. Another interesting direction pertains to the generalisation of
the results presented in this manuscript to the case of fermionic gauge models.

Another follow-up work pertains to the relation between the string-like excitations as
described by Z(2VecπG) and the loop-like excitations of the model. In a recent paper [33], the
authors showed that loop-like excitations and their statistics were captured by the category
of modules over the so-called twisted quantum triple algebra. This algebra can be expressed
as the twisted groupoid algebra C[Λ2G]T2(π) of the loop groupoid of the loop groupoid of G.
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In comparison, recall that the twisted quantum double is isomorphic to C[ΛG]T(α) in this
language. This groupoid algebra was shown by the authors to be isomorphic to the tube
algebra associated with the manifold T2×I, a local neighbourhood of a loop-like object being
a solid torus. Intuitively, we may expect loop-like excitations to descend from the string-
like ones via a tracing mechanism. This can be formalized using the notion of categorical
trace, building upon the fact that it maps a module category over VecG to a module over
C[ΛG] [62, 77]. Another way to establish the connection between string-like and loop-
like excitations consists in first realising that, as braided monoidal categories, we have
the equivalences Z(VecT(π)

ΛG ) ' Mod(C[Λ2G]T2(π)) and Z(VecT(π)
ΛG ) ' Dim(MOD(VecT(π)

ΛG )),
where Dim denotes the dimension of a bicategory [62, 78] obtained via an appropriate
categorification of the dimension of a vector space. The details of this correspondence will
be presented in a forthcoming paper.
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A Representation theory of the relative groupoid algebra

In this appendix, we collect the proofs of several important results of the representation
theory of the relative groupoid algebra C[Λ(GAB)]αφψ.

A.1 Proof of the orthogonality relations (5.12)

Let us confirm that the representation matrices as defined in (5.8) satisfy the orthogonality
relation (5.12):

1
|A||B|

∑
g

a−→
b
∈Λ(GAB)

DρABIJ

(∣∣g a−→
b

〉)
Dρ
′
AB
I′J ′

(∣∣g a−→
b

〉)

= 1
|A||B|

∑
g

a−→
b
∈Λ(GAB)

δg,oi δa−1gb,oj

ϑ
Λ(AB)
o1 (p−1

i apj , p
−1
j |q

−1
i bqj , q

−1
j )

ϑ
Λ(AB)
o1 (p−1

i , a|q−1
i , b)

DRmn
(∣∣ p−1

i apj−−−−−→
q−1
i bqj

〉)
× δg,o′i δa−1gb,o′j

ϑ
Λ(AB)
o1 (p′−1

i , a|q′−1
i , b)

ϑ
Λ(AB)
o1 (p′−1

i ap′j , p
′−1
j |q

′−1
i bq′j , q

′−1
j )
DR′m′n′

(∣∣ p′−1
i ap′j−−−−−→
q′−1
i bq′j

〉)
= 1
|A||B|

∑
oi

a−→
b
∈Hom(Λ(GAB))

δOAB ,O′AB δi,i
′ δj,j′ δa−1oib,oj DRmn

(∣∣ p−1
i apj−−−−−→
q−1
i bqj

〉)
DR′m′n′

(∣∣ p−1
i apj−−−−−→
q−1
i bqj

〉)

= 1
|ZOAB |

∑
(a,b)∈ZOAB

δOAB ,O′AB δi,i
′ δj,j′ DRmn

(∣∣ a−→
b

〉)
DR′m′n′

(∣∣ a−→
b

〉)
=
δρAB ,ρ′AB δI,I

′ δJ,J ′

dρAB
,
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where we first expanded the representation matrices according to definition (5.8) and then
used the orthogonality of the irreducible representation in ZOAB together with the relation
|ZOAB | · |OAB| = |A||B|.

A.2 Proof of the invariance property (5.29)

Let us prove the invariance property (5.29), which we reproduce below for convenience

∑
{J}
DρABIABJAB

(∣∣g1
a−→
b

〉)
DρBCIBCJBC

(∣∣g2
b′−−→
c

〉)[ρAB
JAB

ρBC
JBC

∣∣∣ρACJAC

]
DρACJACIAC

(∣∣g3
a′−−→
c′

〉)
(A.1)

= 1
|B|

∑
b̃∈B

ϑ
Λ(AB)
g1 (a, ã|b, b̃)ϑΛ(BC)

g2 (b′, b̃|c, c̃) ζΛ(ABC)
ã,b̃,̃c

(a−1g1b, b
′−1g2c)

ϑ
Λ(AC)
g3 (ã, ã−1a′ |̃c, c̃−1c′)

×
∑
{K}

δg3,a−1g1bb′−1g2cD
ρAB
IABKAB

(∣∣g1
aã−−→
bb̃

〉)
DρBCIBCKBC

(∣∣g2
b′b̃−−→
c̃c

〉)
×
[
ρAB
KAB

ρBC
KBC

∣∣∣ρACKAC

]
DρACKACIAC

(∣∣ã−1g3c̃
ã−1a′−−−−→
c̃−1c′

〉)
,

Let us consider the left-hand side of (A.1). In virtue of the gauge invariance (5.28) of the
Clebsch-Gordan coefficients, this is equal to

l.h.s.(A.1)=
∑

g∈Hom(s(ã),s(̃c))

∑
{J,K}

DρABIABJAB

(∣∣g1
a−→
b

〉)
DρBCIBCJBC

(∣∣g2
b′−→
c

〉)
DρACJACIAC

(∣∣g3
a′−→
c′

〉)
×(DρABJABKAB

⊗BDρBCJBCKBC
)
(∣∣g ã−→̃

c

〉)
×DρACJACKAC

(∣∣g ã−→̃
c

〉)[ρAB
KAB

ρBC
KBC

∣∣∣ρACKAC

]
= 1
|B|

∑
g′1∈Ob(Λ(GAB))
g′2∈Ob(Λ(GBC))

b̃∈B

∑
{J,K}

DρABIABJAB

(∣∣g1
a−→
b

〉)
DρBCIBCJBC

(∣∣g2
b′−→
c

〉)
DρACJACIAC

(∣∣g3
a′−→
c′

〉)
×DρABJABKAB

(∣∣g′1 ã−→̃
b

〉)
DρBCJBCKBC

(∣∣g′2 b̃−→̃
c

〉)
ζ

Λ(ABC)
ã,b̃,̃c

(g′1,g′2)

×DρACJACKAC

(∣∣g′1g′2 ã−→̃
c

〉)[ρAB
KAB

ρBC
KBC

∣∣∣ρACKAC

]
,

where we applied the definitions of the truncated tensor product ⊗B and the comultiplica-
tion map ∆B. Using

DρACJACKAC

(∣∣g′1g′2 ã−→̃
c

〉)
= 1
ϑ

Λ(AC)
g′1g
′
2

(ã, ã−1 |̃c, c̃−1)
DρACKACJAC

(∣∣ã−1g′1g
′
2c̃

ã−1
−−−→
c̃−1

〉)
,
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together with the fact that the representation matrices define algebra homomorphisms
yields

l.h.s.(A.1) = 1
|B|

∑
g′1,g
′
2

b̃∈B

∑
{K}

ϑ
Λ(AB)
g1 (a, ã|b, b̃)ϑΛ(BC)

g2 (b′, b̃|c, c̃)ϑΛ(AC)
ã−1g′1g

′
2 c̃

(ã−1, a′ |̃c−1, c′)

ϑ
Λ(AC)
g′1g
′
2

(ã, ã−1 |̃c, c̃−1)
×DρABIABKAB

(∣∣g1
aã−−→
bb̃

〉)
DρBCIBCKBC

(∣∣g2
b′b̃−−→
c̃c

〉)
× δg′1,a−1g1b δg′2,b′−1g2c δg3,g′1g

′
2
ζ

Λ(ABC)
ã,b̃,̃c

(g′1, g′2)

×DρACKACIAC

(∣∣ã−1g′1g
′
2c̃

ã−1a′−−−−→
c̃−1c′

〉) [ρAB
KAB

ρBC
KBC

∣∣∣ρACKAC

]

= 1
|B|

∑
b̃∈B

∑
{K}

ϑ
Λ(AB)
g1 (a, ã|b, b̃)ϑΛ(BC)

g2 (b′, b̃|c, c̃)ϑΛ(AC)
ã−1g3 c̃

(ã−1, a′ |̃c−1, c′)

ϑ
Λ(AC)
g3 (ã, ã−1 |̃c, c̃−1)

×DρABIABKAB

(∣∣g1
aã−−→
bb̃

〉)
DρBCIBCKBC

(∣∣g2
b′b̃−−→
c̃c

〉)
× δg3,a−1g1bb′−1g2c ζ

Λ(ABC)
ã,b̃,̃c

(a−1g1b, b
′−1g2c)

×DρACKACIAC

(∣∣ã−1g3c̃
ã−1a′−−−−→
c̃−1c′

〉) [ρAB
KAB

ρBC
KBC

∣∣∣ρACKAC

]
.

Finally, using d(2)ϑ
Λ(AC)
g3 (ã, ã−1, a′ |̃c, c̃−1, c′) = 1, we obtain

l.h.s.(A.1) = 1
|B|

∑
b̃∈B

∑
{K}

ϑ
Λ(AB)
g1 (a, ã|b, b̃)ϑΛ(BC)

g2 (b′, b̃|c, c̃) ζΛ(ABC)
ã,b̃,̃c

(a−1g1b, b
′−1g2c)

ϑ
Λ(AC)
g3 (ã, ã−1a′ |̃c, c̃−1c′)

×DρABIABKAB

(∣∣g1
aã−−→
bb̃

〉)
DρBCIBCKBC

(∣∣g2
b′b̃−−→
c̃c

〉)
× δg3,a−1g1bb′−1g2cD

ρAC
KACIAC

(∣∣ã−1g3c̃
ã−1a′−−−−→
c̃−1c′

〉) [ρAB
KAB

ρBC
KBC

∣∣∣ρACKAC

]
,

which is the right-hand side of (A.1), as expected. Note that the above is true for every
morphism ã, c̃.

A.3 Proof of the defining relation of the 6j-symbols

In this appendix, we confirm the definition of the 6j-symbols{
ρAB
ρAD

ρBC
ρAC

ρCD
ρBD

}
:= 1

dρAD

∑
{I}

α(oiAB , oiBC , oiCD)
[
ρAB
IAB

ρBC
IBC

∣∣∣ρACIAC

][
ρAC
IAC

ρCD
ICD

∣∣∣ρADIAC

][
ρAB
IAB

ρBD
IBD

∣∣∣ρADIAD

][
ρBC
IBC

ρCD
ICD

∣∣∣ρBDIBD

]
,

such that they satisfy the relation∑
ρAC

∑
{I}

{
ρAB
ρAD

ρBC
ρAC

ρCD
ρBD

}[
ρAB
IAB

ρBC
IBC

∣∣∣ρACIAC

][
ρAC
IAC

ρCD
ICD

∣∣∣ρADKAD

]
× |ρABIAB〉 ⊗ |ρBCIBC〉 ⊗ |ρCDICD〉 . ΦABCD

=
∑
{I}

[
ρAB
IAB

ρBD
IBD

∣∣∣ρADKAD

][
ρBC
IBC

ρCD
ICD

∣∣∣ρBDIBD

]
|ρABIAB〉 ⊗ |ρBCIBC〉 ⊗ |ρCDICD〉 (A.2)
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Inserting the definition of the 6j-symbols into equation (A.2) and writing down explicitly
the action of ΦABCD using (5.8), we find that the left-hand side is equal to

l.h.s.(A.2) = 1
dρAD

∑
ρAC

∑
{I,J}

α(ojAB , ojBC , ojCD)
α(oiAB , oiBC , oiCD)

×
[
ρAB
JAB

ρBC
JBC

∣∣∣ρACJAC

][
ρAC
JAC

ρCD
JCD

∣∣∣ρADJAD

][
ρAB
JAB

ρBD
JBD

∣∣∣ρADJAD

][
ρBC
JBC

ρCD
JCD

∣∣∣ρBDJBD

]
×
[
ρAB
IAB

ρBC
IBC

∣∣∣ρACIAC

][
ρAC
IAC

ρCD
ICD

∣∣∣ρADKAD

]
|ρABIAB〉 ⊗ |ρBCIBC〉 ⊗ |ρCDICD〉

The defining relation of the Clebsch-Gordan coefficients yields

[
ρAB
JAB

ρBC
JBC

∣∣∣ρACJAC

][
ρAC
JAC

ρCD
JCD

∣∣∣ρADJAD

][
ρAB
IAB

ρBC
IBC

∣∣∣ρACIAC

][
ρAC
IAC

ρCD
ICD

∣∣∣ρADKAD

]
= dρACdρAD
|A|2|C||D|

∑
g

a−→
c
∈Λ(GAC)

g′
a′−→
d
∈Λ(GAD)

(DρABJABIAB
⊗B DρBCJBCIBC

)
(∣∣g a−→

c

〉)
DρACJACIAC

(∣∣g a−→
c

〉)
× (DρACJACIAC

⊗C DρCDJCDICD
)
(∣∣g′ a′−−→

d

〉)
DρADJADKAD

(∣∣g′ a′−−→
d

〉)
= dρACdρAD
|A|2|B||C|2|D|

∑
g1,g2,g′1,g

′
2

(a,c)∈A×C
(a′,d)∈A×D
(b,c′)∈B×C

DρABJABIAB

(∣∣g1
a−→
b

〉)
DρBCJBCIBC

(∣∣g2
b−→
c

〉)
DρACJACIAC

(∣∣g1g2
a−→
c

〉)
×DρACJACIAC

(∣∣g′1 a′−−→
c′

〉)
DρCDJCDICD

(∣∣g′2 c′−−→
d

〉)
×DρADJADKAD

(∣∣g′1g′2 a′−−→
d

〉)
ζ

Λ(ABC)
a,b,c (g1, g2) ζΛ(ACD)

a′,c′,d (g′1, g′2) ,

where the second sum is over g1 ∈ Ob(Λ(GAB)), g2 ∈ Ob(Λ(GBC)), g′1 ∈ Ob(Λ(GAC)),
g′2 ∈ Ob(Λ(GCD)) and the corresponding morphisms, which we loosely identify with the
group variables they are characterized by. Furthermore, we have that

1
|A||C|

∑
ρAC

IAC ,JAC

dρACD
ρAC
JACIAC

(
|g′1

a′−−→
c′

〉)
DρACJACIAC

(∣∣g1g2
a−→
c

〉)
(A.3)

= δa−1g1g2c,a′−1g′1c
′

1
|A||C|

∑
ρAC

dρAC tr
[
DρAC

(
|g′1

a′a−1

−−−−→
c′c−1

〉)]
= δg1g2,g′1

δa,a′ δc,c′ , (A.4)

where we made use of the orthogonality relation (5.12) so that

[
ρAB
JAB

ρBC
JBC

∣∣∣ρACJAC

][
ρAC
JAC

ρCD
JCD

∣∣∣ρADJAD

][
ρAB
IAB

ρBC
IBC

∣∣∣ρACIAC

][
ρAC
IAC

ρCD
ICD

∣∣∣ρADKAD

]
= dρAD
|A||B||C||D|

∑
g1,g2,g′2

(a,c)∈A×C
d∈D
b∈B

DρABJABIAB

(∣∣g1
a−→
b

〉)
DρBCJBCIBC

(∣∣g2
b−→
c

〉)
×DρCDJCDICD

(∣∣g′2 c−→
d

〉)
DρADJADKAD

(∣∣g1g2g′2
a−→
d

〉)
× ζΛ(ABC)

a,b,c (g1, g2) ζΛ(ACD)
a,c,d (g1g2, g

′
2) .
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Putting everything together so far, we obtain

l.h.s.(A.2)= 1
|A||B||C||D|

∑
g1,g2,g′2

(a,c)∈A×C
(b,d)∈B×D

∑
{I,J}

α(ojAB ,ojBC ,ojCD)
α(oiAB ,oiBC ,oiCD) ζ

Λ(ABC)
a,b,c (g1,g2)ζΛ(ACD)

a,c,d (g1g2,g
′
2)

×DρBCJBCIBC

(∣∣g2
b−→
c

〉)
DρCDJCDICD

(∣∣g′2 c−→
d

〉)[ρBC
JBC

ρCD
JCD

∣∣∣ρBDJBD

]
×DρABJABIAB

(∣∣g1
a−→
b

〉)
DρADJADKAD

(∣∣g1g2g′2
a−→
d

〉)
×
[
ρAB
JAB

ρBD
JBD

∣∣∣ρADJAD

]
|ρABIAB〉⊗|ρBCIBC〉⊗|ρCDICD〉 .

In virtue of the definition of the representation matrices, we observe that we must have
oiAB = a−1g1b, oiBC = b−1g2c, oiCD = c−1g′2d, ojAB = g1, ojBC = g2 and ojCD = g′2 in order
for the whole expression not to vanish. Applying the quasi-coassociativity condition

ζ
Λ(BCD)
b,c,d (g2, g

′
2) ζΛ(ABD)

a,b,d (g1, g2g
′
2)

ζ
Λ(ACD)
a,c,d (g1g2, g′2) ζΛ(ABC)

a,b,c (g1, g2)
= α(g1, g2, g

′
2)

α(a−1g1b, b−1g2c, c−1g′2d) , (A.5)

we obtain

l.h.s.(A.2) = 1
|A||B||C||D|

∑
g1,g2,g′2

(a,c)∈A×C
(b,d)∈B×D

∑
{I,J}

ζ
Λ(BCD)
b,c,d (g2, g

′
2) ζΛ(ABD)

a,b,d (g1, g2g
′
2)

×DρBCJBCIBC

(∣∣g2
b−→
c

〉)
DρCDJCDICD

(∣∣g′2 c−→
d

〉)[ρBC
JBC

ρCD
JCD

∣∣∣ρBDJBD

]
×DρABJABIAB

(∣∣g1
a−→
b

〉)
DρADJADKAD

(∣∣g1g2g′2
a−→
d

〉)
×
[
ρAB
JAB

ρBD
JBD

∣∣∣ρADJAD

]
|ρABIAB〉 ⊗ |ρBCIBC〉 ⊗ |ρCDICD〉 .

Let us now insert the resolution of the identity

δJBD,JBD =
∑

h,h′∈Ob(Λ(GBD))

∑
IBD

DρBDJBDIBD

(∣∣h′ b−→
d

〉)
DρBDJBDIBD

(∣∣h b−→
d

〉)
, (A.6)

where h and h′ are implicitly identified via the algebra product. As a special case of (5.29),
we have∑
{J}

∑
c∈C
DρBCJBCIBC

(∣∣g2
b−→
c

〉)
DρCDJCDICD

(∣∣g′2 c−→
d

〉)
DρBDJBDIBD

(∣∣h b−→
d

〉)[ρBC
JBC

ρCD
JCD

∣∣∣ρBDJBD

]
=
∑
{J}

∑
c∈C
DρBCJBCIBC

(∣∣g2
b−→
c

〉)
DρCDJCDICD

(∣∣g′2 c−→
d

〉)
DρBDJBDIBD

(∣∣g2g′2
b−→
d

〉) [ρBC
JBC

ρCD
JCD

∣∣∣ρBDJBD

]
δh,g2g′2

.

We can finally use the gauge invariance of the Clebsch-Gordan coefficients

1
|B|

∑
{J}

∑
h′,g1

ζ
Λ(ABD)
a,b,d (g1, h

′)DρABJABIAB

(∣∣g1
a−→
b

〉)
DρBDJBDIBD

(∣∣h′ b−→
d

〉)
×DρADJADKAD

(∣∣g1h′
a−→
d

〉) [ρAB
JAB

ρBD
JBD

∣∣∣ρADJAD

]
=
[
ρAB
IAB

ρBD
IBD

∣∣∣ρADKAD

]
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and
1
|C|

∑
{J}

∑
g2,g′2

ζ
Λ(BCD)
b,c,d (g2, g

′
2)DρBCJBCIBC

(∣∣g2
b−→
c

〉)
DρCDJCDICD

(∣∣g′2 c−→
d

〉)
×DρBDJBDIBD

(∣∣g2g′2
b−→
d

〉) [ρBC
JBC

ρCD
JCD

∣∣∣ρBDJBD

]
=
[
ρBC
IBC

ρCD
ICD

∣∣∣ρBDIBD

]
,

so as to yield (A.2) as expected.

A.4 Proof of the pentagon identity

As explained in the main text, the pentagon identity is the statement that the algebra
elements

[(id⊗ id⊗∆D)(ΦABCE)] ? [(∆B ⊗ id⊗ id)(ΦACDE)]

and

(1AB ⊗ ΦBCDE) ? [(id⊗∆C ⊗ id)(ΦABDE)] ? (ΦABCD ⊗ 1DE)

induce the same isomorphism on the four-particle vector space ((VρAB⊗BVρBC )⊗CVρCD)⊗D
VρDE . In light of the definition of the truncated tensor product of vector spaces, this can
be demonstrated explicitly by showing the equality:

(1AB ⊗ ΦBCDE) ? [(id⊗∆C ⊗ id)(ΦABDE)] ? (ΦABCD ⊗ 1DE) ? 1(((AB)C)D)E

= [(id⊗ id⊗∆D)(ΦABCE)] ? [(∆B ⊗ id⊗ id)(ΦACDE)] ? 1(((AB)C)D)E , (A.7)

where we defined

1(((AB)C)D)E := [(∆B ⊗ id) ◦ (∆C ⊗ id) ◦∆D](1AE) .

Writing down explicitly the definition of the comultiplication maps, we have

[(id⊗∆C ⊗ id)(ΦABDE)]

= 1
|C|

∑
{g}
c∈C

ζ
Λ(BCD)
1B ,c,1D

(g2, g3)
α(g1, g2g3, g4)

∣∣g1
1A−−→
1B

〉
⊗
∣∣g2

1B−−→
c

〉
⊗
∣∣g3

c−−→
1D

〉
⊗
∣∣g4

1D−−→
1E

〉
,

[(id⊗ id⊗∆D)(ΦABCE)]

= 1
|D|

∑
{g}
d∈D

ζ
Λ(CDE)
1C ,d,1E

(g3, g4)
α(g1, g2, g3g4)

∣∣g1
1A−−→
1B

〉
⊗
∣∣g2

1B−−→
1C

〉
⊗
∣∣g3

1C−−→
d

〉
⊗
∣∣g4

d−−→
1E

〉
,

[(∆B ⊗ id⊗ id)(ΦACDE)]

= 1
|B|

∑
{g}
b∈B

ζ
Λ(ABC)
1A,b,1C

(g1, g2)
α(g1g2, g3, g4)

∣∣g1
1A−−→
b

〉
⊗
∣∣g2

b−−→
1C

〉
⊗
∣∣g3

1C−−→
1D

〉
⊗
∣∣g4

1D−−→
1E

〉
,
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and

1(((AB)C)D)E = 1
|B||C||D|

∑
{g}

(b,c,d)∈B×C×D

ζ
Λ(ADE)
1A,d,1E

(g1g2g3, g4) ζΛ(ACD)
1A,c,d

(g1g2, g3) ζΛ(ABC)
1A,b,c

(g1, g2)

×
∣∣g1

1A−−→
b

〉
⊗
∣∣g2

b−→
c

〉
⊗
∣∣g3

c−→
d

〉
⊗
∣∣g4

d−−→
1E

〉
.

Applying the definition of the algebra product, we then obtain

[(id⊗ id⊗∆D)(ΦABCE)] ? [(∆B ⊗ id⊗ id)(ΦACDE)]

= 1
|B||D|

∑
{g}

(b,d)∈B×D

ζ
Λ(CDE)
1C ,d,1E

(g3, g4) ζΛ(ABC)
1A,b,1C

(g1, g2)
α(g1, g2, g3g4)α(g1g2, g3d, d−1g4)

×
∣∣g1

1A−−→
b

〉
⊗
∣∣g2

b−−→
1C

〉
⊗
∣∣g3

1C−−→
d

〉
⊗
∣∣g4

d−−→
1E

〉
and

(1AB ⊗ ΦBCDE) ? [(id⊗∆C ⊗ id)(ΦABDE)] ? (ΦABCD ⊗ 1DE)

= 1
|C|

∑
{g}
c∈C

ζ
Λ(BCD)
1B ,c,1D

(g2, g3)
α(g2, g3, g4)α(g1, g2g3, g4)α(g2, g2c, c−1g3)

×
∣∣g1

1A−−→
1B

〉
⊗
∣∣g2

1B−−→
c

〉
⊗
∣∣g3

c−−→
1D

〉
⊗
∣∣g4

1D−−→
1E

〉
.

It remains to multiply both expression from the right by 1(((AB)C)D)E . First, we compute
the right-and side of (A.7):

r.h.s.(A.7) = 1
|B|2|C||D|2

∑
{g}

b,b′,c,d,d′

ζ
Λ(CDE)
1C ,d,1E

(g3, g4) ζΛ(ABC)
1A,b,1C

(g1, g2)
α(g1, g2, g3g4)α(g1g2, g3d, d−1g4)

× ζΛ(ADE)
1A,d′,1E

(g1g2g3d, d
−1g4) ζΛ(ACD)

1A,c,d′
(g1g2, g3d)

× ζΛ(ABC)
1A,b′,c

(g1b, b
−1g2)ϑΛ(AB)

g1 (1A,1A|b, b′)ϑΛ(BC)
g2 (b, b′|1C , c)

× ϑΛ(CD)
g3 (1C , c|d, d′)ϑΛ(DE)

g4 (d, d′|1E ,1E)

×
∣∣g1

1A−−→
b

〉
⊗
∣∣g2

b−−→
1C

〉
⊗
∣∣g3

1C−−→
d

〉
⊗
∣∣g4

d−−→
1E

〉
.

Using the cocycle relations

ϑ
Λ(AB)
g1 (1A,1A|b, b′)ϑΛ(BC)

g2 (b, b′|1C , c)
ϑ

Λ(AC)
g1g2 (1A,1A|1C , c)

=
ζ

Λ(ABC)
1A,bb′,c

(g1, g2)

ζ
Λ(ABC)
1A,b,1C

(g1, g2) ζΛ(ABC)
1A,b′,c

(g1b, b−1g2c)

and

ϑ
Λ(CD)
g3 (1C , c|d, d′)ϑΛ(DE)

g4 (d, d′|1E ,1E)
ϑ

Λ(CE)
g3g4 (1C , c|1E ,1E)

=
ζ

Λ(CDE)
c,dd′,1E

(g3, g4)

ζ
Λ(CDE)
1C ,d,1E

(g3, g4) ζΛ(CDE)
c,d′,1E

(g3d, d−1g4)

as well as the quasi-coassociativity conditions

ζ
Λ(CDE)
c,d′,1E

(g3d, d
−1g4) ζΛ(BCE)

1B ,c,1E
(g1g2, g3g4)

ζ
Λ(BDE)
1B ,d,1E

(g1g2g3d, d−1g4) ζΛ(BCD)
1B ,c,d′

(g1g2, g3d)
= α(g1g2, g3d, d

−1g4)
α(g1g2c, c−1g3dd′, d′−1d−1g4)
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and

ζ
Λ(CDE)
c,dd′,1E

(g3, g4) ζΛ(BCE)
1B ,c,1E

(g1g2, g3g4)

ζ
Λ(BDE)
1B ,dd′,1E

(g1g2g3, g4) ζΛ(BCD)
1B ,c,dd′

(g1g2, g3)
= α(g1g2, g3, g4)
α(g1g2c, c−1g3dd′, d′−1d−1g4)

yields

r.h.s.(A.7) = 1
|B||C||D|

∑
{g}
b,c,d

ζ
Λ(CDE)
1C ,d,1E

(g1g2g3, g4) ζΛ(BCD)
1B ,c,d

(g1g2, g3) ζΛ(ABC)
1A,b,c

(g1, g2)
α(g1, g2, g3g4)α(g1g2, g3, g4)

×
∣∣g1

1A−−→
b

〉
⊗
∣∣g2

b−→
c

〉
⊗
∣∣g3

c−→
d

〉
⊗
∣∣g4

d−−→
1E

〉
.

Let us repeat the same procedure in order to compute the left-hand side of (A.7):

l.h.s.(A.7) = 1
|B||C|2|D|

∑
{g}

b,c,c′,d

ζ
Λ(BCD)
1B ,c,1D

(g2, g3)
α(g2, g3, g4)α(g1, g2g3, g4)α(g2, g2c, c−1g3)

× ζΛ(ADE)
1A,d,1E

(g1g2g3, g4) ζΛ(ACD)
1A,c′,d

(g1g2c, c
−1g3) ζΛ(ABC)

1A,b,c′
(g1, g2c)

× ϑΛ(AB)
g1 (1A,1A|1B, b)ϑΛ(BC)

g2 (1B, b|c, c′)

× ϑΛ(CD)
g3 (c, c′|1D, d)ϑΛ(DE)

g4 (1D, d|1E ,1E)

×
∣∣g1

1A−−→
1B

〉
⊗
∣∣g2

1B−−→
c

〉
⊗
∣∣g3

c−−→
1D

〉
⊗
∣∣g4

1D−−→
1E

〉
.

Using the cocycle relation

ϑ
Λ(BC)
g2 (1B, b|c, c′)ϑΛ(CD)

g3 (c, c′|1D, d)
ϑ

Λ(BD)
g2g3 (1B, b|1D, d)

=
ζ

Λ(BCD)
b,cc′,d (g2, g3)

ζ
Λ(BCD)
1B ,c,1D

(g2, g3) ζΛ(BCD)
b,c′,d (g2c, c−1g3)

as well as the quasi-coassociativity conditions

ζ
Λ(BCD)
b,c′,d (g2c, c

−1g3) ζΛ(ABD)
1A,b,d

(g1, g2g3)

ζ
Λ(ACD)
1A,c′,d

(g1g2c, c−1g3) ζΛ(ABC)
1A,b,c′

(g1, g2c)
= α(g1, g2c, c

−1g3)
α(g1b, b−1g2cc′, c′−1c−1g3d)

and

ζ
Λ(BCD)
b,cc′,d (g2, g3) ζΛ(ABD)

1A,b,d
(g1, g2g3)

ζ
Λ(ACD)
1A,cc′,d

(g1g2, g3) ζΛ(ABC)
1A,b,cc′

(g1, g2)
= α(g1, g2, g3)
α(g1b, b−1g2cc′, c′−1c−1g3d)

yields

l.h.s.(A.7) = 1
|B||C||D|

∑
{g}
b,c,d

ζ
Λ(ADE)
1A,d,1E

(g1g2g3, g4) ζΛ(ACD)
1A,c,d

(g1g2, g3) ζΛ(ABC)
1A,b,c

(g1, g2)
α(g1, g2, g3)α(g1, g2g3, g4)α(g2, g3, g4)

×
∣∣g1

1A−−→
b

〉
⊗
∣∣g2

b−→
c

〉
⊗
∣∣g3

c−→
d

〉
⊗
∣∣g4

d−−→
1E

〉
.

The equality between l.h.s.(A.7) and r.h.s.(A.7) finally follows from the groupoid 3-cocycle
condition d(3)α = 1, hence the pentagon identity.
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B Canonical basis for boundary excitations in (2+1)d

In this appendix, we collect the proofs of some properties crucial to the definition of the
canonical basis presented in section 5.5.

B.1 Proof of the canonical algebra product (5.52)

Using transformations (5.48) and (5.49), as well as the definition of the ?-product, we have

|ρABIJ〉 ? |ρ′ABI ′J ′〉

=
(dρABdρ′AB )

1
2

|A||B|
∑

g,g′∈G
(a,b),(a′,b′)∈A×B

DρABIJ

(∣∣g a−→
b

〉)
Dρ
′
AB
I′J ′

(∣∣g′ a′−−→
b′

〉) ∣∣g a−→
b

〉
?
∣∣g′ a′−−→

b′

〉

=
(dρABdρ′AB )

1
2

|A||B|
∑

g,g′∈G
(a,b),(a′,b′)∈A×B

DρABIJ

(∣∣g a−→
b

〉)
Dρ
′
AB
I′J ′

(∣∣g′ a′−−→
b′

〉)
δg′,a−1gb ϑ

AB
g (a, a′|b, b′)

∣∣g aa′−−→
ab′

〉

=
(dρABdρ′AB )

1
2

|A||B|
∑

g,g′∈G
(a,b),(a′,b′)∈A×B

DρABIJ

(∣∣g a−→
b

〉)
Dρ
′
AB
I′J ′

(∣∣g′ a′−−→
b′

〉)
δg′,a−1xb ϑg(a, a′|b, b′)

×
( 1
|A||B|

) 1
2 ∑
ρ′′AB

d
1
2
ρ′′AB

∑
I′′,J ′′

Dρ
′′
AB
I′′J ′′

(∣∣g aa′−−→
bb′

〉)
|ρ′′ABI ′′J ′′〉 .

But by linearity of the representation matrices, we have

δg′,a−1gb ϑ
AB
g (a, a′|b, b′)Dρ

′′
AB
I′′J ′′

(∣∣g aa′−−→
bb′

〉)
=
∑
K

Dρ
′′
AB
I′′K

(∣∣g a−→
b

〉)
Dρ
′′
AB
KJ ′′

(∣∣g′ a′−−→
b′

〉)
. (B.1)

Orthogonality of the representation matrices finally yields the desired expression

|ρABIJ〉 ? |ρ′ABI ′J ′〉 = |A|
1
2 |B|

1
2
δρAB ,ρ′AB δJ,I

′

d
1
2
ρAB

|ρABIJ ′〉 . (B.2)

B.2 Ground state projector on the annulus

Let us evaluate the quantity

1
|A||B|

∑
g∈G

(a,b)∈A×B

∑
g̃∈G

(ã,b̃)∈A×B

(∣∣g̃ ã−→̃
b

〉−1
?
∣∣g a−→

b

〉
?
∣∣g̃ ã−→̃

b

〉)〈
g

a−→
b

∣∣ , (B.3)

and confirm that it is equal to PO4 as defined in (5.60). By direct computation, we have∣∣g a−→
b

〉
?
∣∣g̃ ã−→̃

b

〉
= δg̃,a−1gb ϑ

AB
g (a, ã|b, b̃)

∣∣g aã−−→
bb̃

〉
(B.4)

and

∣∣g̃ ã−→̃
b

〉−1
?
∣∣g aã−−→

bb̃

〉
= δg̃,g

ϑAB
ã−1gb̃

(ã−1, aã|b̃−1, bb̃)

ϑABg̃ (ã, ã−1|b̃, b̃−1)
∣∣ã−1gb̃

ã−1aã−−−−→
b̃−1bb̃

〉
(B.5)
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so that ∣∣g̃ ã−→̃
b

〉−1
?
∣∣g a−→

b

〉
?
∣∣g̃ ã−→̃

b

〉
(B.6)

= δg̃,g δg̃,a−1gb

ϑABg (a, ã|bb̃)ϑAB
ã−1gb̃

(ã−1, aã|b̃−1, bb̃)

ϑABg̃ (ã, ã−1|b̃, b̃−1)
∣∣ã−1gb̃

ã−1aã−−−−→
b̃−1bb̃

〉
.

Using the groupoid cocycle condition d(2)ϑABg (ã, ã−1, aã|b̃, b̃−1, bb̃) and performing the sum-
mations finally yield the desired result.

B.3 Proof of the diagonalisation property (5.71)

Given the action of the Hamiltonian projector (5.69) on Y4, we show that the basis states
defined as

|ρABIAB, ρBCIBC , ρACIAC〉Y4

:=
∑

g1,g2∈G
a,a′∈A
b,b′∈B
c,c′∈C

∑
{J}

DρABJABIAB

(∣∣g1
a−→
b

〉)
DρBCJBCIBC

(∣∣g2
b′−−→c
〉)[ρAB

JAB
ρBC
JBC

∣∣∣ρACJAC

]

×DρACIACJAC

(∣∣a′g1g2c′−1 a′−−→
c′

〉)
|g1, a, b, g2, b

′, c, a′, c′〉Y4
satisfy the relation

PY4
(
|ρABIAB, ρBCIBC , ρACIAC〉Y4

)
= |ρABIAB, ρBCIBC , ρACIAC〉Y4 . (B.7)

By direct computation, we have

PY4
(
|ρABIAB, ρBCIBC , ρACIAC〉Y4

)
=

∑
{g∈G}
a,a′∈A
b,b′∈B
c,c′∈C

∑
{J}

DρABJABIAB

(∣∣g1
a−→
b

〉)
DρBCJBCIBC

(∣∣g2
b′−−→c
〉)

×
[
ρAB
JAB

ρBC
JBC

∣∣∣ρACJAC

]
DρACIACJAC

(∣∣a′g1g2c′−1 a′−−→
c′

〉)
× 1
|A||B||C|

∑
ã∈A
b̃∈B
c̃∈C

ϑACa′g1g2c′−1(a′, ã|c′, c̃)
ϑABg1 (ã, ã−1a|b̃, b̃−1b)ϑBCg2 (b̃, b̃−1b′|c̃, c̃−1c) ζABC

ã,b̃,c̃
(g1, g2)

× |ã−1g1b̃, ã
−1a, b̃−1b, b̃−1g2c̃, b̃

−1b′, c̃−1c, a′ã, c′c̃〉Y4 .

Using the invariance property (5.30) of the Clebsch-Gordan series, we can rewrite the
previous quantity as

PY4
(
|ρABIAB, ρBCIBC , ρACIAC〉Y4

)
= 1
|A||B|2|C|

∑
{g∈G}
ã,a,a′∈A
b̃,b̃′,b,b′∈B
c̃,c,c′∈C

∑
{J}

DρABJABIAB

(∣∣ã−1g1b̃′
ã−1a−−−−→
b̃′−1b

〉)
DρBCJBCIBC

(∣∣b̃′−1g2c̃
b̃′−1b′−−−−→
c̃−1c

〉)
×
[
ρAB
JAB

ρBC
JBC

∣∣∣ρACJAC

]
DρACIACJAC

(∣∣a′g1g2c′−1 a′ã−−→
c′c̃

〉)
×
ϑABg1 (ã, ã−1a|b̃′, b̃′−1b)ϑBCg2 (b̃′, b̃′−1b′|c̃, c̃−1c) ζABC

ã,b̃′,c̃
(g1, g2)

ϑABg1 (ã, ã−1a|b̃, b̃−1b)ϑBCg2 (b̃, b̃−1b′|c̃, c̃−1c) ζABC
ã,b̃,c̃

(g1, g2)

× |ã−1g1b̃, ã
−1a, b̃−1b, b̃−1g2c̃, b̃

−1b′, c̃−1c, a′ã, c′c̃〉Y4 .
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Let us now use the fact that

ζABC
ã,b̃′,c̃

(g1, g2)
ζABC
ã,b̃,c̃

(g1, g2)
= ζABC

1A,b̃−1b̃′,1C
(ã−1g1b̃, b̃

−1g2c̃)ϑABg1 (ã,1A|b̃, b̃−1b̃′)ϑBCg2 (b̃, b̃−1b̃′|c̃,1C)

as well as the groupoid cocycle conditions

d(2)ϑABg1 (ã,1A, ã−1a|b̃, b̃−1b̃′, b̃′−1b) = 1 and d(2)ϑBCg2 (b̃, b̃−1b̃′, b̃′−1b|c̃,1C , c̃−1c)

in order to rewrite

ϑABg1 (ã, ã−1a|b̃′, b̃′−1b)ϑBCg2 (b̃′, b̃′−1b′|c̃, c̃−1c) ζABC
ã,b̃′,c̃

(g1, g2)

ϑABg1 (ã, ã−1a|b̃, b̃−1b)ϑBCg2 (b̃, b̃−1b′|c̃, c̃−1c) ζABC
ã,b̃,c̃

(g1, g2)

= ϑAB
ã−1g1b̃

(1A, ã−1a|b̃−1b̃′, b̃′−1b)ϑBC
b̃−1g2c̃

(b̃−1b̃′, b̃′−1b′|1C , c̃−1c) ζABC
1A,b̃−1b̃′,1C

(ã−1g1b̃, b̃
−1g2c̃) .

Performing a simple relabelling of summation variables, we then obtain

PY4
(
|ρABIAB, ρBCIBC , ρACIAC〉Y4

)
= 1
|A||B|2|C|

∑
{g∈G}
ã,a,a′∈A
b̃,b̃′,b,b′∈B
c̃,c,c′∈C

∑
{J}

DρABJABIAB

(∣∣g1b̃−1b̃′
a−−−−→

b̃′−1b

〉)
DρBCJBCIBC

(∣∣b̃′−1b̃g2
b̃′−1b′−−−−→c

〉)
×
[
ρAB
JAB

ρBC
JBC

∣∣∣ρACJAC

]
DρACIACJAC

(∣∣g3
a′−−→
c′

〉)
× ϑABg1 (1A, a|b̃−1b̃′, b̃′−1b)ϑBCg2 (b̃−1b̃′, b̃′−1b′|1C , c)
× ζABC

1A,b̃−1b̃′,1C
(g1, g2) |g1, a, b̃

−1b, g2, b̃
−1b′, c, a′, c′〉Y4 .

Moreover, let us notice that (5.30) induces

1
|B|

∑
b̃′

∑
{J}

DρABJABIAB

(∣∣g1b̃−1b̃′
a−−−−→

b̃′−1b

〉)
DρBCJBCIBC

(∣∣b̃′−1b̃g2
b̃′−1b′−−−−→c

〉)
×
[
ρAB
JAB

ρBC
JBC

∣∣∣ρACJAC

]
DρACIACJAC

(∣∣a′g1g2c′−1 a′−−→
c′

〉)
× ϑABg1 (1A, a|b̃−1b̃′, b̃′−1b)ϑBCg2 (b̃−1b̃′, b̃′−1b′|1C , c) ζABC1A,b̃−1b̃′,1C

(g1, g2)

=
∑
{J}
DρABJABIAB

(∣∣g1
a−−−→

b̃−1b

〉)
DρBCJBCIBC

(∣∣g2
b̃−1b′−−−−→c

〉)
×
[
ρAB
JAB

ρBC
JBC

∣∣∣ρACJAC

]
DρACIACJAC

(∣∣a′g1g2c′−1 a′−−→
c′

〉)
.

A final relabelling of summation variables yields the desired result.
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