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SUPPLEMENTARY NOTE 1. BOGOLIUBOV DE
GENNES CALCULATION OF YSR AND CDGM

STATES

Model Hamiltonian for CdGM states. We consider
the Bogoliubov de Gennes (BdG) equation describing an
isolated vortex at the origin in two dimensions in the
basis of electron and hole wavefunctions ψ = (ψ+, ψ−)T ,(

−~2k2

2m∗ + EF ∆(r)

∆(r)∗ ~2k2

2m∗ − EF

)
ψ(r) = Eψ(r), (1)

where m∗ is the absolute value of the effective mass, EF
is the Fermi energy and ∆(r) = ∆0tanh(r/ξV )e−iθ with
the size of a vortex core ξV . Notice that we consider a
system with a hole like band character, as 2H-NbSe2[1].
Otherwise, the diagonal components of the matrix need
to be interchanged. As 2H-NbSe2 is a strong type II su-
perconductor with a large penetration depth (of about
200 nm [2, 3]), we can take a constant magnetic field.
Spin degeneracy is not included for simplicity, since the
wave functions for both spin states are the same. Fol-
lowing previous works [4–6], the CdGM bound state en-
ergy and corresponding wave function in the asymptotic
region (r � 1/kF ) in the low energy limit are approxi-
mately given by

εn =
En
∆0

= (n+
1

2
)

∆0

2EF
, (2)

ψn(r) =

(
ψ+
n (r)

ψ−n (r)

)
(3)

= An(r)

(
e−i(n+1)θ cos(kF r + Fn − ηn

2 )
e−inθ cos(kF r + Fn + ηn

2 )

)
.

Here An(r) is

An(r) =
1√
Nn

e−λn(r)

√
kF r̃n

, (4)

where Nn is a normalization factor and r̃n ≡ (r2 + ((n+
1/2)/kF )2)/r is introduced to avoid singularities at r =
0. n are the eigenstate numbers. λn, Fn, and ηn are
functions of r given by
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[(
2αn
ξV

r

)−1
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(π

2
− |εn|

)−1
]−1

, (6)
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2

(
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(
2βn
ξV
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αn and βn are

αn = −π
4

+

√
1

2

1− µ3
n

1− µ2
n

, (8)

βn =

√
αn/2

1− ε2
n/2

, (9)

where µn = |EF
√

2/((n + 1/2)∆0)|. The level spacing
∆2

0/(2EF ) in Eq. (2) is in agreement with the result ≈
0.85∆2

0/(2EF ) from Eq. (10) in Ref. [4] with ∆(r) =
∆0tanh(r/ξV )e−iθ. We set ∆0 = 1 meV, ξV = 30 nm,
and kF = 9 nm−1.

The BdG equation for the Fermi level lying in an elec-
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Supplementary Figure 1. Quantum limit vs thermal broadening. a Vortex bound states are shown as green lines (spin up
states as solid lines and spin down states as dashed lines). The derivative of the Fermi function is shown in red. We consider
a Fermi wavelength λF = 10 nm, a temperature of 100 mK and a vortex size ξV =30 nm. The resulting difference between
the tunneling density of states at positive and negative bias voltages (at V=±0.2mV) is shown in b, with an impurity located
at 20 nm from the vortex center (black dot). The color scale is shown by the bar at the right. We observe the oscillatory
electron-hole asymmetry that is characteristic of vortex bound states. In c we trace in blue the difference between electron
and hole states along a line from the vortex center towards the impurity (blue dashed line in b) and in red along the opposite
direction (red dashed line in b). In d-e we show the same results, with the same parameters, except that we take λF = 1nm.

tron like band in the basis φ = (φ+, φ−)T is(
~2k2

2m∗ − EF ∆(r)

∆(r)∗ −~2k2

2m∗ + EF

)(
φ+(r)
φ−(r)

)
= E

(
φ+(r)
φ−(r)

)
.

(10)
The functions ψ and φ are related by a transformation,(

φ+(r)
φ−(r)

)
= C

(
0 1
1 0

)(
ψ+(r)
ψ−(r)

)
=

(
ψ−∗(r)
ψ+∗(r)

)
, (11)

where C is the complex conjugate operator. We note that
the sign of phase shift ηn between ψ+ and ψ− along the
radial direction shown in Eq. (3) is inverted to −ηn for
φ+ and φ− when the band character changes from a hole
like band to electron like band. We will show below that
the difference between the electron and hole components
of the LDOS depends on the sign of ηn (see Eq. (19)),
leading to the dependence of the axial asymmetry on the
band character.

It is useful to remember the consequences of these ex-
pressions for the shape of the LDOS at and around a

vortex core[4–11]. The electron and hole LDOS follows
approximately the sum over all |ψ+

n (r)|2 and |ψ−n (r)|2,
respectively, convoluted with the Fermi function (which
is shifted from the Fermi level by eV in presence of a
bias voltage V ). The difference between electron and
hole LDOS occurs at the rapid atomic scale oscillation
kF r, because of the phase shift induced by ηn. This dif-
ference is however washed out in the experiment because

kBT � (En−En−1) ≈ ∆2
0

EF
in 2H-NbSe2, 2H-NbSe1.8S0.2

and in many other superconductors. As a result, the
LDOS shows a electron-hole symmetric patterns.

In presence of anisotropic pairing, as in 2H-NbSe2, we
can take into account the hexagonal symmetry of the
crystalline lattice by using [9]

∆a(r) = ca∆0 tanh(r/ξV )e−iθ cos 6θ. (12)

The sixfold symmetry breaks the rotational symmetry
of the isotropic pairing ∆(r) for V = 0, as observed in
the experiment, but again it leads to axially symmetric
solutions.
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Including YSR states. We now consider the effect of
magnetic impurities. We locate magnetic impurities at
r = rpi . The impurity Hamiltonian contains a magnetic
(Ji) and non-magnetic (Ki) part and we write it as

Himp =
∑
i

(−Jiŝ · ~σ +Kiτz) δ(r− rpi), (13)

where τz is the Pauli matrix in Nambu space. Here the
relation between Ji and Ki can be determined by YSR
state energy observed in the experiment. Note that the
direction of the magnetic moment is specified by a unit
vector ŝ. The eigenvalues and eigenvectors of ŝ · ~σ are
expressed as ŝ·~σ|s〉 = s|s〉, where s = ±1 are eigenvalues.
For simplicity, we assume that Ji = J and Ki = K.

The perturbed energy eigenvalues and eigenstates,
(En,s, ψn,s)→ (Ẽn,s, ψ̃n,s) can be obtained by solving the
following equation constructed in the subspace spanned
by the relevant nearest-neighbor states,


En−6 0 Wn−6,n 0 0

0 En−1 + V sn−1,n−1 V sn−1,n V sn−1,n+1 0
W ∗n−6,n V s∗n−1,n En + V sn,n V sn,n+1 Wn,n+6

0 V s∗n−1,n+1 V s∗n,n+1 En+1 + V sn+1,n+1 0
0 0 W ∗n,n+6 0 En+6



cn−6,s

cn−1,s

cn,s
cn+1,s

cn+6,s

 = Ẽn,s


cn−6,s

cn−1,s

cn,s
cn+1,s

cn+6,s

 , (14)

where

V sn,n′ =

∫
d2r ψ†n,s(r)Himpψn′,s(r), (15)

Wn,n′ =

∫
d2r ψ†n,s(r)∆a(r)ψn′,s(r), (16)

and the eigenstate has the form

ψ̃n,s =
∑
j,s

cj,sψj,s, (17)

with the summation index j ∈ {n − 1, n, n + 1} for
isotropic pairing (ca = 0, 2H-NbSe1.8S0.2) and j ∈
{n−6, n−1, n, n+1, n+6} for anisotropic pairing (ca 6= 0,
2H-NbSe2).

The probability density difference between the
electron-like (|ψ̃+

n,s|2) and the hole-like (|ψ̃−n,s|2) states is
given by

|ψ̃+
n,s(r)|2 − |ψ̃−n,s(r)|2 =

∑
j,k,s

c∗j,sck,se
i(j−k)θ (18)

× [Pjk(r) +Qjk(r)] ,

where Pjk(r) and Qjk(r) are kF r-independent and -
dependent functions, respectively, given as,

Pjk(r) =Aj(r)Ak(r) sin[Fj(r)− Fk(r)]

× sin [(ηj(r)− ηk(r))/2] , (19)

Qjk(r) =Aj(r)Ak(r) sin[2kF r + Fj(r) + Fk(r)]

× sin [(ηj(r) + ηk(r))/2] . (20)

Here, we note that Pjk(r) and Qjk(r) are responsible for
the slowly and rapidly varying parts of the density differ-
ence on the scales of ξV and λF = 2π/kF , respectively.
As we discuss below, we can neglect the rapidly varying

part Qjk(r) and concentrate on the slowly varying Pjk(r)
for the rest of the calculations.

The difference of the normalized conductance between
the positive and negative bias voltages is given by

δG(r, V )

G0
=

β

2ρ

∑
n,s

[
f̃ns(V )(|ψ̃+

n,s(r)|2 − |ψ̃−n,s(r)|2)
]
,

(21)
where β = 1/(kBT ), ρ = m∗/(π~2) is the normal density
of states at the Fermi energy, and

f̃ns(V ) =
eβ(eV−Ẽn,s)[

1 + eβ(eV−Ẽn,s)
]2 − eβ(eV+Ẽn,s)[

1 + eβ(eV+Ẽn,s)
]2 .

(22)

In the weak perturbation limit, |cn,s| � |cn±1,s|, the
density of the perturbed state can be written as

|ψ̃±n,s(r)|2 ≈|cn,s|2|ψ±n,s(r)|2

+ 2Re
[
c∗n−1,scn,sψ

±∗
n−1,s(r)ψ±n,s(r)

]
(23)

+ 2Re
[
c∗n,scn+1,sψ

±∗
n,s(r)ψ±n+1,s(r)

]
,

where the coefficients are (up to a normalization factor
close to one)

cn−1,s =
V s∗n,n+1V

s
n−1,n+1 − V sn−1,nδEn+1,s

Dn,s
,

cn,s = 1, (24)

cn+1,s =
V sn−1,nV

s∗
n−1,n+1 − V s∗n,n+1δEn−1,s

Dn,s
,
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Supplementary Figure 2. Vortex bound state asymmetry vs. distance of the magnetic impurity from the vortex
center. The calculated difference of the normalized tunneling conductance between positive and negative bias voltages around
the vortex center in a field of view of the same size as the ones shown in the main text. The center of the vortex is located at
the origin (crossing point between the two black lines) and a single magnetic impurity is marked by a black dot. In a, e the
impurity is located at 10 nm from the vortex core center and an angle of π/4, in b, f at 30 nm and in c,g at 50 nm. Notice
the color scale, given by the bars on the right of each figure. The radial asymmetry decreases by several orders of magnitude
from a-c and from e-g.

and

δEn+1,s =En+1 + V sn+1,n+1 − Ẽn,s
δEn−1,s =En−1 + V sn−1,n−1 − Ẽn,s

Dn,s =δEn+1,s δEn−1,s − |V sn−1,n+1|2 (25)

V sm,n =− sJei(m−n)θpIm,n(rp)

Im,n(r) =Am(r)An(r) cos[Fm(r)− Fn(r)]

× cos[(ηm(r)− ηn(r))/2].

Using Eq. (18), we obtain

|ψ̃+
n,s(r)|2 − |ψ̃−n,s(r)|2 ≈ 4J2 cos(θ − θp)Pn,n+1(r)

× In,n+1(rp)In−1,n+1(rp)

Dn,s
. (26)

In the parameter regime we consider, Fn(r) and ηn(r) are
monotonically decreasing functions with respect to n and
ηn − ηn+1 is small and positive of the order of 10−2. In
the previous Eq. (25), we ignored the contribution from
the non-magnetic potential K in V sm,n because it contains
a small factor sin((ηm−ηn)/2). The value of cos[Fm(r)−

Fn(r)] is positive for 0 < Fm(r) − Fm+1(r) < π/2 and
negative for π/2 < Fm(r) − Fm+2(r) < π. The denomi-
nator Dn,s is in turn negative, so that Eq. (26) leads to
positive Pn,n+1(r) and In,n+1(rp)In−1,n+1(rp)/Dn,s. So
we can write

|ψ̃+
n,s(θ)|2 − |ψ̃−n,s(θ)|2 ∝ J2e−arp/ξV cos(θ − θp), (27)

where a ≈ 4(1 − ε2
n/2). For the case of electron-like

bands and within the same simplifying hypothesis one
should change ηn(r) by −ηn(r). It is thus straightfor-
ward to conclude that the asymmetry in Eq.(27) would
be inverted, i.e. would become −J2e−arp/ξV cos(θ − θp).

Let us discuss the implications of these results for the
CdGM and YSR states. We show in Supplementary
Fig. 1 results at a temperature of 100 mK, with ξV =30
nm and ∆0 = 1 meV. We take a small kF , or equiv-
alently a large λF = 10 nm in Supplementary Fig. 1a-
c. Then, the thermal broadening is below the CdGM
level separation (Supplementary Fig. 1a). We see that

the resulting plot of the difference δG(r,V )
G0

(Supplemen-
tary Fig. 1b) shows concentring rings, highlighting the
electron-hole asymmetry of CdGM states. The rings are
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Supplementary Figure 3. Electron hole symmetry of vortex cores with and without magnetic impurities. a shows

a vortex imaged in a field of view without YSR impurities in 2H-NbSe2. We show δG(r,V )
G0

of this vortex as a function of the

bias voltage (indicated in each panel) in c. In b we show the same image as in Fig. 4d of the main text and in d we provide
δG(r,V )
G0

as a function of the bias voltage. White scale bars are 20 nm long. The atomic Se lattice directions are shown by three
arrows.
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a b

Supplementary Figure 4. Relaxed atomic positions for
2H-NbSe2 and 2H-NbSe1.8S0.2 supercells. We show the
atomic structure of the set of slabs used in the calculation,
with Nb atoms in ocre, Se in orange and S in yellow, for
supercell A a and supercell B b. Notice that the atomic
positions are slightly modified due to the S substitution in
b. The distribution of S in b is random. We also show a
lateral view of the spin polarization due to the substituted
Fe atom. We plot the spin isosurface corresponding to a spin
imbalance in red (spin up) and blue (spin down).

very close to being radially symmetric, with a slight dif-
ference (Supplementary Fig. 1c) due to the YSR states
of the magnetic impurity (black dot in Supplementary
Fig. 1). When we change λF = 10 nm to a smaller
value, λF = 1 nm (Supplementary Fig. 1d-f), the CdGM
levels overlap clearly due to thermal broadening (Sup-

plementary Fig. 1d). The ring like structure of δG(r,V )
G0

nearly vanishes and there is another effect which domi-
nates (Supplementary Fig. 1e). This is the radial asym-
metry induced by the magnetic impurity and breaks the
axial symmetry of the vortex LDOS, with a mirror line
that joins the vortex center with the impurity. As we
can see in Supplementary Fig. 1f, the electron-hole oscil-
lations at λF are much weaker and instead the difference
conductance δG(r,V )

G0
shows a strongly radially asymmet-

ric behavior. Note that the value of δG(r,V )
G0

consider-
ably decreases between Supplementary Fig. 1c and Sup-
plementary Fig. 1f. So that the coupling is particularly
well highlighted in presence of thermal broadening.

To understand the influence of the position of the im-
purity and of gap anisotropy in our result, let us start
by considering a single magnetic impurity and isotropic
superconducting pairing, ca = 0. We show the result in
Supplementary Fig. 2a-c for ca = 0. We use J = −50
meVnm2 and K = 50 meVnm2. We see the angular

dependence shown in Eq. (27). The impurity induces a
stronger electron-hole asymmetry in the CdGM states
when it is closer to the center of the vortex. Notice that,
when the impurity is far from the vortex core, Supple-
mentary Fig. 2c, the corresponding asymmetry decreases
very rapidly. Therefore, the impurities closest to the vor-
tex cores determine the axial symmetry breaking. We
obtain a qualitatively similar result for an anisotropic
superconducting gap (ca = 0.05), Supplementary Fig. 2d
- f, with a coupling that increases when the impurity is
located at the vortex center.

To obtain the results shown in the main text, we use
ξV =30 nm, kF= 9 nm−1, EF = 135 meV, ∆0 = 1 meV,
T = 800 mK for both compounds. Because we usually
have many impurities, we introduce their position in the
model calculations to add up the effect of each impu-
rity. For 2H-NbSe2, we use ca = 0.05, J = −10 meVnm2

and K = 10 meVnm2, whereas for 2H-NbSe1.8S0.2 we
use ca = 0, J = −20 meVnm2 and K = 20 meVnm2.
ρ = 0.005 meV−1nm−1 is used to fit the experimental
data. Notice that the position of impurities is very dif-
ferent in both cases (Fig. 4 of the main text). The dif-
ferent values for J can be associated to difference in the
spatial dependence of the wavefunction, which becomes
more important when the impurity is close to the vortex
center. The actual values of K are not relevant in the
calculation of δG(r,V )

G0
, as we show below.

SUPPLEMENTARY NOTE 2. STM RESULTS
WITH AND WITHOUT YSR IMPURITIES.

In Supplementary Fig. 3 we compare the results ob-
tained in a field of view without YSR impurities (Sup-
plementary Fig. 3a, c), with results with YSR impurities
(Supplementary Fig. 3b, d). We observe that the vortex

is, for all δG(r,V )
G0

, axially symmetric in absence of YSR
impurities (Supplementary Fig. 3c) and axially asymmet-
ric (Supplementary Fig. 3d) in presence of YSR impuri-
ties.

Notice the small electron-hole asymmetry in absence
of YSR impurities (Supplementary Fig. 3a, c), which we
discuss below (Supplementary Fig. 11).

SUPPLEMENTARY NOTE 3. COMPUTATIONAL
DETAILS OF THE SPIN-POLARIZED
ELECTRONIC BANDSTRUCTURE

CALCULATIONS

Calculations. We performed spin-polarized first prin-
ciples calculations based on DFT with the general-
ized gradient approximation (GGA) of Perdew-Burke-
Ernzerhof[12] for the exchange-correlation functional.
The plane wave basis sets used projector augmented wave
(PAW) pseudopotentials[13] and the electronic wave
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Supplementary Figure 5. Spin resolved bandstructure of 2H-NbSe2 and of 2H-NbSe1.8S0.2. In a we show the calculated
spin-polarized bandstructure for spin-up (blue) and spin-down (red) states and for 2H-NbSe2 with one Fe atom (supercell A).
In b we show the same quantities for 2H-NbSe1.8S0.2 with one Fe atom (supercell B).

functions were expanded with well-converged kinetic en-
ergy cutoffs of 75 Ry and 500 Ry for the wavefunc-
tions and charge density, respectively. Dispersion inter-
actions to account for van der Waals interactions between
the layers were considered by applying semi-empirical
Grimme D2 corrections[14].

Relaxed atomic arrangements. To model the exper-
imental system, we constructed slabs of 4×4×2 size
formed by four layers (192 atoms each). The relaxed
atomic positions are represented in Supplementary Fig. 4,
together with a lateral view of the spin isosurfaces dis-
cussed in the main text. All the structures were fully
optimized without constraints until the forces on each
atom were smaller than 103 Ry/au and the energy differ-
ence between two consecutive relaxation steps less than
104 Ry. The Brillouin zone was sampled by a Γ centered
3 × 3 × 1 k-point Monkhorst-Pack [15] mesh for struc-
tural optimization and 6 × 6 × 2 for the self-consistent
field (SCF) calculations. We built two supercells. The
supercell A is formed by a single Fe impurity substituting
a Nb atom and 63 Nb and 128 Se atoms. The supercell
B includes a 10% random substitution of Se by S atoms,
resulting in 1 Fe, 63 Nb, 115 Se and 13 S atoms.

Magnetic interactions. We inset a vacuum of 18 Å in
between sets of cells, to avoid interaction between replica
images as a result of periodic boundary conditions. In
order to describe the strong correlation of electrons in

Mott-Hubbard physics, we adopted a DFT+U approach,
where U is the on-site Coulomb repulsion, using the sim-
plified version proposed by Dudarev et al[16]. The Hub-
bard U was estimated self-consistently using density func-
tional perturbation theory[17]. The distance with the
nearest periodic image is 1.4 nm, which is enough to dis-
card any kind of interaction between the Fe ions. Gener-
ally, Nb atoms carry only small magnetic moments, that
are oppositely oriented to the Fe moments. On the lateral
edges of the supercell, however, we observe a polarization
of Nb atoms which is small and might be influenced by
the neighboring Fe sites. All calculations were carried
out in the QuantumEspresso code[18].

Bandstructure. In the Supplementary Fig. 5a, b we
plot the resulting spin resolved bandstructures of 2H-
NbSe2 and of 2H-NbSe1.8S0.2 over the whole supercells.
We see that the overall energy dependence of the density
of states integrated over the whole Brillouin zone is very
similar for both cases. The orbital dependent partial den-
sities of states of orbitals that are close to the Fermi level
(Se-3p, Nb-4d and S-3p), show nearly the same values for
both spin orientations (Supplementary Fig. 6), although
there are slight but visible differences in the Nb and Se
partial densities of states, corresponding to the spin po-
larization of the atoms located close to the Fe impurity.
The result on the atomic Fe-3d orbitals shows a clear spin
polarization (inset of Supplementary Fig. 6).
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Supplementary Figure 6. Partial densities of states of atomic species in 2H-NbSe1.8S0.2. a Spin-polarized partial
densities of states integrated over the Brillouin zone for the orbitals marked in the figure for 2H-NbSe1.8S0.2 with one Fe atom
(supercell B). The result for the Fe and Se orbitals is shown in b and c respectively.

Magnetic moment. In the Supplementary Fig. 7 we
show the dependence of the induced magnetic moment
with U. We use a reduced system formed by a 4 × 4 slab
of monolayer 2H-NbSe2 or of 2H-NbSe1.8S0.2 containing
one Fe impurity that substitutes one Nb. We see that we
reach convergence above about 7eV. We use U = 7.5681
eV in our calculations. However, it is also relevant to
remark that the magnetic moment remains large already
at relatively small values of U.

Calculations on a Fe located on top of a Se atom. We
have also explored the situation where the Fe atom does
not substitute a Nb atom. For that, we have fully opti-
mized the 4×4×2 slabs of 2H-NbSe2 and 2H-NbSe1.8S0.2,
without a substitutional Fe atom. We have then placed
the Fe atom on top of a Se atom in both slab calcula-
tions, obtaining an equilibrium position of 2.27 Å above
the Se surface. In this scenario, we observe that the spin
exchange is much smaller than the one we find when the
Fe substitutes a Nb atom. This results in a small spin
polarization due to the exchange interaction despite the
large magnetic moment (≈2.80 µB) localized at the im-
purity. What is more important is that the shape of
the spin density distribution is nearly identical in both
cases (Supplementary Fig. 8). This cannot explain the
anisotropy in the YSR states observed in Supplementary
Fig. 3c, d of the publication, which are more compatible
with Fe substituting a Nb atom.

Atomic size Fe impurity. It is quite useful to see the
position of the Fe impurities in the experiment. As we
show in Supplementary Fig. 9 we show topographic and
tunneling conductance maps with atomic resolution at

Supplementary Figure 7. U parameter in calculations.
Magnetic moment as a function of the U parameter for 2H-
NbSe1.8S0.2 with one Fe atom (supercell B).

a Fe impurity (marked by a red dot in Supplementary
Fig. 9b, c). Whereas we can easily identify the Fe impu-
rity from the influence of the YSR on the tunneling con-
ductance, Supplementary Fig. 9c, the corresponding to-
pographic STM image, Supplementary Fig. 9b, presents
very slight or no features, suggesting that the Fe is below
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a b c d

Supplementary Figure 8. Fe located on top of the Se surface. Lateral (a) view and view from the top (b) of the spin
density of a Fe atom located on top of the Se surface in 2H-NbSe2 and in 2H-NbSe1.8S0.2 (c, d). Se atoms are shown in orange,
Nb atoms in ochre and S atoms in yellow. We plot the spin isosurface corresponding to a spin imbalance by 0.002 in red (spin
up) and blue (spin down).

the surface and in between the Se triangles, i.e. at the
position of Nb atoms in the layer immediately below the
surface Se layer.

SUPPLEMENTARY NOTE 4. STM
MEASUREMENTS

To perform the STM measurements we prepared a
plate like sample and glued it to our sample holder. We
glued a piece of alumina on top of the sample and re-
moved it at 4.2 K by pushing the piece with a beam. To
this end, we used the movable sample holder described
in Ref.[19]. We measured the freshly exposed surface
in a cryogenic system with a base temperature of 800
mK. The design of the STM microscope is very similar
to the one described in Ref.[19, 20]. We usually work
with tunneling conductances of order of 0.1 µS or below.
We provide the tunneling conductance normalized to its
value well above the gap edge, usually between 4 mV and
10 mV. Magnetic fields are applied perpendicular to the
plate-like sample.

SUPPLEMENTARY NOTE 5. CRYSTAL
SYNTHESIS AND CHARACTERIZATION

Synthesis. To synthesize samples of the 2H-NbSe2

and of 2H-NbSe1.8S0.2 we first mixed powders of Nb,
Se (99.999% Se from Alfa-Aesar) and S (99.98% S from
Sigma-Aldrich) in a stoichiometric ratio, and sealed these
in an evacuated quartz ampoule. We heated from room
temperature to 900 ◦C at 1.5 ◦C/min. Then, the tem-

perature was kept constant for ten days and the furnace
was switched off for cooling. We mixed 4 mmol of the
previously synthesized material with iodine as transport
agent (iodine concentration of 5 mg/cm3). We sealed
the mixture in an evacuated quartz ampoule and placed
it inside a three-zone furnace with the compound in the
leftmost zone. The other two zones were heated up in
3 h from room temperature to 800 ◦C and kept at this
temperature for two days. After that we established a
gradient of 800 ◦C / 750◦ / 775 ◦C in the three-zone fur-
nace. The temperatures were kept constant for 15 days
and the furnace then cooled down naturally.

Characterization. We obtained large single crystals,
with lateral sizes in the order of several millimeters. The
crystals were analyzed by powder X-ray diffraction and
inductively coupled plasma (ICP) mass spectrometry.
The experimental powder patterns were refined with the
structure of pure 2H-NbSe2 (ICSD 51589) in both 2H-
NbSe2 and of 2H-NbSe1.8S0.2. We obtained a variation
in lattice constants with S doping compatible with liter-
ature (a = 3.4451(3)Å, c = 12.542(1)Å in 2H-NbSe2 and
a = 3.4327(5), c = 12.506(2) in 2H-NbSe1.8S0.2) [21, 22].
Both a and c parameters of the hexagonal structure de-
crease by the same ratio, a result that remains when in-
creasing the S concentration[23]. To ascertain that S dop-
ing does not introduce defects other than substution, we
have estimated the stacking fault density along the c-axis
from the X-ray data. Being a van der Waals compound
with little coupling between hexagonal 2H-NbSe2−xSx
planes, we can expect most defects to occur along the
c-axis. Following Ref. [24], we can distinguish between
deformation and growth faults, with respectively proba-
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Supplementary Figure 9. Atomic size map around a Few impurity in 2H-NbSe1.8S0.2. In a we show a topographic
image taken in 2H-NbSe1.8S0.2 with a bias voltage of 5 mV and a tunneling current of 0.1 nA. In b we show a close up view
of the area marked by a white rectangle in a. The Se atomic lattice is marked by green dots. Atomic directions are marked by
white arrows. We mark the position of the Fe impurity by a red dot. c Tunneling conductance map at a bias voltage of 0.2 mV.
Color scale given by the right bar (we plot the tunneling conductance normalized at bias voltages above the superconducting
gap). The position of the Fe impurity is marked by a red dot.
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Supplementary Figure 10. Topography, superconducting gap and vortex lattice in 2H-NbSe2 and 2H-NbSe1.8S0.2.
a Topographic image of pure 2H-NbSe2. In the bottom left inset we show the Fourier transform of the topography. Atomic
Bragg spots are marked with blue circles and CDW Bragg spots with orange circles. b Similar figure in a field of view of the
same size in 2H-NbSe1.8S0.2. Scales bars on the bottom right are 3 nm long. c Normalized tunneling conductance vs bias
voltage in 2H-NbSe2 (light green line, T=0.1 K) and in 2H-NbSe1.8S0.2 (orange line, T=0.8 K). These data are taken at zero
field. The zero bias conductance maps showing the vortex lattice under magnetic fields are given in the lower left and right
insets, with the color scale given in the lower left inset. Scale bars in the insets are 100 nm long.

bilities µ and ν. Deformation and growth faults can be es-
timated by analyzing reflections of the type H-K=3N±1.
We can then write for the full width at half maximum in-
tensity of the powder scattering Bragg peaks with Miller

indices HKL B2θ, B2θ = 360
π2 tan θ|L|

(
d
c

)2
(3µ + 3ν) for

even L and B2θ = 360
π2 tan θ|L|

(
d
c

)2
(3µ + ν) for odd L,

with the HKL spacing and c = 2d002[24]. We find that
the amount of defects along the c-axis is around 2% in
both 2H-NbSe2 and 2H-NbSe1.8S0.2. From inductively
coupled plasma (ICP) analysis, we observe 150 ppm of
Fe. We do not detect further transition metal impurities
within the detection limits of ICP.

The superconducting density of states at zero field
of 2H-NbSe1.8S0.2 shows a smooth distribution of gap
values[25]. It is useful to compare the effect of S substitu-

tion with the application of pressure in 2H-NbSe2[26, 27].
Pressure increases Tc up to 8.5 K at 10GPa, and then
Tc is slightly reduced to 7.5 K at 20 GPa. S substitu-
tion by contrast decreases Tc[28]. As shown in Ref. [25],
the charge density wave (CDW) of 2H-NbSe2, becomes
strongly affected by S substitution in 2H-NbSe1.8S0.2. In
Supplementary Fig. 10a, b we compare topographic STM
images of 2H-NbSe2 with 2H-NbSe1.8S0.2. 2H-NbSe2

shows CDW order with periodic modulations three times
the in-plane lattice constant. In 2H-NbSe1.8S0.2 we also
find CDW order at the same wavevector than for x = 0.
However, the intensity of the CDW modulation strongly
varies with position, producing a disordered CDW pat-
tern. Thus, the S substitution in 2H-NbSe1.8S0.2 leads
to a superconductor which is very similar to 2H-NbSe2,
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Supplementary Figure 11. Axially symmetric electron-hole asymmetry. a Difference of the normalized tunneling con-
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G0
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Supplementary Figure 12. Bias voltage dependence of δG(r,V )
G0

in 2H-NbSe1.8S0.2, compared to our calculations.

We show δG(r,V )
G0

= G(r,V )−G(r,−V )
G0

for the bias voltages marked in each panel, obtained from calculations (upper panels) and

experiment (lower panels). Black dots provide the position of magnetic impurities. Color scale is given by the bars on the right.

but in-plane isotropic. The mean free path estimated
from the residual resistivity is of about ` ≈ 20 nm in 2H-
NbSe1.8S0.2, significantly below ` ≈ 120 nm in 2H-NbSe2.
However, CdGM bound states are well identified in the
LDOS[25].

Superconducting gap and vortex lattice. In Supple-
mentary Fig. 10c we show the superconducting gap and
vortex lattice in pure 2H-NbSe2 and in 2H-NbSe1.8S0.2.
The results in 2H-NbSe2 have been obtained repeat-
edly in the past (see e.g. [29–31]) and correspond to
a superconductor having different values of the gap over
the Fermi surface. This is somewhat different in 2H-
NbSe1.8S0.2, which shows a more homogeneous gap dis-
tribution. The vortex lattice of 2H-NbSe1.8S0.2 loses the
sixfold star shape characteristic of 2H-NbSe2 and vortices
have instead a round shape (bottom insets of Supplemen-

tary Fig. 10c)[25].

SUPPLEMENTARY NOTE 6. COMPLETE BIAS
VOLTAGE DEPENDENCE AND ASYMMETRY

IN CLOSE LYING VORTICES.

We have subtracted a radially symmetric signal to
δG(r,V )
G0

to obtain the images shown in the main text for
2H-NbSe1.8S0.2. As we show in Supplementary Fig. 11,

the radially symmetric electron hole anisotropy in δG(r,V )
G0

is very small, of less than 10% of δG(r,V )
G0

.

For completeness, we provide the results for all bias
voltages in Supplementary Fig. 12 (2H-NbSe1.8S0.2) and
in Supplementary Fig. 13 (2H-NbSe2), comparing each
time with calculations. We observe that asymmetry
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in 2H-NbSe2, compared to our calculations. We show
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Supplementary Figure 14. Asymmetry of close lying vortices. a We show three vortices lying close together at a magnetic
field of 0.1 T. Vortex cores are marked by black crosses. YSR states from impurities are distributed all over the scanning

window. b δG(r,V )
G0

in the same field of view, with vortex centers marked by black crosses.

spreads to larger distances with increasing bias voltages
and that its overall shape is well captured by calculations.

We also provide in Supplementary Fig. 14 results on
three close lying vortices in 2H-NbSe1.8S0.2. Notice that
the field of view is much larger than in other images. We

see that the asymmetric shape in δG(r,V )
G0

extends along

different directions (Supplementary Fig. 14b) in each vor-
tex, due to a different distribution of magnetic impurities
close to the center of each vortex.
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SUPPLEMENTARY NOTE 7. MAGNETIC
SUSCEPTIBILITY MEASUREMENTS AND

LARGE SIZE CONDUCTANCE MAPS AT ZERO
FIELD AND UNDER MAGNETIC FIELDS IN

THE NORMAL PHASE

Magnetic susceptibility of the bulk. We have per-
formed susceptibility measurements in the same samples
measured by STM using a Quantum Design PPMS sys-
tem, with the magnetic field applied perpendicular to
the plate like sample. Inside the superconducting phase,
the signal is dominated by the superconducting diamag-
netic response. Above Tc we observe a diamagnetic back-
ground and a small signal which is ferromagnetic like
(Supplementary Fig. 15a). We can extract this small
ferromagnetic like component from the background and
compare its size with the expected Fe moment, taking a
Fe concentration of 150 ppm. It is quite remarkable that,
although being clearly a very rough approximation which
might be strongly influenced by clustering at edges or on
large defects induced during growth, we obtain a satura-
tion magnetization with a moment of about a Bohr mag-
neton per Fe ion, compatible with the value found in the
theoretical calculations (Supplementary Fig. 7). Previous
measurements with much larger (30%) Fe concentration
report values up to five Bohr magnetons[32], which are
compatible with a Fe4+ valence. The reduced magnetic
moment obtained here points to a reduction of the Fe
valence, which might be chemically compensated by Se
vacancies. More recently, the substitional exchange of Fe
atoms in transition metal dichalcogenide MoS2 has been
studied in detail, observing directly the exchange of tran-
sition metal atoms and finding similarly spin-polarized
electronic bandstructure in small cells of transition metal
dichalcogenide layers containing one Fe atom[33].

Maps at zero field and in the normal phase. We pro-
vide a large size zero bias conductance map at zero
field (Supplementary Fig. 15b) and under magnetic fields
above the critical field of 2H-NbSe1.8S0.2 (Supplementary
Fig. 15c). These show that impurities are generally well
separated. Furthermore, impurities do not influence the
zero bias density of states of the normal phase above the
critical field.
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Supplementary Figure 15. Macroscopic magnetic susceptibility of Fe impurities in 2H-NbSe1.8S0.2. a We show
as circles the magnetic moment as a function of the magnetic field at 10 K. To obtain this curve, we have subtracted a
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estimated concentration of Fe atoms in the sample, taking the 150 ppm value determined from inductively coupled plasma
analysis. Arrows show the direction of the field sweep. b Tunneling conductance at zero bias normalized to the tunneling
conductance at large bias at zero field (top panel) and at 7 T (bottom panel). Color scale (bars at the right) show the
normalized conductance values.
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