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We investigate whether right-handed neutrinos can play the role of the dark matter of the Universe
and be generated by the freeze-out production mechanism. In the standard picture, the requirement
of a long lifetime of the right-handed neutrinos implies a small neutrino Yukawa coupling. As a
consequence, they never reach thermal equilibrium, thus prohibiting production by freeze-out. We
note that this limitation is alleviated if the neutrino Yukawa coupling is large enough in the early
Universe to thermalize the sterile neutrinos, and then becomes tiny at a certain moment, which
makes them drop out of equilibrium. As a concrete example realization of this framework, we
consider a Froggatt-Nielsen model supplemented by an additional scalar field which obeys a global
symmetry (not the flavour symmetry). Initially, the vacuum expectation value of the flavon is such,
that the effective neutrino Yukawa coupling is large and unsuppressed, keeping them in thermal
equilibrium. At some point the new scalar also gets a vacuum expectation value that breaks the
symmetry. This may occur in such a way that the vev of the flavon is shifted to a new (smaller)
value. In that case, the Yukawa coupling is reduced such that the sterile neutrinos are rendered
stable on cosmological time scales. We show that this mechanism works for a wide range of sterile
neutrino masses.

1 Introduction

The identity and the character of the Dark Matter (DM) of the Universe and the origin of the minute
mass of neutrinos in the Standard Model of particle physics (SM) are two of the most prominent
problems in fundamental physics. Particularly the dark matter problem, independently of its eventual
solution, can be considered a hint for the incompleteness of the SM as a theory of nature.

One of the simplest mechanisms that explains not only the origin of the masses of the SM neutrinos,
but also offers a natural explanation for their tiny magnitude, is the type I seesaw mechanism [1, 2, 3, 4]:
Introducing three right-handed neutrinos (which are SM singlets) one can write a Yukawa term includ-
ing those and the three lepton doublets, which after electroweak symmetry breaking (EWSB) generates
a Dirac mass for the neutrinos, analogously to the up-quark sector. Furthermore, a Majorana mass
term for the right-handed neutrinos is allowed, since it does not violate any SM gauge symmetry. After
diagonalization, the resulting neutrino mass matrix delivers three very light neutrino-mass eigenstates
(mostly composed of the left-handed states) and on the other hand very heavy mass eigenstates largely
composed of the right handed neutrinos.

Assuming that the type I seesaw mechanism is indeed responsible for the masses of SM neutrinos,
one immediately wonders whether one of the new sterile neutrinos might play the role of the dark
matter particle. A massive neutral SM singlet is in fact the prototype of a weakly interacting massive
particle (WIMP), the still most popular candidate for the observationally favored cold dark matter.
The next question would be whether the observed DM density can be generated by thermal freeze-out,
i.e. whether, after entering thermal equilibrium, its rate with the SM plasma at some stage can no
longer compete with the expansion of the Universe. This production mechanism is well known and
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has been thoroughly studied in the context of WIMP dark matter. Arguably, it is the most attractive
and natural production mechanism of dark matter. For the right-handed neutrinos to be DM, they
have to fulfil the following conditions:

1. Abundance: the sterile neutrino has to be produced in the early Universe to such an amount,
that it contributes meaningfully to the observed dark matter abundance ΩDMh

2 ≈ 0.12 [5]. It
does not need to saturate this amount, but it definitely may not surpass it.

2. Longevity: dark matter must be stable on cosmological time scales. If it is able to decay, then
the lifetime of the decay must be comparable or larger than the age of the Universe.

3. Constraints: Needless to say, any viable dark matter model must comply with any observational
or experimental constraints that apply to it.

The first thing that comes to mind in the context of dark matter and right-handed neutrinos is the
possibility of keV-scale sterile neutrinos, which are ideal warm dark matter candidates, for reviews see
[6, 7]. Their production typically works via oscillations with active neutrinos [8], potentially enhanced
by resonances from lepton asymmetries [9], or with additional input in the form of the decay of new
heavier particles [10, 11]. The mixing of the particles with SM neutrinos can be constrained by X-ray
observations, searching for the loop-induced decay of the right-handed neutrinos into active neutrinos
and photons. The allowed parameter space [6, 7] is such that the mixing with SM neutrinos is tiny,
and therefore the keV-neutrinos never reach thermal equilibrium, and thus classical freeze-out does
not work. For heavier sterile neutrinos, the limits from their total decay rate, but also from indirect
detection, imply the same situation [12]: Observation implies very small mixing, which means that
the sterile neutrinos would never reach thermal equilibrium. In this work we shall insist, however,
on the production of the DM particle via interactions with the SM particle bath. We note that this
could be achieved if, by any mechanism, the neutrino Yukawa coupling, which is responsible for the
strength of its interactions with the SM plasma and its decay, was effectively varying during the early
Universe from rather large to very small values. To investigate this general idea we consider a type I
seesaw extension of the SM embedded in a Froggatt-Nielsen (FN) model [13] and complemented by
an additional scalar field Σ and global symmetry U(1)Σ.

The seesaw extension adds right-handed neutrinos to the theory which couple to the SM via the
Yukawa terms. The FN mechanism introduces an additional U(1)FN symmetry under which all or
some fermions are charged. The symmetry is broken by the vev of the flavon field, which is also charged
under the U(1)FN. As a consequence, the Yukawa terms are multiplied by powers of the flavon vev.
Usually, the flavon vev is expected to be smaller than the FN scale ΛFN, meaning that the Yukawa
terms are effectively suppressed, thus offering an explanation for the fermion flavour structure. Here,
we introduce a new U(1)Σ symmetry under which only the new scalar field Σ is charged. At a certain
moment, well after U(1)FN breaking, the Σ scalar gets a vev which breaks the U(1)Σ symmetry. This
can cause the global minimum of the scalar potential to shift in field-space, thereby changing the value
of the flavon vev. Therefore, during this phase transition one can think of the Yukawa couplings as
effectively varying from one initial value to the value known today. If the initial value of the Yukawas
was large, then it is possible that the right-handed neutrinos interacted efficiently with the rest of
the cosmic plasma, reaching thermal equilibrium and freezing out after the U(1)Σ phase transition
occurs. After the phase transition the Yukawa coupling, and thus the mixing, is small enough in order
to render the right-handed neutrino stable.

In the course of this work we will first briefly introduce the seesaw mechanism in section 2, and
in section 3 we describe how the combination of the seesaw and the Froggatt-Nielsen mechanisms can
include a dark matter candidate. In section 4 we go over the interactions and dynamics involved in
the thermal equilibrium and freeze-out of seesaw sterile neutrinos and solve the Boltzmann equation
to compute the relic abundance. We then conclude in section 5.
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2 Seesaw mechanism and sterile neutrinos as a dark matter candi-
date

Introducing three right-handed Majorana neutrinos νR allows the presence of Yukawa and Majorana
terms in the Lagrangian. The SM Lagrangian is thus extended to include the seesaw Lagrangian,

−Lν = iν̄R /∂νR + yνL̄φ̃νR +
1

2
νcRMRνR + h.c., (1)

where L stands for the SU(2) lepton doublets, φ̃ is the dual SM Higgs field, yν is the 3 × 3 matrix
of neutrino Yukawa couplings and MR is the 3 × 3 Majorana mass matrix. In this equation one
should think of L and νR as representing all three generations. After EWSB the vev of the Higgs
field v generates the Dirac mass matrix for neutrinos, mD = yν v/

√
2. Then, in the basis given by

νM = (νL,e, νL,µ, νL,τ , ν
c
R,1, ν

c
R,2, ν

c
R,3)T the neutrino mass terms can be written with a 6× 6 matrix as

−Lν,mass =
1

2
νcMMν νM + h.c. =

1

2
νcM

(
0 mD

mT
D MR

)
νM + h.c., (2)

with the full neutrino mass matrix Mν .
Notice that the matrices mD and MR need not be diagonal. The central assumption in the seesaw

framework is that the Majorana masses in MR are larger than the Dirac masses in mD. This is a
plausible assumption since mD is generated at the EW scale by the Higgs mechanism, but MR likely
has its origin at a higher scale of BSM physics, perhaps at the GUT scale. Then, Mν can be block
diagonalized (to first order approximation) by the unitary 6× 6 matrix U ,

U =

(
1 θ
−θ† 1

)
, θ = mDM

−1
R . (3)

The 3 × 3 matrix θ gives the mixing between left-handed and right-handed neutrinos introduced by
the block diagonalization. The resulting neutrino mass matrix is

M′ν =

(
m′ 0
0 M ′

)
, m′ ≈ mDM

−1
R mT

D, M ′ ≈MR. (4)

Here the attractiveness of the seesaw framework becomes obvious: if the elements of MR are much
larger than those of mD, then the active neutrino mass eigenvalues m′ will be strongly suppressed, thus
naturally explaining their tiny size. The active and sterile mass matrices can be further diagonalized
using appropriate matrices VL and VR:

m = V T
L m

′VL = diag(m1,m2,m3), M = V T
RM

′VR = diag(M1,M2,M3), (5)

and the corresponding light and heavy mass eigenstates are referred to as ν = (ν1, ν2, ν3) and N =
(N1, N2, N3), respectively.

The Yukawa coupling makes sterile neutrinos unavoidably unstable. To arrive at a rough estimate
about the constraints on the Yukawa coupling (and equivalently, the mixing angle) from the longevity
condition, we consider one single neutrino generation and we take m, M and yν as scalar quantities.
When considering the possible decays it is important to distinguish two different scenarios:

1. If the sterile neutrino state is heavier than the real Higgs boson h, then the decay N → h ν is
kinematically allowed and its width is [12]

ΓN→h ν = y2
νM/16π. (6)

If we now demand that the corresponding lifetime be larger than the age of the Universe t0 '
1041 GeV−1, we see that yν is constrained by1

yν < 2 · 10−22

(
10 TeV

M

)1/2

. (7)

1Various other decay modes are possible as well, which are important for limits on indirect detection [12, 14, 15]. The
qualitative conclusions do not change if we take those into account.
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Clearly, this Yukawa coupling is so tiny that the right-handed neutrinos could never reach thermal
equilibrium, thus making production by freeze-out impossible. The light mass state generated
by this mixing, assuming M = 10 TeV, is extremely tiny:

m = θ2M =
(yν v
M

)2
M ≈ 1.5 · 10−34 eV. (8)

2. If the sterile neutrino state is lighter than the real Higgs boson, then it can only decay via
its mixing with active neutrinos. In this case, the decay width depends on the decay channels
available at a certain mass. For concreteness we take the well known example of a keV scale
sterile neutrino. The dominant decay channel is into three active neutrinos and the width is [16]

ΓN→3ν =
G2
FM

5

96π3
sin2 θ, (9)

with the Fermi constant GF . The longevity condition demands that [6]

θ2 < 1.1 · 10−7

(
50 keV

M

)5

, (10)

which, for M = 50 keV, implies y2
ν < 6 · 10−21, thus making production by freeze-out again

unfeasible, and production by oscillations an appealing alternative. The active neutrino mass in
this case is m = θ2M ≈ 5 · 10−3 eV.

In this paper, our goal is to show that dark matter sterile neutrinos can be produced in the early
Universe by decoupling from thermal equilibrium. This occurs naturally if the sterile neutrinos have
a sizeble Yukawa coupling at the time of DM generation, but becomes small afterwards, thus keeping
the sterile neutrinos stable on cosmological time scales.

3 Seesaw-Froggatt-Nielsen models for sterile neutrino dark matter

The Froggatt-Nielsen mechanism was introduced to explain the flavour asymmetry in the masses of
fermions. It postulates the existence of a new U(1)FN symmetry and a scalar field, called the flavon
Θ, which encodes a heavy hidden sector that is integrated out below a certain scale ΛFN. The left-
and right-handed fermions of the i’th generation have the FN charges fi and gi, respectively, and Θ
has the FN charge −1. For the theory to be invariant under U(1)FN, the Yukawa terms have to be
modified in the following way:

yij ψLi φψRj −→ yij ψLi φψRj

(
Θ

ΛFN

)fi+gj
. (11)

Then, at some moment the U(1)FN symmetry is broken by the vev of the flavon, for which we define

λ :=
〈Θ〉
ΛFN

. (12)

This means that, if λ < 1, the Yukawa terms in Eq. (11) will be suppressed by λ to the power of the
sum of the FN charges of the fermions involved. The hierarchy in the masses is therefore explained
by the breaking of the U(1)FN symmetry and not by a strong hierarchy in the Yukawa couplings yij ,
which, in this framework, may all be of order unity. This mechanism is known to work well for the
quark sector, where λ = 0.22 has been related to the Cabibbo angle of the CKM matrix. If it is a
correct description for the origin of the quark flavour structure, and right-handed neutrinos exist, then
it would be natural to expect that the FN mechanism also applies to leptons and, by inclusion, to
neutrinos.

In this work we want to claim that, within a setting of dynamical Yukawa couplings, RH neutrinos
involved in the type I seesaw mechanism may constitute the dark matter density and be produced
by freeze-out from the thermal bath. To investigate this idea, we propose the following toy-model
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Field L eR N Θ

U(1)FN Charge qL qR qN −1

Table 1: FN charges in our simplified model.

realization: consider a type I seesaw extension to the SM embedded in a FN model and add to it an
additional global symmetry (e.g. U(1) or Z2) under which a new scalar field Σ is charged. As we will
see, the key concept is the dynamical suppression of the Yukawa coupling and Majorana mass, which
is realized by the breaking of the new global symmetry induced the vev of the Σ field. The SM is
extended by the following elements:

• three right-handed Majorana neutrinos, N1,2,3,

• a scalar field, the FN flavon Θ, and a global U(1)FN flavour symmetry (the UV complete theory
contains the FN messengers).

• a scalar field Σ, and a global U(1)Σ symmetry

Apart from kinetic terms and the scalar potential, which we will discuss in detail shortly, the only
additional terms for the Lagrangian are the Majorana mass term and the neutrino Yukawa term,
both of which include the flavon. One of the sterile neutrinos will play the role of the dark matter
particle (denoted simply by N from now on) while the other two could be responsible for generating
the masses of active SM neutrinos and could also be involved in leptogenesis. From this point forward
we will consider only one lepton generation, as this is all that is relevant for DM production. This
is the case because, as we will see, DM production will be driven solely by the Yukawa term and we
can always switch to a basis in which the Yukawa matrix is diagonal. In this basis the DM neutrino
N couples only to one lepton doublet, which we take as the first generation doublet. We assign the
U(1)FN charges as in Table 1.

The relevant part of the U(1)FN symmetric Lagrangian is

ye

(
Θ

ΛFN

)qL+qR

L̄ φ eR + yν

(
Θ

ΛFN

)qL+qN

L̄ φ̃N +
1

2
MR

(
Θ

ΛFN

)2qN

N cN. (13)

The main idea of the FN mechanism is that all of the Yukawa couplings are (close to) order unity.
Once the U(1)FN symmetry is broken by the vev of the flavon 〈Θ〉, and if λ < 1 (see Eq. (12)), the
Yukawa interactions are suppressed by powers of λ. However, another possibility is that 〈Θ〉 ≈ ΛFN,
i.e. λ ≈ 1, which would mean that the Yukawa couplings are actually not suppressed and may be of
order 1. In particular, the sterile neutrino Yukawa interactions would be strong enough to keep them
in thermal equilibrium with the cosmic plasma. Whether the sterile neutrinos were already present
in large numbers in the plasma or not, is irrelevant. If they were present, e.g. after being produced
during reheating, then they were kept in equilibrium by their unsuppressed Yukawa coupling. If they
were not present initially, then they were produced in the plasma by their Yukawa interactions and
thermalized quickly. At this stage, the minimum of the scalar potential V (φ, Θ, Σ) in field space is
located at (φ, Θ, Σ) = (0, 〈Θ〉, 0), with 〈Θ〉 ≈ ΛFN. This is where the new scalar field Σ comes into
play. It is the only field charged under the U(1)Σ symmetry. It too could acquire a vev and break
the U(1)Σ symmetry. After such a phase transition, the location of the minimum of the potential is
shifted in field space,

(〈φ〉, 〈Θ〉, 〈Σ〉) = (0, ΛFN, 0)
U(1)Σ−→ (〈φ〉, 〈Θ〉, 〈Σ〉) = (0, vθ, vσ), (14)

where the new value of the flavon vev vθ is different than before the U(1)Σ phase transition. This is the
key point: if the vθ = εΛFN with ε < 1, then after the phase transition the Yukawa couplings become
suppressed by powers of ε. In terms of Eq. (12), the λ-parameter can be understood as describing a
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Figure 1: Location of the minimum of the scalar potential in field space and shift in the value of the
flavon vev caused by the U(1)Σ symmetry breaking.

path in field space with boundaries given by,

λ(〈Σ〉) =

{
1, for 〈Σ〉 = 0

ε, for 〈Σ〉 = vσ.
(15)

The precise trajectory in field space during the phase transition is not really important. What matters
is that the flavon vev has different values in the different phases, as sketched in Fig. 1. This is very
similar to the situation described by Baldes, Konstandin and Servant in Section 4.1 of [17]; however,
they consider the quark sector in the context of EW baryogenesis. Depending on the FN charges,
the suppression could be enough to freeze the DM neutrino interactions out, leaving behind a DM
neutrino relic abundance similar to the usual WIMP paradigm. Notice that just like the Yukawa
couplings, this mechanism will also suppress the Majorana mass of the sterile neutrinos. Effects of
phase transitions in the production of sterile neutrino dark matter have been discussed previously,
see e.g. [18, 19, 20, 15, 21, 22]. Our focus on freeze-out production of a heavy sterile neutrino differs
from those previous works. Whether the phase transition can indeed shift the value of the flavon vev
depends on the parameters of the scalar potential, which we discuss hereinafter, following closely the
treatment in [17].

The scalar potential

We assume that the scales ΛFN and ΛΣ are much larger than ΛEW and the couplings of the Θ and
the Σ fields to the SM Higgs boson are small, such that the dynamics of the Θ and the Σ fields can
be considered as decoupled from the Higgs boson. Then, the relevant part of scalar potential reads

V (Θ, Σ) = µ2
θ Θ†Θ + λθ (Θ†Θ)2 + µ2

σ Σ†Σ + λσ (Σ†Σ)2 + λθσ (Θ†Θ)(Σ†Σ). (16)

Without loss of generality, we assume that both fields acquire their vev’s only along their real com-
ponents and substitute

Θ −→ 1√
2
θ, Σ −→ 1√

2
σ, (17)

leading to

V (θ, σ) =
µ2
θ

2
θ2 +

λθ
4
θ4 +

µ2
σ

2
σ2 +

λσ
4
σ4 +

λθσ
4
θ2σ2. (18)

The minimum of the potential is given by the zeros of the field space gradient:

∇θ,σV =

(
θ (µ2

θ + λθ θ
2 + λθσ

2 σ2)

σ (µ2
σ + λσ σ

2 + λθσ
2 θ2)

) ∣∣∣∣∣
(vθ,vσ)

!
=

(
0
0

)
. (19)

We recognise the following cases:
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(i) Before the U(1)Σ phase transition: At temperatures ΛΣ < T < ΛFN we demand

vθ = ΛFN, and vσ = 0. (20)

Thus, the first component of ∇θ,σV = 0 implies

µ2
θ = −λθ Λ2

FN. (21)

(ii) After U(1)Σ symmetry breaking:
At temperatures ΛEW < T < ΛΣ we demand

vθ = εΛFN, and vσ 6= 0, (22)

with 0 < ε < 1. Thus, the first component of ∇θ,σV = 0 implies

µ2
θ + λθ ε

2 Λ2
FN +

λθσ
2
v2
σ = 0. (23)

With Eq. (21) this is equivalent to

(
1− ε2

)︸ ︷︷ ︸
∼1

(
ΛFN

vσ

)2

=
λθσ
2λθ

⇒
(

ΛFN

vσ

)2

≈ λθσ
2λθ

. (24)

Next we compute the mass parameters:

m2
θθ = ∂2

θV = µ2
θ + 3λθv

2
θ +

1

2
λθσv

2
σ, (25)

m2
σσ = ∂2

σV = µ2
σ + 3λσv

2
σ +

1

2
λθσv

2
θ , (26)

m2
θσ = ∂θ∂σV = λθσvσvθ. (27)

The mass matrix is

M =

(
m2
θθ m2

θσ

m2
θσ m2

σσ

)
(28)

and its corresponding mass eigenvalues are

m2
σ = λσv

2
σ + λθv

2
θ +

√
(λσv2

σ − λθv2
θ)

2 + (λθσvθvσ)2, (29)

m2
θ = λσv

2
σ + λθv

2
θ −

√
(λσv2

σ − λθv2
θ)

2 + (λθσvθvσ)2. (30)

The mixing angle between θ and σ is given by

tan(2α) =
λθσvθvσ

λσv2
σ − λθv2

θ

=
λθσvσ εΛFN

λσv2
σ − λθ ε2 Λ2

FN

. (31)

As we will see in a moment, in our scenario, the mixing angle is automatically very small, implying

λθσvθvσ � |λσv2
σ − λθv2

θ |, (32)

which means that the mass eigenvalues can be approximated by

m2
σ = 2λσv

2
σ, (33)

m2
θ = 2λθv

2
θ . (34)

Now, for the stationary point (θ, σ) = (vθ, vσ) = (εΛFN, vσ) to be indeed a minimum of the potential,
the determinant of the mass matrix must be positive definite:

det(M) = det

(
∂2
θV ∂σ∂θV

∂σ∂θV ∂2
σV

) ∣∣∣∣∣
(vθ,vσ)

> 0, (35)
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which results in

4λσλθ > λ2
θσ. (36)

From this relation and with Eq. (24), we derive constraints on the coupling constants

λθσ < 2λσ

(
vσ

ΛFN

)2

, (37)

λθ < λσ

(
vσ

ΛFN

)4

. (38)

These constraints consistently imply the smallness of the mixing angle. Finally, we obtain a bound on
the mass of the flavon by combining Eqs. (34) and (38),

m2
θ < 2λσ v

2
σ ε

2

(
vσ

ΛFN

)2

. (39)

From this analysis we have learned that, if Eqs. (37) to (39) hold, then the U(1)Σ phase transition can
cause a shift in the value of the flavon vev. It is crucial that, for the effective field theory approach to
be applicable to the Yukawa terms, the U(1)FN symmetry breaks before (i.e. at a higher temperature
than) the U(1)Σ symmetry in cosmological history. Since, as a rough estimate, we can relate vσ ∼ ΛΣ,
the ratio (vσ/ΛFN), which appears in all the afore mentioned bounds, should be smaller than 1, i.e.

δ :=

(
vσ

ΛFN

)
∼
(

ΛΣ

ΛFN

)
< 1. (40)

For a specific FN model, the mass of the flavon can be constrained by experiments looking for flavour
violating transitions in the lepton sector, e.g. exotic µ decays. From such measurements and Eq. (39),
one can obtain a lower bound for ΛΣ, and, since the critical temperature Tc of the phase transition is
expected to be close to this scale, this bound also approximately applies for Tc as well,

mθ ε
−1 δ−1 < ΛΣ ∼ Tc. (41)

Dark Matter toy model

From the discussion of the scalar potential, we have seen that within this framework the U(1)Σ phase
transition is capable of shifting the value of the flavon vev as 〈Θ〉 : ΛFN → εΛFN. As a consequence,
the neutrino Yukawa coupling (and Majorana mass) may be considered as effectively varying during
the phase transition,

yeff = yν

( 〈Θ〉
ΛFN

)qL+qN

=

{
yi = yν , for T > Tc

yf = yν ε
qL+qN , for T < Tc

, (42)

Meff = MR

( 〈Θ〉
ΛFN

)2qN

=

{
Mi = MR, for T > Tc

Mf = MR ε
2qN , for T < Tc

. (43)

Here we refer to the values of the Yukawa coupling and DM neutrino Majorana mass before and
after the U(1)Σ phase transition with the indices i and f , for initial and final respectively. The
temperature Tc is the temperature at which the U(1)Σ phase transition occurs.

In a full FN model, we would compute the flavon-lepton couplings and with experimental data
derive a constrain for the flavon mass, which then results in a lower bound for the phase transition
temperature Tc from Eq. (41). However, that would go far beyond the scope of this work, as we are
here only concerned with a proof of principle for the freeze-out mechanism as a means of production
for sterile neutrino DM. Instead, in this work we will simply assume a flavon mass in the GeV range
(the flavon-lepton couplings could certainly be very small), and leave the concrete realization in a
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full FN model for future work. Furthermore, we set for concreteness δ = 0.1 and ε = 0.01. As we
will later see, successful DM production requires that Mi ∼ 35Tc, which means that the lower bound
from Eq. (41) on Tc also places a lower bound on the unsuppressed Majorana mass of DM neutrinos,
namely Mi > 10 TeV.

Since the DM neutrinos are heavier than the Higgs, the tree level decay is allowed. To comply
with the longevity condition we must demand that the DM neutrino be stable on cosmological time
scales. This results in a condition on the FN charges. Other conditions arise from the other two terms
in Eq. (13):

1. The electron mass: With ye of order unity, the unsuppressed electron mass would be ye v/
√

2 ∼
102 GeV. This has to be suppressed to the level of me ≈ 5 · 10−4 GeV,

ε qL+qR 102 GeV ≈ 5 · 10−4 GeV ⇒ qL + qR ≈
−5

log10(ε)
. (44)

2. The Majorana mass: As explained above, the suppressed Majorana mass is bounded from
below by Mi > 10 TeV and is UV-unconstrained. The final DM sterile neutrino is heavier than
the Higgs,

Mf = ε 2qN Mi & 2 · 102 GeV ⇒ qN .
log10(2 · 102)− log10

(
Mi

GeV

)
2 log10(ε)

. (45)

3. The longevity of DM: DM must be stable on cosmological time scales, i.e. τDM = Γ−1
N→hν >

t0 ≈ 7 · 1041 GeV−1. With ΓN→hν = y2
fMf/16π we get

(yi ε
qL+qN )2Mi ε

2qN

16π
<

1

7
· 10−41 GeV ⇒ qL + 2qN >

log10

(
16π
7 · 10−41

(
1
yi

)2 (
GeV
Mi

))
2 log10(ε)

.

(46)

In order to satisfy the conditions, the FN charge of eR must be negative. This can be seen as a positive
side-effect of the conditions above, because it means that the electron Yukawa term will be multiplied
by a smaller power of Θ fields.

We can find appealing choices of charges for our fields by solving the problem

minimize
qL,qR,qN ∈Z

(|qL|+ |qR|+ |qN |) (47)

under the conditions from Eqs. (44) to (46). For the concrete models discussed in this work, we fix
the parameters yi and ε to

yi = 0.1, ε = 0.01. (48)

Solving the optimization problem Eq. (47) for different Majorana mass ranges results in the three
different models given in Table 2. We find that, for our choice of yi and ε, the conditions Eqs. (44)
and (46) imply that qL + qR = 2 and qL + qN = 11, while qN is directly determined by Eq. (45).
Each model is defined by its FN charges. In each model we allow a range of initial masses Mi, which
translates in a range of Mf values. This range is the same for all three classes of models, namely Mf

starts at 104 GeV and goes up to 108 GeV. Our choice of ε = 0.01 may mean that our flavon is possibly
not the same as the CKM flavon, whose vev is typically related to the Cabbibo angle, or ε ≈ 0.22.
This would not be a problem, since the flavour breaking structure in leptonic sector does not need to
be identical to that in the quark sector.
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Model M1 M2 M3

Mi/GeV
[
104, 108

) [
108, 1012

) [
1012, 1016

)
qL 11 10 9

qR −9 −8 −7

qN 0 1 2

Table 2: We define three classes of FN models for different Mi ranges. The ranges of Mi include
the lower bound but exclude the upper bound, as indicated by the square and round brackets. The
corresponding range for Mf is [104 GeV, 108 GeV) for all three classes of models. The configurations
of the FN charges satisfy the conditions Eqs. (44) to (46) for our choice of ε = 0.01 and yν = 0.1. For
smaller values of ε the charges can take even smaller numerical values.

4 Dark matter genesis

Our goal is to determine the relic abundance of dark matter neutrinos produced for the different
models described in the previous section and given in Table 2. To this end, we solve the Boltzmann
equation for the number density of DM neutrinos in the early Universe.

As mentioned in Section 3, we assume that at high temperatures, in the U(1)Σ symmetric phase,
the vev of the flavon field is 〈Θ〉 ≈ ΛFN, implying that before the symmetry breaking phase transition
the Yukawa coupling and the Majorana mass are large and unsuppressed. The sterile neutrinos are
kept in thermal equilibrium by the decays and inverse decays allowed by the Yukawa coupling. Other
interactions, such as 2↔ 2 scatterings involving gauge bosons and quarks are also allowed at tree-level.
However, these are only relevant in the relativistic regime. As soon as the phase transition occurs, the
vev of the flavon is shifted as 〈Θ〉 : ΛFN → εΛFN and the interaction rate γ, which is proportional to
the square of the Yukawa coupling, gets strongly suppressed. The condition under which a particle
species with an interaction rate γ with the plasma and an equilibrium number density neq is in thermal
equilibrium, is given by

γ/neq

H

{
> 1, in thermal equilibrium,

< 1, out of thermal equilibrium,
(49)

where H stands for the Hubble rate. The sudden change in γ due to the U(1)Σ phase transition
causes the condition to be violated at the time of the transition and almost immediately induces the
freeze-out of the DM neutrinos. We are not interested in the specific dynamics of the phase transition
at this point. What matters to us are the different states before and after the phase transition, as
described by Eq. (42). For our computations, however, we need a specific parametrization for both
yeff and Meff . A simple and generic parametrization which encodes the relevant behaviour (essentially
a slightly smoothed step function) for us is given by

yeff(z) =
1

2

[
(yi − yf ) tanh

((
1− z

zc

)
1

τ

)
+ yi + yf

]
, (50)

MR,eff(z) =
1

2

[
(Mi −Mf ) tanh

((
1− z

zc

)
1

τ

)
+Mi +Mf

]
, (51)

where the indices i and f stand for initial and final values, i.e. before and after the phase transition. A
measure for the time the phase transition takes is τ (which in our computations we set to τ = 0.001),
and Tc is its critical temperature, with zc = Mi/Tc.

Since our computations take place in the very early Universe, before the electroweak phase transi-
tion, the particles involved in the DM interactions will only have thermal masses. It is important to
take these into account because at high temperatures the thermal masses can have sizeable values and
in particular, not including them would lead to overestimating the contribution from 2↔ 2 scattering
processes compared to decays [23]. The interactions that are relevant for thermal equilibrium and
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Figure 2: Tree-level interactions allowed to sterile neutrinos N in a seesaw framework. Gauge bosons
are denoted as A.

freeze-out of DM sterile neutrinos are those that are allowed by the Yukawa coupling and change
the number of DM neutrinos. These are the decays and inverse decays of N (shown in Fig. 2 (a)),
scatterings involving quarks (shown in Fig. 2 (b)) and scatterings involving bosons (shown in Fig. 2
(c, d)). Note that 2 ↔ 2 scatterings where the sterile neutrinos appear as virtual particles in the
propagator are not relevant to us, because they do not change the number of sterile neutrinos2.

The Boltzmann equation for the production of DM in this scenario, formulated for the yield
Y = n/s (with the entropy density s) is given by (z = Mi/T )

dY

dz
=

1

z

(〈γ〉
H

)
(Yeq − Y ) , (52)

where 〈γ〉 = γ/neq and γ receives contributions from decays and scatterings, i.e. γ = γdecay + γscatt.
For both γdecay and γscatt we use the cross sections and formulae given in Ref. [23], which include
thermal corrections and running of the SM couplings. Both interaction rates, normalized by H neq,
are shown in the left panel of Fig. 3. Clearly, decays dominate in the non-relativistic regime, i.e. for
z > 1, while the sum of all 2 → 2 scatterings delivers a larger contribution at z < 1. Notice that
〈γ〉/H grows with decreasing temperature, which means that, without the assistance of the U(1)Σ

phase transition, instead of departing from equilibrium, the sterile neutrinos would interact ever more

2In contrast, these processes are very much relevant in the context of thermal leptogenesis.
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Figure 3: Left: The decay and scattering rate for sterile neutrinos with parameters Mi = 108 GeV
and yi = 0.1, without the effects of a coupling to a flavon and the U(1)Σ phase transition. For other
values of Mi the rates maintain the same shape but are shifted along the vertical axis (if one adjusts
the horizontal axis accordingly to z = Mi/T ). It is easy to see that the decays dominate in the non-
relativistic regime while scatterings are more relevant for z < 1. Center: The decay and scattering
rates for two different fixed masses shown in solid and dashed lines, respectively. The smaller mass
is chosen such that it coincides with the suppressed Majorana mass Mf for the larger initial mass
Mi = 108 GeV (see Table 2 and Eq. (43)). The dash-dotted line shows the jump in the total rate due
to the suppression of the Majorana mass (leaving out the suppression of the Yukawa coupling) caused
by the U(1)Σ phase transition. Before and after the phase transition the effective total rate coincides
with the corresponding total rate for different fixed masses. Right: Same as center panel, but also
showing the effect of the phase transition on the Yukawa coupling, which enters γ quadratically. Here,
the rates are also divided by the Hubble rate H, just as in Eq. (52).

strongly with the cosmic plasma. The increase in 〈γ〉/H with z does not come from 〈γ〉, which stays
constant with respect to z for z > 1, but from H, which is proportional to T 2 and therefore decreases
with z. The small gap where the decay rate vanishes occurs in the range of temperatures for which
mφ(T ) −mL(T ) < MR,eff < mφ(T ) + mL(T ), where mφ(T ) and mL(T ) are the thermal masses of φ
and L, respectively [23]. In this temperature range no two-body decays involving N are allowed.

In our framework, the U(1)Σ phase transition causes a sudden suppression of the Majorana mass
and the Yukawa coupling. The impact of the U(1)Σ phase transition on γdecay and γscatt is shown
in the center and right panels of Fig. 3. To understand the effects of the phase transition on γ it is
useful to first analyse the change in the Majorana mass only. The center panel on Fig. 3 shows in
solid and dashed lines the decay and scattering rates for two constant Majorana masses. Notice that
the horizontal z-scale refers to the larger mass (in this case, Mi = 108 GeV) and the rates are not
divided by the Hubble parameter H (in contrast to the left and right panels) in order to make the
characteristics of the curves easier to distinguish. The dash-dotted line in this panel is the effective
total DM neutrino interaction rate for the model M2 from Table 2 with Mi = 108 GeV. One clearly
sees that, prior to the U(1)Σ phase transition, the effective total rate follows that for Mi = 108 GeV.
The phase transition occurs for this example at zc = 30 and causes the mass to get suppressed as given
by Eq. (43), i.e. to the value of Mf = 104 GeV. From zc onward, the effective total rate just follows
the total rate for the fixed final mass Mf . In this example, the phase transition occurs when the DM
neutrinos are non-relativistic, but immediately after the phase transition they effectively become much
lighter while the temperature of the Universe is still T ∼ 107 GeV. This means that the DM neutrinos
are relativistic again until T ∼ Mf . For pedagogical purposes, the center panel of Fig. 3 disregards
the suppression of the Yukawa coupling. This effect is accounted for in the right panel, where the
rates are also divided by H to also account for the expansion of the Universe. Here it becomes clear
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Figure 4: Solutions to the Boltzmann equation Eq. (52) for representative models from Table 2:
M1 (left), M2 (center) and M3 (right). The equilibrium yield Yeq for Mi and Mf together with the
computed yield for DM neutrinos Y are plotted on the left vertical axis; all three panels share the same
scale. The decay and scattering rates are plotted on the right vertical axis and span different ranges
in each panel. The critical temperature Tc (or zc equivalently) was chosen such that the produced
relic abundance coincides with the observed value for DM by the Planck Collaboration [5].

that the effect of the suppression of the Yukawa coupling is much more dramatic than that of the
Majorana mass. Indeed, looking at the gap in orders of magnitude before and after the U(1)Σ phase
transition, it is obvious that the induced decoupling from equilibrium, i.e. freeze-out, is inevitable. It
is this drastic suppression that guarantees the longevity of the DM.

A peculiarity occurs with the equilibrium yield Yeq, which implicitly depends on the mass of the
DM particle,

Yeq ∼ z2 K2(z), with z = MR,eff/T . (53)

Here K2(z) is the modified Bessel function of second type. When the U(1)Σ phase transition kicks in
and the Majorana mass is suppressed by a few orders of magnitude, Yeq turns into the equilibrium
yield of a particle species with the smaller mass Mf . The role of Yeq in Eq. (52) is to produce DM
(whereas the role of Y in Eq. (52) is to deplete it). What this is telling is that, although prior to the
phase transition the thermal bath (represented by Yeq) is no longer efficiently producing DM, after
the phase transition the DM has turned so much lighter that the thermal bath again has enough
energy to produce it. This means that, after the U(1)Σ phase transition induces DM freeze-out, there
might (depending on the interaction rate) be a second period of DM production that would last until
T ≈ Mf . This second phase of DM production is driven by the well known mechanism of freeze-in.
However, a look at the right panel of Fig. 3 reveals that after the U(1)Σ phase transition 〈γ〉 will be
so dramatically suppressed that there is no hope of observing any efficient production by freeze-in.

The results of numerically solving the Boltzmann equation (52) for different parameters are shown
in Fig. 4. The parameters chosen are examples representing the different models M1 (left), M2 (center)
and M3 (right) from Table 2. In all three cases the relic abundance of sterile neutrinos would make
up 100 % of the observed dark matter of the Universe [5]. Notice that in the case of the M1 model,
for which the FN charge of DM neutrinos is qN = 0, their mass is not suppressed, meaning that after
the U(1)Σ transition they do not become relativistic again and Yeq does not change. The secondary
vertical axis on the right side of each panel in Fig. 4 describes the total interaction rate, which is always
drastically suppressed after the U(1)Σ phase transition. Indeed, because of this, models M2 and M3
do not have a second phase of DM production by freeze-in, which, as just discussed, in principle could
occur.

Besides the DM mass, the most important parameter determining the relic abundance is the
critical temperature Tc at which the U(1)Σ phase transition occurs. Using zc as a proxy for Tc,
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Figure 5: The regions in the parameter space where a meaningful contribution (100 % dark shades,
10 % light shades) to the DM density of the Universe can be achieved by the framework presented in
this work.

we have solved the Boltzmann equation Eq. (52) and computed the resulting relic abundance of
DM neutrinos for models M1, M2 and M3 from Table 2 sweeping over the complete mass range
Mi = [104 GeV, 1016 GeV). The results are shown in Fig. 5, where the color scheme shows the regions
in the parameter space where the relic abundance lies between 100 % (dark) and 10 % (light) of the
observed value. For bare Majorana masses, anywhere between Mi = 104 GeV and Mi = 1016 GeV,
the critical temperature for the U(1)Σ phase transition must be between Mi/44 and Mi/30 in order
to produce a meaningful contribution of up to 100 % to the dark matter density of the Universe.
The upper horizontal axis shows the mass of DM neutrinos after the FN phase transition, which for
each model always spreads over [104 GeV, 108 GeV). This is the effective mass that the DM neutrinos
would have today. With the exception of the region around Mi = 1016 GeV, we notice that the shape
of the allowed parameter space compatible with the DM hypothesis is almost identical for all three
model classes. This has to do with the fact that although each model class has different Mi ranges,
the Mf range is the same for all model classes, e.g. for a set of models M1 with Mi = 106 GeV, M2
with Mi = 1010 GeV and M3 with Mi = 1014 GeV the FN charges in Table 2 and Eq. (43), result in
Mf = 106 GeV in all three cases. Furthermore, if they all freeze-out at zc, then they will all have the
same asymptotic yield Y∞. The relic abundance is then calculated by

ΩN h
2 =

Y∞ s0Mf

ρcrit
, (54)

where s0 is the entropy density today and ρcrit is critical energy density of the Universe. Thus, it
is clear that if the asymptotic yield Y∞ and Mf are the same for different models with different
initial Majorana masses, the relic abundance will be the same. The peculiar behaviour approaching
Mi = 1016 GeV has to do with the fact that, for this very large bare Majorana mass, the value of
〈γtot〉/H is smaller than 1 even at z ∼ 1, so that even before the U(1)Σ transition occurs, the sterile
neutrinos are not quite in thermal equilibrium and do not follow Yeq so closely.

We finally note that, if no other contribution to the neutrino mass exists, the tiny value of the
Yukawa coupling yeff after the U(1)Σ phase transition means that the DM right-handed neutrino does
not contribute to the generation of active neutrino masses, thereby implying an essentially vanishing
smallest neutrino mass. Moreover, the requirement of heavy neutrino masses above 10 TeV, and the
small mixing after the phase transition, implies that direct detection searches will be unsuccessful.
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5 Conclusions

The type I seesaw mechanism offers a very simple and attractive explanation for the origin and tiny size
of the masses of active neutrinos and a possible solution to the problem of baryogenesis through the
mechanism of leptogenesis. Similarly, the Froggatt-Nielsen mechanism solves the problem of flavour
hierarchy in a very appealing manner.

In this work we have shown that, combining both aforementioned mechanisms, it is possible to
formulate slightly extended models where the problem of the dark matter of the Universe can be
addressed. The particle content of the effective theory is extended by the three right-handed neutrinos
of the seesaw mechanism, one of which is the Dark Matter particle, the Froggatt-Nielsen flavon, and
the new scalar Σ. When the Σ field gets its vev, the Majorana mass and Yukawa coupling of the sterile
neutrinos are suppressed by their Froggatt-Nielsen charges. This inevitably induces the freeze-out of
the dark matter sterile neutrino. Thanks to the strongly suppressed Yukawa coupling after the phase
transition, the cosmic-scale-longevity of the dark matter neutrinos is guaranteed.

This result is not only valid for the specific case of an extended seesaw-Froggatt-Nielsen model,
such as the one studied in this work. In principle it is actually valid much more generally, for any
model where a BSM particle couples strongly to SM bath in the early Universe, and whose coupling is
later suppressed, by whatever mechanism, such that the BSM particle becomes effectively decoupled.
Such frameworks also could explain negative results of direct detection experiments.

The concrete framework discussed here allows to make sterile neutrinos dark matter particles gen-
erated by freeze-out from thermal equilibrium, and works over a wide range of masses. Moreover,
additional right-handed neutrinos, with FN charges different than the DM neutrino, could be respon-
sible for generating the active neutrino masses and also be involved in leptogenesis. These possibilities
are very much worth further research.
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