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Abstract A graph is Helly if every family of pairwise intersecting combina-
torial balls has a nonempty intersection. We show that weak Garside groups of
finite type and FC-type Artin groups are Helly, that is, they act geometrically
on Helly graphs. In particular, such groups act geometrically on spaces with a
convex geodesic bicombing, equipping themwith a nonpositive-curvature-like
structure. That structure has many properties of a CAT(0) structure and, addi-
tionally, it has a combinatorial flavor implying biautomaticity. As immediate
consequences we obtain new results for FC-type Artin groups (in particular
braid groups and spherical Artin groups) and weak Garside groups, including
e.g. fundamental groups of the complements of complexified finite simplicial
arrangements of hyperplanes, braid groups of well-generated complex reflec-
tion groups, and one-relator groups with non-trivial center. Among the results
are: biautomaticity, existence of EZ and Tits boundaries, the Farrell–Jones
conjecture, the coarse Baum–Connes conjecture, and a description of higher
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order homological and homotopical Dehn functions. As a means of proving
theHelly propertywe introduce and use the notion of a (generalized) cell Helly
complex.
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1 Introduction

1.1 Main result

In this articlewe design geometricmodels forArtin groups andGarside groups,
which are two generalizations of braid groups.

Among the vast literature on these two classes of groups, we are particularly
inspired by the results concerning the Garside structure, rooted in [30,42,
52], and the small cancellation structure for certain Artin groups, exhibited
in [4,5,78]. These two aspects actually have interesting interactions, yielding
connections with injective metric spaces and Helly graphs.

For geodesic metric spaces, being injective (or, in other words, hyperconvex
or having the binary intersection property) can be characterized as follows: any
collection of pairwise intersecting closed metric balls has a nonempty inter-
section. The graph-theoretic analogues of injective metric spaces are called
Helly graphs (Definition 3.1). Groups acting on injective metric spaces were
studied in [45,69], leading to a number of results parallel to the CAT(0) setting
[43,44,72]. The article [31] initiates the studies ofHelly groups, that is, groups
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Helly meets Garside and Artin 397

acting properly and cocompactly by graph automorphisms (i.e., geometrically)
on Helly graphs.

Theorem Weak Garside groups of finite type and Artin groups of type FC are
Helly.

TheMainTheoremshould be seen as providing geometricmodels for groups
in question with a nonpositive-curvature-like structure. Consequences of this
theorem are explained in Sect. 1.2.

See Sects. 4.1 and 2.2 for the definitions of weak Garside groups and Artin
groups. Examples of (weak) Garside groups of finite type include:

(1) fundamental groups of the complements of complexified finite simplicial
arrangements of hyperplanes [42];

(2) spherical Artin groups [30,42];
(3) braid groups of well-generated complex reflection groups [14];
(4) structure groups of non-degenerate, involutive and braided set-theoretical

solutions of the quantum Yang–Baxter equation [36];
(5) one-relator groups with non-trivial center and tree products of cyclic

groups [76].

It is known that Garside groups are biautomatic [35,41]. This suggests the
non-positively curved (NPC) geometry of these groups. However, it is natural
to ask for other notions of NPC for Garside groups in order to understand
problems of coarse or continuous nature and to provide more convexity than
the Garside normal form does.

A few classes of Artin groups are known to be CAT(0) [8,11,24,25,29,33,
54,55]. This leads to the speculation that all Artin groups should be NPC.
However, due to the difficulty of verifying the CAT(0) condition in higher
dimensional situations, it is not even known whether all braid groups are
CAT(0), though some evidences are presented in [46]. In particular, it is widely
open whether Artin groups of type FC are CAT(0).

TheMain Theorem applies to a large class of Artin groups and all finite type
weakGarside groups (in particular all braid groups). Though the formulation is
combinatorial, it has a continuous counterpart which is very similar to CAT(0).
All Helly groups act geometrically on injective metric spaces [31], which in
particular have convex geodesic bicombings. The convexity one obtains here
is much stronger than biautomaticity and is weaker than CAT(0). See Sect. 1.2
for details.

On the other hand the Main Theorem equips the groups with a robust com-
binatorial structure—the one of Helly graphs. By a result from [31] it implies
e.g. biautomaticity—an important algorithmic property not implied byCAT(0)
(see [70]). While allowing to deduce ‘CAT(0)-like’ behavior as in the previous
paragraph, the property of being Helly can be checked by local combinatorial
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conditions via a local-to-global characterization from [32], see Theorem 3.2
below.

The Main Theorem also provides a higher dimensional generalization of
an old result of Pride [78] saying that 2-dimensional Artin groups of type
FC are C(4)-T(4). The notion of cell Helly introduced in Sect. 3 serves as a
higher dimensional counterpart of the C(4)-T(4) small cancellation condition
in the sense of Lemma 3.8. We prove that the universal covers of the Salvetti
complexes of higher dimensional Artin groups of type FC are cell Helly.

Let us note that 2-dimensional Artin groups of type FC are known to sat-
isfy several different versions of NPC: small cancellation [78], CAT(0) [24],
systolic [57,58], quadric [59], and Helly.

1.2 Consequences of the Main Theorem

In the Corollary below we list immediate consequences of being Helly, for
groups as in the Main Theorem. In [31] it is shown that the class of Helly
groups is closed under operations of free products with amalgamations over
finite subgroups, graph products (in particular, direct products), quotients by
finite normal subgroups, and (as an immediate consequence of the definition)
taking finite index subgroups. Moreover, it is shown there that e.g. (Gromov)
hyperbolic groups, CAT(0) cubical groups, uniform lattices in buildings of type
˜Cn , and graphical C(4)-T(4) small cancellation groups are all Helly. Therefore,
the results listed below in the Corollary apply to various combinations of all
those classes of groups.

Except for item (6) below (biautomaticity) all other results (1)–(5) are rather
direct consequences of well known facts concerning injective metric spaces—
see explanations in Sect. 1.3 below, and [31] for more details. Biautomaticity
of Helly groups is one of the main results of the paper [31].

Corollary Suppose that a group G is either a weak Garside group of finite
type or an Artin group of type FC. Then the following hold.

(1) G acts geometrically on an injectivemetric space XG, and hence on amet-
ric space with a convex geodesic bicombing. Moreover, XG is a piecewise
�∞-polyhedron complex.

(2) G admits an EZ-boundary and a Tits boundary.
(3) The Farrell–Jones conjecture with finite wreath products holds for G.
(4) The coarse Baum–Connes conjecture holds for G.
(5) The k-th order homologicalDehn function and homotopicalDehn function

of G are Euclidean, i.e. f (l) � l
k+1
k .

(6) G is biautomatic.

The recent work of Kleiner and Lang [66] provides many new insights into
the asymptotic geometry of injective metric spaces. Together with (1) of the
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above corollary, it opens up the possibility of studying Gromov’s program of
quasi-isometric classification and rigidity for higher dimensional Artin groups
which are not right-angled. This actually serves as one of our motivations
to look for good geometric models for such groups. Previous works in this
direction concern mainly the right-angled or the 2-dimensional case [20,26,
56,62,63,71].

We also present an alternative proof of the fact that the Salvetti complex for
Artin groups of type FC is aspherical (see Theorem 5.8), which implies the
K (π, 1)-conjecture for such groups. This has been previously established by
Charney and Davis [34] by showing contractibility of the associated Deligne
complex. Our proof does not rely on the Deligne complex.

1.3 Details and comments on items in corollary

(1) Injective metric spaces also known as hyperconvex metric spaces or abso-
lute retracts (in the category of metric spaces with 1-Lipschitz maps) form an
important class ofmetric spaces rediscovered several times in history [3,47,64]
and studied thoroughly. One important feature of injective metric spaces of
finite dimension is that they admit a unique convex, consistent, reversible
geodesic bicombing [44, Theorems 1.1&1.2]. Recall that a geodesic bicomb-
ing on a metric space (X, d) is a map

σ : X × X × [0, 1] → X,

such that for every pair (x, y) ∈ X × X the function σxy := σ(x, y, ·) is a
constant speed geodesic from x to y. We call σ convex if the function t �→
d(σxy(t), σx ′y′(t)) is convex for all x, y, x ′, y′ ∈ X . The bicombing σ is
consistent if σpq(λ) = σxy((1 − λ)s + λt), for all x, y ∈ X , 0 ≤ s ≤ t ≤ 1,
p := σxy(s), q := σxy(t), and λ ∈ [0, 1]. It is called reversible if σxy(t) =
σyx (1 − t) for all x, y ∈ X and t ∈ [0, 1].

It is shown in [31] that if a group G acts geometrically on a Helly graph
� then it acts geometrically on an injective hull of V (�) (set of vertices of
� equipped with a path metric)—the smallest injective metric space contain-
ing isometrically V (�). The proof is a straightforward consequence of the
fact that the injective hull can be defined as a space of real-valued functions,
the so-called metric forms [47,64,69], and similarly the smallest Helly graph
containing isometrically a given graph—theHelly hull—can be defined analo-
gously using integer metric forms (see e.g. [65, Section II.3]). It follows thatG
acts on a space with a convex geodesic bicombing. Another example of a space
with convex geodesic bicombing is a CAT(0) space with a combing consist-
ing of all (unit speed) geodesics. As noted in Sect. 1.1 only in very particular
cases it is possible to construct a CAT(0) space acted upon geometrically by
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an Artin group. We establish the existence of a slightly weaker structure in
much greater generality.

Holt [60] proves falsification by fellow traveller for Garside groups. It
follows then from [69] that such groups act properly (not necessarily cocom-
pactly) on injective metric spaces. Garside groups have Garside normal forms,
which can be thought of as a combinatorial combing (not in the sense above).
However, even coarsely this combing is not convex—see some further discus-
sion in (4) below.

The properties considered in (2)–(5) below are immediate consequences of
acting geometrically on a space with a convex geodesic bicombing.
(2) Similarly to a CAT(0) space, an injective metric space (or, more generally,
a space with a convex geodesic bicombing) has a boundary at infinity, with
two different topologies: the cone topology and the Tits topology [44,66]. The
former gives rise to an EZ-boundary (cf. [15,49]) of G [44]. The topology
of an EZ-boundary reflects some algebraic properties of the group, and its
existence implies e.g. the Novikov conjecture. The Tits topology is finer and
provides subtle quasi-isometric invariants of G [66]. It is observed in [31] that
Helly groups admit EZ-boundaries.
(3) For a discrete group G the Farrell–Jones conjecture asserts that the K -
theoretic (or L-theoretic) assembly map, that is a homomorphism from a
homology group of the classifying space EVCY(G) to a K -group (or L-group)
of a group ring, is an isomorphism (see e.g. [23,51,67,79] for details). We say
that G satisfies the Farrell–Jones conjecture with finite wreath products if for
any finite group F the wreath product G 	 F satisfies the Farrell–Jones conjec-
ture. It is proved in [67] that groups acting on spaces with a convex geodesic
bicombing satisfy the Farrell–Jones conjecture with finite wreath products.

The Farrell–Jones conjecture implies, for example, theNovikovConjecture,
and theBorelConjecture in high dimensions. Farrell–Roushon [51] established
the Farrell–Jones conjecture for braid groups, Bartels–Lück [23] and Wegner
[83] proved it for CAT(0) groups (see Sect. 1.1 for examples of CAT(0) Artin
groups). Recently, Roushon [79] established the Farrell–Jones conjecture for
some (but not all) spherical and Euclidean Artin groups. His proof relies on
observing that some Artin groups fit into appropriate exact sequences. After
completion of the first version of the current paper Brück-Kielak-Wu [22]
presented another proof of the Farrell–Jones conjecture with finite wreath
products for a subclass of the class of FC type Artin groups—for even Artin
groups of type FC.
(4) For ametric space X the coarse assemblymap is a homomorphism from the
coarse K -homology of X to the K -theory of the Roe-algebra of X . The space
X satisfies the coarse Baum–Connes conjecture if the coarse assembly map
is an isomorphism. A finitely generated group � satisfies the coarse Baum–
Connes conjecture if the conjecture holds for � seen as a metric space with the
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word metric given by a finite generating set. Equivalently, the conjecture holds
for � if a metric space (equivalently: every metric space) acted geometrically
upon by � satisfies the conjecture. As observed in [31], it follows from the
work of Fukaya–Oguni [50] thatHelly groups satisfy the coarseBaum–Connes
conjecture.

For CAT(0) groups the coarse Baum–Connes conjecture holds by [61].
Groups with finite asymptotic dimension satisfy the coarse Baum–Connes
conjecture. It is shown in [16] that braid groups as well as spherical Artin
groups An,Cn , and Artin groups of affine type ˜An, ˜Cn have finite asymptotic
dimension.

For proving the coarse Baum–Connes conjecture in [50] a coarse version
of a convex bicombing is used. Essential there is that two geodesics in the
combing with common endpoints ‘converge’ at least linearly. This is not true
for the usual combing in Garside groups. For example, such a combing for
Z
2 between points (n, n) and (0, 0) follows roughly the diagonal. Similarly

the combing line between (n + k, n) and (0, 0) follows roughly a diagonal for
n 
 k. Hence, for large n, the two lines stay at roughly constant distance for
a long time—this behavior is different from what is required.
(5) Higher order homological (resp. homotopical) Dehn functions measure
the difficulty of filling higher dimensional cycles (resp. spheres) by chains
(resp. balls), see [1,10] for backgrounds. The homological case of (5) is a
consequence of (1) and [84], see the discussion in [1, Section 2] for more
details. The homotopical case of (5) follows from (1) and [10]. The Garside
case of (5) has been known before as it can be deduced from the biautomaticity
and [10,84]. The Artin case of (5) is new.
(6) Biautomaticity is an important algorithmic property of a group. It implies,
among others, that the Dehn function is at most quadratic, and that the Word
Problem and the Conjugacy Problem are solvable; see e.g. [48]. It is proved
in [31] that all Helly groups are biautomatic.

Biautomaticity of all FC-type Artin groups is new (and so is the solution
of the Conjugacy Problem and bounding the Dehn function for these Artin
groups). Altobelli [2] showed that FC-type Artin groups are asynchronously
automatic, and hence have solvable Word Problem. Biautomaticity for few
classes of Artin groups was shown before by: Pride together with Gersten-
Short (triangle-free Artin groups) [53,78], Charney [35] (spherical), Peifer
[75] (extra-large type), Brady-McCammond [24] (three-generator large-type
Artin groups and some generalizations), Huang–Osajda [58] (almost large-
type). Weak Garside groups of finite type are biautomatic by [35,41].
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1.4 Sketch of the proof of the main result

Here we only discuss the special case of braid groups. Each braid group is the
fundamental group of its Salvetti complex X . The universal cover ˜X admits
a natural cellulation by Coxeter cells. The key point is that the combinatorics
of how these Coxeter cells in ˜X intersect each other follows a special pattern
which is a reminiscent of CAT (0) cube complexes (but much more general).
We formulate such pattern as the definition of cell Helly complex, see Def-
inition 3.5 and Remark 3.7. By the local-to-global characterization of Helly
graphs established in [32], the proof of the main theorem reduces to showing
that ˜X is cell Helly, and showing that the cell Hellyness can be further reduced
to a calculation using Garside theory.

1.5 Organization of the paper

In Sect. 2, we provide some background on Coxeter groups and Artin groups.
In Sect. 3, we discuss Helly graphs, introduce the notion of cell Helly complex,
and present some natural examples. In Sect. 4, we prove the Garside case of
the Main Theorem and in Sect. 5 we deal with the Artin group case.

2 Preliminaries

All graphs in this article are simplicial, that is, they do not contain loops or
multiple edges. For a connected graph we equip the set of its vertices with a
path metric: the distance of two vertices is the length (the number of edges) of
the shortest edge-path between those vertices. A full subgraph of a graph � is
a subgraph �′ such that two vertices are adjacent in �′ if and only if they are
adjacent in �.

2.1 Lattices

A standard reference for the lattice theory is [18]. Let (P, ≤) be a partially
ordered set (poset), and let L be an arbitrary subset. An element u ∈ P is
an upper bound of L if s ≤ u for each s ∈ L . An upper bound u of L is its
least upper bound, denoted by

∨

L , if u ≤ x for each upper bound x of L .
Similarly, v ∈ P is a lower bound of L if v ≤ s for each s ∈ L . A lower bound
v of L is its greatest lower bound, denoted by

∧

L , if x ≤ v for each lower
bound x of L . Given a, b ∈ P , the interval between a and b, denoted [a, b],
is the collection of all elements x ∈ P satisfying a ≤ x ≤ b.
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Helly meets Garside and Artin 403

A poset (P, ≤) is a lattice if each two-element subset {a, b} ⊂ P has a least
upper bound—join, denoted by a ∨ b—and a greatest lower bound—meet,
denoted by a ∧ b.

Lemma 2.1 [18, Theorem IV.8.15] Suppose (P, ≤) is a lattice. Then

(1) if two intervals [a, b] and [c, d] of P have nonempty intersection, then
[a, b] ∩ [c, d] = [a ∨ c, b ∧ d];

(2) if elements of a finite collection {[ai , bi ]}ni=1 of intervals in P pairwise
intersect, then the intersection of all members in the collection is a non-
empty interval

⋂n
i=1[ai , b1] = [∨{ai }, ∧{bi }].

2.2 Artin groups and Coxeter groups

Let � be a finite simple graph with each of its edges labeled by an integer≥ 2.
Let V� be the vertex set of �. The Artin group with defining graph �, denoted
A� , is given by the following presentation:

〈si ∈ V� | si s j si · · ·
︸ ︷︷ ︸

mi j

= s j si s j · · ·
︸ ︷︷ ︸

mi j

for each si and s j

spanning an edge labeled by mi j 〉.

The Artin monoid with defining graph �, denoted A+
� is the monoid with the

same presentation. The natural map A+
� → A� is injective [73].

The Coxeter group with defining graph �, denoted W� , is given by the
following presentation:

〈si ∈ V� | s2i = 1 for any si ∈ V�, (si s j )
mi j = 1 for each si and s j

spanning an edge labeled by mi j 〉.

Note that there is a quotient map A� → W� whose kernel is normally gener-
ated by the squares of generators of A� .

Theorem 2.2 Let �1 and �2 be full subgraphs of � with the induced edge
labelings. Then

(1) the natural homomorphisms A�1 → A� and W�1 → W� are injective;
(2) A�1 ∩ A�2 = A�1∩�2 and W�1 ∩ W�2 = W�1∩�2 .

The Coxeter case of this theorem is standard, see e.g. [28] or [39], the Artin
case of this theorem is proved in [81].

A standard parabolic subgroup of an Artin group or a Coxeter group is a
subgroup generated by a subset of its generating set.
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Theorem 2.3 [38] Let �′ ⊂ � be a full subgraph. Let X ′ → X be the embed-
ding from the Cayley graph of A�′ (with respect to the standard presentation)
to the Cayley graph of A� induced by the monomorphism A�′ → A� . Then X ′
is convex in X, i.e. any geodesic of X between two vertices of X ′ is contained
in X ′.

Given x, y ∈ A� , we define x � y (resp. y � x) if y = xz (resp. y = zx)
for some z in the Artin monoid A+

� . By considering the length homomorphism
A� → Z which sends each generator of A� to 1, one deduces that � and �
are both partial orders on A� . They are called the prefix order and the suffix
order, respectively. The prefix order is invariant under the left action of A� on
itself.

Now we recall the weak order on a Coxeter group W� . Each element w ∈
W� can be expressed as a word in the free monoid on the generating set of
W� . One shortest such expression (with respect to the word norm) is called
a reduced expression of w. Given x, y ∈ W� , define x � y (resp. y � x),
if some reduced expression of y has its prefix (resp. suffix) being a reduced
expression of x . Note that � and � give two partial orders on W� , called the
right weak order and the left weak order, respectively.

The defining graph � is spherical if W� is a finite group, in this case, we
also say the Artin group A� is spherical. An Artin group is of type FC if any
complete subgraph �′ ⊂ � is spherical.

Theorem 2.4 Suppose � is spherical. Then

(1) (W�, �) and (W�, �) are both lattices;
(2) (A�, �) and (A�, �) are both lattices.

The first assertion is standard, see e.g. [6]. The second assertion follows
from [30,42].

2.3 Davis complexes and oriented Coxeter cells

By a cell, we always mean a closed cell unless otherwise specified.

Definition 2.5 (Davis complex) Given a Coxeter groupW� , letP be the poset
of left cosets of spherical standard parabolic subgroups in W� (with respect
to inclusion) and let �� be the geometric realization of this poset (i.e. ��

is a simplicial complex whose simplices correspond to chains in P). Now
we modify the cell structure on �� to define a new complex D� , called the
Davis complex. The cells in D� are full subcomplexes of �� spanned by a
given vertex v and all other vertices which are ≤ v (note that vertices of ��

correspond to elements in P , hence inherit the partial order).
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Suppose W� is finite with n generators. Then there is a canonical faithful
orthogonal action of W� on the Euclidean space E

n . Take a point in E
n with

trivial stabilizer, then the convex hull of the orbit of this point under the W�

action (with its natural cell structure) is isomorphic to D� . In such case, we
call D� a Coxeter cell.

In general, the 1-skeleton of D� is the unoriented Cayley graph of W� (i.e.
we start with the usual Cayley graph and identify the double edges arising from
s2i as single edges), and D� can be constructed from the unoriented Cayley
graph by filling Coxeter cells in a natural way. Each edge of D� is labeled by
a generator of W� . We endow D(1)

� with the path metric.
We can identify the unoriented Cayley graph ofW� with the Hasse diagram

of W� with respect to right weak order. Thus we can orient each edge of
D� from its smaller vertex to its larger vertex. When W� is finite, D� with
such edge orientation is called an oriented Coxeter cell. Note that there is a
unique source vertex (resp. sink vertex) of D� corresponding to the identity
element (resp. longest element) ofW� , where each edge containing this vertex
is oriented away from (resp. oriented towards) this vertex. The source and sink
vertices are called tips of D� .

The following fact is standard, see e.g. [28].

Theorem 2.6 LetR be a left coset of a standard parabolic subgroup, and let
v ∈ W� be an arbitrary element. Then the following hold.

(1) R is convex in the sense that for two vertices v1, v2 ∈ R, the vertex set of
any geodesic in D(1)

� joining v1 and v2 is insideR.
(2) There is a unique vertex u ∈ R such that d(v, u) = d(v,R), where d

denotes the path metric on the 1-skeleton of D� .
(3) Pick v1 ∈ R. Then d(v, v1) = d(v, u) + d(u, v1).

Theorem2.6 implies that the face of an orientedCoxeter cellC , with its edge
labeling and orientation from C , can be identified with a lower dimensional
Coxeter cell in a way which preserves edge labeling and orientation.

The following lemma is well-known. For example, it follows from [9,
Lemma 3.4.9 and Corollary 5.5.16]. From another perspective, Theorem 2.6
(2)&(3) says that left cosets are the so-called gated subgraphs of D(1)

� . It is a
well-known fact (see e.g. [82, Proposition I.5.12(2)]) that any family of gated
subgraphs has the finite Helly property. In fact, the proof provided below (for
the convenience of the reader), is the proof of this feature for families of gated
subgraphs.

Lemma 2.7 Let {Ri }ni=1 be a finite collection of left cosets of standard
parabolic subgroups of W� . Then ∩n

i=1Ri �= ∅ given {Ri }ni=1 pairwise inter-
sect.
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Proof We first look at the case n = 3. Pick x ∈ R2 ∩ R3. Let y be the unique
point in R1 closest to x (Theorem 2.6 (2)). For i = 2, 3, let yi be the unique
point in R1∩Ri closest to x . ByTheorem2.6 (3),d(x, y2) = d(x, y)+d(y, y2).
Thus y ∈ R2 by the convexity of R2 (Theorem2.6 (1)). Thus y = y2. Similarly,
y = y3. Hence y ∈ ∩3

i=1Ri . For n > 3, we proceed by the induction on n.
For 2 ≤ i ≤ n, let τi = R1 ∩ Ri . Then each τi is a left coset of a standard
subgroup by Theorem 2.2. Moreover, {τi }ni=2 pairwise intersect by the n = 3
case. Thus ∩n

i=2τi �= ∅ by induction, and the lemma follows. ��

2.4 Salvetti complexes

Definition 2.8 (Salvetti complex) Given an Artin group S� , we define a cell
complex, called the Salvetti complex and denoted by S� , as follows. The 1-
skeleton of S� is a wedge sum of circles, one circle for each generator. We
label each circle by its associated generators and choose an orientation for each
circle. Suppose the (n − 1)-skeleton of S� has been defined. Now for each
spherical subgraph �′ ⊂ � with n vertices, we attach an oriented Coxeter
cell D�′ with the attaching map being a cellular map whose restriction to
each face of the boundary of D�′ coincides with the attaching map of a lower
dimensional oriented Coxeter cell (when n = 2, we require the attaching map
preserves the orientation and the labeling of edges).

The 2-skeleton of S� is the presentation complex of A� . Hence π1(S�) =
A� . Let X� be the universal cover of S� . The 1-skeleton of X� is the Cayley
graph of A� , and it is endowed with the path metric with each edge having
length = 1. We pull back labeling and orientation of edges in S� to X� . A
positive path in X (1)

� from a vertex x ∈ X� to another vertex y is an edge path
such that one reads of a word in the Artin monoid by following this path. By
considering the length homomorphism A� → Z, we obtain that each positive
path is geodesic.

We identify X (0)
� with elements in A� . Hence X (0)

� inherits the prefix order
� and the suffix order �. Then x � y if and only if there is a positive path in
X (1)

� from x to y.

The quotient homomorphism A� → W� induces a graphmorphism X (1)
� →

D(1)
� which preserves labeling of edges. Take a cell of S� represented by its

attaching map q : D�′ → S� with D�′ being an oriented Coxeter cell. Let
q̃ : D�′ → X� be a lift of q. Note that q̃ respects orientation and labeling of
edges. It follows from definition that D(1)

�′ → X (1)
� → D(1)

� is an embedding,

hence D(1)
�′ → X (1)

� is an embedding. By induction on dimension, we have
that q̃ is an embedding. Hence each cell in X� is embedded. Given a vertex
x ∈ X� , there is a one to one correspondence between cells of X� whose
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source vertex is x and spherical subgraphs of �. Then X (1)
� → D(1)

� extends
naturally to a cellular map π : X� → D� which is a homeomorphism on each
closed cell.

Lemma 2.9 Let q : C → X� be the attaching map from an oriented Coxeter
cell C to X� . Let a and b be the source vertex and the sink vertex of C. Let �C
be the right weak order on C (0). Then the following hold (we use d to denote
the path metric on the 1-skeleton).

(1) the map (C (1), d) → (X (1)
� , d) is an isometric embedding;

(2) for any two vertices x, y ∈ C, x �C y if and only if q(x) � q(y),
moreover, [q(x), q(y)]� = q([a, b]�C ) where [q(x), q(y)]� denotes the
interval between two elements with respect to the order �;

(3) for two cells C1 and C2 in X� , if C
(0)
1 ⊂ C (0)

2 , then there exists a cell

C3 ⊂ C2 such that C
(0)
3 = C (0)

1 .

Proof Assertion (1) follows from the fact that the map X (1)
� → D(1)

� is 1-
Lipschitz. Now we prove (2). The ‘only if’ direction follows from the fact that
q preserves orientation of edges. Now assume q(x) � q(y). Since q(a) �
q(x) � q(y) � q(b), there is a positive path ω from q(a) to q(b) passing
through q(x) and q(y). Let C̄ (1), ω̄, ā and b̄ be the images of q(C (1)), ω, q(a)

and q(b) under X (1)
� → D(1)

� . Then d(a, b) = d(ā, b̄), which also equals
to the length of ω (recall each positive path is geodesic). Thus length(ω) =
length(ω̄). By Theorem 2.6, ω̄ ⊂ C̄ (1). Then ω̄ (hence ω) corresponds to the
longest word in the finite Coxeter group associated C . Thus ω ⊂ q(C). It
follows that x � y. The proof of the moreover statement in (2) is similar.

For (3), there is a positive path ω from the source of C1 to the sink of C1
corresponding to the longest word of some finite Coxeter group. The proof of
(2) implies that ω ⊂ C2. Then ω determines C3 ⊂ C2 as required. ��
Lemma 2.10 Let C1 and C2 be two cells of X� . Then the following are equiv-
alent:

(1) C1 = C2;
(2) C (0)

1 = C (0)
2 ;

(3) C1 and C2 have the same sink.

Proof (1) ⇒ (2) is trivial. (3) ⇒ (1) follows from the definition of cells. Now
we prove (2) ⇒ (3). First assume C1 and C2 are two edges. By considering
the label preserving map X (1)

� → D(1)
� , we obtain that C1 and C2 have the

same label. On the other hand, Theorem 2.2 (1) implies that map from the
circle associated with a generator in S� to S� is π1-injective. Thus C1 = C2.
Now we look at the general case. By Lemma 2.9 (3), two vertices are adjacent
in C1 if and only if they are adjacent in C2. Then (2) ⇒ (3) follows from the
1-dimensional case by considering the orientation of edges on the cells. ��
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A full subcomplex K ⊂ X� is a subcomplex such that if a cell of X� has
the vertex set contained in K , then the cell is contained in K . It is clear that
intersection of two full subcomplexes is also a full subcomplex. The following
is a consequence of Lemma 2.9 (2) and Lemma 2.10.

Lemma 2.11 Any cell in X� is a full subcomplex.

Take a full subgraph �′ ⊂ �, then there is an embedding S�′ → S� which
is π1-injective (Theorem 2.2 (1)). A standard subcomplex of type �′ of X�

is a connected component of the preimage of S�′ under the covering map
X� → S� . Each such standard subcomplex can be naturally identified with
the universal cover X�′ of S�′ . A standard subcomplex is spherical if its type
is spherical. We define the type of a cell in X� to be the type of the smallest
standard subcomplex that contains this cell.

Lemma 2.12 Any standard subcomplex of X� is a full subcomplex.

Proof Let X ⊂ X� be a standard subcomplex of type �′. Let C ⊂ X� be a
cell such that C (0) ⊂ X . By considering the map X (1)

� → D(1)
� , we obtain that

each edge of C is labeled by a vertex of �′. Thus C is of type �′′ for �′′ ⊂ �′.
HenceC is mapped to S�′′ under X� → S� . SinceC∪X is connected,C ⊂ X .
Then the lemma follows. ��
Lemma 2.13 Let X1, X2 ⊂ X� be standard subcomplexes of type �1, �2.

(1) Suppose X1 ∩ X2 �= ∅. Then X1 ∩ X2 is a standard subcomplex of type
�1 ∩ �2.

(2) Let C ⊂ X� be a cell of type �1 such that C ∩ X2 �= ∅. Then C ∩ X2 is a
cell of type �1 ∩ �2.

(3) For elements a, b ∈ X (0)
1 , the interval between a and b with respect to

(X (0)
� , �) is contained in X (0)

1 .

(4) We identify X (0)
1 with A�1 , hence X (0)

1 inherits a prefix order ��1 from

A�1 . Then ��1 coincides with the restriction of (A�, �) to X (0)
1 .

Proof By Theorem 2.2, there exists a standard subcomplex X0 ⊂ X� such
that X (0)

0 = X (0)
1 ∩ X (0)

2 . Then (1) follows from Lemma 2.12. Now we prove
(2). Let X1 be the standard subcomplex of type �1 containing C . Then C ∩ X2
is contained in X1 ∩ X2, which is a standard subcomplex of type �1 ∩ �2.
This together with Lemma 2.12 imply that C ∩ X2 is a disjoint union of faces
of C of type �1 ∩ �2. It remains to show C ∩ X2 is connected. Suppose the
contrary holds. Pick a shortest geodesic edge path ω ⊂ C (with respect to the
path metric on C (1)) traveling from a vertex in one component of C ∩ X2 to
another component. Then ω is also a geodesic path in X (1)

� by Lemma 2.9.
Since two end points of ω are in X2, we have ω ⊂ X2 by Theorem 2.3, which
yields a contradiction. Assertions (3) and (4) follow from Theorem 2.3. ��
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3 Helly graphs and cell-Helly complexes

See the beginning of Sect. 2 for our convention on graphs. A clique of a graph
is a complete subgraph. A maximal clique is a clique not properly contained
in another clique. Each graph is endowed with the path metric such that each
edge has length 1. A ball centered at x with radius r in a graph � is the full
subgraph spanned by all vertices at distance ≤ r from x . As for Helly graphs
we follow usually the notation from [31,32].

Definition 3.1 AfamilyF of subsets of a set satisfies the (finite)Helly property
if for any (finite) subfamily F ′ ⊆ F of pairwise intersecting subsets the
intersection

⋂F ′ is nonempty.
A graph is (finitely) clique Helly if the family of all maximal cliques, as

subsets of the vertex sets of the graph, satisfies the (finite) Helly property.
A graph is (finitely) Helly if the family of all balls, as subsets of the vertex

sets of the graph, satisfies the (finite) Helly property.

The notion of clique Helly is local and the notion of Helly is global. Our
main tool for provingHellyness of some graphs is the following local-to-global
characterization.

The clique complex of a graph � is the flag completion of �. The triangle
complex of� is the 2-skeleton of the clique complex, that is, the 2-dimensional
simplicial complex obtained by spanning 2-simplices (that is, triangles) on all
3-cycles (that is, 3-cliques) of �.

Theorem 3.2 (i) ([32, Theorem 3.5]) Let � be a simplicial graph. Suppose
that � is finitely clique Helly, and that the clique complex of � is simply-
connected. Then � is finitely Helly.

(ii) ([77, Proposition 3.1.2]) If in addition � does not have infinite cliques,
then � is Helly.

Parallel to this theorem, a local-to-global result for injective metric spaces
is obtained in [72].

Lemma 3.3 Let X be a set and let {Xi }i∈I be a family of subsets of X. Define
a simplicial graph Y whose vertex set is X, and two points are adjacent if there
exists i such that they are contained in Xi . Suppose that

(1) there are no infinite cliques in Y ;
(2) {Xi }i∈I has finite Helly property, i.e. any finite family of pairwise inter-

secting elements in {Xi }i∈I has nonempty intersection;
(3) for any triple Xi1, Xi2, Xi3 of pairwise intersecting subsets in {Xi }i∈I ,

there exists i0 ∈ I such that

(Xi1 ∩ Xi2) ∪ (Xi2 ∩ Xi3) ∪ (Xi3 ∩ Xi1) ⊆ Xi0 .
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Then Y is finitely clique Helly.

Proof Let S ⊂ X be a subset.Weclaim if S is the vertex set of a clique inY , then
there exists i ∈ I such that S ⊂ Xi . We prove it by induction on |S|. Note that
|S| < ∞ by assumption (1), and the case |S| = 2 is trivial. Suppose |S| = n ≥
3. Let {x1, x2, x3} be three pairwise distinct vertices in S and let Si = S\{xi }. It
follows from induction assumption that there exists Xi such that Si ⊂ Xi . Note
that {Xi1, Xi2, Xi3} pairwise intersect. Thus by assumption (3), there exists
Xi0 ∈ {Xi }i∈I such that S ⊂ (Xi1 ∩ Xi2) ∪ (Xi2 ∩ Xi3) ∪ (Xi3 ∩ Xi1) ⊂ Xi0 .
Hence the claim follows. The claim implies that if S is the vertex set of a
maximal clique in Y , then S = Xi for some i ∈ I . Now the lemma follows
from assumption (2). ��

The lemma above justifies the following definition that will be our main
tool for showing that some groups act nicely on Helly graphs. A subcomplex
of X is finite it has only finitely many cells.

Definition 3.4 Let X be a combinatorial complex (cf. [17, Chapter I.8.A])
and let {Xi }i∈I be a family of finite full subcomplexes covering X . We call
(X, {Xi }) (or simply X , when the family {Xi } is evident) a generalized cell
Helly complex if the following conditions are satisfied:

(1) each intersection Xi1 ∩ Xi2 ∩ · · · ∩ Xik is either empty or connected and
simply connected (in particular, all members of {Xi } are connected and
simply connected);

(2) the family {Xi }i∈I has finite Helly property, i.e. any finite family of pair-
wise intersecting elements in {Xi }i∈I has nonempty intersection;

(3) for any triple Xi1, Xi2, Xi3 of pairwise intersecting subcomplexes in
{Xi }i∈I , there exists i0 ∈ I such that

(Xi1 ∩ Xi2) ∪ (Xi2 ∩ Xi3) ∪ (Xi3 ∩ Xi1) ⊆ Xi0 .

The subcomplexes Xi are called generalized cells of X .

In this articlewewill only dealwith the following special case of generalized
cell Helly complex.

Definition 3.5 Suppose X is a combinatorial complex such that each of its
closed cell is embedded and each closed cell is a full subcomplex of X . Let
{Xi }i∈I be the collection of all closed cells in X . We say X is cell Helly if
(X, {Xi }) satisfies Definition 3.4.

A natural class of cell Helly complexes is described in the lemma below,
whose proof is left to the reader.
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Lemma 3.6 Suppose X is a simply-connected cube complex such that each
cube in X is embedded and any intersection of two cubes of X is a sub-cube.
Then X is cell Helly if and only if X is a C AT (0) cube complex.

Remark 3.7 It can be seen here that the condition (3) fromDefinition 3.4 plays
a role of Gromov’s flagness condition. Intuitively, it tells that all the corners
(of possible positive curvature) are “filled” (and hence curvature around them
is nonpositive).

Pride [78] showed that 2-dimensional Artin groups of type FC are C(4)-T(4)
small cancellation groups. The following lemma together with Theorem 5.8
can be seen as an extension of Pride’s result to higher dimensions. We refer to
[59,78] for the definition of C(4)-T(4) small cancellation conditions. Here, we
assume that cells are determined by their attaching maps (this corresponds to
the usual small cancellation theory, for groups without torsion). In particular,
by [59, Proposition 3.5] it means that the intersection of two cells is either
empty or a vertex or an interval.

Lemma 3.8 Suppose X is a 2-dimensional simply-connected combinatorial
complex such that each closed cell is embedded. Then X is cell Helly if and
only if X satisfies the C(4)-T(4) small cancellation conditions.

Proof If X is a C(4)-T(4) complex then, by [59, Proposition 3.8], for any
pairwise intersecting cells C0,C1,C2 we have Ci ∩ C j ⊆ Ck , for {i, j, k} =
{0, 1, 2}. It follows that X is cell Helly.

Now suppose X is cell Helly. Since nonempty intersections of cells are con-
nected and simply connected, such intersections must be vertices or intervals.

We check the C(4) condition. First suppose there is a cellC with the bound-
ary covered by two intervals C ∩ C0 and C ∩ C1 being intersections with
cells C0,C1. Since, by Definition 3.4(1), the intersection C0 ∩ C1 has to be
a nontrivial interval. But then the union (C ∩ C0) ∪ (C0 ∩ C1) ∪ (C1 ∩ C)

is a graph being a union of three intervals along their endpoints, contradict-
ing Definition 3.4(3). Now, suppose there are cells C,C0,C1,C2 such that
C ∩ Ci �= ∅ and Ci ∩ Ci+1(mod 3) �= ∅. It follows that there is a common
intersection C ∩ C0 ∩ C1 ∩ C2. This brings us to the previous case.

For the T(4) condition suppose there are cells C0,C1,C2 with Ci ∩
Ci+1(mod 3) being a nontrivial interval containing a vertex v, for all i . Then
(C0 ∩ C1) ∪ (C1 ∩ C2) ∪ (C2 ∩ C0) cannot be contained in a single cell,
contradicting Definition 3.4(3). ��

Definition 3.4 generalizes Definition 3.5 in the same way as the graphical
small cancellation theory generalizes the classical small cancellation theory,
another example to consider is X being a C(4)-T(4) graphical small cancel-
lation complex. Defining {Xi } as the family of simplicial cones over relators,
we obtain a generalized cell Helly complex (proved in [31]).
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Later we will see more examples of cell Helly complexes whose cells are
zonotopes (Corollary 4.11) or Coxeter cells (Theorem 5.8).

For a pair (X, {Xi }i∈I ) as above, we define its thickening Y to be the follow-
ing simplicial complex. The 0-skeleton of Y is X (0), and two vertices of Y (0)

are adjacent if they are contained in the same generalized cell of X . Then Y is
defined to be the flag complex of Y (1). We call (X, {Xi }i∈I ) locally bounded
if there does not exist an infinite strictly increasing sequence of vertex sets
A1 � A2 � A3 � · · · such that for every j there exists i j with A j ⊆ Xi j .

Theorem 3.9 The thickening of a locally bounded generalized cell Helly com-
plex is clique Helly. The thickening of a simply connected locally bounded
generalized cell Helly complex is Helly.

Proof Let (X, {Xi }i∈I ) be a locally bounded generalized cell Helly complex
and let Y be its thickening. It follows from the proof of Lemma 3.3 that the
vertex set of each finite clique of Y is contained in some Xi j (this does not
use assumption (1) of Lemma 3.3). This together with local boundedness
imply that there are no infinite cliques in Y . The first statement follows from
Lemma 3.3. By the Nerve Theorem [19, Theorem 6] applied to the covering of
X by generalized cells {Xi }, and the covering of Y by simplices corresponding
to generalized cells we get that X and Y are have the same connectivity and
isomorphic fundamental groups. If X is simply connected then so is Y and
hence, by Theorem 3.2, the thickening is Helly. ��

We say that a groupG acts on a generalized cell Helly complex (X, {Xi }i∈I )
if it acts by automorphisms on X and preserves the family {Xi }i∈I . For such
an action clearly G acts by automorphisms on the thickening of (X, {Xi }i∈I ).
Moreover, we have the following.

Proposition 3.10 If a group G acts geometrically on a simply connected
locally bounded generalized cell Helly complex (X, {Xi }i∈I ) then G acts geo-
metrically on the Helly graph being the 1-skeleton Y (1) of the thickening Y . In
particular, G is Helly.

Proof Wefirst show that each vertex v in Y (1) is adjacent to finitelymany other
vertices. Suppose v is adjacent to infinitely many different vertices {vi }∞i=1.
Take Xi which contains both v and vi . As X is uniformly locally finite, we
can assume limi→∞ dX (1) (v, vi ) = ∞ where dX (1) denotes the path metric
on X (1). Let Pi be a shortest edge path in Xi connecting v and vi . Then
Pi subconverges to an infinite path as i → ∞, which contradicts the local
boundedness assumption.

Since the G-action on X is cocompact, the quotient Y (0)/G of the vertex
set is finite. Since (X, {Xi }) is locally bounded there are no infinite cliques
(see the proof of Theorem 3.9) and hence the quotient Y (1)/G is finite.
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To prove properness it remains to show that, for the G-action on Y (1),
stabilizers of cliques are finite. Such stabilizers correspond to stabilizers of
finite vertex sets for the G-action on X , which are finite by the properness of
the G-action on X . ��

We close the section with a simple but useful observation, that will allow
us to reprove contractibility of the universal cover of the Salvetti complex of
an FC-type Artin group in Sect. 5.

Proposition 3.11 Let (X, {Xi }i∈I ) be a simply connected locally bounded
generalized cell Helly complex such that the intersection of any collection of
generalized cells is either empty or contractible. Then X is contractible.

Proof By Borsuk’s Nerve Theorem [27] applied to the covering of X by
generalized cells {Xi }, and the covering of Y by simplices corresponding to
generalized cells, we have that X is homotopically equivalent to its thickening.
The latter is contractible as a Helly complex by Theorem 3.9. ��

4 Weak Garside groups act on Helly graphs

4.1 Basic properties of Garside categories

We follow the treatment of Garside categories in [13,68].
Let C be a small category. Onemay think of C as of an oriented graph, whose

vertices are objects in C and oriented edges are morphisms of C. Arrows in
C compose like paths: x

f→ y
g→ z is composed into x

f g→ z. For objects
x, y ∈ C, let Cx→ denote the collection of morphisms whose source object is
x . Similarly we define C→y and Cx→y .

For two morphisms f and g, we define f � g if there exists a morphism
h such that g = f h. Define g � f if there exists a morphism h such that
g = h f . Then (Cx→, �) and (C→y, �) are posets. A nontrivial morphism f
which cannot be factorized into two nontrivial factors is an atom.

The category C is cancellative if, whenever a relation a f b = agb holds
between composed morphisms, it implies f = g. C is homogeneous if there
exists a length function l from the set of C-morphisms toZ≥0 such that l( f g) =
l( f ) + l(g) and (l( f ) = 0) ⇔ ( f is a unit).

We consider the triple (C, C φ→ C, 1C
�⇒ φ) where φ is an automorphism

of C and � is a natural transformation from the identity function to φ. For an

object x ∈ C, � gives morphisms x
�(x)−→ φ(x) and φ−1(x)

�(φ−1(x))−→ x . We
denote the first morphism by�x and the secondmorphism by�x . Amorphism

x
f→ y is simple if there exists a morphism y

f ∗
→ φ(x) such that f f ∗ = �x .

When C is cancellative, such f ∗ is unique.
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Definition 4.1 A homogeneous categorical Garside structure is a triple

(C, C φ→ C, 1C
�⇒ φ) such that:

(1) φ is an automorphism of C and � is a natural transformation from the
identity function to φ;

(2) C is homogeneous and cancellative;
(3) all atoms of C are simple;
(4) for any object x , Cx→ and C→x are lattices.

It has finite type if the collection of simple morphisms of C is finite.

Definition 4.2 A Garside category is a category C that can be equipped with
φ and � to obtain a homogeneous categorical Garside structure. A Garside
groupoid is the enveloping groupoid of a Garside category. See [40, Section
3.1] for a detailed definition of enveloping groupoid. Informally speaking, it is
a groupoid obtained by adding formal inverses to all morphisms in a Garside
category.

Let x be an object in a groupoid G. The isotropy group Gx at x is the group
of morphisms from x to itself. A weak Garside group is a group isomorphic to
the isotropy group of an object in a Garside groupoid. A weak Garside group
has finite type if its associated Garside category has finite type.

A Garside monoid is a Garside category with a single object and a Garside
group is a Garside groupoid with a single object.

It follows from [40, Proposition 3.11] that if G is a Garside groupoid, then
the natural functor C → G is injective. Moreover, by [40, lemma 3.13], the

triple (C, C φ→ C, 1C
�⇒ φ) naturally extends to (G,G φ→ G, 1G

�⇒ φ) (we
denote the extensions of φ and � by φ and � as well).

Define Gx→ and G→x in a similar way to Cx→ and C→x . For two morphisms
x and y of G, define x � y if there exists a morphism z of C such that
y = xz. Define y � x analogously. The following Lemma 4.3 is well-known
for inclusion from a Garside monoid to its associated Garside group. The more
general case concerning Garside category can be proved similarly.

Lemma 4.3 For each object x of G, Gx→ and G→x are lattices. Moreover,
the natural inclusions Cx→ → Gx→ and C→x → G→x are homomorphisms
between lattices.

For morphisms f1, f2 ∈ Gx→ (resp. G→x ), we use f1 ∧p f2 (resp. f1 ∧s f2)
to denote the greatest lower bound of f1 and f2 with respect to � (resp. �),
where p (resp. s) stands for prefix (resp. suffix) order. Similarly, we define
f1 ∨p f2 and f1 ∨s f2.

Lemma 4.4 Let G be a Garside groupoid and let f : x → y be a morphism
of G. Then
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(1) the map (Gy→, �) → (Gx→, �) mapping h ∈ Gy to f h is a lattice
monomorphism;

(2) the bijection (Gx→, �) → (G→x , �) mapping h ∈ Gx to h−1 is order-
revering, i.e. h1 � h2 if and only if h

−1
1 � h−1

2 ;
(3) choose elements {ai }ni=1 ⊂ G→x , then a

−1
1 ∨p a

−1
2 ∨p · · ·∨p a−1

n = (a1∧s

a2∧s · · ·∧s an)−1 and a−1
1 ∧pa

−1
2 ∧p · · ·∧pa−1

n = (a1∨s a2∨s · · ·∨s an)−1.

Proof Assertion (1) follows from the definition. To see (2), note that if h1 � h2,
then there exists a morphism k of C such that h2 = h1k. Thus h

−1
1 = kh−1

2 .
Hence h−1

1 � h−1
2 . The other direction is similar. (3) follows from (2). ��

Lemma 4.5 Let G be a Garside groupoid. Let {ai }ni=1 and c be morphisms inG. Let {bi }ni=1 be morphisms in C.
(1) Suppose aibi = c for 1 ≤ i ≤ n. Let a = a1 ∨p a2 ∨p · · · ∨p an and

b = b1 ∧s b2 ∧s · · · ∧s bn. Then ab = c.
(2) Suppose aibi = c for 1 ≤ i ≤ n. Let a = a1 ∧p a2 ∧p · · · ∧p an and

b = b1 ∨s b2 ∨s · · · ∨s bn. Then ab = c.
(3) (cb1) ∧p (cb2) ∧p · · · ∧p (cbn) = c(b1 ∧p · · · ∧p bn).
(4) (cb1) ∨p (cb2) ∨p · · · ∨p (cbn) = c(b1 ∨p · · · ∨p bn).

Proof For (1), note that all the ai have the same source object and all the
bi have the same target object. Thus a and b are well-defined. It follows
from Lemma 4.4 (1) that c−1a = (c−1a1) ∨p (c−1a2) ∨p · · · ∨p (c−1an) =
b−1
1 ∨p b

−1
2 ∨p · · ·∨p b−1

n . By Lemma 4.4 (3), b−1
1 ∨p · · ·∨p b−1

n = (b1∧s b2∧s

· · · ∧s bn)−1 = b−1. Thus (1) follows. Assertion (2) can be proved similarly.
(3) and (4) follow from Lemma 4.4 (1). ��

For a morphism f of G, denote the source object and the target object of f
by s( f ) and t ( f ).

Lemma 4.6 Suppose f is a morphism of G. Then f � �s( f ) if and only if
�t ( f ) � f .

Proof If f � �s( f ), then�s( f ) = f g for g in C. Let h be the uniquemorphism
such that g = φ(h). By the definition of φ, we have that h is in C. Moreover,
h fits into the following commuting diagram:

φ−1(t ( f ))
h−−−→ s( f )

⏐

⏐

��t ( f )

⏐

⏐

�
�s( f )

t ( f ) = s(g)
g−−−→ t (g) = t (�s( f ))

Thus h�s( f ) = �t ( f )g, which implies that h( f g) = �t ( f )g. Hence h f =
�t ( f ) and �t ( f ) � f . The other direction is similar. ��

123



416 J. Huang, D. Osajda

Lemma 4.7 Let x be an object of G. Let �1 be the collection of simple
morphisms of G with target object x and let �2 be the collection of simple
morphisms with source object x. For a ∈ �1, we define a∗ to be the morphism
such that aa∗ = �s(a). Then

(1) the map a → a∗ gives a bijection �1 → �2;
(2) for a, b ∈ �1, we have b � a if and only if b∗ � a∗;
(3) for a, b ∈ �1, we have (a ∧s b)∗ = a∗ ∨p b∗ and (a ∨s b)∗ = a∗ ∧p b∗.

Proof For (1), since�t (a∗) = �s(a) � a∗,wehavea∗ � �s(a∗) byLemma4.6.
Thus a∗ ∈ �2. The map is clearly injective and surjectivity follows from
Lemma 4.6. For (2), b � a implies b = ka for a morphism k of C. From
�s(b) = bb∗ = kab∗, we have that �t (b∗) = �s(b) � ab∗, hence ab∗ � �s(a)

byLemma4.6. Then there is amorphism h ofC such that ab∗h = �s(a) = aa∗,
hence b∗h = a∗ and b∗ � a∗. The other direction is similar. For (3), note that
elements in �1 (resp. �2) are closed under ∧s and ∨s (resp. ∧p and ∨p), so
�1 and �2 are lattices. Now assertion (3) follows from (2) and (1). ��

4.2 Garside groups are Helly

Let G be a Garside groupoid and let x be an object of G. A cell of Gx→ is an
interval of the form [ f, f �t ( f )] with respect to the order �.

Lemma 4.8 Let C1,C2 and C3 be pairwise intersecting cells of Gx→. Then
there is a cell C of Gx→ such that D = (C1 ∩C2) ∪ (C2 ∩C3) ∪ (C3 ∩C1) is
contained in C.

Proof Since each Ci is an interval in (Gx→, �), we write Ci = [ fi , gi ]. Let
Ci j = Ci ∩ C j . Then each Ci j is also an interval (Lemma 2.1 (1)). We write
Ci j = [ fi j , gi j ]. Then fi j = fi ∨p f j and gi j = gi ∧p g j . Choose a morphism
h in ∩3

i=1Ci (Lemma 2.1 (2)). Since fi � h � gi , there are morphisms wi
and w∗

i in C such that h = fiwi and gi = hw∗
i . Note that wiw

∗
i = �s( fi ).

Moreover, by Lemma 4.5 (1) and (3), we have

fi j · (wi ∧s w j ) = h and h · (w∗
i ∧p w∗

j ) = gi j . (1)

Let f (resp. g) be the greatest lower bound (resp. least upper bound) over
all elements in D with respect to the prefix order �. Since D is a union of
three intervals, we have f = f12 ∧p f23 ∧p f31 and g = g12 ∨p g23 ∨p g31.
Define a = (w1 ∧s w2)∨s (w2 ∧s w3)∨s (w3 ∧s w1) and b = (w∗

1 ∧p w∗
2)∨p

(w∗
2 ∧p w∗

3) ∨p (w∗
3 ∧p w∗

1). Then by the formula (1) above and Lemma 4.5
(2) and (4), we have f a = h and hb = g.

We claim ab � �s(a). This claim implies that the cell [ f, f �s(a)] contains
the interval [ f, g], hence it contains D. Thus the lemma follows from the claim.
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Now we prove the claim. Since wi � �s(wi ) for 1 ≤ i ≤ 3, by Lemma 4.6,
�t (wi ) � wi . Then �t (wi ) � a. By Lemma 4.6 again, a � �s(a). Let a∗
be a morphism in C such that aa∗ = �s(a). It suffices to show b � a∗. By
repeatedly applying Lemma 4.7 (3), we have a∗ = (w1 ∧s w2)

∗ ∧p (w2 ∧s
w3)

∗ ∧p (w3 ∧s w1)
∗ = (w∗

1 ∨p w∗
2) ∧p (w∗

2 ∨p w∗
3) ∧p (w∗

3 ∨p w∗
1). Note

that b is the least upper bound of three terms, however, each of these terms is
� every term of a∗, so each of these terms is � a∗, hence b � a∗. ��
Theorem 4.9 Let G be a weak Garside group of finite type associated with a
Garside groupoid G. Then G acts geometrically on a Helly graph.

Proof Let x be an object of G. Suppose G = Gx . Let Y be a simplicial graph
whose vertex set is Gx→ and two vertices are adjacent if they are in the same
cell of Gx→. The left action Gx � Gx→ preserves the collection of cells, hence
induces an action Gx � Y .

Note that Y is uniformly locally finite. Indeed, given f ∈ Gx→, g is adjacent
to f if and only if g = f a−1b for some simple morphisms a and b of C. Since
the collection of simplemorphisms is finite, there are finitelymanypossibilities
for such g. Thus Y satisfies assumption (1) of Lemma 3.3 with {Xi }i∈I being
cells of Gx→. Assumption (2) of Lemma 3.3 follows from Lemma 2.1 (2),
as each cell is an interval in the lattice Gx→. Assumption (3) of Lemma 3.3
follows from Lemma 4.8. Thus Y is finitely clique Helly by Lemma 3.3. By
Theorem 3.2, it remains to show that the flag complex F(Y ) of Y is simply
connected.

Let Z be the cover graph of the poset (Gx→, �), i.e. two vertices f and h are
adjacent if f = hk or h = f k for some atom k. Since all atoms are simple, Z
is a subgraph of Y . As every morphism in C can be decomposed into a product
of finitely many atoms by Definition 4.1 (2), each edge of Y is homotopic rel
its end points in F(Y ) to an edge path in Z . Let ω ⊂ Y be an edge loop. We
may assume ω ⊂ Z up to homotopy in F(Y ). Let f ∈ Gx→ be a common
lower bound for the collection of vertices ofω. We denote consecutive vertices
of ω by { f fi }ni=1 where each fi is a morphism of C. We define the complexity
τ(ω) ofω to be max1≤i≤n{l( fi )}, where l is the length function from Sect. 4.1.
Suppose l( fi0) = τ(ω). Then, by definition of l, we have l( fi0−1) < l( fi0)
and l( fi0+1) < l( fi0). Thus fi0 = fi0−1a1 and fi0 = fi0+1a2 for atoms a1 and
a2 of C. Let f ′

i0
= fi0−1∧p fi0+1. Let ω1 (resp. ω2) be the edge path in Z from

f ′
i0
to fi0−1 (resp. fi0+1) corresponding to a decomposition of ( f ′

i0
)−1 fi0−1

(resp. ( f ′
i0
)−1 fi0+1) into atoms (ωi might be a point). We replace the sub-path

fi0−1 fi0 ∪ fi0+1 fi0 of ω by ω1∪ω2 to obtain a new edge loop ω′ ⊂ Z . Clearly
τ(ω′) < τ(ω). Moreover, since f ′

i0
(a1 ∨s a2) = fi0 (Lemma 4.5) and a1 ∨s a2

is simple, by Lemma 4.6 fi0−1 fi0 ∪ fi0+1 fi0 ∪ω1∪ω2 is contained in a simplex
of F(Y ). Thus ω and ω′ are homotopic in F(Y ). By repeating this process, we
can homotop ω to a constant path, which finishes the proof. ��
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Remark 4.10 The simple connectedness of F(Y ) above be can alternatively
deduced from [13, Corollary 7.6], where Bessis considers a graph � on Gx→
such that two vertices are adjacent if they differ by a simple morphism in C. It
is proved that the flag complex F(�) is contractible. As� is a proper subgraph
of Y , it is not hard to deduce the simply-connectedness of F(Y ). The definition
of � goes back to work of Bestvina [15] in the case of spherical Artin groups,
and Charney-Meier-Whittlesey [37] in the case of Garside group.

For a braid group G, Theorem 4.9 gives rise to many different Helly graphs
(hence injective metric spaces) upon which G acts geometrically. One can
choose different Garside structures on G: either we use the interval [1, �k] as
a cell, or we use the dual Garside structure [12,21]. One can also apply some
combinatorial operations to a Helly graph—e.g. taking the Rips complex or
the face complex—in order to obtain a new Helly graph (see [31]).

Corollary 4.11 Let A be a finite simplicial central arrangement of hyper-
planes in a finite dimensional real vector space V . Let Sal(A) be its Salvetti
complex and let ˜Sal(A) be the universal cover of Sal(A). Then ˜Sal(A) is cell
Helly.

Proof We refer to [74,80] for relevant definitions and background. Let
M(A) = VC − (⋃

H∈A HC

)

and G = π1(M(A)). Then G is a weak Gar-
side group [42]. G can be identified as vertices of ˜Sal(A), and a cell of G in
the sense of Lemma 4.8 can be identified with the vertex set of a top dimen-
sional cell in ˜Sal(A), moreover, the vertex set of each cell of ˜Sal(A) can be
identified with an interval in G. Thus Definition 3.4 (2) holds. Similarly to
Lemma 2.11, one can prove that any closed cell in ˜Sal(A) is a full subcom-
plex. Hence any intersection of cells is a full subcomplex spanned by vertices
in an interval of one cell. Therefore, Definition 3.4 (3) holds. Moreover, the
fact that cells are full together with Lemma 4.8 imply that the collection of top
dimensional cells in ˜Sal(A) satisfies Definition 3.4 (3). Therefore, the same
holds for the collection of cells in ˜Sal(A) as every cell is contained in a top
dimensional cell. ��

5 Artin groups and Helly graphs

5.1 Helly property for cells in X�

Recall that X (0)
� is endowed with the prefix order�. For a cellC ∈ X� , we use

�C to denote the right weak order on C (0) (we view C as an oriented Coxeter
cell). And for a standard subcomplex X1 ⊂ X� of type �1, we use ��1 to
denote the prefix order on X (0)

1 coming from A�1 .
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Lemma 5.1 Let C1,C2 ⊂ X� be two cells with non-empty intersection. Then
the vertex set of C1 ∩ C2 is an interval in (X (0)

� , �).

Proof For i = 1, 2, suppose Ci is of type �i and let Xi be the standard
subcomplex of type �i containing Ci . Let X0 = X1 ∩ X2, which is a standard
subcomplex of type �0 = �1 ∩ �2. Let Di = Ci ∩ X0. Then Di is a cell
by Lemma 2.13. Moreover, D(0)

1 and D(0)
2 are intervals in (X (0)

0 , ��0) by

Lemma 2.9. As (X (0)
0 , ��0) is a lattice (Theorem 2.4), (C1 ∩ C2)

(0) = (D1 ∩
D2)

(0) is an interval in (X (0)
0 , ��0) (Lemma 2.1), hence it is also an interval

in (X (0)
� , �) by Lemma 2.13 (3) and (4). ��

Lemma 5.2 Let C be an oriented Coxeter cell. Let K be the full subcomplex
of C spanned by vertices in an interval of C (0). Then K is contractible.

Proof Let [x, y] be an interval of C (0). By [6, Proposition 3.1.6], we can
assume x is the source of C . Let � : C (0) → Z be the function measuring the
combinatorial distance from x to a given point in C (0). We extend � to C → R

such that � is affine when restricted to each cell. Note that � is non-constant on
each cell with dimension> 0. Then �|K is a Morse function in the sense of [7,
Definition 2.2]. Moreover, it follows from [28, Chapter IV, Exercise 22] that
the descending link ([7, Definition 2.4]) of each vertex for �|K is a simplex,
hence contractible. Thus K is contractible by [7, Lemma 2.5]. ��
Lemma 5.3 Suppose � is spherical. Let C1 and C2 be two cells in X� , and
let X0 be a standard subcomplex of X� of type �0. Suppose that C1,C2, and
X0 pairwise intersect. Then their triple intersection is nonempty.

Proof For i = 1, 2, let vi be a vertex of Ci ∩ X0. Since (X (0), ��0) is a
lattice by Theorem 2.4, we can find a, b ∈ X (0) such that a ��0 vi ��0 b for
i = 1, 2. Let I be the interval between a and b with respect to the prefix order
on X (0)

� . Then I ⊂ X0 by Lemma 2.13 (3). Note that C1,C2 and I pairwise

intersect by construction. Since C (0)
i is an interval in (X (0)

� , �) for i = 1, 2

(Lemma 2.9 (2)), and (X (0)
� , �) is a lattice (recall that � is spherical), we have

C1 ∩ C2 ∩ I �= ∅ by Lemma 2.1 (2). Since I ⊂ X0, the lemma follows. ��
Lemma 5.4 Let C1,C2,C3 be three cells in X� . Suppose they pairwise inter-
sect. Then C1 ∩ C2 ∩ C3 �= ∅.
Proof Let �i be the type of Ci and let Xi be the standard subcomplex of type
�i containing Ci . Let �0 = ∩3

i=1�i .

Case 1:�1 = �2 = �3. Then X1 = X2 = X3. Since eachC
(0)
i is an interval

in (X (0)
1 , ��1) (Lemma 2.9) and (X (0)

1 , ��1) is a lattice (Theorem 2.4), the
lemma follows from Lemma 2.1.
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C1

C2
C3

C12 C13

C21 C31

C23 C32

Fig. 1 Lemma 5.4, Case 3

Case 2: only two of the �i are equal. We suppose without loss of generality
that �1 = �2 �= �3. Let C ′

3 = C3 ∩ X1. Then C ′
3 is a cell by Lemma 2.13.

Moreover, C1, C2 and C ′
3 pairwise intersect. As in the previous case, we have

C1 ∩ C2 ∩ C ′
3 �= ∅, hence the lemma follows.

Case 3: the �i are pairwise distinct. For 1 ≤ i �= j ≤ 3, let Ci j = Ci ∩ X j
(see Fig. 1). We claim that C12 ∩ C13 is a cell of type �0 (when �0 = ∅, the
intersection is a vertex). Consider the cellular map π : X� → D� defined just
before Lemma 2.9. Let C̄i be the image of Ci . Note that C12 is a cell of type
�1 ∩ �2 (Lemma 2.13), and C̄1 ∩ C̄2 is a cell of type �1 ∩ �2 (Theorem 2.2),
hence π(C12) = C̄1 ∩ C̄2. Similarly, π(C13) = C̄1 ∩ C̄3. Since {C̄i }3i=1
pairwise intersect, their triple intersection is nonempty by Lemma 2.7. Thus
π(C12) ∩ π(C13) �= ∅. Hence π(C12) ∩ π(C13) is a cell of type �0. Now, the
claim follows from the fact that π restricted to C1 is an embedding.

For i = 1, 2, 3, let τi = Ci,i+1 ∩ Ci,i+2 (indices are taken mod 3). By
the previous paragraph, each τi is a cell of type �0. Let X0 = ∩3

i=1Xi . Then
τi ⊂ X0 for 1 ≤ i ≤ 3. In particular X0 is nonempty, hence is a standard
subcomplex of type �0 by Lemma 2.13 (1). Now we claim ∩3

i=1τi �= ∅. Note
that the lemma follows from this claim since τi ⊂ Ci for 1 ≤ i ≤ 3.

Since each τ
(0)
i is an interval in the lattice (X (0)

0 , ��0), it suffices to show
that τi pairwise intersect. We only prove τ1 ∩ τ2 �= ∅, as the other pairs are
similar. Now, consider the triple {C12,C21, X0}. Note that τ1 ⊂ C12, τ2 ⊂ C21
and τi ⊂ X0 for i = 1, 2. Therefore τ1 ∩ τ2 ⊂ C12 ∩ C21 ∩ X0. On the other
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hand, since C12 is a cell of type �1 ∩�2 and C12 ∩ X0 ⊃ τ1 �= ∅, we have that
C12∩X0 is a cell of type�0 fromLemma 2.13, henceC12∩X0 = τ1. Similarly
C21 ∩ X0 = τ2. Thus actually τ1 ∩ τ2 = C12 ∩ C21 ∩ X0. It remains to show
that C12 ∩ C21 ∩ X0 �= ∅ This follows from Lemma 5.3, since C12,C21, X0
are contained in X1 ∩ X2, which is a spherical standard subcomplex. ��
Proposition 5.5 Let {Ci }ni=1 be a finite collection of cells in X� . Suppose they
pairwise intersect. Then∩n

i=1Ci is a nonempty contractible subcomplex of X� .

Proof For 2 ≤ i ≤ n, let τi = C1 ∩ Ci . Then τ
(0)
i is an interval in (X (0)

� , �),

hence it is also an interval in (C (0)
1 , �C) byLemma2.9 (2).Moreover, it follows

from Lemma 5.4 that {τi }ni=2 pairwise intersect. Since (C (0)
1 , �C ) is a lattice

(Theorem 2.4 (1)), we have that ∩n
i=2τ

(0)
i is a nonempty interval in (C (0)

1 , �C )

by Lemma 2.1, hence ∩n
i=1Ci �= ∅. Since each Ci is a full subcomplex of X�

(Lemma 2.11), ∩n
i=1Ci is full in X� (hence is full in C1). Now, contractibility

of ∩n
i=1Ci follows from Lemma 5.2. ��

5.2 Artin groups of type FC act on Helly graphs

Lemma 5.6 Suppose � is spherical. Let C1,C2 and C3 be pairwise intersect-
ing cells in X� . Then there is a cell C ⊂ X� such that (C1 ∩ C2) ∪ (C2 ∩
C3) ∪ (C3 ∩ C1) ⊆ C.

Proof It suffices to consider the special case when each Ci is a maximal cell
of X� . Consider the cell C of type � in X� with the source vertex being the
identity. Let� be the sink vertex ofC . Then by [30,42], A� is a Garside group
with A+

� being its Garside monoid and � being its Garside element (the φ in
Definition 4.1 corresponds to conjugating by �). Moreover, cells in the sense
of Lemma 4.8 correspond to vertices of maximal cells of X� . Thus the lemma
follows from Lemmas 4.8 and 2.11. ��
Proposition 5.7 Suppose that � is of type FC. Let C1,C2 and C3 be maximal
pairwise intersecting cells in X� . Then there is a maximal cell C ⊂ X� such
that D = (C1 ∩ C2) ∪ (C2 ∩ C3) ∪ (C3 ∩ C1) ⊆ C.

Proof For 1 ≤ i ≤ 3, suppose Ci is of type �i and let Xi be the standard
spherical subcomplex of type �i . If X1 = X2 = X3, then the proposition
follows from Lemma 5.6.

Suppose two of the Xi are the same. We assume without loss of generality
that X1 = X2 �= X3. LetC ′

3 = C3∩ X1. ThenCi ∩C3 = Ci ∩C ′
3 for i = 1, 2.

Hence D ⊂ (C1 ∩C2) ∪ (C2 ∩C ′
3) ∪ (C ′

3 ∩C1). By Lemma 2.13 (2), C ′
3 is a

cell in X1. Then we are done by Lemma 5.6.
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It remains to consider the case when X1, X2, and X3 are mutually distinct.
By Proposition 5.5, there is a vertex p in∩3

i=1Ci . LetCi j = Ci ∩C j and Xi j =
Xi ∩ X j . Then Xi j is a spherical standard subcomplex of type �i j = �i ∩ � j
by Lemma 2.13 (1) (but Ci j ⊂ Xi j might not be a cell in general). Since � is
of type FC, there is a spherical full subgraph �0 ⊂ � such that �0 contains
�12∪�23∪�31. Let X0 be the spherical standard subcomplex of X� of type�0
that contains p. Then for 1 ≤ i �= j ≤ 3, we have p ∈ Ci ∩ C j ⊂ Xi j ⊂ X0.
It follows that D ⊂ (C ′

1 ∩C ′
2) ∪ (C ′

2 ∩C ′
3) ∪ (C ′

3 ∩C ′
1) where C

′
i = Ci ∩ X0.

Since each C ′
i is a cell (Lemma 2.13 (2)) and X0 is spherical, the proposition

follows from Lemma 5.6. ��
Theorem 5.8 Suppose � is of type FC. Then (X�, {Ci }) is a locally bounded
cell Helly complex and, consequently, A� acts geometrically on a Helly graph
being the 1-skeleton of the thickening of (X�, {Ci }). Moreover, X (�) is con-
tractible.

Proof The conditions (1) and (2) of Definition 3.4 are satisfied by Propo-
sition 5.5. The condition (3) holds by Proposition 5.7. Since X� is simply
connected, the theorem holds by Theorem 3.9 and Proposition 3.10. Con-
tractibility follows from Propositions 5.5 and 3.11. ��
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