A trust-region augmented Hessian implementation for restricted and unrestricted Hartree–Fock and Kohn–Sham methods

Supplementary Material

Benjamin Helmich-Paris^{1, a)} Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany

(Dated: 26 February 2021)

^{a)}Electronic mail: helmichparis@kofo.mpg.de

I. COMPARISON WITH THE QC-SCF IMPLEMENTATION IN DALTON

In the DALTON program package,¹ there is a restricted-step second-order SCF implementation for restricted closed-shell Hartree–Fock wavefunctions that is based on the initial MCSCF implementation of Ref. 2. In this section, we compare the convergence of our secondorder SCF implementations in ORCA (TRAH-SCF) and with that in DALTON. Here, the number of iterations are compared for the closed-shell Hartree–Fock calculations of Cr_2 with 2.0 Å inter-nuclear distance using the TZVPP basis set.³ The results are shown in Tab. I for calculations that either exploit (D_{2h}) or neglect (C₁) Abelian point-group symmetry.

In case of the D_{2h} calculations, both second-order SCF implementations in ORCA and DALTON converge to the same total energy, -2085.683248587351 a.u., within 26 iterations. However, our new TRAH-SCF calculation takes less macro iteration but more micro iterations and has a lower residual norm with our default convergence threshold. This convergence comparison though must be taken with cation because different starting molecular orbitals (MO) were taken. By default, ORCA generates initial MOs by diagonalizing an approximate Kohn-Sham matrix built from atomic densities (PModel) while DALTON takes and extended Hückel guess.

A major difference in the SCF convergence is observed for the C_1 calculation. Without imposing point-group symmetry constraints, the symmetry gets broken for both ORCA and DALTON calculations. But our new TRAH-SCF implementation converges to a solution with a much lower energy (-2086.145610513081 a.u.) than the DALTON implementation (-2085.797496061530 a.u.) at the expense of much more iterations. For these C_1 calculations, DALTON takes 30 iterations while our new implementation in ORCA needs 247. The different convergence behavior for the unconstrained second-order SCF calculation can be attributed to the way we choose the second start vectors for the Davidson algorithm. For those we add random numbers in the range of [-0.01; 0.01] on top of the lowest eigenvectors of the diagonal Hessian. This white noise initiates symmetry breaking and helps to find the lowest energy solution though there is no guarantee that global minima can be found with any of the methods presented in the current work.

II. CARTESIAN COORDINATES

DALTON		ORCA		
Macro	# Micro	$ \mathbf{g} $	# Micro	$ \mathbf{g} $
		$\mathrm{D_{2h}}^\mathrm{a}$		
1	4	$2.4\times10^{+0}$	6	$2.1 \times 10^{+0}$
2	4	8.5×10^{-1}	5	$1.1 imes 10^{-1}$
3	3	$1.5 imes 10^{-1}$	4	4.8×10^{-3}
4	6	1.4×10^{-2}	6	3.2×10^{-4}
5	3	$5.6 imes 10^{-5}$	0	3.2×10^{-7}
6	0	2.5×10^{-6}	/	/
		C_1		
1	3	$4.7 \times 10^{+00}$	13	$2.1\times10^{+00}$
2	4	$2.4\times10^{+00}$	7	$3.3 imes 10^{-01}$
3	3	5.1×10^{-01}	7	1.2×10^{-01}
4	3	1.8×10^{-01}	8	1.2×10^{-01}
5	5	2.3×10^{-02}	10	4.7×10^{-01}
6	5	5.2×10^{-04}	10	1.7×10^{-01}
7	0	6.9×10^{-06}	14	9.3×10^{-02}
8	/	/	14	$1.2\times10^{+00}$
9	/	/	14	7.7×10^{-01}
10	/	/	14	8.9×10^{-02}
11	/	/	14	3.3×10^{-02}
12	/	/	14	7.0×10^{-03}
13	/	/	14	$3.0 imes 10^{-03}$
14	/	/	15	9.3×10^{-04}
15	/	/	15	6.1×10^{-05}
16	/	/	15	1.8×10^{-05}
17	/	/	15	4.0×10^{-06}
18	/	/	15	$1.1 imes 10^{-06}$
19	/	/	0	2.7×10^{-07}

TABLE I: Gradient norm $||\mathbf{g}||$ and number of micro iterations.

^a $a_g = 8, b_{1g} = 1, b_{2g} = 2, b_{3g} = 2, a_u = 0, b_{1u} = 5, b_{2u} = 3, b_{3u} = 3$

A. $UO_2(OH)_4$

U	0.000000	0.00000	0.000000
0	1.840000	0.000000	0.000000
0	-1.840000	0.000000	0.000000
0	-0.000000	0.000000	-2.330000
Η	-0.000000	0.931956	-2.598995
0	-0.000000	-2.330000	-0.000000
Η	-0.000000	-2.598995	-0.931956
0	0.000000	-0.000000	2.330000
Η	0.000000	-0.931956	2.598995
0	0.000000	2.330000	-0.000000
Η	0.000000	2.598995	0.931956

B. Roussin's red dianion $[Fe_2S_2(NO)_4]^{2-}$

Fe	0.00000	-0.000000	1.379006
N	-0.000000	1.591670	2.308963
N	0.000000	-1.591670	2.308963
S	-1.716557	-0.000000	0.00000
S	1.716557	-0.000000	0.00000
Fe	0.000000	-0.000000	-1.379006
N	0.000000	-1.591670	-2.308963
N	0.000000	1.591670	-2.308963
0	-0.000000	2.808854	2.404356
0	-0.000000	-2.808854	2.404356
0	-0.000000	2.808854	-2.404356
0	-0.000000	-2.808854	-2.404356

C. hemocyanin model complex

0	10.43974010597315	15.99945510207685	13.55772467988408
0	10.92851662604793	17.22757498718534	13.05756090305485
Cu	11.63615824155408	15.70757999499295	12.10972557806300
Cu	9.73210748911415	17.51945109329867	14.50557000658749
N	12.08251919145782	13.75763076780016	12.09132466667064
N	9.28574753704861	19.46939932133450	14.52397092040944
N	10.61907550521983	15.43112849066839	10.11056168951854
N	10.74918122524586	17.79590159685953	16.50473289360477
N	13.28772695914548	16.18710555728147	11.10132243315006
N	8.08053977099405	17.03992452820486	15.51396315214455
N	12.60184470130807	13.22134528246111	11.02480396866392
N	8.76642203231607	20.00568480516313	15.59049162032059
N	11.39408035120663	14.64991992584598	9.26188366086504
N	9.97417638054523	18.57711016083695	17.35341092297935
N	13.73307507054094	15.32790695704666	10.06389802651017
N	7.63519165834219	17.89912312864806	16.55139755852334
В	12.76730535593193	14.13816518894987	9.69911310737490
В	8.60096037450289	19.08886489712029	16.91618147662774
С	10.46354263014904	11.96089137671055	14.65649601136104
С	10.90471314004386	21.26613872055853	11.95879860721116
С	12.80438547963604	12.76119239468118	15.41067385145896
С	8.56388130735795	20.46584771391541	11.20461070832791
С	11.58758882508313	12.94774979784298	14.41896593258862
С	9.78067793337963	20.27928030990337	12.19632866585598
С	12.09970348851030	12.75467848937489	13.00654005221535
С	9.26856223788403	20.47235160498661	13.60874453742600
С	12.64742206317117	11.61720170158627	12.43480273283595
С	8.72084467231608	21.60982839865908	14.18048286474876

С	12.98811261553706	11.93714919288300	11.13495221120651
С	8.38014412623954	21.28988089663151	15.48033338628188
С	13.57368596771660	11.05393033993714	10.08400709549539
С	7.79458075733176	22.17309973847080	16.53128850009246
С	12.50224778369863	10.35910571522563	9.25639566822104
С	8.86600879341008	22.86792437324623	17.35889810145190
С	14.50904417127523	10.03062146011115	10.74501595622534
С	6.85922345046950	23.19640861955442	15.87026879409110
С	7.73152380957549	17.50487559136226	8.98959086191142
С	13.63673192209058	15.72215449203711	17.62569470299923
С	7.31097605210632	15.69488349326883	10.60773566561986
С	14.05729066408940	17.53214761112748	16.00754891538854
С	8.50198495044928	16.63944138708137	10.06646064017255
С	12.86628177670302	16.58758869528921	16.54883492775093
С	9.58156081937333	15.79935183313864	9.41708939039570
С	11.78670591198887	17.42767825145350	17.19819618648615
С	9.58560142620026	15.19852796008992	8.13277105622210
С	11.78266430902265	18.02850212457304	18.48252352179086
С	10.71520131549614	14.50003068435552	8.07474188227089
С	10.65306442130095	18.72699940311604	18.54055270187059
С	11.30999810980948	13.73388670604466	6.89604645787113
С	10.05825863141307	19.49314238041828	19.71924813005869
С	12.16629901752721	14.64312623123754	6.03023222994310
С	9.20196772324895	18.58390285531025	20.58506335863138
С	10.16784800662118	13.10292290269271	6.04728791301330
С	11.20041773943057	20.12410617772612	20.56800867290142
С	14.26483135026823	19.59362915072675	11.44689962581313
С	7.10343437959780	13.63340093451757	15.16839695044459
С	15.49739216221850	18.16382829584002	13.08194666922507
С	5.87087356504739	15.06320180405014	13.53334990909003
С	14.22230692424068	18.22939936381453	12.18340782850233
С	7.14594980918443	14.99763072024586	14.43188774701930

a	4.4. 00070004045045	47 40000470077054	11 10010011007171
С	14.28676021845945	17.10200179077851	11.16218314987471
С	7.08150651444078	16.12502829169954	15.45310243140305
С	15.29024690056489	16.86829340210452	10.19122589221812
С	6.07801882879615	16.35873668040102	16.42407068906068
С	14.78264943333676	15.76223264540695	9.52763647963636
С	6.58560629640837	17.46479743701740	17.08765810077962
С	15.64672723665426	14.98251196334962	8.44446626128101
С	5.72153849638321	18.24451811738867	18.17081832630134
С	16.37943851011147	15.99421224027399	7.53628603465477
С	4.98882723029888	17.23281783582835	19.07899955259277
С	16.54234487185179	13.92737471218426	9.06022689979927
С	4.82591186038750	19.29965537935966	17.55505870422008
Η	13.26654704936273	13.46687583521402	8.82120456719921
Η	8.10144852850165	19.76011666688361	17.79395959016794
Η	11.21282540513109	13.98924280891661	14.50419399186188
Η	10.15544238994983	19.23772965047478	12.11163984258435
Η	12.78455623722381	10.65386792082408	12.93726972278858
Η	8.58285560567665	22.57245951553590	13.67694355401313
Η	14.17845211347467	11.68617665154674	9.40043624998200
Η	7.18992932569924	21.54078866831529	17.21474337573418
Η	8.92698971998917	17.24339368260556	10.89142358877669
Η	12.44107907888105	15.98375713719416	15.72388356754906
Η	8.82817764156927	15.30704506882691	7.35084400934762
Η	12.53999089995973	17.92007513528324	19.26455537428610
Η	11.93883371500216	12.91402597004452	7.29869292596060
Η	9.42937272119337	20.31306751422596	19.31674327418485
H	13.29682841354493	18.11999342813357	12.78472462750728
Η	8.07142109617929	15.10710139317296	13.83057599394888
H	16.19114012884556	17.44965124006642	9.98641520598073
Н	5.17700542313597	15.77769251091490	16.62925759729508
H	14.91146469666868	14.45308785038404	7.79986417054928
Н	6.45673546715534	18.77399257215620	18.81547434673761

Η	9.63994477926292	12.11591581378686	13.93111008964559
Η	10.03718266345194	12.05993318879954	15.67728343927591
Η	10.81388149903282	10.91310151212422	14.54637103333113
Η	11.33097901095407	21.16707480058194	10.93805257475893
Η	11.72828218284849	21.11148385835986	12.68429914312216
Η	10.55461360552537	22.31408938349553	12.06867869760887
Η	13.60579010910678	13.48785175596459	15.17348183151777
Η	13.22399580057521	11.73809208625693	15.32442510917618
Η	12.48782956433577	12.92029827735994	16.46206282160623
Η	8.88064913328132	20.30746030814624	10.15326381137070
Η	8.14352786494133	21.48863018843815	11.29148449291403
Η	7.76258114913734	19.73895597759232	11.44154412016750
Η	12.95378593971134	9.72570184880849	8.46473723888059
Η	11.83269268798296	11.09414524442790	8.76373122947796
Η	11.86677020058874	9.71056405167629	9.89542461256941
Η	9.50267428091521	23.51516276314809	16.71971807069016
Η	9.53465607206793	22.13280820633791	17.85270784105892
Η	8.41449262168991	23.50251396140734	18.14953040158483
Η	15.01759779688478	9.41329510316333	9.97636984621413
Η	13.94536659614213	9.33767108121346	11.40304471725529
Η	15.28748679069736	10.52415933474591	11.36055690933672
Η	6.08227783417348	22.70269217869139	15.25282937347479
Η	7.42251937925485	23.89110636064637	15.21371975014212
Η	6.34908687748247	23.81193940201584	16.63916959877657
Η	7.25134512612589	16.83967306852787	8.24569071566036
Η	8.40308625891555	18.20150715873121	8.44532653367038
Н	6.93752713924459	18.10458370203694	9.47573252175657
Н	14.43109845195267	15.12288755835651	17.13970931102578
Η	12.96534681397537	15.02538405634018	18.16992398581877
Н	14.11653387661577	16.38758069958853	18.36967590943906
Н	6.91278872462519	15.09541552055861	9.76581720232787
H	6.49922300650712	16.31832626459653	11.02538475892906

Η	7.67769340754494	15.00402340764496	11.39108858137953
Η	13.69081495053663	18.22300656970828	15.22409427518379
Η	14.86905325267638	16.90858444612756	15.59012992432069
Η	14.45551322677739	18.13167038642638	16.84943441481911
Η	12.62105272781345	14.08542371999305	5.18495066887726
Η	12.98811403779657	15.10479886161641	6.61469955092416
Η	11.55786257439440	15.46910843919356	5.60740221473908
Η	8.37885730268756	18.12400534871310	20.00100823285983
Η	8.74896831576888	19.14116889858587	21.43156317746931
Η	9.80998208467234	17.75671754225879	21.00608669678218
Η	10.58862918238645	12.49897085808777	5.21759121882656
Η	9.53077665145037	13.88990787125375	5.59360753625662
Η	9.51802773567188	12.44853135543045	6.66209476352441
Η	11.85063564788308	20.77803335978683	19.95312417198459
Η	11.83708862265446	19.33708226443121	21.02216859046372
Η	10.77966269056094	20.72857311641203	21.39734446429486
Η	13.40272596104515	19.71407263111089	10.76011746481352
Η	15.19259771676935	19.68105003170910	10.84649321297476
Η	14.24426545668849	20.43352212115412	12.17153378651809
Η	7.12419694167342	12.79352999559939	14.44381223532063
Η	6.17546485416928	13.54596036049780	15.76854130410671
Η	7.96521434145032	13.51302084009545	15.85557569929928
Η	16.40121546183188	18.31554259562453	12.45711757212982
Η	15.59596859470455	17.18372462649665	13.58471050690067
Η	15.48107963714803	18.95507325118481	13.85766263580954
Η	5.88689860472831	14.27157720941473	12.75804557408810
Η	5.77251432503420	16.04310365440936	13.03014414301009
Η	4.96698217379751	14.91206841659606	14.15824568226573
Η	16.88760415645491	15.46688430640376	6.70336560120059
Η	17.15846438008892	16.55731022364377	8.09098587640819
Η	15.67118896890659	16.72663011793900	7.10159421649156
Н	4.20845246011433	16.67126462905754	18.52461675690677

Η	4.48226782669455	17.75989076747789	19.91304247230744
Η	5.69663388383567	16.49905718385244	19.51209362554053
Н	17.07365171968614	13.35553821503435	8.27132280705248
Н	15.95571660993614	13.20842030813660	9.66754739914666
Н	17.30749876254606	14.37703326560331	9.72857695863094
Н	5.41287555285009	20.01936549365554	16.94891548982246
Н	4.29356062355450	19.87048893488526	18.34397826246482
H	4.06161386546297	18.85001426273960	16.88574155578319

REFERENCES

¹K. Aidas, C. Angeli, K. L. Bak, V. Bakken, R. Bast, L. Boman, O. Christiansen, R. Cimiraglia, S. Coriani, P. Dahle, E. K. Dalskov, U. Ekström, T. Enevoldsen, J. J. Eriksen, P. Ettenhuber, B. Fernández, L. Ferrighi, H. Fliegl, L. Frediani, K. Hald, A. Halkier, C. Hättig, H. Heiberg, T. Helgaker, A. C. Hennum, H. Hettema, E. Hjertenæs, S. Høst, I.-M. Høyvik, M. F. Iozzi, B. Jansík, H. J. A. Jensen, D. Jonsson, P. Jørgensen, J. Kauczor, S. Kirpekar, T. Kjærgaard, W. Klopper, S. Knecht, R. Kobayashi, H. Koch, J. Kongsted, A. Krapp, K. Kristensen, A. Ligabue, O. B. Lutnæs, J. I. Melo, K. V. Mikkelsen, R. H. Myhre, C. Neiss, C. B. Nielsen, P. Norman, J. Olsen, J. M. H. Olsen, A. Osted, M. J. Packer, F. Pawlowski, T. B. Pedersen, P. F. Provasi, S. Reine, Z. Rinkevicius, T. A. Ruden, K. Ruud, V. V. Rybkin, P. Sałek, C. C. M. Samson, A. S. de Merás, T. Saue, S. P. A. Sauer, B. Schimmelpfennig, K. Sneskov, A. H. Steindal, K. O. Sylvester-Hvid, P. R. Taylor, A. M. Teale, E. I. Tellgren, D. P. Tew, A. J. Thorvaldsen, L. Thøgersen, O. Vahtras, M. A. Watson, D. J. D. Wilson, M. Ziolkowski, and H. Ågren, WIREs Comput. Mol. Sci. 4, 269–284 (2014).

²H. J. A. Jensen and H. Ågren, Chem. Phys. **104**, 229 – 250 (1986).

³A. Schäfer, C. Huber, and R. Ahlrichs, J. Chem. Phys. **100**, 5829–5835 (1994).