Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Wettability of magnetite nanoparticles guides growth from stabilized amorphous ferrihydrite

MPG-Autoren
/persons/resource/persons240556

Kuhrts,  Lucas
Damien Faivre, Biomaterialien, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

Chevrier,  Daniel M.
Damien Faivre, Biomaterialien, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons228694

Späker,  Oliver
Wolfgang Wagermaier, Biomaterialien, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons220490

Egglseder,  Mathias
Damien Faivre, Biomaterialien, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons121123

Baumgartner,  Jens
Damien Faivre, Biomaterialien, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons121274

Faivre,  Damien
Damien Faivre, Biomaterialien, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

Article.pdf
(Verlagsversion), 7MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Kuhrts, L., Prévost, S., Chevrier, D. M., Pekker, P., Späker, O., Egglseder, M., et al. (2021). Wettability of magnetite nanoparticles guides growth from stabilized amorphous ferrihydrite. Journal of the American Chemical Society, 143(29), 10963-10969. doi:10.1021/jacs.1c02687.


Zitierlink: https://hdl.handle.net/21.11116/0000-0008-FA3A-E
Zusammenfassung
Crystal formation via amorphous precursors is a long-sought-after gateway to engineer nanoparticles with well-controlled size and morphology. Biomineralizing organisms, like magnetotactic bacteria, follow such a nonclassical crystallization pathway to produce magnetite nanoparticles with sophistication unmatched by synthetic efforts at ambient conditions. Here, using in situ small-angle X-ray scattering, we demonstrate how the addition of poly(arginine) in the synthetic formation of magnetite nanoparticles induces a biomineralization-reminiscent pathway. The addition of poly(arginine) stabilizes an amorphous ferrihydrite precursor, shifting the magnetite formation pathway from thermodynamic to kinetic control. Altering the energetic landscape of magnetite formation by catalyzing the pH-dependent precursor attachment, we tune magnetite nanoparticle size continuously, exceeding sizes observed in magnetotactic bacteria. This mechanistic shift we uncover here further allows for crystal morphology control by adjusting the pH-dependent interfacial interaction between liquidlike ferrihydrite and nascent magnetite nanoparticles, establishing a new strategy to control nanoparticle morphology. Synthesizing compact single crystals at wetting conditions and unique semicontinuous single-crystalline nanoparticles at dewetting conditions in combination with an improved control over magnetite crystallite size, we demonstrate the versatility of bio-inspired, kinetically controlled nanoparticle formation pathways.