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Within a Dirac model in 1+1 dimensions, a prototypical model to describe low-energy physics for a wide
class of lattice models, we propose a field-theoretical version for the representation of Wannier functions, the
Zak-Berry connection, and the geometric tensor. In two natural Abelian gauges we present universal scaling of
the Dirac Wannier functions in terms of four fundamental scaling functions that depend only on the phase γ

of the gap parameter and the charge correlation length ξ in an insulator. The two gauges allow for a universal
low-energy formulation of the surface charge and surface fluctuation theorem, relating the boundary charge and
its fluctuations to bulk properties. Our analysis describes the universal aspects of Wannier functions for the wide
class of one-dimensional generalized Aubry-André-Harper lattice models. In the low-energy regime of small
gaps we demonstrate universal scaling of all lattice Wannier functions and their moments in the corresponding
Abelian gauges. In particular, for the quadratic spread of the lattice Wannier function, we find the universal
result Zaξ/8, where Za is the length of the unit cell. This result solves a long-standing problem providing
further evidence that an insulator is only characterized by the two fundamental length scales Za and ξ . Finally,
we discuss also non-Abelian lattice gauges and find that lattice Wannier functions of maximal localization
show universal scaling and are uniquely related to the Dirac Wannier function of the lower band. In addition,
via the winding number of the determinant of the non-Abelian transformation, we establish a bulk-boundary
correspondence for the number of edge states up to the bottom of a certain band, which requires no symmetry
constraints. Our results present evidence that universal aspects of Wannier functions and of the boundary charge
are uniquely related and can be elegantly described within universal low-energy theories.

DOI: 10.1103/PhysRevResearch.3.033167

I. INTRODUCTION

Wannier functions [1] have matured to an invaluable tool
in various fields of solid-state physics. They provide a useful
basis set of exponentially localized single-particle states [2]
integral to density functional theory [3], are used in the def-
inition of tight-binding models with short-ranged hoppings,
can characterize the topological properties of crystals [4–6],
and are the basis for the modern theory of polarization and
localization [7–9]. However, Wannier functions are gauge de-
pendent, begging the following question: Which gauges are
particularly useful? One of them has been identified as the
gauge of maximally localized Wannier functions [10], which
we call the ML gauge in the following. In this gauge the
quadratic spread 〈�x2〉1/2 of the Wannier function is related
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to the fluctuations of the bulk polarization and to the quasimo-
mentum integral of the geometric tensor [10,11] quantifying
important topological hallmarks of the system. Furthermore,
the first moment of the Wannier function (its average) can
be related to the Zak-Berry phase or the bulk polarization
[9], a quantity widely used to determine Chern numbers in
two-dimensional topological systems.

Complementary to the bulk polarization the macroscopic
boundary (or surface) charge QB for a half-infinite insulating
system has been studied extensively in a series of recent
works [12–18]. Interestingly, the boundary charge [19] and
its fluctuations [18] can be related to the bulk polarization
and its fluctuations by the so-called surface charge and sur-
face fluctuation theorem. The surface charge theorem has first
been discussed in Ref. [19] relating QB to the Zak-Berry
phase of all occupied bands, up to an unknown integer, for
noninteracting, nondisordered systems. Recently, this theo-
rem was further analyzed in Ref. [15] for the wide class of
generalized Aubry-André-Harper models [20–26]. Here even
the unknown integer of the surface charge theorem was de-
termined fixing the precise gauge in the Wannier functions
needed to relate its first moment to the Zak-Berry phase. In
the small gap limit a low-energy Dirac model in 1+1 dimen-
sions [13,17,27] can be used to reveal a universal form of the
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FIG. 1. Universal scaling of the lattice Wannier functions w(ma) and w̃(ma) for the lower band α = 1 of the Rice-Mele model in (a) AF
gauge and (b) ML gauge, respectively, for different correlation lengths ξ = ta/� determined by the gap size 2� and the average hopping
t . The gap parameter is given by �eiγ = −δv − 2iδt , where v1,2 = ±δv and t1,2 = t ± δt are the alternating onsite energies and hopping
amplitudes, respectively. The phase of the gap parameter is chosen as γ = 0.2 π . Main panels: 1

2 |m w(ma)|2 (AF gauge) and 1
2 |m̃ w̃(ma)|2

(ML gauge; with m̃ = m − γ1/π and γ1 = −γ + π sgnγ = 0.8π denoting the Zak-Berry phase) as function of ma/ξ and m̃a/ξ for different
ξ = 5a, 10a, 50a, 100a. All discrete lattice points fall on top of the fundamental universal scaling functions of the Dirac model, |FA/B(ma/ξ )|2
(AF gauge) and |F̃A/B(m̃a/ξ )|2 (ML gauge), for m odd (FA and F̃A) and m even (FB and F̃B) (black solid lines; the even points in the AF
gauge are multiplied by a factor of 5 for visibility). Left inset of (a): the scaling of the first moment C1(Ma)/(2a) = 1

2

∑M
m=−M m|w(ma)|2

as function of Ma/ξ for different ξ = 5a, 10a, 50a, 100a. All lattice points fall on top of a universal scaling function 1
2

∫ Ma/ξ

−Ma/ξ
dy[FA(y)2 +

FB(y)2]/y (black solid line). They converge smoothly to the value γ1/(2π ) = C1/(2a) = 0.4. Left inset of (b): scaling of the quadratic spread
〈�x2〉(Ma)/(2aξ ) = a

2ξ

∑M
m=−M m̃2|w̃(ma)|2 as function of Ma/ξ for different ξ = 5a, 10a, 50a, 100a. All lattice points fall on top of the

universal result
∫ Ma/ξ

0 dy[F̃A(y)2 + F̃B(y)2] (black solid line) and converge smoothly to the universal value 1
8 . Right inset of (b): |w̃(ma)|2 for

ξ = 5a, 10a, 50a, 100a shown as function of m, giving rise to the misleading visual impression of a localized state with ξ -independent spread
of order a. A similar form appears for |w(ma)|2 (not shown).

boundary charge in terms of the phase of the gap parameter
[17]. Complementing the surface charge theorem, recently the
surface fluctuation theorem [18] was established as a relation-
ship between the boundary charge fluctuations and the second
moment of the density-density correlation function or, equiva-
lently, the fluctuations of the bulk polarization. The boundary
charge is of particular interest since it is a measurable ob-
servable, e.g., via density measurements in cold-atom systems
[28,29] or via scanning single-electron transistor techniques
[30–34] in carbon nanotubes [35], graphene nanoribbons [36],
and Rashba nanowires [37,38].

These recent developments raise the important ques-
tion whether Wannier functions themselves exhibit universal
properties beyond their first two moments, in particularly
fundamental gauges. To address this question we cover the
wide class of generalized Aubry-André-Harper models. We
do so by considering a two-band Dirac model, which requires
a field-theoretical generalization of Wannier functions, the
Zak-Berry connection, and the geometric tensor, which we
provide. Any of such field theories must always be comple-
mented by appropriate asymptotic conditions at high energies
to provide a well-defined relation to the lattice models falling
into the universality class of the respective field theory. In
addition to the above-mentioned ML gauge, we define the
asymptotically free (AF) gauge, which is fixed by requiring
that the eigenfunctions turn into conventional plane waves at
large momenta. Here, we show that, for a microscopic lattice
model, this gauge corresponds precisely to the one used in
Ref. [15] to fix the unknown integer in the surface charge
theorem. As a result, the AF gauge is useful to formulate a uni-
versal field-theoretical version of the surface charge theorem,

relating the boundary charge to the first moment of the Dirac
Wannier function and to the phase γ of the gap parameter,
which in turn is related to the field-theoretical version of the
Zak-Berry phase. In contrast, we show that the fundamental
ML gauge is useful for the universal formulation of the field-
theoretical version of the surface fluctuation theorem, relating
the boundary charge fluctuations to the second moment of the
Wannier function or the momentum integral over the field-
theoretical version of the geometric tensor.

Returning to the question of universality of Wannier func-
tions beyond the first and second moments we find that
strikingly the entire line shape of Wannier functions exhibits
universal behavior in the small gap limit. Surprisingly, we
show that for the whole class of generalized Aubry-André-
Harper models all lattice Wannier functions display universal
scaling on the length scale ξ , which is the fundamental length
scale of insulators on which charge correlations decay expo-
nentially. ξ is proportional to the inverse gap and is defined
here by the exponential decay length of the square of the
Wannier functions. We show that all scaling functions can
be related to four fundamental functions of the Dirac model
which are fully characterized by the phase γ of the gap pa-
rameter.

In Figs. 1(a) and 1(b) we illustrate these four fundamental
scaling functions, denoted by FA,B and F̃A,B in the follow-
ing, for the lower-band Wannier functions in the AF and
ML gauges of the Rice-Mele model, a fundamental one-
dimensional lattice model with a two-site unit cell put forward
in the context of topological insulators [39]. In Fig. 1(a) we
show that for the AF gauge, all Wannier functions multiplied
with the lattice site index m collapse upon scaling m → ma/ξ
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for different correlation lengths ξ (here, a denotes the lattice
constant). For the ML gauge, as shown in Fig. 1(b), the same
applies but it turns out to be important to include a shift of
the lattice site index m by the first moment of the Wannier
function. Surprisingly, the universal scaling holds even out-
side the strict range of low-energy theories, i.e., it persists for
rather large gaps [where ξ ∼ O(a)] and also for rather small
length scales |ma| ∼ O(a). The inset of Fig. 1(a) and the left
inset of Fig. 1(b) show the universality of the surface charge
and surface fluctuation theorem discussed above, respectively,
which follow from the universality of the Wannier functions.
We find that the first moment converges to the universal result
C1/(Za) = γ1/(2π ), where Za is the length of the unit cell
and γ1 is the Zak-Berry phase of the lower band, which is
related to the phase of the gap parameter and to the boundary
charge. For the quadratic spread in the ML gauge we find the
universal result 〈�x2〉/(Za) = ξ/8, which is in full agreement
with the universal result for the boundary charge fluctuations
[18]. Interestingly, we obtain the scaling 〈�x2〉/(Za) ∼ O(ξ )
in any gauge and for any band for arbitrary unit-cell length Za.
This shows that the spread is not an independent length scale
but is universally linked to the exponential decay length ξ . In
the small gap limit this solves a long-standing problem since
in the previous literature only the inequality 〈�x2〉 � Za ξ has
been stated [8,11], leaving it open whether the so-called lo-
calization length λ = 〈�x2〉1/2 defines an independent length
scale [40].

Our analysis shows that universal aspects of Wannier func-
tions and the boundary charge are ultimately related to generic
effects arising at band anticrossing points with a small gap
defining a corresponding universal length scale clearly sep-
arated from the lattice spacing. The reason why universal
scaling was easily overlooked before is at least twofold: On
the one hand, density functional theory calculations for spe-
cific materials are often applied to systems where the lattice
spacing a and the exponential decay length ξ are not clearly
separated. On the other hand, even in cases of clearly sepa-
rated ξ � a, the visual impression of the square |w(ma)|2 of
the Wannier function does not reveal any universal scaling. As
shown in the right inset of Fig. 1(b), the visual impression is
that of a rather boring Lorentzian with broadening ∼a. This
form is only important for the correct normalization of the
Wannier function but it does not reveal any universal scaling
on length scale ξ . Universal scaling is only visible when
multiplying the Wannier function by the spatial coordinate
and plotting the square |m w(ma)|2, such that the asymptotic
(1/m)2 behavior of the Lorentzian is canceled. As a conse-
quence, it is roughly the product of a Lorentzian on scale a and
a universal scaling function on scale ξ which characterizes the
subtle and universal line shape of Wannier functions revealed
in this work.

Furthermore, we show that the fully universal scaling ex-
emplified for the Rice-Mele model persists for the Wannier
functions of all bands for any size Z of the unit cell. It turns
out that the lattice Wannier functions of a given band with two
gaps at the bottom and top of the band show universal scaling
in terms of two different correlation length scales referring
to these two energetically adjacent gaps. Additionally, we
show that each Wannier function can be naturally split in two
additive contributions, one corresponding to the upper and one

to the lower half of the band, each of them scaling only with a
single length scale. Moreover, we also discuss a non-Abelian
gauge of maximal localization (NA-ML) mixing the Wannier
functions of all bands including and below a given one, which
has been proposed in Ref. [10] to maximally localize the
total sum of the quadratic spreads of a certain set of Wannier
functions. Interestingly, we find that all Wannier functions
in the NA-ML gauge reveal universal scaling on the same
length scale ξ referring to the band gap between that given
band and the next. Additionally, these Wannier functions can
be uniquely related to the lower band Wannier function of
the Dirac model. Furthermore, we will present an explicit
construction of the NA-ML gauge in terms of the Wilson prop-
agator and show that the winding number associated with the
unitary non-Abelian gauge transformation allows for a formu-
lation of a bulk-boundary correspondence (BBC) determining
the number of edge states up to the band chosen to define the
NA-ML gauge via bulk properties. This form of the BBC is of
particular interest since it is not restricted to zero-energy edge
states or to particular symmetry properties of the system. We
would like to additionally emphasize that this formulation of
the BBC has nothing to do with a relation of the boundary
charge to some winding number. In general case the boundary
charge (as the Zak-Berry phase) can take any value and is
only quantized in the case of special symmetries or filling
factors.

Our work is organized as follows. In Sec. II we start with
the description of the lattice models under consideration and
the relation of their eigenstates to the eigenstates of the Dirac
model. The low-energy theory of the Zak-Berry connection,
the Zak-Berry phase, and the geometric tensor, together with
their relation to the corresponding lattice quantities is the
subject of Sec. III. In this section we will also define the
AF and ML gauges and formulate the low-energy version of
the surface charge and surface fluctuation theorem in terms
of the low-energy version of the Zak-Berry phase and the
momentum integral of the geometric tensor, respectively. The
definition of Wannier functions in Dirac theory and their pre-
cise relation to the lattice Wannier functions will be analyzed
in Sec. IV. Furthermore, we will describe in this section the
relation of all moments of the Wannier functions in Dirac and
lattice theory and explain how the surface charge and surface
fluctuation theorem can be formulated in terms of the mo-
ments of the Dirac Wannier functions. The universal scaling of
the Dirac and lattice Wannier functions is the central subject
of Sec. V. We will calculate the Dirac Wannier functions
together with their moments analytically in the AF and ML
gauges, and state the definitions and properties of the funda-
mental scaling functions. The universal scaling of all lattice
Wannier functions and their moments is then stated via their
relation to the Dirac Wannier functions, and is demonstrated
for two explicit examples Z = 2 and 3. Finally, in Sec. VI
we construct explicitly the NA-ML gauge and demonstrate
that all non-Abelian Wannier functions show universal scaling
corresponding to the Dirac theory of the highest gap defining
the set of mixed bands. In addition, we set up an interesting
bulk-boundary correspondence relating the winding number
of the determinant of the non-Abelian gauge transformation
to the number of edge states present in all gaps up to a certain
one. We close with a summary and outlook in Sec. VII. Some

033167-3



KIRYL PIASOTSKI et al. PHYSICAL REVIEW RESEARCH 3, 033167 (2021)

more involved technical details are presented in a series of
appendices.

We use units e = h̄ = 1.

II. MODEL AND EIGENSTATES

In this section we will state the class of lattice models under
consideration together with their relation to the Dirac field
theory. In particular, we will show the representation of the
Bloch eigenstates in lattice theory and the eigenfunctions of
the Dirac Hamiltonian, together with their precise relation-
ship. In summary it will turn out that the Dirac field theory
is an elegant way for a formulation of degenerate perturba-
tion theory in terms of slowly varying right and left movers,
applicable to lattice models with arbitrary size of the unit cell.

A. Lattice model

We consider the following class of so-called generalized
Aubry-André-Harper lattice models in one dimension, char-
acterized by nearest-neighbor hopping and a single orbital per
site, together with any periodic onsite and hopping modula-
tion:

H = H0 + H ′, (2.1)

H0 = −t
∑

m

(|m + 1〉〈m| + H.c.), (2.2)

H ′ =
∑

m

δvm|m〉〈m| −
∑

m

δtm(|m + 1〉〈m| + H.c.). (2.3)

Here, m is the lattice site index, t > 0, and all δvm = δvm+Z ,
δtm = δtm+Z are periodic and real (possible phases of the
hoppings can always be gauged away in one dimension). The
number of sites in a unit cell is denoted by Z . We relate
m = Z (n − 1) + j to the index n labeling the unit cells and
the index j = 1, . . . , Z labeling the sites within a unit cell.

We assume the condition

|δvm|, |δtm| � t, (2.4)

such that H ′ can be considered as a small perturbation. Due
to the presence of H ′ there will be Z bands labeled by the
band index α = 1, . . . , Z (from bottom to top), with Z − 1
gaps in-between labeled by the gap index ν = 1, . . . , Z − 1
(see the sketch of the band structure shown in Fig. 2).

In standard solid-state notation of the reduced zone
scheme, the Bloch eigenfunctions on the lattice are written
as

ψkα (ma) =
√

Za

2π
ukα (ma)eikma, (2.5)

where α = 1, . . . , Z is the band index (labeled from bottom to
top), ma denotes the lattice space position, and a is the lattice
spacing. The length Za defines the size of the unit cell. The
quasimomentum k is defined within the first Brillouin zone
− π

Za < k < π
Za and

ukα (ma) = ukα (ma + Za) (2.6)

is periodic with the unit-cell size. We assume that the gauge
is always chosen such that the total Bloch function is periodic

FIG. 2. Sketch of the band structure for Z = 5. We find Z − 1 =
4 gaps labeled by ν = 1, . . . , 4 opening up at k = 0 for ν = 2, 4
even, and at k = ± π

Za for ν = 1, 3 odd. All bands labeled by α =
1, . . . , 5 are then naturally split in two halves, the upper and lower
halves labeled by (ν, τ ) = (α,−) and (ν, τ ) = (α − 1, +), respec-
tively. An exception are the lowest α = 1 and highest α = 5 bands.
They are not split in two halves and labeled by (ν, τ ) = (1,−) and
(ν, τ ) = (4,+). The Dirac theory for gap ν is a good description
for all eigenstates referring to a pair of band parts labeled by (ν, ±)
(indicated by violet and green color for ν even or odd, respectively).
The momentum q in Dirac theory is the difference of k to the point
where the gap opens, i.e., k = q for ν even, and k = ± π

Za + q for
ν odd and sgnq = ∓. The cutoff for |q| is given by �α = π

2Za for
α = 2, 3, 4 and by �α = π

Za for α = 1, 5.

in k:

ψkα (ma) = ψk+ 2π
Za ,α (ma). (2.7)

Note that this means that ukα (ma) is not periodic in k but
fulfills the condition

uk+ 2π
Za ,α (ma) = ukα (ma)e−i 2π

Z m. (2.8)

At fixed k in the first Brillouin zone, the states ukα ( ja) =
〈 j|ukα〉 in unit-cell space j = 1, . . . , Z are eigenfunctions of
a Hamiltonian hk defined on the periodic continuation of the
unit cell

hk|ukα〉 = εkα|ukα〉, (2.9)

hk =
Z∑

j=1

δv j | j〉〈 j|

−
Z∑

j=1

t j (| j + 1〉〈 j|e−ika + | j〉〈 j + 1|eika), (2.10)

where t j = t + δt j , and we identify |Z + 1〉 ≡ |1〉. In con-
trast to hk and |ukα〉, the dispersion relation is periodic in
k: εk+ 2π

Za ,α = εkα .
We note the following normalization and completeness

relations:∑
m

ψkα (ma)∗ψk′α′ (ma) = δαα′δ(k − k′), (2.11)∑
α

∫ π/Za

−π/Za
dk ψkα (ma)ψkα (m′a)∗ = δmm′ . (2.12)
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This corresponds to the following relations for the peri-
odic Bloch part ukα ( ja) at fixed quasimomentum k and
j = 1, . . . , Z:

Z∑
j=1

ukα ( ja)∗ukα′ ( ja) = δαα′ , (2.13)

∑
α

ukα ( ja)ukα ( j′a)∗ = δ j j′ . (2.14)

Introducing the following scalar product in unit-cell space

〈ukα|ukα′ 〉 =
Z∑

j=1

ukα ( ja)∗ukα′ ( ja), (2.15)

we can write (2.13) and (2.14) in compact form as

〈ukα|ukα′ 〉 = δαα′ , (2.16)∑
α

|ukα〉〈ukα| = 1Z . (2.17)

B. Dirac model

For a small perturbation H ′ compared to the typical band-
width set by the average hopping t , the states in the middle
of the bands are nearly untouched and only close to the gaps
the eigenstates of H0 are coupled significantly by H ′. We
denote the single-particle eigenstates of H0 in the extended
zone scheme as

〈m|k〉 =
√

a

2π
eikma, (2.18)

with energy εk = −2t cos(ka) and −π/a < k < π/a. Since
H ′ is periodic with the size Za of the unit cell, the gap open-
ings will happen in general via higher-order processes close
to the two Fermi points ±k(ν)

F where

k(ν)
F = πν

Za
, ν = 1, . . . , Z − 1. (2.19)

As outlined in detail in Refs. [13,17,27] the coupling of
the low-energy states close to gap ν can be described via
Brillouin-Wigner perturbation theory by the effective Hamil-
tonian

H (ν)
eff = P(ν)

(
H + H ′Q(ν) 1

ε
(ν)
F − Q(ν)HQ(ν)

Q(ν)H ′
)

P(ν),

(2.20)

where P(ν) projects on the low-energy space, Q(ν) = 1 − P(ν),
and ε

(ν)
F = −2t cos(k(ν)

F a) is the Fermi energy where the
gap opens. This coupling leads to a complex gap parameter
�(ν)eiγ (ν)

defined by〈
k(ν)

F + k
∣∣H (ν)

eff

∣∣ − k(ν)
F + k′〉 ≈ �(ν)eiγ (ν)

δ(k − k′). (2.21)

In standard convention of low-energy theories it is very
useful to split off the strongly oscillating parts e±ik(ν)

F ma of
the eigenfunctions (2.5) and parametrize the Bloch states
ψkα (ma) in terms of slowly varying right and left movers
ψ (ν)

qτ p(x) in continuum notation as

ψkα (ma) = √
a ψ (ν)

qτ (ma), (2.22)

ψ (ν)
qτ (x) =

∑
p=±

ψ (ν)
qτ p(x)eipk(ν)

F x, (2.23)

ψ (ν)
qτ p(x) = χ (ν)

qτ p

1√
2π

eiqx. (2.24)

Here, p = ± is the index for right and left movers, and τ = ±
is the index describing the bands above and below the gap ν

(see Fig. 2):

τ =
{+ for α = ν + 1,

− for α = ν.
(2.25)

Thereby, the band part labeled by (ν, τ ) corresponds to the
lower (upper) half of band α = ν + 1 (α = ν) for τ = ± (see
Fig. 2). An exception are the lowest α = 1 and highest α = Z
bands which are not split in two halves and labeled by (ν, τ ) =
(1,−) or (ν, τ ) = (Z − 1,+), respectively.

The momentum q in Eq. (2.22) corresponds to the dif-
ference of the quasimomentum k in lattice theory to the
quasimomentum defining the band bottom or band top at
which the gap appears. This means that for even ν one expands
around k = 0 such that q ≡ k, and for odd ν one expands
around k = ± π

Za such that q ≡ k ∓ π
Za (see Fig. 2). In both

cases the momentum q has to fulfill the condition

|q| < �α =
{ π

2Za for α = 2, . . . , Z − 1,
π
Za for α = 1, Z.

(2.26)

By linearizing the dispersion relation εk of H0 around
±k(ν)

F , and using (2.21) one can set up an effective Dirac
Hamiltonian H (ν)

D corresponding to gap ν = 1, . . . , Z − 1
with gap parameter �(ν)eiγ (ν)

, which has the vectors ψ (ν)
qτ

(x) =
(ψ (ν)

qτ+(x), ψ (ν)
qτ−(x))T as eigenstates

H (ν)
D = −iv(ν)

F ∂xσz + �(ν) cos(γ (ν) )σx

− �(ν) sin(γ (ν) )σy, (2.27)

where v
(ν)
F = 2ta sin(k(ν)

F a) is the Fermi velocity. The energy
of the Dirac eigenstates is given by

ε (ν)
qτ = τε (ν)

q , ε (ν)
q =

√(
v

(ν)
F q

)2 + (�(ν) )2, (2.28)

which provides a very good approximation to the true disper-
sion when |q| � π

2Za .
In contrast to the dispersion, we note that the Dirac model

provides a very good approximation to the exact eigenstates
for all |q| < �α . For large |q| ∼ 1/(Za) � �(ν)/v

(ν)
F , the

eigenstates of the Dirac model are (up to a gauge factor) given
by

χ (ν)
qτ p ≈ δp,sgn(qτ ). (2.29)

Inserting this form in (2.22)–(2.24), one obtains the correct
eigenfunctions of the lattice model in the absence of a gap
(see Appendix A). This means that for small gaps �(ν) � t ,
the Dirac theory is a useful approximation for the description
of all eigenstates of the lattice model. Therefore, all Wannier
functions can be fully described by Dirac theory on all length
scales. In contrast, dynamical quantities like Green’s and cor-
relation functions can only be described for low energies since
the energy dispersion enters into these quantities.
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When comparing the Bloch eigenstates (2.5) with the
parametrization (2.22)–(2.24) one finds straightforwardly the
following relations between ukα ( ja) and χ (ν)

qτ p [note that α and
(ν, τ ) are related via (2.25)]:

ν even : k = q

ukα ( ja) = 1√
Z

∑
p=±

χ (ν)
qτ p eiπ p ν

Z j, (2.30)

ν odd : k = ± π

Za
+ q, sgn(q) = ∓

ukα ( ja) = 1√
Z

∑
p=±

χ (ν)
qτ p eiπ p ν

Z je∓i π
Z j . (2.31)

We note that both conditions (2.6) and (2.8) are respected
by (2.30) and (2.31). For the special case j = Z we get for
arbitrary ν

ukα (Za) = 1√
Z

∑
p=±

χ (ν)
qτ p. (2.32)

Using this relation one can easily check whether the two local
gauges of lattice and Dirac theory have been chosen identical.

Since the Dirac theory explicitly exhibits the slowly vary-
ing parts ψ (ν)

qτ p(x), one can interpret it as a continuum theory
for all x on the real axis and not only for x = ma, where the
lattice theory is reproduced. Therefore, although the Dirac
theory has only a physical meaning for |q| < �α , one takes
all values for the momentum q into account and writes the
normalization and completeness relations as∑

p

∫
dx ψ (ν)

qτ p(x)∗ψ (ν)
q′τ ′ p(x) = δττ ′δ(q − q′), (2.33)

∑
τ

∫
dq ψ (ν)

qτ p(x)ψ (ν)
qτ p′ (x′)∗ = δpp′δ(x − x′). (2.34)

This is equivalent to taking the following relations for the
parts χ (ν)

qτ p at fixed q:∑
p

(
χ (ν)

qτ p

)∗
χ

(ν)
qτ ′ p = δττ ′, (2.35)

∑
τ

χ (ν)
qτ p

(
χ

(ν)
qτ p′

)∗ = δpp′ . (2.36)

Introducing the following scalar product in right and left space〈
χ (ν)

qτ

∣∣χ (ν)
qτ ′
〉 = ∑

p=±

(
χ (ν)

qτ p

)∗
χ

(ν)
qτ ′ p, (2.37)

we can write (2.35) and (2.36) in compact form as〈
χ (ν)

qτ

∣∣χ (ν)
qτ ′
〉 = δττ ′ , (2.38)∑

τ=±

∣∣χ (ν)
qτ

〉〈
χ (ν)

qτ

∣∣ = 12. (2.39)

It can be checked that the relations (2.35) and (2.36) for
χ (ν)

qτ p, together with (2.30) and (2.31), are consistent with the
normalization condition (2.13) and the completeness relation
(2.14) for ukα ( ja) (see Appendix A). The normalization con-
dition follows exactly from (2.30) and (2.31), and is a special
case of the useful relation (valid for any integers r, s � 0)〈

∂r
k ukα

∣∣∂s
kukα′

〉 = δνν ′
〈
∂r

qχ
(ν)
qτ

∣∣∂s
qχ

(ν ′ )
qτ ′

〉
. (2.40)

The completeness relation is more subtle and uses in addition
the fact that the Dirac theory can reproduce all eigenstates
of the original lattice model under the perturbative condition
(2.4).

The fact that the Dirac theory can capture all eigenstates
of the lattice model leads to the following rigorous rule
when considering any k integral over a function fkα depend-
ing on the eigenfunctions of band α of the lattice theory
(like projectors on Bloch states for the completeness relation,
Zak-Berry connection for the Zak-Berry phase, geometric
tensor for boundary charge fluctuations, or Bloch states for
Wannier functions):

∫
|k|<π/Za

dk fkα ≈
∫

|q|<�α

dq
(

f (α)
q− + f (α−1)

q+
)
, (2.41)

where f (ν)
qτ is the corresponding function in Dirac theory ob-

tained by the replacements (2.22), (2.30), or (2.31). Thereby,
for α = 1 or Z , we omit implicitly the terms with ν = 0
or Z on the right-hand side, respectively. The approximate
sign in this relation is meant in a perturbative sense that
all higher-order corrections are of relative order O(�(ν)/t )
and negligible for �(ν) � t . However, we note that (2.41) is
only valid when the gauges in lattice and Dirac theory have
been chosen identical such that the relation (2.22) between
the eigenfunctions holds globally for all quasimomenta in a
certain band α.

Since a field theory does not know anything about scales
of the order of the lattice spacing, the integrals over q on the
right-hand side of (2.41) are conveniently extended to infinity
in the field-theoretical version and properly regularized in case
of divergences. Since the regime of large momenta refers to
the physics in the absence of a gap their contribution can
be analytically analyzed quite easily. For the various physi-
cal quantities discussed in this work we will show that the
field-theoretical contributions beyond the cutoff either van-
ish for each individual term on the right-hand side of (2.41)
(as for Zak-Berry connection and geometric tensor) or, after
a proper regularization, the contributions of high momenta
cancel between the two terms (as for Wannier functions in
certain gauges). In this way a full equivalence between lattice
and Dirac theory can be set up, provided that the gaps are
small compared to the typical bandwidth. Furthermore, for the
bands α = 2, . . . , Z the two terms on the right-hand side will
be shown to refer to the description of the universal behavior
of the two halves of the bands, the upper one corresponding
to the Dirac theory for ν = α and the lower one to ν = α − 1.
However, for this interpretation to make sense we will see that
nonuniversal terms arising from cutting the spectrum in the
middle of the band have to be removed by extending the lattice
theory for the two halves to infinity via an asymptotically free
theory far away from the gap.

When eigenfunctions are compared between the lattice and
Dirac theories and identified via (2.22) one always has to guar-
antee that the gauges are chosen in precisely the same way (at
least locally for a certain region in quasimomentum space).
Therefore, it will turn out to be important to state specific
gauges of particular interest. One of them is the so-called
asymptotically free (AF) gauge, which is characterized by a
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real and positive value of ukα (Za):

AF gauge: ukα (Za) > 0 ⇔
∑

p

χ (ν)
qτ p > 0. (2.42)

Here we used (2.32) to formulate the equivalent condition in
Dirac theory. This gauge has the particular advantage that it
leads precisely to the asymptotic condition (2.29) without any
further gauge factors. As explained later in Sec. III C 1, the AF
gauge leads to a unique relation between the Zak-Berry phase
and the boundary charge both in lattice and Dirac theories.
Another gauge will be introduced in Secs. III A and III B
which is called the maximally localized (ML) gauge. In the
ML gauge the Wannier functions in lattice and Dirac theories
have minimal spread which can be related to the boundary
charge fluctuations. It will turn out that the ML gauges in
lattice and Dirac theories are not the same, such that the
relation (2.22) involves additional phase factors depending on
the quasimomentum. Finally, in Sec. VI we will also discuss
non-Abelian lattice gauges where a mixing of the Bloch states
from a set of bands α = 1, . . . , ν is involved, such that the
non-Abelian Wannier functions turn out to have maximal
localization. This gauge is called the non-Abelian gauge of
maximal localization (NA-ML). It is a special lattice gauge
which turns out to be constructed in such a way that the
non-Abelian Wannier functions can be directly related to the
Wannier function of the upper half of the highest band ν or,
equivalently, to the Wannier function of the lower band of the
Dirac model corresponding to the gap between the highest
band ν and band ν + 1.

III. ZAK-BERRY CONNECTION, GEOMETRIC TENSOR,
AND BOUNDARY CHARGE

As a prerequisite for the analysis of universal aspects of
Wannier functions, we develop in this section the low-energy
theory for the Zak-Berry connection, the Zak-Berry phase,
and the geometric tensor in Dirac theory, together with the
relation to the corresponding objects in lattice theory. In this
connection, we will also introduce the definition of the ML
gauge in Dirac theory and relate it to the corresponding defi-
nition in lattice theory. Finally, we will show how an important
physical observable, the boundary charge and its fluctuations,
can be related via the surface charge and surface fluctuation
theorem to the Zak-Berry phase and the momentum integral
of the geometric tensor in low energy.

A. Zak-Berry connection and geometric tensor for lattice model

For the lattice the Zak-Berry connection and geometric
tensor are defined by

(Ak )αβ = (Ak )∗βα = i〈ukα|∂kukβ〉, (3.1)

(Qk )αβ = (Qk )βα (3.2)

= 〈∂kukα|∂kukβ〉δαβ − |〈ukα|∂kukβ〉|2 (3.3)

=
∑
α′ �=α

|〈ukα′ |∂kukα〉|2(δαβ − δα′β ) , (3.4)

where we made use of the normalization and completeness
relations (2.16) and (2.17) to derive the last equality. We note
that the diagonal component Qkα ≡ (Qk )αα of the geometric

tensor can also be written as

Qkα =
∑
α′ �=α

|〈ukα′ |∂kukα〉|2 (3.5)

= ∂k〈ukα|∂kukα〉 + 〈ukα|(i∂k )2|ukα〉 − 〈ukα|i∂k|ukα〉2.

(3.6)

Taking a gauge transformation

ũkα = eiϕkα ukα, (3.7)

we find from (3.3) that the geometric tensor is gauge invariant
and from (3.1) that the Zak-Berry connection is gauge invari-
ant for α �= β, whereas Akα ≡ (Ak )αα transforms as

Ãkα = Akα − ∂kϕkα. (3.8)

Furthermore,

γα =
∫ π/Za

−π/Za
dk Akα (3.9)

denotes the Zak-Berry phase (which should be distinguished
from the notation γ (ν) for the phase of the gap parameter in
Dirac theory). According to (3.8), the Zak-Berry phase trans-
forms under a gauge transformation by the winding number
of the phase ϕkα:

γ̃α = γα − ϕπ/Za,α + ϕ−π/Za,α. (3.10)

In the AF gauge defined by (2.42) it is shown in Ref. [15]
that

u−k,α = (ukα )∗ ⇒ A−k,α = Akα. (3.11)

The ML gauge is defined by a constant Zak-Berry connection

Lattice ML gauge : Ãkα = Za

2π
γ̃α. (3.12)

According to (3.8) this can be achieved by the gauge factor
eiϕkα with

ϕkα =
∫ k

−π/Za
dk′Ak′α − k

Za

2π
γα − 1

2
γα, (3.13)

which fulfils

ϕkα = ϕk+2π/Za,α, (3.14)

ϕ±π/Za,α = 0, (3.15)

ϕ−k,α = −ϕkα, (3.16)

where we used (3.11) for the last equality. From (3.15) we find
that the winding number is zero leaving the Zak-Berry phase
invariant

γ̃α = γα. (3.17)

Since the AF and ML gauges are the relevant gauges used
in this work, we will implicitly indicate the AF gauge by
symbols without a tilde and the ML gauge by a tilde symbol.
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B. Zak-Berry connection and geometric tensor for Dirac model

In the Dirac theory we define the Zak-Berry connection and
the geometric tensor by(

A(ν)
q

)
ττ ′ = i

〈
χ (ν)

qτ

∣∣∂qχ
(ν)
qτ ′
〉
, (3.18)(

Q(ν)
q

)
ττ ′ = 〈

∂qχ
(ν)
qτ

∣∣∂qχ
(ν)
qτ

〉
δττ ′ − ∣∣〈χ (ν)

qτ

∣∣∂qχ
(ν)
qτ ′
〉|2 (3.19)

= sgn(ττ ′)
∣∣〈χ (ν)

qτ̄

∣∣∂qχ
(ν)
qτ

〉∣∣2, (3.20)

where we defined τ̄ = −τ and used δττ ′ − δτ̄τ ′ = sgn(ττ ′) to
get the last equation. This gives the important property∑

τ=±

(
Q(ν)

q

)
ττ ′ =

∑
τ ′=±

(
Q(ν)

q

)
ττ ′ = 0. (3.21)

Analog to (3.6), the diagonal component Q(ν)
qτ ≡ (Q(ν)

q )ττ can
also be written as

Q(ν)
qτ = ∂q

〈
χ (ν)

qτ

∣∣∂qχ
(ν)
qτ

〉 + 〈
χ (ν)

qτ

∣∣(i∂q)2
∣∣χ (ν)

qτ

〉 − 〈
χ (ν)

qτ

∣∣i∂q

∣∣χ (ν)
qτ

〉2
.

(3.22)

Taking a gauge transformation

χ̃ (ν)
qτ p = eiφ(ν)

qτ χ (ν)
qτ p, (3.23)

we find analog to the lattice that the geometric tensor and
the nondiagonal components of the Zak-Berry connection are
gauge invariant, whereas A(ν)

qτ = (A(ν)
q )ττ transforms as

Ã(ν)
qτ = A(ν)

qτ − ∂qφ
(ν)
qτ . (3.24)

In the following we allow only for gauges where the Zak-
Berry connection vanishes for |q| → ∞,

lim
|q|→∞

A(ν)
qτ = 0, (3.25)

such that the Zak-Berry phase in the Dirac theory, defined by

γ (ν)
τ =

∫
dq A(ν)

qτ , (3.26)

is a well-defined quantity. We note that this is fulfilled for
the AF gauge (2.42) where we get from (2.29) for momenta
beyond the cutoff �c

χ (ν)
qτ p ≈

{
δτ p for q > �c,

δp,−τ for q < −�c
(3.27)

leading to a vanishing Zak-Berry connection for |q| > �c.
To get the relation for the Zak-Berry connection and the

geometric tensor between the lattice and Dirac definition, we
use the identity (2.40) and find

(Ak )αα′ = δνν ′
(
A(ν)

q

)
ττ ′ , (3.28)

(Qk )αα′ = δνν ′
(
Q(ν)

q

)
ττ ′ . (3.29)

Since the geometric tensor is gauge invariant in both the lattice
and Dirac theories, Eq. (3.29) holds independent of the gauge
choice in lattice and Dirac theories (they can be even differ-
ent). The relation (3.28) for the Zak-Berry connection holds
within any choice for the local gauge such that the relations
(2.30) and (2.31) hold between the eigenfunctions.

Concerning the Zak-Berry phase of band α we find from
(3.9), (3.28), and (2.41)

γα ≈ γ
(α)
− + γ

(α−1)
+ . (3.30)

As discussed above, this holds only when the Zak-Berry con-
nection in Dirac theory vanishes beyond the cutoff �c which
is fulfilled for the AF gauge. In the AF gauge we will fur-
thermore show below via the explicit eigenstates of the Dirac
model (see Sec. V A) that γ (ν)

τ is related to the phase γ (ν) of
the gap parameter �(ν)eiγ (ν)

by

γ
(ν)
+ = γ (ν), γ

(ν)
− = −γ (ν) + π sγ (ν) , (3.31)

where we abbreviated the sign function by

sγ = sgnγ , (3.32)

and assumed −π < γ (ν) < π with periodic continuation to
the other regimes.

In the following, we denote the eigenstates of lattice and
Dirac theories in the AF gauge by ψkα (ma) and ψ (ν)

qτ (x),
respectively, which are connected by the relation (2.22). Cor-
respondingly, we use the notation ukα and χ (ν)

qτ p in this gauge
which are related by (2.30) and (2.31). From (3.11) we note
that we get in the AF gauge

A(ν)
−q,τ = A(ν)

qτ . (3.33)

The ML gauge in Dirac theory is defined by a vanishing
Zak-Berry connection

Dirac ML gauge : Ã(ν)
qτ = 0, (3.34)

such that the corresponding Zak-Berry phase is also zero

γ̃ (ν)
τ = 0. (3.35)

According to (3.24) this corresponds to the choice of a gauge
factor eiφ(ν)

qτ with

φ(ν)
qτ =

∫ q

0
dq′ A(ν)

q′τ + φ
(ν)
0,τ . (3.36)

Note that this is not a contradiction to the corresponding
condition (3.12) for the lattice theory where it is not possible
to remove the Zak-Berry phase via a global gauge transfor-
mation. The Dirac model for a given gap ν describes only
those states in k space which belong to the two halves of the
bands separated by gap ν. Therefore, a particular global gauge
chosen in Dirac theory corresponds to a certain local gauge in
lattice theory defined for all quasimomenta lying in one-half
of a given band. Such a gauge can not necessarily be extended
to a global gauge for a certain band which is continuous and
periodic in k.

In order to show the explicit difference between the ML
gauges in lattice and Dirac theories we start from the AF
gauge and define a gauge transformation to the ML gauge by
the transformed quantities

ũkα = eiϕkα ukα, χ̃ (ν)
qτ p = eiφ(ν)

qτ χ (ν)
qτ p. (3.37)

From the conditions (3.12), (3.13), (3.34), and (3.36), defining
the ML gauge in lattice and Dirac theories, we get

ϕkα =
∫ k

−π/Za
dk′Ak′α −

(
k + π

Za

)Za

2π
γα (3.38)

=
∫ k

0
dk′Ak′α − k

Za

2π
γα, (3.39)

A(ν)
qτ = ∂qφ

(ν)
qτ , (3.40)
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where we made use of (3.11) in the AF gauge to get the form
(3.39). Using (3.28) we find from the two forms for ϕkα that,
for both the lower and upper halves of band α, we get the
following relation between the ML gauges of lattice and Dirac
theories:

ϕkα =
∫ q

0
dq′A(ν)

q′τ − q
Za

2π
γα = φ(ν)

qτ − φ
(ν)
0,τ − q

Za

2π
γα,

(3.41)

leading to the following relation between the gauge factors:

eiϕkα = eiφ(ν)
qτ e−iφ(ν)

0,τ e−iq Za
2π

γα . (3.42)

The last two factors on the right-hand side define the differ-
ence between the ML gauges in lattice and Dirac theories,
which have to be added to (2.30) and (2.31) to get the precise
relation between the eigenstates of lattice and Dirac theories
in the ML gauge. Furthermore, they show that the ML gauge
in Dirac theory is not smooth when crossing over the middle
of a band α since the indices (ντ ) and the relation between q
and k change.

C. Boundary charge

1. Surface charge theorem

The charge accumulated at the boundary, or the boundary
charge [12–18], is defined by restricting the tight-binding
Hamiltonian (2.1) to the half-infinite space m > 0 and aver-
aging the excess charge with a macroscopic envelope function
fm via

Q(ν)
B =

∞∑
m=1

(
ρ (ν)

m − ρ̄ (ν)
)

fm. (3.43)

Here, ρ (ν)
m is the average charge at lattice site m for a half-

infinite system if the chemical potential is located in gap ν,
including all edge states up to this energy. The average charge
per site in the bulk is denoted by ρ̄ (ν) = ν/Z . The macroscopic
and probe-specific envelope function is denoted by fm which
must have certain properties. In particular, it has the value 1 in
the first range of m, which far exceeds the localization length
ξ , and then it smoothly crosses over to 0 over the second
range of m, which is also � ξ . The importance of including
these features into the definition of fm for the universality of
the boundary charge properties as well as their experimental
relevance has been elucidated in Refs. [12–15]. If only a single
band α is occupied we denote the corresponding boundary
charge by QB,α , such that the total boundary charge can be
decomposed as

Q(ν)
B =

ν∑
α=1

QB,α + Q(ν)
E (3.44)

=
ν∑

α=1

(QB,α + QE ,α ), (3.45)

where Q(ν)
E denotes the integer contribution from all occupied

edge states up to the chemical potential, and QE ,α denotes the
contribution of an edge state present in gap α. The latter is
either unity or zero and we assume for the validity of (3.45)

that, for the last gap α = ν, the chemical potential is located
at the bottom of the conduction band α = ν + 1.

As shown in Ref. [15], one finds in the AF gauge of the lat-
tice theory that the Zak-Berry phase is related to the boundary
charge of a single band in the following way:

QB,α = − γα

2π
− Z − 1

2Z
. (3.46)

Inserting (3.30) and (3.31) in the expression (3.46) for the
boundary charge we get

QB,α = γ (α) − γ (α−1)

2π
+ 1

2Z
− θ (γ (α) ). (3.47)

Noting that an edge state appears in gap ν for 0 < γ (ν) < π

(see Ref. [17]), we find that the sum of the boundary charge of
band α and the charge QE ,α of the edge state in gap α is given
by

QB,α + QE ,α = γ (α) − γ (α−1)

2π
+ 1

2Z
. (3.48)

Assuming that the chemical potential is located at the bottom
of the conduction band, this gives the following result for the
boundary charge Q(ν)

B when the lowest ν bands are filled:

Q(ν)
B = γ (ν)

2π
+ ν

2Z
. (3.49)

Here we have used the fact that the lower half of the lowest
band gives a negligible contribution to the Zak-Berry phase
since we can approximate the eigenstates by the free ones in
this regime leading to a vanishing Zak-Berry connection (see
Appendix A). The result (3.49) states the low-energy version
of the surface charge theorem relating the boundary charge
to the phase γ (ν) of the gap parameter which is related via
(3.31) to the low-energy version of the Zak-Berry phase. We
note that the result (3.49) is fully consistent with the direct
calculation of the boundary charge for a half-infinite Dirac
model as shown in Ref. [17].

An essential point for the formulation of the surface charge
theorem in low energy is the fact that the sum of the two Zak-
Berry phases γ (ν)

τ over τ = ± gives in the AF gauge∑
τ=±

γ (ν)
τ = π sγ (ν) . (3.50)

This gives rise to the effect that all other gaps 1, . . . , ν − 1
contribute only constants to the boundary charge Q(ν)

B and
the final result (including the edge states) can be written in
terms of the Zak-Berry phase γ

(ν)
− of the top of the valence

band alone. We note that the result
∑

τ γ (ν)
τ = π mod(2π )

can be shown on quite general principles without using the
explicit forms of the eigenfunctions of the Dirac model (see
Appendix B).

2. Surface fluctuation theorem

In lattice theory the k integral over the geometric tensor is
of particular interest since it can be related to the boundary
charge fluctuations [18]

lp
(
�Q(ν)

B

)2 =
ν∑

α,β=1

∫ π/Za

−π/Za

dk

2π
(Qk )αβ, (3.51)
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where (�Q(ν)
B )

2
are the fluctuations when the chemical poten-

tial lies in gap ν (the precise position is unimportant). Here,
lp � ξ is a length scale on which the charge measurement
probe looses smoothly the contact to the sample (see Ref. [18]
for details). Since the geometric tensor is gauge invariant, this
relation holds in any gauge, in particular in the AF and ML
gauges. Summing the geometric tensor (Qk )αβ over α or β

up to some ν in the low-energy regime, we find from (3.29)
and (3.21) that all contributions vanish where two bands are
separated by a gap. Therefore, we obtain

ν∑
α=1

(Qk )αβ = δβνQ(ν)
q−

{
δν,even for k ≈ 0,

δν,odd for k ≈ ± π
Za

(3.52)

and
ν∑

α,β=1

(Qk )αβ = Q(ν)
q−

{
δν,even for k ≈ 0,

δν,odd for k ≈ ± π
Za .

(3.53)

These relations are also independent of the gauge choice in
Dirac theory since the geometric tensor is gauge invariant in
Dirac theory as well. Using (2.41) and the fact that the geo-
metric tensor vanishes in Dirac theory in the asymptotically
free region |q| > �c, we obtain in the low-energy regime for
the fluctuations

lp
(
�Q(ν)

B

)2 ≈
∫

dq

2π
Q(ν)

q− =
∫

dq

2π

∣∣(A(ν)
q

)
+−

∣∣2 (3.54)

=
∫

dq

2π

{〈
χ

(ν)
q−
∣∣(i∂q)2

∣∣χ (ν)
q−
〉 − (

A(ν)
q−
)2
}
, (3.55)

where we made use of (3.20), (3.22), and (3.25) for the last
two steps.

The result (3.54) is the low-energy form of the surface
fluctuation theorem relating the boundary charge fluctuations
to the momentum integral of the geometric tensor. As shown,
only the geometric tensor of the valence band enters. This is
physically intuitive since one expects no fluctuations of the
charge from the low-lying bands. As will be shown below in
Sec. V we obtain explicitly via the eigenfunctions of the Dirac
model ∫

dq

2π
Q(ν)

q− = ξ (ν)/8, ξ (ν) = v
(ν)
F

2�(ν)
, (3.56)

showing that the result (3.54) is fully consistent with the
direct calculation of the boundary charge fluctuations within
the Dirac model via the second momentum of the correlation
function [18].

Most importantly, we note that the fluctuations of the total
boundary charge can not be written as the sum over the fluctu-
ations of the individual bands. If only band α is occupied, the
fluctuations are given by

lp�(QB,α )2 =
∫ π/Za

−π/Za

dk

2π
Qkα. (3.57)

When summing this expression over α one does not obtain
the fluctuations lp(�Q(ν)

B )
2

when all bands α = 1, . . . , ν are
occupied, as given by Eq. (3.51) involving the summation over
all matrix elements of the geometric tensor. In particular, one
loses the important cancellation property (3.21) which is the
central ingredient that all contributions from gaps between

occupied bands do not contribute to the fluctuations of the
total boundary charge, rendering the fluctuations to depend
only on the low-energy properties of the model.

IV. WANNIER FUNCTIONS

In this section we present the definition of the central
objects of our work, the Wannier functions in Dirac theory
and their corresponding moments, together with their precise
relation to the lattice Wannier functions. In Sec. IV A we
present a short summary of the definition of Wannier functions
in lattice theory. The Dirac Wannier functions are defined in
Sec. IV B and it is shown how their first and second moments
can be related to the Zak-Berry phase and the momentum
integral of the geometric tensor as defined within the Dirac
theory in Sec. III B. At the end of this section we show how
the surface charge and surface fluctuation theorem can be
formulated very elegantly in terms of the moments of the
Dirac Wannier functions. The precise relation of the Dirac
Wannier functions and their moments to the corresponding
lattice quantities is the subject of Secs. IV C 1 and IV C 2
in the AF and ML gauge, respectively.

A. Wannier functions for lattice model

On the lattice the dimensionless Wannier functions for
band α are defined by

wR,α (ma) =
√

Za

2π

∫ π/Za

−π/Za
dk ψkα (ma)e−ikR, (4.1)

where R = Zan, with n integer, denotes a lattice vector. Using
(2.11) and (2.12) one finds that the Wannier functions labeled
by α and R form an orthonormal and complete set of states∑

m

wR,α (ma)∗wR′,α′ (ma) = δαα′δRR′ , (4.2)

∑
α

∑
R

wR,α (ma)wR,α (m′a)∗ = δmm′ . (4.3)

Defining by wα (ma) ≡ w0,α (ma) the Wannier function cen-
tered at zero

wα (ma) =
√

Za

2π

∫ π/Za

−π/Za
dk ψkα (ma) (4.4)

= Za
∫ π/Za

−π/Za

dk

2π
ukα (ma)eikma, (4.5)

we find with the Bloch form (2.5) and the periodicity prop-
erty (2.6) that the Wannier function wR,α (ma) follows from
shifting wα (ma) by the lattice vector R:

wR,α (ma) = wα (ma − R). (4.6)

Therefore, all properties of the Wannier functions follow from
studying the properties of wα (ma).

The Wannier functions depend on the gauge in a non-trivial
way. If (4.5) is the Wannier function in the AF gauge, we
obtain in the ML gauge

w̃α (ma) = Za
∫ π/Za

−π/Za

dk

2π
eiϕkα ukα (ma)eikma, (4.7)
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where the phase ϕkα is given by (3.13). We note that due to
the properties (3.11) and (3.16), both the Wannier functions in
AF and ML gauges are real.

For the bands α = 2, . . . , Z − 1 we show in Appendix C
that the Wannier functions in the AF or ML gauge can be split
into two contributions corresponding to the upper and lower
halves of the band,

wα (ma) = wu,α (ma) + wd,α (ma), (4.8)

wu/d,α (ma) = w′
u/d,α (ma) ± δwα (ma), (4.9)

where w′
u/d,α (ma) denotes the part from the corresponding

integration regions

w′
u/d,α (ma) (4.10)

= Za

2π

{∫
|k|< π

2Za
dk ukα (ma)eikma for α even/odd,∫

π
2Za <|k|< π

Za
dk ukα (ma)eikma for α odd/even

(4.11)

and δwα (ma) arises from the extension of the quasimomen-
tum integrations to ±∞ taking the free solutions of ukα (ma)
in the gapless case (see Appendix C for details). In the AF and
ML gauges one obtains explicitly

δwα (ma) =
√

Z

πm
sin

{
π

Z

(
α − 1

2

)
m

}
, (4.12)

δw̃α (ma)

=
√

Z

πm̃α

sin

{
π

Z

(
α − 1

2

)
m + 1

4

(
γ

(α−1))
+ − γ

(α)
−

)}
,

(4.13)

where we defined the shifted variable

m̃α = m − Z

2π
γα. (4.14)

Whereas the corrections δwα (ma) cancel out when consid-
ering the total Wannier function wα (ma) of a band, we will
see in Sec. V that the Wannier functions wu/d,α (ma) and
w̃u/d,α (ma) show only universal scaling if the corrections
±δwα (ma) and ±δw̃α (ma) are taken into account.

For the bands α = 1, Z the splitting in upper and lower
parts makes no sense since the lower and upper halves of the
band α = 1/Z are already described by a free theory for small
gap. Therefore, we use the convention

wd,1(ma) = wu,Z (ma) = 0, δw1/Z (ma) = 0. (4.15)

The moments of the Wannier functions are defined by

Crα = 〈xr〉α =
∑

m

(ma)r |wα (ma)|2. (4.16)

A corresponding definition is used for the moments Cu/d,rα of
wu/d,α . Inserting (4.4) and (2.5) we find after some straight-
forward manipulations

Crα = Za

2π

∫ π/Za

−π/Za
dk 〈ukα|(i∂k )r |ukα〉. (4.17)

For r = 1 and 2 we find with (3.1) and (3.6)

C1α = Za

2π

∫ π/Za

−π/Za
dk Akα = Za

2π
γα, (4.18)

C2α = Za

2π

∫ π/Za

−π/Za
dk {Qkα + (Akα )2}, (4.19)

and for the quadratic spread

〈�x2〉α = C2α − (C1α )2

= Za
∫ π/Za

−π/Za

dk

2π

{
Qkα +

(
Akα − Za

2π
γα

)2}
.

(4.20)

Since the geometric tensor is gauge invariant, the condition
for maximal localization is given by a constant Zak-Berry
connection corresponding to the ML gauge (3.12). Since,
according to (3.17), the Zak-Berry phase does not change in
this gauge, the first moment stays invariant

C̃1α = C1α = Za

2π
γα. (4.21)

In the ML gauge we get for the minimal quadratic spread
〈�x2〉α,min from (4.20) and (3.51) the result

〈�x2〉α,min = Za
∫ π/Za

−π/Za

dk

2π
Qkα = Za lp�(QB,α )2, (4.22)

where lp�(QB,α )2 are the fluctuations when only the band α

is occupied.
So, in summary we can formulate the surface charge and

surface fluctuation theorem for a singly occupied band in
terms of the first and second moments of the Wannier function
as

QB,α = −C1α

Za
− Z − 1

2Z
, (4.23)

lp�(QB,α )2 = 1

Za
D̃2α, (4.24)

where Crα refers to the AF gauge, and D̃rα are the moments in
the ML gauge defined relative to the first moment C1α = Za

2π
:

D̃rα =
∑

m

(m̃αa)r |w̃α (ma)|2, (4.25)

with m̃α defined in (4.14). These moments are related to the
moments C̃(α)

r . For example, for r = 1, 2, one obtains by using
the normalization

∑
m |w̃α (ma)|2 = 1 and (4.21)

D̃1α = C̃(α)
1 − Za

2π
γα = 0, (4.26)

D̃2α = C̃2α − (C̃1α )2
. (4.27)

As discussed at the end of Sec. III C 2 the fluctuations
lp�(QB,α )2 of the individual bands are not sufficient to calcu-

late the fluctuations lp(�Q(ν)
B )

2
when all bands α = 1, . . . , ν

are occupied. However, as we will see in the next two sections
for the low-energy regime of small gaps, the surface charge
and surface fluctuation theorem for ν occupied bands can
be written entirely in terms of the moments of the upper
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components wu,ν and w̃u,ν of the Wannier functions for the
highest valence band as

Q(ν)
B ≈ − 1

Za
Cu,1ν + 1

2
sγ (ν) + ν

2Z
, (4.28)

lp
(
�Q(ν)

B

)2 ≈ 1

Za
C̃u,2ν . (4.29)

This physically intuitive result reflects the fact that the bound-
ary charge is a low-energy property only which is insensitive
to the properties of low-lying and occupied bands. Alter-
natively, as we will discuss in Sec. VI, it is also possible
to define maximally localized Wannier functions in a non-
Abelian gauge where all occupied bands are mixed. As we
will see, these Wannier functions are closely related to the
Wannier function w̃u,ν in the Abelian ML gauge and show
precisely the same universal scaling as the Dirac Wannier
function of the valence band.

B. Wannier functions for Dirac model

Within the Dirac theory we define the Wannier functions
by

w(ν)
y,τ (x) =

∑
p=±

w(ν)
y,τ p(x)eipk(ν)

F (x−y) = w(ν)
τ (x − y), (4.30)

where

w(ν)
y,τ p(x) =

∫
dq√
2π

ψ (ν)
qτ p(x)e−iqy = w(ν)

τ p (x − y) (4.31)

and

w(ν)
τ (x) = w

(ν)
y=0,τ (x), w(ν)

τ p (x) = w
(ν)
y=0,τ p(x), (4.32)

w(ν)
τ p (x) =

∫
dq√
2π

ψ (ν)
qτ p(x) =

∫
dq

2π
χ (ν)

qτ peiqx. (4.33)

Correspondingly, for the ML gauge, we define w̃(ν)
τ p (x) by

w̃(ν)
τ p (x) =

∫
dq

2π
χ̃ (ν)

qτ peiqx. (4.34)

In contrast to the lattice Wannier functions, the Dirac Wannier
functions are complex quantities both in the AF and ML
gauges.

Since the Wannier functions in the Dirac model contain a
continuous shift y their dimension is given by inverse length
and the normalization and completeness relations follow from
(2.33) and (2.34) as∑

p

∫
dx w(ν)

y,τ p(x)∗w(ν)
y′,τ ′ p(x) = δττ ′δ(y − y′), (4.35)

∑
τ

∫
dy w(ν)

y,τ p(x)w(ν)
y,τ p′ (x′)∗ = δpp′δ(x − x′). (4.36)

The moments C(ν)
rτ of the Dirac Wannier functions are de-

fined by

C(ν)
rτ =

∫
dx xr

∑
p=±

∣∣w(ν)
τ p (x)

∣∣2 (4.37)

and, correspondingly, we denote the moments in the ML
gauge by C̃(ν)

rτ . Note that these moments have dimension
(length)r−1 in contrast to the moments Crα defined within the

lattice theory. This is due to the different normalization in
the continuum Dirac theory. Nevertheless, we will see below
that the first and second moments are related to the boundary
charge and the fluctuations, respectively, in a similar way as
in (4.23) and (4.24) but without the denominator Za (see
below). Note that the first moment does not play the role of
the position of the Wannier function in Dirac theory since
it is dimensionless. A finite value of the first moment C(ν)

1τ

indicates an asymmetry of
∑

p=± |w(ν)
τ p (x)|2 for positive and

negative x.
Using the form (4.33) we find after some straightforward

manipulations

C(ν)
rτ =

∫
dq

2π

〈
χ (ν)

qτ

∣∣(i∂q)r
∣∣χ (ν)

qτ

〉
. (4.38)

Using (3.26), (3.20), and (3.22) we can thus write for the first
and second moments

C(ν)
1τ = γ (ν)

τ

2π
, (4.39)

C(ν)
2τ =

∫
dq

2π

∣∣(A(ν)
q

)
τ̄ τ

∣∣2 +
∫

dq

2π

(
A(ν)

qτ

)2
. (4.40)

Since the first term on the right-hand side of (4.40) is gauge
invariant and the second one has a positive integrand it follows
that the gauge of maximally localized Wannier functions is
given by the ML gauge (3.34) where the Zak-Berry connec-
tion vanishes. We note that there is a fundamental difference
to the lattice theory where the quadratic spread is defined
by C2α − (C1α )2. The analog formula is not possible in low
energy since the dimension of C(ν)

rτ is (length)r−1.
Taking (4.39) and (4.40) together with (3.49), (3.31), and

(3.55), we can formulate the surface charge and surface fluctu-
ation theorem in low energy via the first and second moments
of the Dirac Wannier functions as

Q(ν)
B ≈ −C(ν)

1− + 1

2
sγ (ν) + ν

2Z
, (4.41)

lp
(
�Q(ν)

B

)2 ≈ C̃(ν)
2− . (4.42)

Here, the moments C(ν)
r− refer to the AF gauge, whereas C̃(ν)

r−
are the moments in the ML gauge. Note that, in contrast to
(4.23) and (4.24) (where a single band has been considered),
we consider here the total boundary charge and its fluctuations
when the lowest ν bands are filled and the chemical potential
is located at the bottom of the conduction band (which is
only important to calculate the edge-state contribution for the
boundary charge in the last gap). This result shows that the
boundary charge and its fluctuations are quantities probing
only low-energy features and, therefore, can be related in a
universal way to the first and second moments of the Dirac
Wannier functions corresponding to the top of the highest
valence band.

C. Relation between Wannier functions
in lattice and Dirac theories

We now consider the precise relation of the Dirac Wannier
functions to the Wannier function defined within the lattice
theory. We start with the AF gauge where the relation (2.22)
between eigenfunctions of the lattice and the Dirac theories
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hold globally for all quasimomenta in a certain band α since
the gauge is the same. For the ML gauge it is more subtle since
there is difference between the gauges in lattice and Dirac
theories [see Eq. (3.42)]. Therefore, one has to add gauge
factors depending on whether one considers the contribution
of the upper or lower half of the band to the Wannier function.

1. AF gauge

For the AF gauge, we can insert (2.22) in (4.4) and use
(2.41) to get

wα (ma) = a
√

Z
∫

|q|<�α

dq√
2π

× {
ψ

(α)
q− (ma) + ψ

(α−1)
q+ (ma)

}
, (4.43)

where as usual we omit the terms with ψ
(0)
q+ and ψ

(Z )
q− if α = 1

or Z , respectively. As shown in Appendix C the region |q| >

�α contributes ±δwu/d,α (ma) to the first and second terms
on the right-hand side, i.e., precisely the same contribution
(4.12) we used to extend half of a band for α = 2, . . . , Z − 1
(for α = 1, Z there is no contribution from |q| > π

Za ). There-
fore, after inserting (2.23) and (4.33), we obtain the following
relation between the Wannier functions in lattice and Dirac
theories:

wu,α (ma) = a
√

Z
∑

p

w
(α)
−,p(ma)eipk(α)

F ma, (4.44)

wd,α (ma) = a
√

Z
∑

p

w
(α−1)
+,p (ma)eipk(α−1)

F ma. (4.45)

Thereby, we will show in Appendix C that the momentum
integral to define the Wannier functions w(ν)

τ p (x) via (4.33) has
to be regularized in such a way that unphysical contributions
∼δ(x) are absent (see the explicit calculation in Sec. V).

To understand the relation of the various moments in the
AF gauge, we need to evaluate |wα (ma)|2 using the Wannier
function from the sum of (4.44) and (4.45). The simplest cases
are α = 1 or Z , where only one term contributes: w1(ma) =
w(1)

u (ma) and w(Z )(ma) = w
(1)
d (ma) [see (4.15)]. For α = 1

we get with k(1)
F a = π/Z:

|w1(ma)|2 = a2Z
∑

p

∣∣w(1)
−,p(ma)

∣∣2
+ a2Z

∑
p

w
(1)
−,p(ma)

(
w

(1)
−,−p(ma)

)∗
ei2π pm/Z ,

(4.46)

and a similar result for α = Z with w
(1)
−,p → w

(Z−1)
+,p and

ei2π pm/Z → e−i2π pm/Z . When inserting this formula into the
definition (4.16) of the moments and neglecting the variation
of the slowly varying function w

(1)
−,p(ma) over the unit cell,

we find that the strongly oscillating terms of (4.46) can be
neglected when averaging them over a unit cell. This leads to
the result

Cr1 ≈ a2Z
∑

m

(ma)r
∑

p

∣∣w(1)
−,p(ma)

∣∣2

≈ Za
∫

dx xr
∑

p

∣∣w(1)
−,p(x)

∣∣2 = ZaC(1)
r− , (4.47)

CrZ ≈ a2Z
∑

m

(ma)r
∑

p

∣∣w(Z−1)
+,p (ma)

∣∣2

≈ Za
∫

dx xr
∑

p

∣∣w(Z−1)
+,p (x)

∣∣2 = ZaC(Z−1)
r+ . (4.48)

For the bands α = 2, . . . , Z − 1, both terms (4.44) and (4.45)
contribute to the Wannier function. This leads to more os-
cillating terms occurring for the moments involving also
eiπ p(2α−1)m/Z and eiπ pm/Z . Such terms give again a negligible
contribution to the moments when averaging them over two
unit cells, leading to the general result

Crα ≈ Za
{
C(α)

r− + C(α−1)
r+

}
, (4.49)

together with

Cu,rα ≈ ZaC(α)
r− , Cd,rα ≈ ZaC(α−1)

r+ . (4.50)

Inserting (4.50) in (4.41) we find (4.28), which states the
surface charge theorem in terms of the upper component wu,ν

of the lattice Wannier function for the highest valence band.
As discussed later in all detail in Sec. V E, we note that

the divergence of the Dirac Wannier functions |w(ν)
τ p (x)|2 ∼

1/x2 for |x| � ξ (ν) is not important for the calculation of the
moments for r > 0 since the contributions from the region
|m| ∼ O(1) can be neglected in the universal limit ξ � a.
The only exception is r = 0 where the normalization of the
lattice Wannier function is fully determined by the region
|m| ∼ O(1).

2. ML gauge

In the ML gauge we have shown via the two last factors on
the right-hand side of (3.42) that there is a difference between
the gauges of maximally localized Wannier functions in lattice
and Dirac theories. The last factor leads to a trivial shift of the
position of the Wannier function w(ν)

τ p (x):

w(ν)
τ p (x) → w(ν)

τ p

(
x − Za

2π
γα

)
. (4.51)

Including this shift and the phase factor e−iφ(ν)
0,τ we have to

modify (4.44) and (4.45) in the following way (see Ap-
pendix C for details) to get the correct relationship between
the maximally localized Wannier functions in lattice and
Dirac theories:

w̃u,α (ma) = a
√

Z
∑

p

e−iφ(α)
0,−w̃

(α)
−,p(m̃αa)eipk(α)

F ma, (4.52)

w̃d,α (ma) = a
√

Z
∑

p

e−iφ(α−1)
0,+ w̃

(α−1)
+,p (m̃αa)eipk(α−1)

F ma, (4.53)

where m̃α is defined in (4.14).
Using (4.52) and (4.53), we obtain analog to (4.49) from

the definition (4.25) for the moments in the ML gauge

D̃rα ≈ Za
{
C̃(α)

r− + C̃(α−1)
r+

}
, (4.54)

together with

D̃u,rα ≈ ZaC̃(α)
r− , D̃d,rα ≈ ZaC̃(α−1)

r+ . (4.55)

Inserting (4.55) in (4.42) we find (4.29), which states the
surface fluctuation theorem in terms of the upper component
w̃u,ν of the lattice Wannier function for the highest valence
band.
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As discussed in more detail in Sec. V E, the relations (4.54)
and (4.55) should be used only for even values of r. As
shown in Sec. V C the Dirac moments C̃(ν)

rτ are exactly zero
for all odd values of r. However, this does not mean that
the lattice moments D̃rα and D̃u/d,rα are exactly zero for odd
values of r (except for D̃1,α = 0 which is zero by definition).
The smallness of the odd moments in lattice theory has to be
understood by an order of magnitude analysis compared to
the even moments. The odd moments are of subleading order
O(a2ξ r−2) as compared to the even moments which are of
O(a ξ r−1). Therefore, in the limit of small gaps ξ � a, the
odd moments are of no interest in the ML gauge and can be
neglected.

We note that corresponding relations of C̃rα or C̃u/d,rα to
the Dirac theory are not possible since the Dirac Wannier
functions have a divergence |w̃(ν)

τ p (x)|2 ∼ 1/x2 for x → 0 (see
Sec. V A). Therefore, it is important to define the moments of
the Dirac Wannier functions around the reference point x = 0,
otherwise they contain a divergence.

V. UNIVERSALITY OF WANNIER FUNCTIONS

This section is devoted to the most important result of
this work that, in the case of small gaps, all lattice Wannier
functions in AF or ML gauge show universal scaling in terms
of a small set of universal scaling functions determining the
shape of the Dirac Wannier functions in the corresponding
gauges. To obtain this result we first calculate all eigenstates
and the Wannier functions of the Dirac model analytically
in Sec. V A. The fundamental universal scaling functions in
the Dirac theory are then introduced in Sec. V B, together
with a summary of all their symmetry properties and asymp-
totic forms. The moments of the Dirac Wannier functions are
discussed analytically in Sec. V C, both in the AF and ML
gauges. In Sec. V D we derive the universal scaling form of
all lattice Wannier functions and their moments in terms of
the fundamental scaling functions of the Dirac theory. The
universal scaling is demonstrated explicitly for two examples
with unit cells of sizes 2a and 3a in Secs. V D 1 and V D 2, re-
spectively. Finally, Sec. V E contains a qualitative discussion
of the properties of lattice Wannier functions and the scaling
of their moments on all length scales, in particular including
the one at small scales of the order of the lattice spacing.
This analysis shows clearly that the visual impression of the
square of lattice Wannier functions reveals only the trivial
gapless limit, leading to the misleading visual impression of a
localized wave function with spread determined by the lattice
spacing. In contrast, the whole universal scaling properties
on length scale ξ are only visible when multiplying the lat-
tice Wannier function with the spatial coordinate and then
squaring it.

A. Explicit evaluation of Dirac Wannier functions

The eigenfunctions (2.23) of the Dirac model (2.27) in the
AF and ML gauges are given by

∣∣χ̃ (ν)
qτ

〉 = eiφ(ν)
qτ

∣∣χ (ν)
qτ

〉 = 1√
2ε

(ν)
q

(
g(ν)

qτ eiγ (ν)

τg(ν)
qτ̄

)
, (5.1)

where τ̄ = −τ ,

ε (ν)
q =

√(
v

(ν)
F q

)2 + (�(ν) )2, g(ν)
qτ =

√
ε

(ν)
q + τv

(ν)
F q,

(5.2)

and the gauge factor is given by

eiφ(ν)
qτ = g(ν)

qτ eiγ (ν) + τg(ν)
qτ̄∣∣g(ν)

qτ eiγ (ν) + τg(ν)
qτ̄

∣∣ , (5.3)

where∣∣g(ν)
qτ eiγ (ν) + τg(ν)

qτ̄

∣∣ =
√

2
(
ε

(ν)
q + τ�(ν) cos γ (ν)

)
. (5.4)

We note the helpful properties

g(ν)
qτ g(ν)

qτ̄ = �(ν), g(ν)
−q,τ = g(ν)

qτ̄ . (5.5)

As required for the AF gauge by (2.42), we find with (2.32) a
positive Z component for ukα (Za):

ukα (Za) = 1√
Z

∑
p=±

χ (ν)
qτ p =

∣∣g(ν)
qτ eiγ (ν) + τg(ν)

qτ̄

∣∣√
2Zε

(ν)
q

> 0. (5.6)

We note that the gauge factor (5.3) allows for a unique and
analytic definition of the phase φ(ν)

qτ since

sgn
{
Im

(
g(ν)

qτ eiγ (ν) + τg(ν)
qτ̄

)} = sγ (ν) . (5.7)

Therefore, the phase φ(ν)
qτ can be chosen to have the same sign

as γ (ν) for all q (note that we take −π < γ (ν) < π ). Using

eiφ(ν)
q+ →

{
eiγ (ν)

for q → ∞,

1 for q → −∞,
(5.8)

eiφ(ν)
q− →

{−1 for q → ∞,

eiγ (ν)
for q → −∞,

(5.9)

we get from

A(ν)
qτ = ∂qφ

(ν)
qτ = v

(ν)
F �(ν) sin γ (ν)

2ε
(ν)
q
(
ε

(ν)
q + τ�(ν) cos γ (ν)

) (5.10)

the result (3.31) for the Zak-Berry phases.
We note that sin γ (ν) = 0 is a special point where the Dirac

Zak-Berry connection is zero. For a half-infinite system with
x > 0 it can be shown [17] that an edge state is present in
the gap for γ (ν) > 0 with energy ε

(ν)
E = −�(ν) cos γ (ν). There-

fore, at this special point, the edge-state energy touches either
the higher (for γ (ν) = ±π ) or the lower band (for γ (ν) = 0),
and the Wannier functions of the corresponding bands have
very special properties, they do not decay exponentially [for
w(ν)

τ p (x) in AF gauge] or change discontinuously [for w̃(ν)
τ p (x)

in ML gauge]. Therefore, we exclude the cases γ (ν) = 0, τ =
− and γ (ν) = ±π, τ = + in the following and discuss them
separately in Appendix G.

For the phase factors e−iφ(ν)
0,τ occurring in (4.52) and (4.53)

we get from (5.3) the result

e−iφ(ν)
0,τ = e−iγ (ν) + τ

|e−iγ (ν) + τ |

= e−iγ (ν)/2

{
1 for τ = +,

−i sγ (ν) for τ = −,
(5.11)
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where we used the convention −π < γ (ν) < π .
Using (5.1), (5.3), and (5.4), we find for χ (ν)

qτ p the form

χ (ν)
qτ p = ε (ν)

q + pτv
(ν)
F q + τ�(ν)eipγ (ν)

2
√

ε
(ν)
q
(
ε

(ν)
q + τ�(ν) cos γ (ν)

) . (5.12)

Inserting the forms (5.1) and (5.12) for χ̃ (ν)
qτ and χ (ν)

qτ in (4.33),
and introducing the dimensionless variables

q̄ = 2ξ (ν)q, x̄ = x

2ξ (ν)
, ε̄q̄ = ε (ν)

q

�(ν)
=
√

1 + q̄2, (5.13)

with ξ (ν) = v
(ν)
F /(2�(ν) ), we find for the Wannier functions

the integral representation

w(ν)
τ p (x) = 1

4πξ (ν)

∫
dq̄ e−η̄|q̄|eiq̄x̄χ (ν)

τ p (q̄), (5.14)

w̃(ν)
τ p (x) = 1

4πξ (ν)

∫
dq̄ e−η̄|q̄|eiq̄x̄χ̃ (ν)

τ p (q̄), (5.15)

where

χ (ν)
τ p (q̄) = ε̄q̄ + pτ q̄ + τeipγ (ν)

2
√

ε̄q̄

√
ε̄q̄ + τ cos γ (ν)

, (5.16)

χ̃ (ν)
τ p (q̄) =

√
ε̄q̄ + pτ q̄√

2ε̄q̄

{
eiγ (ν)

for p = +,

τ for p = −.
(5.17)

We have included a convergence factor e−η̄|q̄|, with η̄ ∼
a/ξ (ν), since the integrals diverge for large |q̄|. This diver-
gence occurs since a low-energy theory can only describe the
universal regime |x| � a. As shown in Appendix E, one can
also find a more convenient integral representation by closing
the integration contour for sx = sgn(x) = ± in the upper and
lower half, respectively, leading to convergent integrals such
that the limit η̄ → 0 can be performed under the integral. This
regularization is possible for all x �= 0 and removes an un-
physical contribution ∼δ(x) from the Dirac Wannier function
(see Appendices C and D). In this way we obtain the universal
representation

w(ν)
τ p (x) = isx

4πξ (ν)

∫ ∞

0
dκ e−|x̄|κδχ (ν)

τ p (isxκ ), (5.18)

w̃(ν)
τ p (x) = isx

4πξ (ν)

∫ ∞

0
dκ e−|x̄|κδχ̃ (ν)

τ p (isxκ ), (5.19)

where we defined sx = sgn(x), and

δχ (ν)
τ p (isxκ ) = χ (ν)

τ p (isxκ + 0+) − χ (ν)
τ p (isxκ − 0+), (5.20)

δχ̃ (ν)
τ p (isxκ ) = χ̃ (ν)

τ p (isxκ + 0+) − χ̃ (ν)
τ p (isxκ − 0+) (5.21)

describe the jump of the integrands across the branch cut
along the imaginary axis which emerge from the various
square roots. Alternatively, we show in Appendix D how the
Wannier functions can be represented via convergent momen-
tum integrals on the real axis.

The results (5.18) and (5.19) provide the form of the Wan-
nier functions in the universal regime |x|, ξ (ν) � a. However,
as long as ξ (ν) � a, the lattice Wannier functions at x = ma
can be reproduced for all m (even for m = 0) from the Dirac
Wannier functions via the sum of (4.44) and (4.45) (in the AF
gauge) or the sum of (4.52) and (4.53) (in the ML gauge).

As shown in Appendix C, this arises from the fact that the
high-momentum region |q| > �α does not contribute to the
total Wannier function of a certain band α.

B. Universal scaling functions

It is convenient to express the complex Dirac Wannier
functions w(ν)

τ p (x) and w̃(ν)
τ p (x) in terms of real functions

w
(ν)
A/B,τ (x) and w̃

(ν)
A/B,τ (x) by writing

w(ν)
τ p (x) = 1

2

[
w

(ν)
B,τ (x) + ipw

(ν)
A,τ (x)

]
, (5.22)

w̃(ν)
τ p (x) = eiφ(ν)

0,τ
1

2

[
w̃

(ν)
B,τ (x) + ipw̃(ν)

A,τ (x)
]
, (5.23)

which correspond to the definitions

w
(ν)
A,τ (x) = −i

∑
p

pw(ν)
τ p (x) = w

(ν)
A,τ (x)∗, (5.24)

w
(ν)
B,τ (x) =

∑
p

w(ν)
τ p (x) = w

(ν)
B,τ (x)∗, (5.25)

w̃
(ν)
A,τ (x) = −i e−iφ(ν)

0,τ

∑
p

p w̃(ν)
τ p (x) = w̃

(ν)
A,τ (x)∗, (5.26)

w̃
(ν)
B,τ (x) = e−iφ(ν)

0,τ

∑
p

w̃(ν)
τ p (x) = w̃

(ν)
B,τ (x)∗. (5.27)

The fundamental universal and dimensionless scaling func-
tions are then defined by

FA/B,τ (x/ξ (ν); γ (ν) ) = x w
(ν)
A/B,τ (x), (5.28)

F̃A/B,τ (x/ξ (ν); γ (ν) ) = x w̃
(ν)
A/B,τ (x), (5.29)

in terms of which the moments (4.37) can be expressed as

C(ν)
rτ = 1

2
(ξ (ν) )r−1

∫
dy yr−2{FA,τ (y)2 + FB,τ (y)2}, (5.30)

C̃(ν)
rτ = 1

2
(ξ (ν) )r−1

∫
dy yr−2{F̃A,τ (y)2 + F̃B,τ (y)2}. (5.31)

The explicit form of the scaling functions in terms of integra-
tions along the real momentum axis are derived in Appendix D
and are explicitly presented in (D7)–(D12). These useful
forms allow for a direct numerical evaluation.

In Appendix F we have listed a number of properties of the
Dirac Wannier functions w(ν)

τ p (x) and w̃(ν)
τ p (x) under inversion

of p, τ , or x and certain transformations of γ (ν), together
with corresponding properties of w

(ν)
A/B,τ (x) and w̃

(ν)
A/B,τ (x). As

a consequence we note the following useful properties of
the universal scaling functions FA/B,τ (y; γ ) and F̃A/B,τ (y; γ )
under inversion of y, τ , or γ and under the transformation
γ → −γ + πsγ [alternatively, these relations follow directly
from the explicit forms (D7)–(D12) of the scaling functions]

FA,τ (−y; γ ) = FA,τ (y; −γ ), (5.32)

FB,τ (−y; γ ) = −FB,τ (y; γ ) = −FB,τ (y; −γ ), (5.33)

F̃A,τ (−y; γ ) = F̃A,τ (y; −γ ) = −τ sγ F̃B,τ (y; −γ + πsγ )

(5.34)

= τ {cos γ F̃A,τ (y; γ ) − sin γ F̃B,τ (y; γ )},
(5.35)
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FIG. 3. The scaling functions FA/B,−(y; γ ) and F̃A/B,−(y; γ )
for various phases γ . We show only τ = − and consider
0 � γ � π since all other cases follow from the transformation
laws (5.32)–(5.41) as FA/B,+(y; γ ) = ∓FA/B,−(y; π − γ ),
F̃A/B,+(y; γ ) = ∓F̃A/B,−(−y; γ ), FA/B,τ (y; −γ ) = ±FA/B,τ (−y; γ ),
and F̃A/B,τ (y; −γ ) = ±F̃A/B,τ (−y; γ ). According to (5.34), we note
the relation F̃B,−(y; γ ) = F̃A,−(−y; π − γ ). All scaling functions are
exponentially decaying for |y| � 1, except for FA,−(y; 0) → −√

2/π

and FB,−(y; 0) → −√
2/(πy) [see (5.55) and (5.56)]. The scaling

functions F̃A/B,−(y; γ ) change discontinuously at γ = 0 by a sign
change [see (5.57) and (5.58)]. The cases γ = 0, 0+, π/2, π are
indicated by blue, orange, red, and green, respectively. The grid for
the values of γ is defined by 0.1πn with n = 0, 1, . . . , 10 in (b)–(d).
In (a) the black curves show γ = 0.05π (dashed line), 0.1π (dotted),
0.2π (dashed-dotted), and 0.75π (solid).

F̃B,τ (−y; γ ) = −F̃B,τ (y; −γ ) = −τ sγ F̃A,τ (y; −γ + πsγ )

(5.36)

= −τ {sin γ F̃A,τ (y; γ ) + cos γ F̃B,τ (y; γ )},
(5.37)

FA,−τ (y; γ ) = −FA,τ (y; −γ + πsγ ), (5.38)

FB,−τ (y; γ ) = FB,τ (y; −γ + πsγ ), (5.39)

F̃A,−τ (y; γ ) = τ sγ F̃B,τ (−y; γ ), (5.40)

F̃B,−τ (y; γ ) = −τ sγ F̃A,τ (−y; γ ). (5.41)

For the special case sin γ = 0 we list all properties in Ap-
pendix G.

The typical forms of the four fundamental scaling func-
tions FA/B,−(y; γ ) and F̃A/B,−(y; γ ) are illustrated in Fig. 3.
We show only the lower band τ = − and positive values of
the phase γ since a sign change of τ or γ is covered by the
above properties. A special case is cos γ = 0, where

FB,τ (y; γ ) = 0 for cos γ = 0 . (5.42)

The asymptotic forms for small |y| � 1 and large |y| � 1 can
be analyzed analytically (see Appendix E), where we derive
the corresponding asymptotic behavior of the Dirac Wannier
functions in the AF and ML gauges for small |x| � ξ (ν) and
large |x| � ξ (ν). For y = 0 we get from (E9) and (E10),

FA,τ (0; γ ) = τ

π
, (5.43)

FB,τ (0; γ ) = 0, (5.44)

F̃A,τ (0; γ ) = τ

2π
|eiγ + τ |, (5.45)

F̃B,τ (0; γ ) = − sγ

2π
|eiγ − τ |. (5.46)

The asymptotic behavior for large |y| � 1 follows from
(E14), (E16), and (E18) as

τ = sgn(cos γ ) :

FA,τ (y; γ ) → τ (1 + sy sin γ )�
(

3
4

)
2π

√| cos γ | |y| 1
4 e− |y|

2 , (5.47)

FB,τ (y; γ ) → �
(

3
4

)√| cos γ |
2π

sy|y| 1
4 e− |y|

2 , (5.48)

τ = −sgn(cos γ ) :

FA,τ (y; γ ) → τ√
2π | sin γ | |y|

− 1
2 e−| sin γ | |y|

2

+ τ (1 + sysγ )

√ | sin γ |
2π

|y| 1
2 e−| sin γ | |y|

2 , (5.49)

FB,τ (y; γ ) → −
√| sin γ |√
2π | cos γ | sy|y|− 1

2 e−| sin γ | |y|
2 , (5.50)

cos γ = 0 :

FA,τ (y; γ ) → τ

2
√

π

(|y|− 1
2 + (1 + sysγ )|y| 1

2
)
e− |y|

2 , (5.51)

FB,τ (y; γ ) = 0. (5.52)

We note that the last result (5.52) holds for all y in the special
case cos γ = 0 [see (5.42)]. From (E20) we get for all cases

F̃A,τ (y; γ ) → �
(

3
4

)
4π

|y| 1
4 e− |y|

2 τ (sysγ |eiγ − τ | + |eiγ + τ |),
(5.53)

F̃B,τ (y; γ ) → �
(

3
4

)
4π

|y| 1
4 e− |y|

2 (sy|eiγ + τ | − sγ |eiγ − τ |).
(5.54)

As discussed after (5.10), we remind that the cases γ =
0, τ = − and γ = ±π, τ = + are excluded. At these points
the scaling functions FA/B,τ (y; γ ) are not exponentially decay-
ing,

FA,−(y; 0) = −FA,+(y; π ) → −
√

2

π
, (5.55)

FB,−(y; 0) = FB,+(y; π ) → −
√

2

π

1

y
, (5.56)

and the scaling functions F̃A/B,τ (y; γ ) change discontinuously
by a sign change (with vanishing value exactly at γ = 0, π )

F̃A,−(y; 0±) = ∓F̃B,+(y; 0), (5.57)

F̃B,−(y; 0±) = ∓F̃A,+(y; 0), (5.58)

F̃A,+(y; π ± 0+) = ∓F̃B,−(y; π ), (5.59)

F̃B,+(y; π ± 0+) = ∓F̃A,−(y; π ) (5.60)
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(see Appendix G for details). Although it might have been
expected that the Wannier functions in the ML gauge change
discontinuously as function of γ when an edge state touches
the band edge, it is quite remarkable that the Wannier
functions in the AF gauge stay continuous but show a non-
exponential decay exactly at the touching point although the
gap is still present. Up to our best knowledge this has not been
reported before.

In summary, we find an exponential decay with a preex-
ponential power law for |y| � 1 (similar power laws for the
preexponential functions have been obtained in Ref. [41] for
a variety of other localized single-particle wave functions)
whereas, for |y| � 1, we obtain the scaling

|y| � 1 ⇒ FA/B,τ (y; γ ), F̃A/B,τ (y; γ ) ∼ O(1). (5.61)

This scaling together with the exponential behavior at large y
is the essential reason why the moments scale as

C(ν)
rτ , C̃(ν)

rτ ∼ (ξ (ν) )r−1, (5.62)

leading via (4.49) and (4.54) to the universal scaling aξ (with
ξ ∼ ξ (α), ξ (α−1)) for the quadratic spread of the lattice Wan-
nier functions. This is in contrast to the visual impression of
the lattice Wannier functions leading to the incorrect scaling
a2, as we will discuss in all detail in Sec. V E.

C. Moments of Dirac Wannier functions

The moments in the ML gauge are given by

C̃(ν)
rτ =

∑
p=±

∫
dq

2π

(
χ̃ (ν)

qτ p

)∗
(i∂q)rχ̃ (ν)

qτ p

= ir (2ξ (ν) )r−1

4π

∑
p=±

∫
dq̄

√
1 + pq̄

ε̄q̄
∂r

q̄

√
1 + pq̄

ε̄q̄
. (5.63)

Noticing that only even moments (r = 2l) are nonzero, we
rewrite this expression in the symmetrized form

C̃(ν)
2l,τ = (ξ (ν) )2l−1c̃2l , (5.64)

c̃2l = 22l−2

2π

∑
p=±

∫
dq̄

[
∂ l

q̄

√
1 + pq̄

ε̄q̄

]2

> 0. (5.65)

In particular, we find that the moments are independent of τ

and depend on ν only via the decay length ξ (ν).
The scaling behavior of C̃(ν)

2l,τ is given by (5.64), while
Eq. (5.65) provides positive dimensionless coefficients. Mak-
ing the integration variable change q̄ = tan θ , we conveniently
represent them in the form

c̃2l = 1

4π

∫ π

−π

dθ

[
cos θ

(
∂

∂θ
2 cos2 θ

)l−1

sin
θ

2

]2

. (5.66)

In particular, the second moment is recovered from

C̃(ν)
2τ = ξ (ν)

4π

∫ π

−π

dθ cos2 θ sin2 θ

2
= ξ (ν)

8
. (5.67)

At large l the sequence (5.66) is well approximated by (2l−2)!
e

(see Fig. 4).

FIG. 4. Logarithmic plot of first 10 coefficients c̄2l and of their
asymptotic value (2l−2)!

e . As one can notice, the sequence is very well
approximated by its asymptotic even for moderate values of l .

In the AF gauge, the moments (4.38) are more complicated
and can be expressed as

C(ν)
rτ =

∑
p=±

∫
dq

2π

(
χ (ν)

qτ p

)∗
(i∂q)rχ (ν)

qτ p

= ir
∑
p=±

∫
dq

2π

(
χ̃ (ν)

qτ p

)∗
eiφ(ν)

qτ ∂r
q

[
e−iφ(ν)

qτ χ̃ (ν)
qτ p

]
, (5.68)

such that

C(ν)
rτ = (ξ (ν) )r−1c(ν)

rτ , (5.69)

c(ν)
rτ = ir2r−1

∑
p=±

∫
dq̄

4π

√
1 + pq̄

ε̄q̄
eiφ(ν)

qτ

×
r∑

s=0

r!

s!(r − s)!

[
∂r−s

q̄ e−iφ(ν)
qτ ∂s

q̄

√
1 + pq̄

ε̄q̄

]
. (5.70)

In contrast to the ML gauge, the dimensionless coefficients
c(ν)

rτ depend on τ and ν in the AF gauge via the phase factors
involving φ(ν)

qτ .
In particular, we find

C(ν)
1τ =

∫
dq

2π
∂qφ

(ν)
qτ

=
{

γ (ν)

2π
, τ = +

− γ (ν)

2π
+ 1

2 sγ (ν) , τ = −
(5.71)

which agrees with (4.39) and (3.31), and

C(ν)
2τ = C̃(ν)

2τ +
∫

dq

2π

[
∂qφ

(ν)
qτ

]2

= ξ (ν)

8
+ ξ (ν)

4

[
tan2 γ (ν) + 4 cot 2γ (ν)�(−τ )

cos γ (ν)
sγ (ν)

+ 2τ (2γ (ν) cot 2γ (ν) − 1)

π cos γ (ν)

]
. (5.72)

One finds that C(ν)
2τ > C̃(ν)

2τ = ξ (ν)/8 as expected and a di-
vergence when the first moment (5.71) jumps (for τ = + at
γ (ν) = ±π , and for τ = − at γ (ν) = 0), compare with the
discussion after (5.10).
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D. Scaling properties of lattice Wannier functions

In this section we reveal the scaling properties of the lattice Wannier functions as given by (4.44), (4.45), (4.52), and (4.53)
via the Dirac Wannier functions. Inserting the decompositions (5.22) and (5.23) of the Dirac Wannier functions in real and
imaginary parts, and using

cos

(
νπ

Z
m

)
= (−1)ν(n−1) cos

(
π

ν j

Z

)
, sin

(
νπ

Z
m

)
= (−1)ν(n−1) sin

(
π

ν j

Z

)
, (5.73)

where m = Z (n − 1) + j, we obtain

1√
Z

(−1)α(n−1)m wu,α (n, j) = F−

(
ma

ξ (α)
;
α j

Z
, γ (α)

)
, (5.74)

1√
Z

(−1)(α−1)(n−1)m wd,α (n, j) = F+

(
ma

ξ (α−1)
;

(α − 1) j

Z
, γ (α−1)

)
, (5.75)

1√
Z

(−1)α(n−1)m̃α w̃u,α (n, j) = F̃−

(
m̃αa

ξ (α)
;
α j

Z
, γ (α)

)
, (5.76)

1√
Z

(−1)(α−1)(n−1)m̃α w̃d,α (n, j) = F̃+

(
m̃αa

ξ (α−1)
;

(α − 1) j

Z
, γ (α−1)

)
, (5.77)

where α = 1, . . . , Z − 1 for wu,α and w̃u,α , and α = 2, . . . , Z for wd,α and w̃d,α . The scaling functions Fτ and F̃τ are defined in
the following way in terms of the fundamental scaling functions FA/B,τ and F̃A/B,τ introduced in Sec. V B:

Fτ (y; s, γ ) = FB,τ (y; γ ) cos(πs) − FA,τ (y; γ ) sin(πs), F̃τ (y; s, γ ) = F̃B,τ (y; γ ) cos(πs) − F̃A,τ (y; γ ) sin(πs). (5.78)

As a result, for given value j = 1, . . . , Z of the site index within a unit cell, the up and down parts of the lattice Wannier functions
reveal universal scaling with a single length scale. By adding the up and down parts we get for the total Wannier function of
band α

1√
Z

(−1)α(n−1)m wα (n, j) = F−

(
ma

ξ (α)
;
α j

Z
, γ (α)

)
+ (−1)n−1F+

(
ma

ξ (α−1)
;

(α − 1) j

Z
, γ (α−1)

)
, (5.79)

1√
Z

(−1)α(n−1)m̃α w̃α (n, j) = F̃−

(
m̃αa

ξ (α)
;
α j

Z
, γ (α)

)
+ (−1)n−1F̃+

(
m̃αa

ξ (α−1)
;

(α − 1) j

Z
, γ (α−1)

)
, (5.80)

where we leave out the second (first) term on the right-hand side for α = 1 (α = Z). For α = 2, . . . , Z − 1 universal scaling
appears with two different length scales corresponding to the gaps at the bottom and the top of the band. Therefore, to reveal
universal scaling, one has to keep the ratio of the two length scales fixed.

For the universal scaling of the moments

Cu/d,rα (Ma) =
M∑

m=−M

(ma)r |wu/d,α (ma)|2, D̃u/d,rα (Ma) =
M∑

m=−M

(m̃αa)r |w̃u/d,α (ma)|2, (5.81)

we get from the above equations after neglecting the strongly oscillating terms

Cu,rα (Ma)

Za(ξ (α) )r−1
≈
∫ Ma

ξ (α)

−Ma
ξ (α)

dy yr−2G−(y; γ (α) ),
Cd,rα (Ma)

Za(ξ (α−1))r−1
≈
∫ Ma

ξ (α−1)

−Ma
ξ (α−1)

dy yr−2G+(y; γ (α−1)), (5.82)

D̃u,rα (Ma)

Za(ξ (α) )r−1
≈
∫ Ma

ξ (α)

−Ma
ξ (α)

dy yr−2G̃−(y; γ (α) ),
D̃d,rα (Ma)

Za(ξ (α−1))r−1
≈
∫ Ma

ξ (α−1)

−Ma
ξ (α−1)

dy yr−2G̃+(y; γ (α−1)), (5.83)

where

Gτ (y; γ ) = 1
2 {|FA,τ (y; γ )|2 + |FB,τ (y; γ )|2}, G̃τ (y; γ ) = 1

2 {|F̃A,τ (y; γ )|2 + |F̃B,τ (y; γ )|2}, (5.84)

or explicitly in terms of the right and left moving Dirac Wannier functions

Gτ (x/ξ (ν); γ (ν) ) = x2
∑

p

∣∣w(ν)
τ p (x)

∣∣2, (5.85)

G̃τ (x/ξ (ν); γ (ν) ) = x2
∑

p

∣∣w̃(ν)
τ p (x)

∣∣2. (5.86)

By using (5.35) and (5.37) we note that G̃τ is a symmetric function

G̃τ (−y; γ ) = G̃τ (y; γ ). (5.87)
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As a result, the right-hand sides of (5.83) are exactly zero
for odd values of r. As mentioned already at the end of
Sec. IV C 2, this does not mean that the lattice moments
D̃u/d,rα (Ma) are zero for odd values of r. It only means that
by dividing them by the leading order aξ r−1 [with ξ ≡ ξ (α)

for D̃u,rα (Ma) and ξ ≡ ξ (α−1) for D̃d,rα (Ma)], one gets zero
in the limit ξ → ∞. This is in contrast to the even moments
in the ML gauge which stay finite in this limit after divided
by this order. Therefore, the odd moments in the ML gauge
are negligible and are not considered in the following. In
the AF gauge the function Gτ (y; γ ) is asymmetric due to the
asymmetry of the scaling function FA,τ (y; γ ) [see (5.32) and
Fig. 3], with a significant larger part for either positive or
negative values of y. Therefore, in the AF gauge, all moments
are of order a ξ r−1 and stay finite in the limit ξ → ∞ when
divided by this order.

The total moment for α = 2, . . . , Z − 1 is obtained from
the sum [neglecting strongly oscillating terms involving
(−1)n]

Crα (Ma) ≈ Cu,rα (Ma) + Cd,rα (Ma), (5.88)

D̃rα (Ma) ≈ D̃u,rα (Ma) + D̃d,rα (Ma), (5.89)

where we leave out the second (first) term on the right-hand
side for α = 1 (α = Z).

According to (4.49) and (4.54), we get for the asymptotic
value M → ∞

Cu,rα (Ma) → ZaC(α)
r− = Za(ξ (α) )r−1 c(α)

r− , (5.90)

Cd,rα (Ma) → ZaC(α−1)
r+ = Za(ξ (α−1))r−1 c(α−1)

r+ , (5.91)

D̃u,2l,α (Ma) → ZaC̃(α)
2l,− = Za(ξ (α) )2l−1 c̃2l , (5.92)

D̃d,2l,α (Ma) → ZaC̃(α−1)
2l,+ = Za(ξ (α−1))2l−1 c̃2l , (5.93)

where we used (5.69) and (5.64). According to (5.71) and
(5.67) we get for r = 1, 2

Cu,1α (Ma)

Za
→ −γ (α)

2π
+ 1

2
sγ (α) , (5.94)

Cd,1α (Ma)

Za
→ γ (α−1)

2π
, (5.95)

D̃u,2α (Ma)

Zaξ (α)
→ 1

8
, (5.96)

D̃d,2α (Ma)

Zaξ (α−1)
→ 1

8
. (5.97)

Using (5.88) and (5.89) together with (3.30) and (3.31), we
find for the asymptotic values of the total moments

C1α (Ma)

Za
→ γα

2π
, (5.98)

D̃2α (Ma)

Zaξ (α)
→ 1

8

(
1 + ξ (α−1)

ξ (α)

)
. (5.99)

In the following two subsections we will demonstrate the
universal scaling of the lattice Wannier functions and their
moments for two examples with Z = 2 and 3. For simplicity,
we assume that the dominant contribution to the gap param-

eter (2.21) is the term H ′ of the effective Hamiltonian (2.20).
This means that all Fourier components

δṽν = 1

Z

Z∑
j=1

e−i2π jν/Zδv j, (5.100)

δt̃ν = 1

Z

Z∑
j=1

e−i2π jν/Zδt j (5.101)

have approximately the same order of magnitude. By conven-
tion we set

δṽ0 = δt̃0 = 0. (5.102)

By inserting the form (2.3) of H ′ and using (2.18) for the
eigenstates of H0, it is then straightforward to show that

�(ν)eiγ (ν) = δṽν − 2e−iπν/Z δt̃ν . (5.103)

The 2(Z − 1) lattice parameters δv j and δt j , with j =
1, . . . , Z and

∑
j δv j = ∑

j δt j = 0, are then fixed via the Z −
1 complex gap parameters �(ν)eiγ (ν)

, with ν = 1, . . . , Z − 1,
by using (5.103) and the inverse Fourier transform of (5.100)
and (5.101):

δv j =
Z−1∑
ν=1

ei2π jν/Zδṽν, (5.104)

δt j =
Z−1∑
ν=1

ei2π jν/Zδt̃ν . (5.105)

1. Universal scaling for Z=2

For Z = 2 (the so-called Rice-Mele model [39,42] which,
for δv1/2 = 0, turns into the Su-Schrieffer-Heeger model
[43]) we show in Figs. 1(a) and 1(b) the universal scal-
ing of the Wannier functions w(ma) ≡ w1(ma) = wu,1(ma)
and w̃(ma) ≡ w̃1(ma) = w̃u,1(ma) of the lowest band α = 1,
together with the scaling of their first and second moment, re-
spectively. The lattice parameters are fixed by the complex gap
parameter �eiγ ≡ �(1)eiγ (1)

. The lattice Wannier functions are
calculated numerically from their definitions (4.5) and (4.7)
via the Bloch states uk1(ma) and the gauge phase ϕk1. The
latter follows from (3.13) via the Zak-Berry connection Ak1.
The Bloch states and the Zak-Berry connection are calculated
analytically in Appendix H. The Zak-Berry phase γ1 of the
lowest band can either be calculated from its definition (3.9)
via numerical integration over the Zak-Berry connection or
from the approximate formulas (3.30) and (3.31) as

γ1 ≈ γ
(1)
− = −γ (1) + πsγ (1) . (5.106)

As shown in Fig. 5 the two ways to calculate the Zak-Berry
phase coincide quite well in the low-energy regime of small
gaps. Therefore, it makes no visible difference in Fig. 1(b)
which choice is taken to calculate the shift variable m̃1 = m −
γ1/π .

With m = 2(n − 1) + j and j = 1, 2, we find from (5.74)
and (5.78) for odd and even values of m (i.e., for j = 1, 2)

1

2
|m w(ma)|2 ≈

{|FA,−(y; γ )|2 for m odd,

|FB,−(y; γ )|2 for m even,
(5.107)
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FIG. 5. The Zak-Berry phase γα/(2π ) calculated from (3.9) as
function of ξ (α) for α = 1, Z = 2 (left panel) and for α = 2, Z = 3
(right panel). The parameters are the same as in Figs. 1 and 10, re-
spectively. For all ξ (α) used in these figures we find that the deviation
from the approximation γ1/(2π ) ≈ 0.4 [left panel, see (5.106)] and
γ2 ≈ 7

20 = 0.35 [right panel, see (5.115)] is less than ≈ 0.02%.

1

2
|m̃ w̃(ma)|2 ≈

{|F̃A,−(ỹ; γ )|2 for m odd,

|F̃B,−(ỹ; γ )|2 for m even,
(5.108)

where we used the abbreviations

y ≡ ma/ξ, ỹ ≡ m̃a/ξ, (5.109)

with m̃ ≡ m̃1 = m − γ1/π . As a consequence, the four funda-
mental scaling functions FA/B,−(y; γ ) and F̃A/B,−(y; γ ) show
up naturally in the scaling behavior of the lower band (in
AF or ML gauge, respectively) of the Rice-Mele model for
odd (A) and even (B) sites. Similarly, for the upper band the
corresponding scaling functions with τ = + appear, which are
related via (5.38)–(5.41) to the scaling functions with τ = −.
For larger values of Z > 2, the same scaling functions appear
but in subtle combinations, as we will demonstrate in the next
subsection for Z = 3.

In the main panels of Figs. 1(a) and 1(b) we reveal the
universal scaling properties by plotting the left-hand side of
Eqs. (5.107) and (5.108) for different values of ξ as function
of y = ma/ξ or ỹ = m̃a/ξ , and find that all curves fall on top
of the universal functions |FA/B,−(y; γ )|2 and |F̃A/B,−(y; γ )|2
(for m odd or even), respectively [note that we omitted the
subindex τ = − and the superindex (1) for all quantities used
in the caption of these figures]. Although (5.107) and (5.108)
are expected to hold only for large |m| � 1 and for small
gaps (where ξ � a), it is remarkable that the coincidence is
even quite well for |m| ∼ O(1) and for large gaps [where
ξ ∼ O(a)]. We will come back to this point in Sec. V E, where
we discuss the behavior for small scales m ∼ O(1). All the
universal scalings are in accordance with the symmetries and
asymptotic behaviors discussed for the scaling functions in
Sec. V B (compare with Fig. 3). For even m, the function
|m w(ma)|2 scales symmetrically with zero value at m = 0; all
other cases are asymmetric and have a finite value at m = 0 (or
m̃ = 0), in accordance with (5.43)–(5.46). For large |m| � 1
all functions are exponentially decaying with a preexponential
power-law ∼|ma/ξ |r exp(−|ma|/ξ ). Since γ = 0.2π and τ =
−, we get τ = −sgn(cos γ ) �= 0, leading via (5.49) and (5.50)
to r = ±1 for |m w(ma)|2 and odd m ≷ 0, and to r = −1 for
|m w(ma)|2 and even m. For |m̃ w̃(ma)|2 we get r = 0.5 for
both m even or odd [see (5.53) and (5.54)].

In the insets of Figs. 1(a) and 1(b) we show the universal
scaling of the first moment C1(Ma)/(2a) of w(ma) and of the

quadratic spread D̃2(Ma)/(2aξ ) of w̃(ma) (with C1 ≡ C11 =
Cu,11 and D̃2 ≡ D̃21 = D̃u,21) when plotted against Ma/ξ for
different ξ . As demonstrated, all discrete points fall on top
of the universal curves (5.82) (with r = 1) and (5.83) (with
r = 2), i.e.,

C1(Ma)

Za
≈
∫ Ma

ξ

−Ma
ξ

dy
1

y
G−(y; γ ), (5.110)

D̃2(Ma)

Zaξ
≈
∫ Ma

ξ

−Ma
ξ

dy G̃−(y; γ ), (5.111)

with G̃−(y; γ ) = G̃−(−y; γ ) due to (5.87). In accordance with
(5.94) and (5.96) they converge smoothly to the values

C1

2a
= lim

M→∞
C1(Ma)

2a
= γ1

2π
, (5.112)

D̃2

2aξ
= lim

M→∞
D̃2(Ma)

2aξ
= 1

8
. (5.113)

The last result gives the universal value for the quadratic
spread 〈�x2〉 = D̃2 = 2aξ/8 of the Wannier function w̃(ma)
in the ML gauge (for arbitrary size Za of the unit cell it turns
into Zaξ/8 for the lowest band).

2. Universal scaling for Z=3

For Z = 3 the Bloch states and the Zak-Berry connection
are calculated analytically in Appendix H. In contrast to the
case Z = 2, two gap parameters �(ν)eiγ (ν)

, with ν = 1, 2, are
needed to fix the lattice parameters. They correspond to the
two gaps and contain different phases γ (ν) and different length
scales ξ (ν) = v

(ν)
F /(2�(ν) ). For the Zak-Berry phases of the

three bands we obtain approximately from (3.30) and (3.31)

γ1 ≈ γ
(1)
− = −γ (1) + πsγ (1), (5.114)

γ2 ≈ γ
(1)
+ + γ

(2)
− = γ (1) − γ (2) + πsγ (2) , (5.115)

γ3 ≈ γ
(2)
+ = γ (2), (5.116)

where, as shown in Fig. 5, it makes a negligible difference
for small gaps whether one takes these approximate formulas
to calculate the shift variables m̃α = m − 3

2π
γα or the pre-

cise definition (3.9) by integrating over the lattice Zak-Berry
connection.

According to (5.74) and (5.76), the scaling of the Wan-
nier functions of the first band involves the scaling functions
F−(ma/ξ (1); j/3; γ (1) ) and F̃−(m̃1a/ξ (1); j/3; γ (1) ), with j =
1, 2, 3. Similar to the first band for Z = 2, only a single length
scale ξ (1) appears, but the scaling is different since, for j �= 3,
linear combinations of the scaling functions FA,−(y; γ (1) ) and
FB,−(y; γ (1) ) [or F̃A,−(y; γ (1) ) and F̃B,−(y; γ (1) )] will occur
[see Eqs. (5.78) and (5.121)–(5.123)]. However, aside from
this no other change of the scaling appears.

Of particular interest is the scaling of the second band α =
2 where two different length scales occur for the up and down
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FIG. 6. Scaling of 1
3 |m wu,α (n, j)|2 for α = 2, Z = 3, γ (1) =

0.2π , γ (2) = 0.5π , and ξ (1) = 30a, as function of ma/ξ (2) for differ-
ent values of ξ (2) and j. According to (5.117) we obtain the universal
curve |F−(ma/ξ (2); 2 j/3, γ (2) )|2. The inset shows the scaling of
the first moment Cu,1α (Ma)/(Za) for α = 2, Z = 3 as function of
s2 = Ma/ξ (2). According to (5.127) we obtain the universal curve∫ s2

−s2
dy y−1G−(y; γ (2) ) with saturation at the correct value − γ (2)

2π
+

1
2 sγ (2) = 1

4 .

components. From (5.74)–(5.77) we find

1

3
|m wu,2(n, j)|2 ≈

∣∣∣∣F−

(
ma

ξ (2)
;

2 j

3
, γ (2)

)∣∣∣∣
2

, (5.117)

1

3
|m wd,2(n, j)|2 ≈

∣∣∣∣F+

(
ma

ξ (1)
;

j

3
, γ (1)

)∣∣∣∣
2

, (5.118)

1

3
|m̃2 w̃u,2(n, j)|2 ≈

∣∣∣∣F̃−

(
m̃2a

ξ (2)
;

2 j

3
, γ (2)

)∣∣∣∣
2

, (5.119)

1

3
|m̃2 w̃d,2(n, j)|2 ≈

∣∣∣∣F̃+

(
m̃2a

ξ (1)
;

j

3
, γ (1)

)∣∣∣∣
2

, (5.120)

i.e., the up and down components scale with ξ (2) and ξ (1),
respectively, corresponding to the gap at the top and bottom
of the second band. From (5.78) we find that Fτ involves the
following combinations of the scaling functions FA,τ and FB,τ :

Fτ

(
y; 1

3 , γ
) = −Fτ

(
y; 4

3 , γ
)

= 1
2 {FB,τ (y; γ ) −

√
3 FA,τ (y; γ )}, (5.121)

Fτ

(
y; 2

3 , γ
) = − 1

2 {FB,τ (y; γ ) +
√

3 FA,τ (y; γ )}, (5.122)

Fτ (y; 1, γ ) = −Fτ (y; 2, γ ) = −FB,τ (y; γ ), (5.123)

and similar equations for Fτ → F̃τ and FA/B,τ → F̃A/B,τ . The
scaling of the four functions (5.117)–(5.120) is demonstrated
in Fig. 6 (up component in AF gauge), Fig. 7 (down compo-
nent in AF gauge), Fig. 8 (up component in ML gauge), and
Fig. 9 (down component in ML gauge), for all components
j = 1, 2, 3, using the choice γ (1) = 0.2π and γ (2) = π/2.
Due to the special choice γ (2) = π/2 it turns out that

1
3 |m wu,2(n, 3)|2 ≈ |FB,−(y; π/2)|2 = 0 (5.124)

due to (5.117), (5.123), and (5.52), leading to the vanishing
j = 3 component in Fig. 6.

FIG. 7. Scaling of 1
3 |m wd,α (n, j)|2 for α = 2, Z = 3, γ (1) =

0.2π , γ (2) = 0.5π , and ξ (2) = 30a, as function of ma/ξ (1) for dif-
ferent values of ξ (1) and j. According to (5.118) we obtain the
universal curve |F+(ma/ξ (1); j/3, γ (1) )|2. The inset shows the scaling
of the first moment Cd,1α (Ma)/(Za) for α = 2, Z = 3 as function of
s1 = Ma/ξ (1). According to (5.128) we obtain the universal curve∫ s1

−s1
dy y−1G+(y; γ (1) ) with saturation at the correct value γ (1)

2π
= 1

10 .

In Figs. 10 and 11 we show the scaling of the total Wannier
functions |m w2(ma)|2 and |m̃2 w̃2(ma)|2 of the second band,
respectively. Since two different length scales appear, the ratio
ξ (1)/ξ (2) has to be kept fixed and universality is demonstrated
for different choices of ξ (2). Furthermore, since the scaling of
the up and down components contains a different sign factor
(−1)n−1 [see Eqs. (5.74)–(5.77)], the total Wannier function
is the sum or difference of the scaling functions of the up

FIG. 8. Scaling of 1
3 |m̃α w̃u,α (n, j)|2 for α = 2, Z = 3, γ (1) =

0.2π , γ (2) = 0.5π , and ξ (1) = 30a, as function of m̃2a/ξ (2) for differ-
ent values of ξ (2) and j. According to (5.119) we obtain the universal
curve |F̃−(m̃2a/ξ (2); 2 j/3, γ (2) )|2. The inset shows the scaling of the
second moment D̃u,2α (Ma)/(Za ξ (α) ) for α = 2, Z = 3 as function
of s2 = Ma/ξ (2). According to (5.129) we obtain the universal curve∫ s2

−s2
dy G̃−(y; γ (2) ) with saturation at the correct value 1

8 .
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FIG. 9. Scaling of 1
3 |m̃α w̃d,α (n, j)|2 for α = 2, Z = 3, γ (1) =

0.2π , γ (2) = 0.5π , and ξ (2) = 30a, as function of m̃2a/ξ (1) for differ-
ent values of ξ (1) and j. According to (5.120) we obtain the universal
curve |F̃+(m̃2a/ξ (1); j/3, γ (1) )|2. The inset shows the scaling of the
second moment D̃d,2α (Ma)/(Za ξ (α−1) ) for α = 2, Z = 3 as function
of s1 = Ma/ξ (1). According to (5.130) we obtain the universal curve∫ s1

−s1
dy G̃+(y; γ (1) ) with saturation at the correct value 1

8 .

and down components depending on the parity of n [see
Eqs. (5.79)–(5.80)]. For Z = 3 and α = 2 one obtains

1

3
|m w2(n, j)|2 =

∣∣∣∣F−

(
ma

ξ (2)
;

2 j

3
, γ (2)

)

+ (−1)n−1F+

(
ma

ξ (1)
;

j

3
, γ (1)

)∣∣∣∣
2

, (5.125)

1

3
|m̃2 w̃2(n, j)|2 =

∣∣∣∣F̃−

(
m̃2a

ξ (2)
;

2 j

3
, γ (2)

)

+ (−1)n−1F̃+

(
m̃2a

ξ (1)
;

j

3
, γ (1)

)∣∣∣∣
2

, (5.126)

leading to different scaling behavior for n even or odd.
In the insets of Figs. 6–9 we show the scaling of the first

moment (for AF gauge) and the second moment (for ML
gauge) of the up and down components of the second band.
According to (5.82) and (5.83), they follow the following scal-
ing laws with asymptotic behavior according to (5.94)–(5.97):

Cu,12(Ma)

Za
≈
∫ Ma

ξ (2)

−Ma
ξ (2)

dy y−1G−(y; γ (2) )

→ −γ (2)

2π
+ 1

2
sγ (2) , (5.127)

Cd,12(Ma)

Za
≈
∫ Ma

ξ (1)

−Ma
ξ (1)

dy y−1G+(y; γ (1) ) → γ (1)

2π
, (5.128)

D̃u,22(Ma)

Zaξ (2)
≈
∫ Ma

ξ (2)

−Ma
ξ (2)

dy G̃−(y; γ (2) ) → 1

8
, (5.129)

D̃d,22(Ma)

Zaξ (1)
≈
∫ Ma

ξ (1)

−Ma
ξ (1)

dy G̃+(y; γ (1) ) → 1

8
. (5.130)

The scaling of the total moments of the second band in the
AF and ML gauges are shown in the insets of Figs. 10 and 11,

FIG. 10. Scaling of 1
3 |m wα (n, j)|2 for α = 2, Z = 3, γ (1) =

0.2π , γ (2) = 0.5π , and ξ (1) = 2ξ (2), as function of ma/ξ (2) for
different values of ξ (2) and j, with n even (odd) for upper
(lower) panel. According to (5.125) we obtain the universal curve
|F−( ma

ξ (2) ; 2 j
3 , γ (2) ) ± F+( ma

ξ (1) ; j
3 , γ (1) )|2 for n even or odd. The inset

shows the scaling of the first moment C1α (Ma)/(Za) for α = 2, Z =
3 as function of s = Ma/ξ (2). According to (5.131), we obtain the
universal curve

∫ s
−s dy y−1G̃−(y; γ (2) ) + ∫ s/2

−s/2 dy y−1G̃−(y; γ (1) ) with

saturation at the correct value γ2
2π

= 7
20 , where γ2 has been evaluated

from (5.115).

respectively. According to (5.88) and (5.89) they follow from
the sum of the up and down components as

C12(Ma)

Za
≈
∫ s2

−s2

dy y−1G−(y; γ (2) )

+
∫ s2/r12

−s2/r12

dy y−1G+(y; γ (1) ) → γ2

2π
, (5.131)

D̃22(Ma)

Zaξ (2)
≈
∫ s2

−s2

dy G̃−(y; γ (2) )

+ r12

∫ s2/r12

−s2/r12

dy G̃+(y; γ (1) ) → 1

8
(1 + r12),

(5.132)

where we defined s2 = Ma/ξ (2) and r12 = ξ (1)/ξ (2). As a re-
sult, the ratio r12 of the two length scales has to be kept fixed
to see universal scaling by varying ξ (2).
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FIG. 11. Scaling of 1
3 |m̃α w̃α (n, j)|2 for α = 2, Z = 3, γ (1) =

0.2π , γ (2) = 0.5π , and ξ (1) = 2ξ (2), as function of m̃2a/ξ (2) for
different values of ξ (2) and j, with n even (odd) for upper
(lower) panel. According to (5.126) we obtain the universal curve
|F̃−( m̃2a

ξ (2) ; 2 j
3 , γ (2) ) ± F̃+( m̃2a

ξ (1) ; j
3 , γ (1) )|2 for n even or odd. The inset

shows the scaling of the second moment D̃2α (Ma)/(Za ξ (α) ) for
α = 2, Z = 3 as function of s = Ma/ξ (2). According to (5.132), we
obtain the universal curve

∫ s
−s dy G̃−(y; γ (2) ) + 2

∫ s/2
−s/2 dy G̃−(y; γ (1) )

with saturation at the correct value 1
8 (1 + ξ (1)/ξ (2) ) = 3

8 .

E. Properties of lattice Wannier functions on different scales

In this section we exhibit and compare the important prop-
erties of lattice Wannier functions on different scales, always
taking the case of small gaps where a clear separation of

length scales is present ξ � a (here, ξ denotes some typical
order of all ξ (ν), ν = 1, . . . , Z − 1). We distinguish three dif-
ferent regimes, called (F) (for free or gapless case), (S) (for
scaling region where the length scale ξ appears), and (E) (for
exponentially decaying region):

Regime (F) : |ma| � ξ, (5.133)

Regime (S) : |ma| � ξ, (5.134)

Regime (E) : |ma| � ξ . (5.135)

Regime (E) is the regime where all Wannier functions decay
exponentially with some universal preexponential power law
[see Eqs. (5.47)–(5.54)]. Therefore, in this regime the Wannier
functions have a negligible contribution to the moments and
the normalization. Regime (S) is the most important issue
of our work where the universal scaling on length scale ξ

is visible. As shown in the previous Sec. V D (see also the
insets of Figs. 6–11) all moments Crα (Ma) (with r � 1) and
D̃rα (Ma) (with r � 2 even) approach their asymptotic values
on the length scale ξ . Finally, the region (F) is the regime of
small length scales where the presence of the gap does not
play any role. As a consequence, the Wannier functions are
identical to the zero gap limit in this regime (although the
phases γ (ν) from the gap parameter occur in the ML gauge
due to the special choice of this gauge). As we will see in
the following, the regime (F) is only important for the correct
normalization of the Wannier function but is of no significance
for the scaling and provides a misleading visual impression of
the Wannier function.

In regime (F) of small scales |y| ∼ |ma|/ξ � 1, we can
use the y = 0 limit of the universal scaling functions, as
given by Eqs. (5.43)–(5.46). Using |eiγ − 1| = 2sγ sin(γ /2)
and |eiγ + 1| = 2 cos(γ /2) we find for the scaling functions
(5.78) the free result at zero gap

Fτ (y; s, γ ) ≈ − τ

π
sin(πs), (5.136)

F̃+(y; s, γ ) ≈ − 1

π
sin(πs + γ /2), (5.137)

F̃−(y; s, γ ) ≈ − 1

π
sγ cos(πs + γ /2). (5.138)

Inserting these scaling functions in (5.79) and (5.80) we get
for the lattice Wannier functions on small scales |ma| � ξ :

1√
Z

m wα (ma) ≈ 1

π

{
sin

(
πα

Z
m

)
− sin

(
π (α − 1)

Z
m

)}
, (5.139)

1√
Z

m̃α w̃α (ma) ≈ − 1

π

{
sγ (α) cos

(
πα

Z
m + 1

2
γ (α)

)
+ sin

(
π (α − 1)

Z
m + 1

2
γ (α−1)

)}
. (5.140)

It is a straightforward exercise to see that these are indeed the
exact results for the Wannier functions in the absence of a gap.
Only due to the special choice of the ML gauge, the phases
of the gap parameters enter in (5.140). In Fig. 12 we show
the square |wα (ma)|2 and |w̃α (ma)|2 of the Wannier functions
in the AF and ML gauges as function of m for the special
case Z = 3 and α = 2. As can be seen, the numerical lattice

result agrees perfectly with the analytical low-energy result
(5.79) and (5.80) for large ξ � a, as well as with the gapless
result (5.139) and (5.140) in the small-scale regime |ma| � ξ .
The scaling region (S) is not visible at all in this figure since
the Wannier functions are of order 1/m2 ∼ (a/ξ )2 � 1 in this
regime. Therefore, the visible impression of the square of the
Wannier functions is approximately the result in the absence
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FIG. 12. Comparison between |wα (ma)|2 (upper panel) and
|w̃α (ma)|2 (lower panel) as function of m for Z = 3 and α = 2 with
ξ (1) = 2ξ (2), γ (1) = 0.2π , and γ (2) = 0.5π with their Dirac coun-
terpart for a variety of ξ (2). The results for large ξ (2) � a are in
perfect agreement with the analytical results (5.139) and (5.140) at
zero gap. In the two insets we show the scaling of the normalization
C0α (Ma) = ∑M

m=−M |wα (ma)|2 and C̃0α (Ma) = ∑M
m=−M |w̃α (ma)|2

for α = 2. As can be seen, the normalization reaches unity already
on very small scales M ∼ Z for large ξ (2) � a.

of the gap. As shown in the left insets of Fig. 12 the region
(F) covers almost completely the correct normalization of the
Wannier functions, such that the scaling of the normalizations

C0α (Ma) =
M∑

m=−M

|wα (ma)|2, (5.141)

C̃0α (Ma) =
M∑

m=−M

|w̃α (ma)|2 (5.142)

approaches unity already on scales M ∼ O(Z ). In con-
trast, the region (S) contributes only the negligible order
∼(ξ/a)(a/ξ )2 ∼ a/ξ � 1 to the normalization.

We note that even the value at m = 0 is perfectly repro-
duced by the free results (5.139) and (5.140) and gives an
important contribution to the correct normalization. We obtain
[note that the right-hand side of (5.139) has to be expanded up
to linear order in m to get the correct result for m = 0]

wα (0) = 1√
Z

, (5.143)

w̃α (0) = 2

γα

√
Z

{
sγ (α) cos

(
γ (α)

2

)
+ sin

(
γ (α−1)

2

)}
.

(5.144)

With γα = γ (α−1) − γ (α) + πsγ (α) one finds a perfect agree-
ment with the results in Fig. 12 for ξ (α−1), ξ (α) � a.

In contrast to the normalization, all the interesting scaling
behavior on the length scale ξ shows up in the regime (S) and
are only visible when multiplying the Wannier function with
m in the AF gauge or m̃α in the ML gauge. In a nutshell, one
can express the subtle dependence of the Wannier functions
on the two length scales a and ξ roughly as follows (in AF
or ML gauge for any band). Replacing ma by the continuous
variable x and rescaling the Wannier function via

x ≡ ma, w(x) ≡ 1√
a
w(ma), (5.145)

the qualitative form can be stated as follows (omitting strongly
oscillating terms on scale Za which contribute a negligible
amount to the moments):

|w(x)|2 ∼ δa(x) f (x/ξ ) e−|x|/ξ , (5.146)

where δa(x) is a Lorentzian delta function on scale a, and f (y)
is a dimensionless function of order O(1):

δa(x) = 1

π

a

x2 + a2
, f (y) ∼ O(1). (5.147)

The most important fact is that the delta function covers the
complete normalization on scales x ∼ a,∑

m

|w(ma)|2 ∼
∫

dx |w(x)|2 ∼ f (0) ∼ O(1), (5.148)

whereas, due to the Lorentzian form of the delta function, the
scaling of all moments is determined from the region |x| � ξ

as

Cr ∼
∑

m

(ma)r |w(ma)|2 ∼
∫

dx xr |w(x)|r

∼ a
∫

dx xr−2 f (x/ξ ) e−|x|/ξ

∼ a ξ r−1
∫

|y|�1
dy yr−2 f (y) ∼ a ξ r−1 (5.149)

for all r � 1. Note that the region |x| ∼ a contributes only
the negligible amount ar � a ξ r−1 to the moment for r � 2.
Strictly speaking, this argument is only rigorous for even
values of r since in this case all terms of the integrand are
positive. For odd values of r it can happen that the prefactor
in front of the leading term is zero. This happens for the
scaling of the odd moments D̃2l+1,α (Ma) and C̃2l+1,α (Ma)
in the ML gauge, which do not show universality but are of
no importance since their asymptotic value is of negligible
order ∼a2 ξ 2l−1 for l > 0 [see the detailed discussion after
Eq. (5.87)]. In contrast, in the AF gauge the odd moments
scale according to the estimate (5.149) for all r � 1 and their
order of magnitude is fully determined by the scaling region
(S) (even for r = 1). They can be written as

C2l+1 ∼ a
∫

0<y�1
dy y2l−1 { f (y) − f (−y)} ∼ a ξ 2l , (5.150)

such that convergence is guaranteed at y = 0 even for l = 0.
Importantly, in the AF gauge, the function f (y) ≈ f (−y) is
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nearly symmetric for |y| � 1 [see (5.139)]. Therefore, the re-
gion of small scales does not contribute and the odd moments
show universal scaling from the regime (S) due to a significant
asymmetry of the scaling function f (y) for |y| ∼ O(1) [see the
discussion after Eq. (5.87)]. For example, it is quite remark-
able that the first moment in the AF gauge is fully determined
by the nearly invisible asymmetry of the Wannier function on
large scales |ma| ∼ ξ � a, whereas the visible impression of
a symmetric shape on small scales |ma| ∼ O(a) would predict
an incorrect vanishing first moment.

The scaling behavior of the moments is demonstrated nu-
merically in the insets of Figs. 1(a), 1(b), 10, and 11, where
it is shown that the first moments C1α (Ma) in the AF gauge
and the second moments D̃2α (Ma) in the ML gauge scale
indeed smoothly to their universal asymptotic values on the
scale Ma ∼ ξ and obtain a negligible contribution from the
small-scale regime (F). Similar numerical evidence can be
shown for all the other higher moments Crα (Ma) with r � 1
and D̃2l,α (Ma) with l � 1.

VI. NON-ABELIAN WANNIER FUNCTIONS

In this final section we analyze another class of lattice Wan-
nier functions which arise from a special non-Abelian gauge
transformation which mixes the Bloch states from all bands
α = 1, . . . , ν below a given one labeled by ν. In particular, the
non-Abelian gauge of maximally localized Wannier functions
has been proposed in the literature and the connection of
their spread to the polarization fluctuations has been put for-
ward. Here we analyze the universal scaling properties of the
non-Abelian lattice Wannier functions and find the interesting
result that they scale up to a surprisingly high precision ac-
cording to the Dirac Wannier function of the lower band of the
Dirac model corresponding to gap ν or, equivalently, similar
to the upper part of the Wannier function of band ν as shown
in Fig. 8. In Sec. VI A we summarize the general definition
of the non-Abelian gauge of maximal localization and show
our central result of its universal scaling. The technical part
of the construction of this non-Abelian gauge is outlined in
Sec. VI B, supplemented by three Appendices I, J, and K. We
show this construction in the main part of this work since it
provides a very efficient way to analyze non-Abelian gauges
analytically via the Wilson propagator which, up to our best
knowledge, has not been reported before.

A. Non-Abelian lattice gauge and summary of results

So far we have discussed Abelian gauge transformations
for a fixed band index α by allowing for a phase factor eiϕkα to
transform the Bloch state as

|ukα〉 → |ũkα〉 = eiϕkα |ukα〉, (6.1)

where ϕkα = ϕk+ 2π
Za ,α is a periodic phase variable. In multi-

band systems, more general non-Abelian gauge transfor-
mations have been discussed (see Ref. [10] or reviews in
Refs. [3,9]). These gauge transformations mix the Bloch states
of all band indices α = 1, . . . , ν up to a certain value ν (defin-
ing the valence band if a chemical potential is present in gap

ν) via a k-dependent unitary transformation as∣∣û(ν)
kα

〉 = ν∑
α′=1

|ukα′ 〉(Û (ν)
k )α′α. (6.2)

Here, Û (ν)
k is a unitary ν × ν matrix which is periodic under

k → k + 2π
Za :

Û (ν)
k

(
Û (ν)

k

)† = 1, Û (ν)
k+ 2π

Za

= Û (ν)
k . (6.3)

From the normalization (2.13) of the Bloch states and the
unitarity of Û (ν)

k we note the properties〈
û(ν)

kα

∣∣û(ν)
kα′
〉 = δαα′ , (6.4)

ν∑
α=1

∣∣û(ν)
kα

〉〈
û(ν)

kα

∣∣ =
ν∑

α=1

|ukα〉〈ukα|. (6.5)

Although the Bloch states |û(ν)
kα

〉 are no longer eigenstates
of the Bloch Hamiltonian hk as defined in (2.10), the corre-
sponding non-Abelian Wannier functions

ŵ(ν)
α (ma) = Za

2π

∫ π
Za

− π
Za

dk û(ν)
kα

( ja) eikma (6.6)

have interesting properties [10] which we summarize in the
following.

Defining the Zak-Berry connection and the geometric ten-
sor in the non-Abelian case analog to (3.1) and (3.3) as(

Â(ν)
k

)
αβ

= (
Â(ν)

k

)∗
βα

= i
〈
û(ν)

kα

∣∣∂kû(ν)
kβ

〉
, (6.7)(

Q̂(ν)
k

)
αβ

= (
Q̂(ν)

k

)
βα

(6.8)

= 〈
∂kû(ν)

kα

∣∣∂kû(ν)
kβ

〉
δαβ − ∣∣〈û(ν)

kα

∣∣∂kû(ν)
kβ

〉∣∣2, (6.9)

and introducing the following definition for the non-Abelian
Zak-Berry phase matrix

γ̂
(ν)
αβ =

∫ π
Za

− π
Za

dk
(
Â(ν)

k

)
αβ

, (6.10)

together with γ̂ (ν)
α = γ̂ (ν)

αα for the diagonal components, one
finds the following useful transformation properties:

Â(ν)
k = (

Û (ν)
k

)†
A(ν)

k Û (ν)
k + i

(
Û (ν)

k

)†
∂kÛ

(ν)
k , (6.11)

ν∑
α=1

γ̂ (ν)
α =

ν∑
α=1

γα − 2π wn
[
detÛ (ν)

k

]
, (6.12)

ν∑
α,β=1

(
Q̂(ν)

k

)
αβ

=
ν∑

α,β=1

(Qk )αβ, (6.13)

where wn[detÛ (ν)
k ] denotes the winding number of the de-

terminant of Û (ν)
k . Here, A(ν)

k is a ν × ν matrix with matrix
elements (A(ν)

k )αβ = (Ak )αβ given by the Zak-Berry connec-
tion (3.1) from all band indices α, β = 1, . . . , ν.

Furthermore, defining the moments of the Wannier func-
tions in the non-Abelian case analog to (4.16) as

Ĉ(ν)
rα = 〈xr〉(ν)

α =
∑

m

(ma)r
∣∣ŵ(ν)

α (ma)
∣∣2 (6.14)

= Za

2π

∫ π/Za

−π/Za
dk

〈
û(ν)

kα

∣∣(i∂k )r
∣∣û(ν)

kα

〉
, (6.15)
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and introducing the following definitions for the sum over the
positions and the quadratic spreads

〈x〉(ν) =
ν∑

α=1

Ĉ(ν)
1α , (6.16)

〈�x2〉(ν) =
ν∑

α=1

(
Ĉ(ν)

2α − (
Ĉ(ν)

1α

)2)
, (6.17)

we find from (6.15) and the above definitions after some
straightforward algebra

〈x〉(ν)

Za
=

ν∑
α=1

γ̂ (ν)
α

2π
, Ĉ(ν)

1α = Za

2π
γ̂ (ν)

α , (6.18)

〈�x2〉(ν) = Za

2π

ν∑
α,β=1

∫ π
Za

− π
Za

dk

{(
Q̂(ν)

k

)
αβ

+
[(

Â(ν)
k

)
αβ

− Za

2π
γ̂

(ν)
αβ

]2

+ (1 − δαβ )

(
Za

2π
γ̂

(ν)
αβ

)2
}

. (6.19)

Since the first term on the right-hand side of (6.19) is gauge in-
variant according to (6.13), and the last two terms are positive,
the quadratic spread 〈�x2〉(ν) is minimal in the non-Abelian
gauge of maximal localization (NA-ML), defined by a k-
independent and band-diagonal Zak-Berry connection(

Â(ν)
k

)
αβ

= Za

2π
γ̂

(ν)
αβ = Za

2π
γ̂ (ν)

α δαβ. (6.20)

As a consequence, using the surface fluctuation theorem
(3.51), we find that the minimal quadratic spread in the NA-
ML gauge is related to the boundary charge fluctuations as

lp
(
�Q(ν)

B

)2 = 1

Za
〈�x2〉(ν)

min =
ν∑

α=1

D̂(ν)
2α , (6.21)

where we defined the moments

D̂(ν)
rα =

∑
m

(
m̂(ν)

α a
)r∣∣ŵ(ν)

α (ma)
∣∣2 (6.22)

relative to the shift by the first moment, i.e., with

m̂(ν)
α = m − Ĉ(ν)

1α = m − Za

2π
γ̂ (ν)

α . (6.23)

Most importantly, the surface fluctuation theorem (6.21) for-
mulated in terms of the non-Abelian quadratic spread shows
that the NA-ML gauge is unique in the sense that the bound-
ary charge fluctuations can be written as the sum over the
second moments of the Wannier functions of the individual
bands. Within the Abelian ML gauge this is not possible, as
already discussed after (3.57). For the boundary charge itself
it seems to be similar at first sight to the Abelian AF and ML
gauges, where it is also related to the sum over the Zak-Berry
phases of the individual bands. However, as we have seen in
Sec. III C 1, a subtle cancellation procedure happens such that
the sum over the Zak-Berry phases of the individual bands
α = 1, . . . , ν is related to the phase γ (ν) of the gap parameter
of gap ν [see the central equation (3.50)]. As we will see in the
following, this is not needed in the non-Abelian gauge where

all Zak-Berry phases γ̂ (ν)
α are equally spaced and related to

γ (ν) in the following universal way:

γ̂ (ν)
α = −1

ν
γ (ν)

+ π

ν

{
ν − 2α + 1 for ν even,

ν − 2α + 1 + sγ (ν) for ν odd (6.24)

such that −π < γ̂ (ν)
α < π .

Consistent with the way the fluctuations are distributed
among the bands in the non-Abelian case, we will find that all
Wannier functions ŵ(ν)

α in the NA-ML gauge scale in the same
way according to the upper component w̃u,ν of the Wannier
function in the Abelian ML gauge for band ν. The central
result shown in the next Sec. VI B is the precise relation

ŵ(ν)
α (ma) ≈ 1√

ν
eiθ (ν)

α a
√

Z
∑

p

w̃
(ν)
−,p(m̂(ν)

α a) eipk(ν)
F ma, (6.25)

where eiθ (ν)
α is some unimportant phase factor. Up to this phase

factor, we find in comparison to (4.52) the central result that
all Wannier functions ŵ(ν)

α (ma) in the NA-ML gauge scale
precisely as 1√

ν
w̃u,ν (ma) in the Abelian ML gauge, provided

one replaces γν → γ̂ (ν)
α in the shift variable such that m̃ν →

m̂(ν)
α . Using the scaling property (5.76) of the upper compo-

nent of the Wannier function in the ML gauge, this gives the
following scaling for all non-Abelian Wannier functions:

1

Z

∣∣m̂(ν)
α ŵ(ν)

α (n, j)
∣∣2 ≈ 1

ν

∣∣∣∣F̃−

(
m̂(ν)

α a

ξ (ν)
;
ν j

Z
, γ (ν)

)∣∣∣∣
2

. (6.26)

As a consequence, defining the following scaling functions for
the non-Abelian moments

D̂(ν)
rα (Ma) =

M∑
m=−M

(
m̂(ν)

α a
)r ∣∣ŵ(ν)

α (ma)
∣∣2, (6.27)

we find from (5.83) and (5.96) the universal scaling

D̂(ν)
rα (Ma)

Za(ξ (ν) )r−1
≈ 1

ν

∫ Ma
ξ (ν)

− Ma
ξ (ν)

dy yr−2G̃−(y; γ (ν) ), (6.28)

with the following asymptotic value for the second moment:

D̂(ν)
2α (Ma)

Zaξ (ν)
→ 1

8ν
. (6.29)

The universal relation (6.25) of all non-Abelian Wannier
functions α = 1, . . . , ν to the Dirac Wannier function of the
lower band of the Dirac theory corresponding to gap ν is one
of the most important results of this work. It shows that all
non-Abelian Wannier functions scale independent of the band
index in the same way and depend only on the low-energy
properties of the model, provided that the condition of small
gaps is fulfilled. Up to our best knowledge, the non-Abelian
Wannier functions have not been studied analytically in the
literature and their universal scaling behavior for all general-
ized AAH models in terms of a single length scale ξ (ν) has not
been reported before.
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FIG. 13. Scaling of ν

Z |m̂(ν )
α ŵ(ν )

α (n, j)|2 for α = 1, 2 (upper and
lower panels), ν = 2, Z = 3, γ (1) = 0.2π , γ (2) = 0.5π , and ξ (1) =
30a, as function of m̂(ν )

α a/ξ (ν ) for different values of ξ (2) and
j = 1, 2, 3. According to (6.26) we obtain the universal curve
|F̃−(m̂(2)

α a/ξ (2); 2 j/3, γ (2) )|2, i.e., the same scaling for both α =
1, 2 as for 1

3 |m̃2 w̃u,2(ma)|2 as function of m̃2a/ξ (2) (see Fig. 8).
The two insets show the scaling of the corresponding second mo-
ments νD̂(ν )

2α (Ma)/(Zaξ (ν ) ) as function of s2 = Ma/ξ (2). According
to (6.28) and (6.29) we obtain the universal curve

∫ s2
−s2

dy G̃−(y; γ (2) )

with saturation at the correct value 1
8 . The scaling is independent of

α = 1, 2 and identical to the scaling of the second moment D̃u,22(Ma)
as shown in the inset of Fig. 8.

For the special case Z = 3 and ν = 2 we demonstrate in
Fig. 13 the universal scaling (6.26) of the Wannier functions
ŵ(ν)

α (ma) in NA-ML gauge and the corresponding scaling
(6.28) of the second moments D̂(ν)

2α (Ma). Indeed, we find that
the scaling is independent of α = 1, 2 and follows the scaling
of the upper part w̃u,ν (ma) of the Wannier function and its
second moment in ML gauge for band α = ν (compare with
Fig. 8).

We note that also the winding number of the determi-
nant detÛ (ν)

k contains interesting information about the total
number of edge states N (ν)

E present in all gaps ν ′ = 1, . . . , ν.
According to (6.12), the winding number controls the change
of the sum over all Zak-Berry phases from the bands α =
1, . . . , ν in the gauge transformation. On the other hand, we

can calculate the sum over the Zak-Berry phases in the AF and
NA-ML gauge separately by using (3.30), (3.31), and (6.24):

ν∑
α=1

γα = −γ (ν) + π

ν∑
ν ′=1

sγ (ν′ ) , (6.30)

ν∑
α=1

γ̂ (ν)
α = −γ (ν) + π δν,oddsγ (ν) . (6.31)

Since an edge state is present in gap ν ′ if sγ (ν′ ) > 0, we get in
addition for the total number of edge states the expression

N (ν)
E = 1

2

ν∑
ν ′=1

(1 + sγ (ν′ ) ) = 1

2

(
ν +

ν∑
ν ′=1

sγ (ν′ )

)
. (6.32)

Comparing these equations we find the following relation
between the number of edge states and the winding number
of detU (ν)

k ,

N (ν)
E = wn

[
detÛ (ν)

k

] + 1
2 (ν + δν,oddsγ (ν) ), (6.33)

which is obviously an integer number for both ν even or
odd. This relation can be viewed as a bulk-boundary corre-
spondence relating the total number of edge states up to a
certain gap ν to a winding number defined in terms of the
bulk states. In contrast to other topological invariants defined
in one-dimensional systems, this relation holds independent
of any symmetry constraints and includes all edge states,
independent of whether they are at zero energy or not.

Using (3.46) and (3.49), we finally find for the total bound-
ary charge without or with including the edge states

ν∑
α=1

QB,α = − 1

2π

ν∑
α=1

γα − 1

2
ν + ν

2Z
, (6.34)

Q(ν)
B = − 1

2π

ν∑
α=1

γ̂ (ν)
α + 1

2
δν,oddsγ (ν) + ν

2Z
. (6.35)

The last result states the surface charge theorem in terms of
the non-Abelian Zak-Berry phases γ̂ (ν)

α or the first moments
Ĉ(ν)

1α = Za
2π

γ̂ (ν)
α of the non-Abelian Wannier functions.

B. Explicit construction of the NA-ML gauge

We proceed in this section with the explicit construction
of the NA-ML gauge and the analytical proof of the central
identity (6.25) relating all non-Abelian Wannier functions
α = 1, . . . , ν to the upper part of the Wannier function in the
Abelian ML gauge for the highest band ν. The NA-ML gauge
can be constructed explicitly via the unitary transformation

Û (ν)
k = U (ν)(k, k0)V (ν)e−ik Za

2π
γ̂ (ν)

, (6.36)

where

U (ν)(k1, k2) = Pei
∫ k1

k2
dkA(ν)

k (6.37)

denotes the Wilson propagator along the path from k2 → k1

(here, P denotes the k-ordering operator analog to the time-
ordering operator), k0 is an arbitrary reference point, and V (ν)

is the unitary transformation which diagonalizes the Wilson
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loop operator

eiγ̂ (ν) = (V (ν) )†U (ν)
L V (ν), (6.38)

U (ν)
L ≡ U (ν)(k0 + 2π

Za
, k0). (6.39)

Indeed, using the differential equation

i∂kÛ
(ν)
k = −A(ν)

k Û (ν)
k + Û (ν)

k

Za

2π
γ (ν), (6.40)

and multiplying it from the left with (U (ν)
k )†, one obtains

directly the condition (6.20) defining the NA-ML gauge. Fur-
thermore, using the group property of the Wilson propagator
together with its periodicity (following from the periodicity of
the Zak-Berry connection A(ν)

k = A(ν)
k+ 2π

Za

)

U (ν)(k1, k2) = U (ν)(k1, k3)U (ν)(k3, k2), (6.41)

U (ν)(k1, k2) = U (ν)

(
k1 + 2π

Za
, k2 + 2π

Za

)
, (6.42)

we find periodicity of the non-Abelian gauge transformation

Û (ν)
k+ 2π

Za

= U (ν)

(
k + 2π

Za
, k0 + 2π

Za

)
Û (ν)

L V (ν)e−iγ̂ (ν)
e−ik Za

2π
γ̂ (ν)

= U (ν)(k, k0)V (ν)e−ik Za
2π

γ̂ (ν) = Û (ν)
k . (6.43)

Here we used in the first step the group property (6.41), and
in the second step the periodicity (6.42) together with the
definition (6.38) of the transformation V (ν).

We note that the non-Abelian Zak-Berry phases γ̂ (ν)
α are

independent of the choice k0 of the reference point since the
Wilson loop operator (U (ν)

L )′ for another reference point k′
0 is

related to U (ν)
L via a unitary transformation(

U (ν)
L

)′ = U (ν)(k0, k′
0)U (ν)

L U (ν)(k0, k′
0)†, (6.44)

where we used the group property (6.41) and the periodicity
(6.42). This means that the unitary operator (V (ν) )′ with re-
spect to the reference point k′

0 is related to V (ν) by

(V (ν) )′ = U (ν)(k′
0, k0)V (ν). (6.45)

As a consequence, up to trivial phase factors to define the
unitary transformation V (ν), we find that the unitary transfor-
mation Û (ν)

k is unique and independent of k0.
For convenience, we will choose in the following k0 =

−π/(2Za) as reference point and discuss the two intervals (I)
k ∈ [−π/(2Za), π/(2Za) and (II) k ∈ [π/(2Za), 3π/(2Za)]
separately since they are related to two different Dirac theories
(see Fig. 14). Using (2.8), (2.30), and (2.31), we get for the
relation between the Bloch and Dirac states in this convention

(I) : ν even, k = q

ukα (ma) = 1√
Z

∑
p=±

χ (ν)
qτ p eipk(ν)

F ma, (6.46)

(II) : ν odd, k = π

Za
+ q

ukα (ma) = e−i π
Z m 1√

Z

∑
p=±

χ (ν)
qτ p eipk(ν)

F ma, (6.47)

where in both cases |q| < π
2Za . By convention we have added

two trivial Dirac theories, one for α = 1 in subinterval (I) with

FIG. 14. Sketch of the typical band structure for the interval
− π

Za < k < 3π

2Za for Z = 5. The two subintervals (I) with − π

Za < k <
π

2Za and (II) with π

Za < k < 3π

2Za are indicated in violet and green
color, respectively. The lowest (highest) bands in subinterval (I) [(II)]
(corresponding to ν = 0 and Z , respectively) are characterized by
k-independent Bloch states ukα . Four different k values are shown,
indicating the block structures (6.61) and (6.62) of the lattice Wil-
son propagator for ν even or odd in the two subintervals. Here, k1

corresponds to U (ν )(k1, − π

2Za ) for ν = 4 even in subinterval (I) [see
the first equation of (6.61)], k2 to U (ν )(k2,− π

2Za ) for ν = 3 odd in
subinterval (I) [see the first equation of (6.62)], k3 to U (ν )(k3,

π

2Za ) for
ν = 4 even in subinterval (II) [see the second equation of (6.61)], and
k4 to U (ν )(k4,

π

2Za ) for ν = 3 odd in subinterval (II) [see the second
equation of (6.62)].

ν = 0 and τ = +, and another for α = Z in subinterval (II)
with ν = Z and τ = −. In these two cases the Bloch states
are given by the gapless ones and are independent of k, such
that the Zak-Berry connection is zero.

The non-Abelian Wannier functions are then split as

ŵ(ν)
α (ma) = ŵ

(ν)
I,α (ma) + ŵ

(ν)
II,α (ma), (6.48)

ŵ
(ν)
I,α (ma) = Za

2π

∫ π
2Za

− π
2Za

dk û(ν)
kα

(ma) eikma, (6.49)

ŵ
(ν)
II,α (ma) = Za

2π

∫ 3π
2Za

π
2Za

dk û(ν)
kα

(ma) eikma, (6.50)

where the transformed Bloch states follow from (6.2) and
(6.36) as

û(ν)
kα

(ma) eikma

= eikm̂(ν)
α a

ν∑
α′=1

ukα′ (ma)

[
U (ν)

(
k,− π

2Za

)
V (ν)

]
α′α

.

(6.51)

It turns out to be useful to define the propagators when cross-
ing the two subintervals as

U (ν)
I = U (ν)

( π

2Za
,− π

2Za

)
, (6.52)

U (ν)
II = U (ν)

(
3π

2Za
,

π

2Za

)
, (6.53)
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and use

U (ν)
(

k,− π

2Za

)
= U (ν)

(
k,

π

2Za

)
U (ν)

I (6.54)

for the representation of the propagator within subinterval (II).
The Wilson loop operator defining the transformation V (ν) via
(6.38) can be expressed as

U (ν)
L = U (ν)

II U (ν)
I . (6.55)

As outlined in detail in Appendix I one can extend the
integration limits in (6.49) and (6.50) to ±∞ by using the
k-independent values of the Bloch states and the propagator
at the edges of the two subintervals. This means that the
propagators for the two subintervals are extended as

(I) :U (ν)

(
k,− π

2Za

)
→

{
U (ν)

I for k > π
2Za ,

1 for k < − π
2Za ,

(6.56)

(II) :U (ν)

(
k,

π

2Za

)
→

{
U (ν)

II for k > 3π
2Za ,

1 for k < π
2Za .

(6.57)

The additional contributions are shown to cancel each other
when taking the sum (6.48) up to trivial delta functions which
are subtracted as usual both in lattice and Dirac theories.

Since the Zak-Berry connection has the block structure
(3.28) in terms of the Dirac Zak-Berry connection, we obtain
a corresponding block structure for the propagator

(I) :U (ν)

(
k,− π

2Za

)
α1α2

= δν1ν2 (U (ν1 )
q )τ1τ2 , (6.58)

(II) :U (ν)

(
k,

π

2Za

)
α1α2

= δν1ν2 (U (ν1 )
q )τ1τ2 , (6.59)

where U (ν)
q denotes the Wilson propagator in Dirac theory

with respect to reference point q = −∞:

U (ν)
q = Pei

∫ q
−∞ dq′A(ν)

q′ . (6.60)

Here, A(ν)
q denotes the 2 × 2 matrix of the Dirac Zak-Berry

connection (3.18). According to Fig. 14 we then get the fol-
lowing block structure of the two propagators for ν even and
odd in the corresponding subintervals [where we use k = q
for subinterval (I) and k = π

Za + q for subinterval (II)]

ν even :

U (ν)

(
k,− π

2Za

)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

U (ν)
q−

U (ν−2)
q

U (ν−4)
q

. . .

U (2)
q

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, U (ν)

(
k,

π

2Za

)
=

⎛
⎜⎜⎜⎝

U (ν−1)
q

U (ν−3)
q

. . .

U (1)
q

⎞
⎟⎟⎟⎠,

(6.61)

ν odd :

U (ν)

(
k,− π

2Za

)
=

⎛
⎜⎜⎜⎜⎝

U (ν−1)
q

U (ν−3)
q

. . .

U (2)
q

1

⎞
⎟⎟⎟⎟⎠, U (ν)

(
k,

π

2Za

)
=

⎛
⎜⎜⎜⎜⎜⎝

U (ν)
q−

U (ν−2)
q

U (ν−4)
q

. . .

U (1)
q

⎞
⎟⎟⎟⎟⎟⎠,

(6.62)

where U (ν)
q− is the Abelian Dirac propagator for the upper part

of the last band ν, which can be expressed with the help of
(5.10) and (5.9) as

U (ν)
q− = ei

∫ q
−∞ dq′A(ν)

q′− = eiφ(ν)
q− e−iγ (ν)

. (6.63)

The 2 × 2 matrix U (ν)
q of the Wilson propagator in Dirac

theory is calculated in Appendix J. Most importantly, it is
shown that this propagator transforms the Dirac states as

χ̂ (ν)
qτ p ≡

∑
τ ′

χ
(ν)
qτ ′ p (U (ν)

q )τ ′τ = δp,−τ , (6.64)

i.e., leads to a q-independent contribution. This has the ef-
fect that, after inserting (6.46), (6.47), (6.51), (6.54), (6.61),
and (6.62) in (6.49) and (6.50) (with k = q and k = π

Za + q,
respectively, and the q integrals extending to ±∞), all prop-

agators U (ν ′ )
q give rise to integrands where the q dependence

of the Dirac states disappears and only a purely oscillating
exponential remains in the integrand. This leads to unphysical
delta function contributions which can be disregarded (see
Appendix I). The only remaining terms are those from the
Abelian propagators U (ν)

q− , leading to the following result for
the two subintervals:

ŵ
(ν)
I,α (ma) ≈ δν,even

Za

2π

∫
dq eiqm̂(ν)

α auqν (ma)U (ν)
q− (V (ν) )να,

(6.65)

ŵ
(ν)
II,α (ma) ≈ δν,odd

Za

2π

∫
dq ei( π

Za +q)m̂(ν)
α a

× u π
Za +q,ν (ma)U (ν)

q−
(
U (ν)

I V (ν)
)
να

. (6.66)
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Inserting (6.46), (6.47), (6.63), and using the definition (4.34)
of the Dirac Wannier function in ML gauge, we find

ŵ
(ν)
I,α (ma) ≈ δν,even e−iγ (ν)

(V (ν) )να

× a
√

Z
∑

p

w̃
(ν)
−,p

(
m̂(ν)

α

)
eipk(ν)

F ma, (6.67)

ŵ
(ν)
II,α (ma) ≈ δν,odd e−iγ (ν)

e−i 1
2 γ̂ (ν)

α

(
U (ν)

I V (ν))
να

× a
√

Z
∑

p

w̃
(ν)
−,p

(
m̂(ν)

α

)
eipk(ν)

F ma. (6.68)

In Appendix K we analyze the unitary transformations V (ν)

and U (ν)
I V (ν), with the result that all matrix elements consist

of phase factors multiplied with 1/
√

ν (from the normaliza-
tion). As a result, we find the central result (6.25), relating
all Wannier functions in NA-ML gauge to the Dirac Wannier
function corresponding to the upper part of the highest band
in ML gauge. In addition, we will analyze in Appendix K the
spectrum of the Wilson loop operator (6.55) and find indeed
that all non-Abelian Zak-Berry phases are equidistantly dis-
tributed according to (6.24).

VII. SUMMARY AND OUTLOOK

The universal scaling properties of Wannier functions
found in this work are fundamental in several respects. Of
particular interest is the high-precision value of the univer-
sal scaling even for rather large gaps, as it appears most
prominently in the non-Abelian gauge of maximal localiza-
tion (NA-ML) (see Fig. 13). The NA-ML gauge has been
put forward in the literature [3,9,10] since in this gauge the
total quadratic spread probes the fluctuations of the bulk po-
larization which, according to the surface fluctuation theorem
[18], is related to the fluctuations of a directly measurable
observable, the boundary charge Q(ν)

B . Importantly, Q(ν)
B is the

total boundary charge corresponding to a chemical potential
located in gap ν, in contrast to the boundary charge QB,α

of a single band α which is not measurable. The observable
Q(ν)

B probes essentially low-energy properties of the system
since the low-lying states are occupied and contribute a fixed
amount to the boundary charge which can not fluctuate. This
characteristic feature of the boundary charge is directly linked
to our result that the Wannier functions in the NA-ML gauge
are probing low-energy properties and reveal universal scaling
to high precision. This motivates further investigations of the
NA-ML gauge in other multichannel or higher-dimensional
systems to find similar universal scaling assuming the small
gap limit.

Our proposal of how to define Wannier functions for
field-theoretical Dirac models opens up pathways to de-
scribe universal scaling properties of Wannier functions for
a whole class of multiband lattice models very efficiently
via a simplified continuum model with a low number of
bands only. We have exemplified this here for a two-band
Dirac model in 1+1 dimensions, covering the whole class of
one-dimensional tight-binding models with nearest-neighbor
hopping, one orbital per site, and generic periodic onsite
potential and hopping modulation. These are special mod-
els in the sense that the gap opens up at a single point in
quasimomentum space [in our case either at k = 0 or at k =

±π/(Za)]. This gives rise to a field-theoretical low-energy
model consisting of one pair of a slowly varying right and left
movers. In other more general multichannel cases or models
with longer-ranged hopping, several anticrossings can appear
in quasimomentum space, each of them characterized by the
presence of several channels. The same will apply to higher-
dimensional systems. However, also for these more general
cases, the boundary charge and the Wannier functions in the
NA-ML gauge are expected to probe only the low-energy
properties of the system provided that all gap openings close
to the Fermi level remain small. Therefore, based on our pro-
posal of how to define Wannier functions within continuum
field theories, it will be of high interest to study the Wannier
functions of more general field-theoretical models, consisting
of multichannel Dirac models or several Dirac models which
are coupled to each other (each of them corresponding to one
anticrossing point).

It is a quite remarkable result of our work that field-
theoretical models also allow for the definition of the
Zak-Berry connection and the geometric tensor, although
these are quantities which are used in lattice models to
characterize global topological properties of the whole band
structure in a nonlocal way. In contrast, a field theory can
only characterize the physics close to the Fermi level where
the gap opens, i.e., it probes essentially local aspects of the
band structure. However, this does not mean that a field theory
is per se not capable of characterizing topological properties
of lattice models. If the gaps at the bottom and the top of a
given band are both small, it is possible to set up two inde-
pendent field theories around the two gaps and supplement
them by appropriate asymptotic conditions to connect them in
a unique way. This allows to obtain full control over the whole
Zak-Berry connection in the lattice theory via the Zak-Berry
connection defined in the field-theoretical models. For the
lattice models studied in this work the band structure in the
middle of the bands is characterized by free plane waves,
leading naturally to the choice of asymptotically free plane
waves in the corresponding field-theoretical models. For more
general multichannel models, as well as in the presence of
spin-orbit interaction and Zeeman fields, generalizations have
to be studied for small gaps by expanding around a different
reference system [called H0 in our work, see Eq. (2.2)]. This
reference system will again prescribe certain asymptotic con-
ditions for the field theory far away from the gap, which can
be used to set up unique correlations between gaps opening
up at different energies. Therefore, we expect that our way
to describe universal properties of Wannier functions and the
boundary charge via low-energy models will be also of inter-
est for the description of global topological aspects in more
general models.
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APPENDIX A: GAPLESS CASE, NORMALIZATION,
AND COMPLETENESS RELATION

Here we show that the normalization and completeness re-
lations (2.13) and (2.14) are consistent with the corresponding
ones in the low-energy region, given by (2.35) and (2.36). To
achieve this we first discuss the gapless case and show that
(2.29) reproduces the correct result for the eigenstates of H0.

For the gapless case δvm = δtm = 0 the Hamiltonian hk

given by (2.10) has the form

hk = −t
Z∑

j=1

(| j + 1〉〈 j|e−ika + | j〉〈 j + 1|eika). (A1)

One obtains straightforwardly for the dispersion and the
eigenfunctions

εkα = −2t cos

(
ka + 2π

Z
nkα

)
, (A2)

ukα ( ja) = 1√
Z

ei 2π
Z nkα j, (A3)

where nkα are Z integers in some interval of size Z . To
achieve the ordering ε

(1)
k < ε

(2)
k < · · · < ε

(Z )
k in the reduced

zone scheme − π
Za < k < π

Za , we choose nk1 = 0, nk2 =
−sgn(k), nk3 = sgn(k), nk4 = −2sgn(k), nk5 = 2sgn(k),
etc., which gives

nkα = 1

2
sgn(k)

{−α for α even,
α − 1 for α odd (A4)

leading to

ukα ( ja) = 1√
Z

{
e−isgn(k) π

Z α j for α even,

eisgn(k) π
Z (α−1) j for α odd.

(A5)

According to (2.30) and (2.31) it is straightforward to show
that this corresponds precisely to the choice χ (ν)

qτ p = δp,sgn(qτ )

in Dirac theory, as stated in (2.29).
To check the normalization (2.13) we prove (2.40) rigor-

ously for any integers r, s � 0 via the relations (2.30) and
(2.31). Except for the lower half of the lowest band (i.e., for
|k| < π

2Za and α = 1) or the upper half of the highest band
(i.e., for |k| > π

2Za and α = Z), the gaps with even ν describe
the region |k| < π

2Za , whereas the gaps with odd ν correspond
to |k| > π

2Za . Therefore, in almost all cases, the parity of ν and
ν ′ must be the same for given k. In this case we get〈

∂r
k ukα

∣∣∂s
kukα′

〉
=

∑
p,p′=±

∂r
q

(
χ (ν)

qτ p

)∗
∂s

qχ
(ν ′ )
qτ ′ p

1

Z

Z∑
j=1

e−iπ (pν−p′ν ′ ) j/Z

=
∑

p,p′=±
∂r

q

(
χ (ν)

qτ p

)∗
∂s

qχ
(ν ′ )
qτ ′ pδpν,p′ν ′

= δνν ′
〈
∂r

qχ
(ν)
qτ

∣∣∂s
qχ

(ν ′ )
qτ ′

〉
, (A6)

where we used δpν,p′ν ′ = δpp′δνν ′ in the last step (since ν, ν ′ >

0) and the fact that pν − p′ν ′ is always an even number (since
ν and ν ′ have the same parity). The special case ν = 1 and ν ′
even is only possible for τ = −, p = sgn(k) = −sgn(q), and
|k| < π

2Za . It leads to〈
∂r

k uk1

∣∣∂s
kukα′

〉
=

∑
p,p′=±

∂r
q

(
χ

(1)
q,−,p

)∗
∂s

qχ
(ν ′ )
qτ ′ p

1

Z

Z∑
j=1

e−iπ (p+sgn(q)−p′ν ′ ) j/Z .

This expression must be zero since, by using p + sgn(q) = 0
and ν ′ even, we conclude that p′ν ′ must be zero which is not
possible. Finally, the special case ν = Z − 1 and ν ′ having a
different parity than Z − 1 can be treated in a similar way and
leads also to a contradiction.

To prove the completeness relationship (2.14) for given k
we note that, for each given gap ν, one has to sum over both
band indices τ = ± of Dirac theory, except for ν = 1 or ν =
Z − 1 when |k| < π

2Za or |k| > π
2Za , respectively. In the latter

case only the Dirac bands τ = − (for ν = 1 and |k| < π
2Za )

or τ = + (for ν = Z − 1 and |k| > π
2Za ) have to be taken,

respectively. This means that only the eigenstates far away
from the gap ν = 1 or ν = Z − 1 are involved for the lowest
or highest lattice band, where we can take approximately the
free solution (A5). The same happens for the contribution
from the pairs τ = ± since one finds from (2.30) and (2.31)
that the expression

∑
τ ukα ( ja)ukα ( j′a)∗ involves always the

combination ∑
τ

χ (ν)
qτ p

(
χ

(ν)
qτ p′

)∗ = δpp′ , (A7)

where we used the completeness relationship (2.36) of the
Dirac states. Since the same result arises for the free Dirac
states χ (ν)

qτ p = δp,sgn(qτ ), we find that the completeness relation-
ship in the presence of a gap is not changed compared to the
one for the free Bloch states (A5).

APPENDIX B: CANCELLATION OF ZAK-BERRY PHASES

Here we show on quite general grounds that the sum of the
Zak-Berry phases in the AF gauge of the two bands of the
Dirac model is quantized in odd units of π . We first need that
one can write (with χqτ ≡ |χqτ 〉 defining column vectors in
p = ±)∑

τ

γ (ν)
τ =

∑
τ

∫
dq A(ν)

qτ =
∑

τ

∫
dq

(
χ (ν)

qτ

)†
i∂qχ

(ν)
qτ

=
∫

dq Tr
(
M (ν)

q

)†
i∂qM (ν)

q = i
∫

Tr
(
M (ν)

q

)†
dM (ν)

q

= i
∫

d ln
(
detM (ν)

q

)
, (B1)

where we defined the unitary matrix

M (ν)
q = (

χ
(ν)
q+ χ

(ν)
q−
)
. (B2)
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This means that (up to multiples of 2π ) the sum of the Zak-
Berry phases of the two Dirac bands can be written as minus
the phase difference of the determinant of M (ν)

q between the
asymptotic values at q = ∞ and −∞:∑

τ

γ (ν)
τ = −

∑
r=1,2

(
ϕ(ν)

q=∞,r − ϕ
(ν)
q=−∞,r

)
mod (2π ), (B3)

where eiϕ(ν)
qr , with r = 1, 2, denote the two eigenvalues of the

unitary matrix M (ν)
q . In the AF gauge the asymptotic values of

χ (ν)
qτ p are given by δp,sgn(qτ ) according to (2.29), leading to

lim
q→∞ M (ν)

q =
(

1 0
0 1

)
, (B4)

lim
q→−∞ M (ν)

q =
(

0 1
1 0

)
. (B5)

This gives ∑
r

ϕ(ν)
q=∞,r = 0,

∑
r

ϕ
(ν)
q=−∞,r = π, (B6)

and we get from (B3) the final result∑
τ

γ (ν)
τ = π mod (2π ), (B7)

consistent with (3.50).

APPENDIX C: SPLITTING OF WANNIER FUNCTION

Here we show how to split the lattice Wannier function for
band α = 2, . . . , Z − 1 into the contributions corresponding
to the upper and lower halves of the band and how to extend
the momentum integration to infinity [see Eqs. (4.8), (4.9),
(4.12), and (4.13)]. Since the eigenfunctions of the lattice and
the Dirac model are related via (2.22), (2.23), (2.24), (2.30),
and (2.31), we can perform this analysis directly within the
Dirac model by calculating the contributions from the region
|q| > �α of the Dirac Wannier functions occurring on the
right-hand sides of (4.44), (4.45), (4.52), and (4.53). Denoting
the contribution of the various Wannier functions from this
region by δwu/d,α (ma) we get

δwu,α (ma) = a
√

Z
∑

p

δw
(α)
−,p(ma)eipk(α)

F ma, (C1)

δwd,α (ma) = a
√

Z
∑

p

δw
(α−1)
+,p (ma)eipk(α−1)

F ma, (C2)

δw̃(α)
u (ma) = a

√
Z
∑

p

e−iφ(α)
0,−δw̃

(α)
−,p(m̃αa)eipk(α)

F ma, (C3)

δw̃
(α)
d (ma) = a

√
Z
∑

p

e−iφ(α−1)
0,+ δw̃

(α−1)
+,p (m̃αa)eipk(α−1)

F ma,

(C4)

where

δw(ν)
τ p (x) =

∫
|q|>�α

dq

2π
χ (ν)

qτ peiqxe−η|q|, (C5)

δw̃(ν)
τ p (x) =

∫
|q|>�α

dq

2π
χ̃ (ν)

qτ peiqxe−η|q|, (C6)

with χ̃ (ν)
qτ p = eiφ(ν)

qτ χ (ν)
qτ p. We have introduced a convenient reg-

ularization of the integrals via the convergence factor e−η|q|.

For |q| > �α we can take the free form χ (ν)
qτ p ≈ δsgn(q),pτ [cf.

(2.29)], and get with (3.36), (3.26), and (3.33) the following
value for the phase φ(ν)

qτ in the asymptotic high-momentum
region

φ(ν)
qτ − φ

(ν)
0,τ = 1

2

∫ q

−q
dq′A(ν)

q′τ

≈ 1

2
sgn(q)

∫
dq′A(ν)

q′τ = 1

2
sgn(q)γ (ν)

τ . (C7)

Using these relations we obtain for (C5) and (C6)

δw(ν)
τ p (x) = i

2π

eipτ�αx

τ px + iη
, (C8)

e−iφ(ν)
0,τ δw̃(ν)

τ p (x) = i

2π

eipτ (�αx+ 1
2 γ (ν)

τ )

τ px + iη
. (C9)

Leaving out the contribution proportional to the delta function
δ(x) (this is the regularization we use in Sec. V to define
the Dirac Wannier function), we obtain after inserting these
expressions into Eqs. (C1)–(C4)

δwu,α (ma) =
√

Z

πm
sin

{
(k(α)

F − �α )ma
}
, (C10)

δwd,α (ma) = −
√

Z

πm
sin

{
(k(α−1)

F + �α )ma
}
, (C11)

δw̃(α)
u (ma)

=
√

Z

πm̃α

sin

{
k(α)

F ma − �αm̃αa − 1

2
γ

(α)
−

}
, (C12)

δw̃
(α)
d (ma)

= −
√

Z

πm̃α

sin

{
k(α−1)

F ma + �αm̃αa + 1

2
γ

(α−1)
+

}
. (C13)

For α = 2, . . . , Z − 1 we can insert �α = π
2Za and γα =

γ
(α−1)
+ + γ

(α)
− , and get with k(α)

F = α π
Za and m̃α = m − Z

2π
γα

the final result

δwu,α (ma) = −δwd,α (ma) = δwα (ma), (C14)

δw̃(α)
u (ma) = −δw̃

(α)
d (ma) = δw̃α (ma), (C15)

where δwα (ma) and δw̃α (ma) are given by (4.12) and (4.13),
respectively.

In contrast, for α = 1, Z , we can use �1/Z = π
Za , γ1 = γ

(1)
− ,

and γZ = γ
(Z−1)
+ with the result

δwu,1(ma) = δwd,Z (ma) = 0, (C16)

δw̃u,1(ma) = δw̃d,Z (ma) = 0, (C17)

in accordance with (4.15).

APPENDIX D: REAL MOMENTUM INTEGRAL
REPRESENTATIONS OF DIRAC WANNIER
FUNCTIONS AND SCALING FUNCTIONS

In this Appendix we present the representation of the
Dirac Wannier functions w(ν)

pτ (x) and w̃(ν)
pτ (x) together with

the scaling functions FA/B,τ (y; γ ) and F̃A/B,τ (y; γ ) via con-
vergent momentum integrals on the real axis. Starting from
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(5.14)–(5.17), we first subtract the large |q̄| � 1 behavior of
the integrands to get convergent integrals and to explicitly
exhibit the part which remains for η̄ → 0. Using (2.29) and
(C7) together with (C8) and (C9) (with �α = 0) we find

w(ν)
τ p (x) = i

2π

1

pτx + iη

+ 1

4πξ (ν)

∫
dq̄ eiq̄x̄

[
χ (ν)

τ p (q̄) − δsgnq̄,pτ
]
, (D1)

w̃(ν)
τ p (x) = i

2π

eiφ(ν)
0,τ ei 1

2 pτγ (ν)
τ

pτx + iη
+ 1

4πξ (ν)

∫
dq̄ eiq̄x̄

[
χ̃ (ν)

τ p (q̄)

− eiφ(ν)
0,τ ei 1

2 pτγ (ν)
τ δsgnq̄,pτ

]
. (D2)

The first term on the right-hand side of the Dirac Wannier
functions contains an unphysical contribution ∼δ(x) which
arises from large momenta and has to be subtracted in the
regularization procedure. In the scaling functions this part
does anyhow not appear since one multiplies with x. In con-
trast, the principal part ∼ 1

x of the first term is an important
contribution to the scaling functions. It should be contrasted
to the contributions (C8) and (C9) which arise from extend-
ing the momentum integration to infinity and cancel in the
lattice Wannier function of a certain band when adding the

contributions from the upper and lower parts of the band to
the Wannier function (see Appendix C).

Using (5.11) and (3.31) we note the identities

eiφ(ν)
0,τ ei 1

2 pτγ (ν)
τ =

{
eiγ (ν)

for p = +,

τ for p = −,
(D3)

ei 1
2 pτγ (ν)

τ = ei 1
2 pγ (ν)

{
1 for τ = +,

−ipsγ (ν) for τ = −.
(D4)

Multiplying (D1) and (D2) with x, we obtain with (D3) in the
limit η → 0 the useful representations

x w(ν)
τ p (x) = i

pτ

2π
+ y

2

∫
dq̄

2π
eiq̄ y

2
[
χ (ν)

τ p (q̄) − δsgnq̄,pτ
]
, (D5)

e−iφ(ν)
0,τ x w̃(ν)

τ p (x) = ei 1
2 pτγ (ν)

τ

{
i

pτ

2π
+ y

2

∫
dq̄

2π

× eiq̄ y
2

[√
ε̄q̄ + pτ q̄√

2ε̄q̄
− δsgnq̄,pτ

]}
, (D6)

where we inserted the form (5.17) for χ̃ (ν)
τ p (q̄), and used the

definition y = x/ξ (ν) = 2x̄. Inserting (5.16) and using (D4)
one can calculate the scaling functions from (5.24)–(5.29) and
finds after some straightforward manipulations the compact
forms

FA,τ (y; γ ) = τ

π
+ τy

∫ ∞

0

dq̄

2π

[
q̄ sin q̄y

2 + sin γ cos q̄y
2√

ε̄q̄(ε̄q̄ + τ cos γ )
− sin

q̄y

2

]
, (D7)

FB,τ (y; γ ) = y
∫ ∞

0

dq̄

2π
cos

q̄y

2

[√
1 + τ cos γ

ε̄q̄
− 1

]
, (D8)

F̃A,−(y; γ ) = − sγ

π

{
sin

γ

2
+ y

2
√

2

∫ ∞

0
dq̄

[(√
1 + q̄

ε̄q̄
−

√
2

)
cos

q̄y − γ

2
+
√

1 − q̄

ε̄q̄
cos

q̄y + γ

2

]}
, (D9)

F̃B,−(y; γ ) = − sγ

π

{
cos

γ

2
+ y

2
√

2

∫ ∞

0
dq̄

[(√
1 + q̄

ε̄q̄
−

√
2

)
sin

q̄y − γ

2
−
√

1 − q̄

ε̄q̄
sin

q̄y + γ

2

]}
, (D10)

F̃A,+(y; γ ) = 1

π
cos

γ

2
+ y

2π
√

2

∫ ∞

0
dq̄

[(√
1 + q̄

ε̄q̄
−

√
2

)
sin

q̄y + γ

2
−
√

1 − q̄

ε̄q̄
sin

q̄y − γ

2

]
, (D11)

F̃B,+(y; γ ) = − 1

π
sin

γ

2
+ y

2π
√

2

∫ ∞

0
dq̄

[(√
1 + q̄

ε̄q̄
−

√
2

)
cos

q̄y + γ

2
+
√

1 − q̄

ε̄q̄
cos

q̄y − γ

2

]
, (D12)

with ε̄q̄ =
√

1 + q̄2 and sγ = sgnγ . These formulas can be
straightforwardly evaluated numerically and have been used
to produce the results shown in Fig. 3.

APPENDIX E: INTEGRAL REPRESENTATION ON THE
IMAGINARY MOMENTUM AXIS AND ASYMPTOTICS

OF WANNIER FUNCTIONS IN DIRAC THEORY

Here we show how to obtain the integral representations
(5.18) and (5.19) for the Wannier functions w(ν)

τ p (x) and
w̃(ν)

τ p (x) in the universal regime |x| � a of Dirac theory, to-
gether with their asymptotics at |x| � ξ (ν) and |x| � ξ (ν), as
given by (E9), (E10), (E14)–(E18), and (E20).

To obtain (5.18) and (5.19), we use (5.14) and (5.15), and
close the integration contour in the upper or lower half of the
complex plane for sx = sgn(x) = ±, respectively. Choosing
the branch cuts of the various square roots and of e−η̄|q̄| on the
imaginary axis, we can close the integration contour around
the branch cut, and obtain with q̄ = isxκ and 0 < κ < ∞ the
form

w(ν)
τ p (x) = isx

4πξ (ν)

∫ ∞

0
dκ e−|x̄|κ{e−isx η̄κχ (ν)

τ p (isxκ + 0+)

− eisx η̄κχ (ν)
τ p (isxκ − 0+)

}
, (E1)

and an analog equation for w̃(ν)
τ p (x) with χ (ν)

τ p → χ̃ (ν)
τ p . Due to

the exponentially decaying factor e−|x̄|κ , these integrals are
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convergent in the limit η̄ → 0, and we obtain the results (5.18)
and (5.19) in this limit.

To evaluate the integrands δχ (ν)
τ p (isxκ ) and δχ̃ (ν)

τ p (isxκ ) of
(5.18) and (5.19), we note the following values of the various
square roots for q̄ = isxκ ± 0+:

ε̄q̄ = |1 − κ2| 1
2

{
1 ± isx0+ for κ < 1,

±isx for κ > 1,
(E2)

√
ε̄q̄ = |1 − κ2| 1

4

{
1 for κ < 1,

e±isx
π
4 for κ > 1,

(E3)

√
ε̄q̄ + pτ q̄ =

⎧⎨
⎩
√

|1 − κ2| 1
2 + ipτ sxκ for κ < 1,√

±isx|1 − κ2| 1
2 + ipτ sxκ for κ > 1.

(E4)

Furthermore, for τ cos γ (ν) > 0, we get√
ε̄q̄ + τ cos γ (ν)

=
⎧⎨
⎩
√

|1 − κ2| 1
2 + | cos γ (ν)| for κ < 1,√

±isx|1 − κ2| 1
2 + | cos γ (ν)| for κ > 1,

(E5)

and for τ cos γ (ν) < 0√
ε̄q̄ + τ cos γ (ν)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
|1 − κ2| 1

2 − | cos γ (ν)| for κ < | sin γ (ν)|,
±isx

√
−|1 − κ2| 1

2 + | cos γ (ν)| for | sin γ (ν)| < κ < 1,√
±isx|1 − κ2| 1

2 − | cos γ (ν)| for κ > 1.

(E6)

For |x̄| � 1, the integrals are dominated by the regime
κ � 1, where we get

δχ (ν)
τ p (isxκ ) → pτ, (E7)

δχ̃ (ν)
τ p (isxκ ) → pτ

{
eiγ (ν)

for p = +,

τ for p = −.
(E8)

Inserting these forms in (5.18) and (5.19), we find straightfor-
wardly the following result for small |x| � ξ (ν):

w(ν)
τ p (x) → ipτ

2πx
, (E9)

w̃(ν)
τ p (x) → ipτ

2πx

{
eiγ (ν)

for p = +,

τ for p = −.
(E10)

For |x̄| ∼ O(1), the integrals are of O(1), leading to the
universal scaling of the Wannier functions in the regime
|x| ∼ ξ (ν), ∣∣x w(ν)

τ p (x)
∣∣ ∼ ∣∣x w̃(ν)

τ p (x)
∣∣ ∼ O(1). (E11)

Due to the results (E9) and (E10), this scaling holds also for
|x| � ξ (ν).

For |x̄| � 1, the integrals are dominated by the regime
around that branching point of the various square roots which
has the smallest imaginary part. We start with w(ν)

τ p (x). For
τ cos γ (ν) > 0, there is only a single branching point at κ = 1,
and close to this branching point we get for small 0 < κ ′ =
κ − 1 � 1

δχ (ν)
τ p (isx(1 + κ ′)) ≈ τ (ipsx + eipγ (ν)

)

isx2
3
4

√
| cos γ (ν)|

(κ ′)−
1
4 . (E12)

Inserting this form in (5.18) and using∫ ∞

0
dκ ′e−|x̄|κ ′

(κ ′)r = �(1 + r)

|x̄|1+r
, (E13)

we find the following result for |x| � ξ (ν):

τ = sgn(cos γ (ν) ) :

w(ν)
τ p (x) → τ (ipsx + eipγ (ν)

)�
(

3
4

)
4π

√
| cos γ (ν)| ξ (ν)

(
ξ (ν)

|x|
) 3

4

e
− |x|

2ξ (ν) . (E14)

In contrast, for τ cos γ (ν) < 0, the branching point with
smallest imaginary part is located at κ = | sin γ (ν)|. Excluding
the case sin γ (ν) = 0 (which is treated in detail in Appendix G)
we obtain close to this branching point for small 0 < κ ′ =
κ − | sin γ (ν)| � 1

δχ (ν)
τ p (isx(| sin γ (ν)| + κ ′)) ≈ ipτ | sin γ (ν)|[sx + sγ (ν) ] + (−| tan γ (ν)| + ipτ sx )κ ′

isx

√
| sin γ (ν)|√κ ′

≈
⎧⎨
⎩

2pτ
√

| sin γ (ν)|(κ ′)−
1
2 for sx = sγ (ν) ,

−| tan γ (ν)|+ipτ sx

isx

√
| sin γ (ν)| (κ ′)

1
2 for sx = −sγ (ν) .

(E15)

Inserting this form in (5.18) and using (E13), we find for |x| � ξ (ν) the asymptotic behavior

τ = −sgn(cos γ (ν) ) :

w(ν)
τ p (x) → ipτ sx − | tan γ (ν)|

2
√

2π
√

| sin γ (ν)| ξ (ν)

(
ξ (ν)

|x|
) 3

2

e
−| sin γ (ν)| |x|

2ξ (ν) + 1 + sxsγ (ν)

2

ipτ sx

√
| sin γ (ν)|√

2π ξ (ν)

(
ξ (ν)

|x|
) 1

2

e
−| sin γ (ν)| |x|

2ξ (ν) . (E16)

For the special case cos γ (ν) = 0, the two branching points fall together and start at κ = 1. Close to this branching point we
get for small 0 < κ ′ = κ − 1 � 1

δχ (ν)
τ p (isx(1 + κ ′)) ≈ pτ

1 + sxsγ (ν) + κ ′
√

2κ ′ . (E17)
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Inserting this form in (5.18) we find the following result for
|x| � ξ (ν):

cos γ (ν) = 0 :

w(ν)
τ p (x) → ipτ sx

4
√

π ξ (ν)
e
− |x|

2ξ (ν)

×
{

(1 + sx sγ (ν) )

(
ξ (ν)

|x|
) 1

2

+
(

ξ (ν)

|x|
) 3

2
}

. (E18)

Finally, for the Wannier function w̃(ν)
τ p (x), we obtain a sin-

gle branching point at κ = 1, and get close to this branching
point for small 0 < κ ′ = κ − 1 � 1:

δχ̃ (ν)
τ p (isx(1 + κ ′))

≈ eipτ sx
π
4

isx2
1
4

(κ ′)−
1
4

{
eiγ (ν)

for p = +,

τ for p = −.
(E19)

Inserting this form in (5.18) and using (E13), we find the
following asymptotic behavior for |x| � ξ (ν) in all cases:

w̃(ν)
τ p (x) → eipτ sx

π
4 �

(
3
4

)
2

3
2 πξ (ν)

(
ξ (ν)

|x|
) 3

4

e−|x|/(2ξ (ν) )

×
{

eiγ (ν)
for p = +,

τ for p = −.
(E20)

APPENDIX F: PROPERTIES OF DIRAC
WANNIER FUNCTIONS

From (5.14)–(5.17) one can straightforwardly derive the
following useful properties for w(ν)

τ p (x) and w̃(ν)
τ p (x):

w
(ν)
τ,−p(x) = w(ν)

τ p (x)∗, (F1)

w(ν)
τ p (x) = w(ν)

τ p (−x)∗|γ (ν)→−γ (ν) , (F2)∑
p

w(ν)
τ p (−x) =

∑
p

w(ν)
τ p (x), (F3)

∑
p

pw(ν)
τ p (−x) = −

∑
p

pw(ν)
τ p (x)|γ (ν)→−γ (ν) , (F4)

w
(ν)
−τ,p(x) = w(ν)

τ p (x)∗
∣∣
γ (ν)→−γ (ν)+π s

γ (ν)
, (F5)

w̃
(ν)
τ,−p(x) = τeiγ (ν)

w̃(ν)
τ p (x)∗, (F6)

w̃(ν)
τ p (x) = w̃(ν)

τ p (−x)∗
∣∣
γ (ν)→−γ (ν) (F7)

= −p w̃(ν)
τ p (−x)∗

∣∣
γ (ν)→−γ (ν)+πs

γ (ν)
, (F8)

w̃(ν)
τ p (−x) = τeipγ (ν)

w̃
(ν)
τ,−p(x), (F9)

w̃
(ν)
−τ,p(x) = p w̃(ν)

τ p (−x). (F10)

Correspondingly, we find for the real functions w
(ν)
A/B,τ (x)

and w̃
(ν)
A/B,τ (x), as defined by (5.24)–(5.27), the properties

w
(ν)
A,τ (−x) = −w

(ν)
A,τ (x)

∣∣
γ (ν)→−γ (ν) , (F11)

w
(ν)
B,τ (−x) = w

(ν)
B,τ (x) = w

(ν)
B,τ (x)

∣∣
γ (ν)→−γ (ν) , (F12)

w
(ν)
A,−τ (x) = −w

(ν)
A,τ (x)

∣∣
γ (ν)→−γ (ν)+π s

γ (ν)
, (F13)

w
(ν)
B,−τ (x) = w

(ν)
B,τ (x)

∣∣
γ (ν)→−γ (ν)+π s

γ (ν)
, (F14)

w̃
(ν)
A,τ (−x) = −w̃

(ν)
A,τ (x)

∣∣
γ (ν)→−γ (ν) (F15)

= τ sγ (ν)w̃
(ν)
B,τ (x)

∣∣
γ (ν)→−γ (ν)+πs

γ (ν)
(F16)

= τ
[− cos γ (ν) w̃

(ν)
A,τ (x) + sin γ (ν) w̃

(ν)
B,τ (x)

]
,

(F17)

w̃
(ν)
B,τ (−x) = w

(ν)
B,τ (x)

∣∣
γ (ν)→−γ (ν) (F18)

= τ sγ (ν)w̃
(ν)
A,τ (x)|γ (ν)→−γ (ν)+πs

γ (ν) (F19)

= τ
[
sin γ (ν) w̃

(ν)
A,τ (x) + cos γ (ν) w̃

(ν)
B,τ (x)

]
,

(F20)

w̃
(ν)
A,−τ (x) = −τ sγ (ν) w̃

(ν)
B,τ (−x), (F21)

w̃
(ν)
B,−τ (x) = τ sγ (ν) w̃

(ν)
A,τ (−x). (F22)

APPENDIX G: SCALING FUNCTIONS FOR sin γ = 0

In this Appendix we discuss the properties of the scaling
functions FA/B,τ (y; γ ) and F̃A/B,τ (y; γ ) for the special case
sin γ = 0. Based on the relations (5.32)–(5.41) for γ = O±
and γ = π ± O+ = −π ± 0+, one finds that the scaling func-
tions FA/B,τ (y; γ ) are continuous in γ at γ = 0, π and have the
following properties:

FA,τ (−y; 0) = FA,τ (y; 0), (G1)

FA,τ (−y; π ) = FA,τ (y; π ), (G2)

FB,τ (−y; 0) = −FB,τ (y; 0), (G3)

FB,τ (−y; π ) = FB,τ (y; π ), (G4)

FA,−τ (y; 0) = −FA,τ (y; π ), (G5)

FB,−τ (y; 0) = FB,τ (y; π ). (G6)

For the scaling functions F̃A/B,τ (y; γ ) it turns out that they are
continuous at γ = 0, π for τ cos γ > 0 (i.e., for γ = π, τ =
− or for γ = 0, τ = +) but discontinuous for τ cos γ < 0
(i.e., for γ = 0, τ = − or for γ = π, τ = +), with the prop-
erties

F̃A,+(−y; 0) = F̃A,+(y; 0), (G7)

F̃A,−(−y; π ) = F̃A,−(y; π ), (G8)

F̃B,+(−y; 0) = −F̃B,+(y; 0), (G9)

F̃B,−(−y; π ) = −F̃B,−(y; π ), (G10)

F̃A,−(y; 0±) = ∓F̃B,+(y; 0), (G11)

F̃A,+(y; π ± 0+) = ∓F̃B,−(y; π ), (G12)

F̃B,−(y; 0±) = ∓F̃A,+(y; 0), (G13)

F̃B,+(y; π ± 0+) = ∓F̃A,−(y; π ). (G14)
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For |y| � 1 and |y| � 1, the values can be obtained
straightforwardly from (5.43)–(5.54). A special case are the
scaling functions FA/B,−(y; 0) and FA/B,+(y; π ) which are not
exponentially decaying since the branch cuts in the complex
plane start at the origin. For γ = 0 and τ = − we obtain from
(5.16)

χ
(ν)
−,p(q̄) = ε̄q̄ − pq̄ − 1

2
√

ε̄q̄
√

ε̄q̄ − 1
. (G15)

Expanding around q̄ = 0 with q̄ = isyκ ± η, we obtain∑
p

pχ
(ν)
−,p(isyκ ± η) ≈ ∓

√
2, (G16)

∑
p

χ
(ν)
−,p(isyκ ± η) ≈ ± isyκ√

2
, (G17)

leading to ∑
p

pδχ (ν)
−,p(isyκ ) ≈ −2

√
2, (G18)

∑
p

δχ
(ν)
−,p(isyκ ) = i

√
2 syκ. (G19)

Inserting in (5.18) we obtain for the asymptotic behavior

w
(ν)
A,−(x) = −i

∑
p

pw
(ν)
−,p(x) → −

√
2

π x
, (G20)

w
(ν)
B,−(x) =

∑
p

w
(ν)
−,p(x) → −

√
2

πξ (ν)

(
ξ (ν)

x

)2

, (G21)

which gives for the scaling functions the results (5.55) and
(5.56):

FA,−(y; 0) = −FA,+(y; π ) → −
√

2

π
, (G22)

FB,−(y; 0) = FB,+(y; π ) → −
√

2

π

1

y
. (G23)

APPENDIX H: BLOCH STATES FOR Z = 2, 3

The states ukα ( ja) = 〈 j|ukα〉 follow from diagonalizing the
Hamiltonian hk given by (2.10). For the particular cases Z = 2
and 3 we obtain the matrices

hk =
(

δv1 −t1eika − t2e−ika

−t1e−ika − t2eika δv2

)
, (H1)

with δv1 = −δv2 and 1
2 (t1 + t2) = t , and

hk =
⎛
⎝ δv1 −t1eika −t3e−ika

−t1e−ika δv2 −t2eika

−t3eika −t2e−ika δv3

⎞
⎠, (H2)

with δv1 + δv2 + δv3 = 0 and 1
3 (t1 + t2 + t3) = t .

It is convenient to write

|ukα〉 = (−1)α+1

√
Nkα

xkα, Nkα =
Z∑

j=1

|xkα|2, (H3)

where xkα denotes a Z-dimensional vector.

For Z = 2 this gives the explicit formulas

xkα =
(

t1eika + t2e−ika

δv − εkα

)
, (H4)

Nkα = 2εkα (εkα − δv), (H5)

εk,1/2 = ∓
√

�2 + 4t1t2 cos2(ka), (H6)

� =
√

δv2 + 4δt2, (H7)

where δv = δv1 = −δv2, and t1/2 = t ± δt . Using (5.103),
(5.100), (5.101), and v

(1)
F = 2ta, we obtain for the gap param-

eter and the correlation length ξ (1) = v
(1)
F /(2�(1) )

�eiγ ≡ �(1)eiγ (1) = −δv − 2iδt, (H8)

ξ ≡ ξ (1) = at

�
. (H9)

For Z = 3 we get the following explicit formulas:

xkα =
⎛
⎝δv̄2t3e−ika + t1t2e2ika

δv̄1t2eika + t1t3e−2ika

δv̄1δv̄2 − t2
1

⎞
⎠, (H10)

Nkα = (t2
1 − δv̄1δv̄2)

(
t2
1 + t2

2 + t2
3

− δv̄1δv̄2 − δv̄1δv̄3 − δv̄2δv̄3
)
, (H11)

2t1t2t3 cos(3ka)

= δv̄1δv̄2δv̄3 − δv̄1t2
2 − δv̄2t2

3 − δv̄3t2
1 , (H12)

where we defined

δv̄ j = δv j − εkα. (H13)

We do not indicate the dependence of δv̄ j ≡ δv̄ jkα on k and
α since it is clear which band index has to be taken for the
Abelian case.

The two gap parameters �(ν)eiγ (ν)
, with ν = 1, 2, follow

via (5.103) from the Fourier components δṽ j and δt̃ j . The
latter can be determined from (5.100) and (5.101) as

δṽ1 = δṽ∗
2

= −1

2
(δv1 + δv2) − i

2
√

3
(δv1 − δv2), (H14)

δt̃1 = δt̃∗
2

= −1

2
(δt1 + δt2) − i

2
√

3
(δt1 − δt2). (H15)

Inserting this result in (5.103) we find after some algebra

�(1)eiγ (1) = δt1 − 1

2
(δv1 + δv2)

− i

2
√

3
(2δt1 + 4δt2 + δv1 − δv2), (H16)

�(2)eiγ (2) = −δt1 − 1

2
(δv1 + δv2)

− i

2
√

3
(2δt1 + 4δt2 − δv1 + δv2). (H17)
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The correlation lengths for ν = 1, 2 follow from ξ (ν) = v
(ν)
F

2�(ν) .
With v

(ν)
F = 2ta sin(k(ν)

F a) and k(ν)
F = νπ

3a we obtain

ξ (1/2) =
√

3

2

at

�(1/2)
. (H18)

We note that we have included a sign factor (−1)α+1 to
|ukα〉, such that, according to Ref. [15], our convention that
ukα (Za) > 0 is positive [see Eq. (5.6)] is fulfilled.

The Zak-Berry connection can be calculated most ele-
gantly from

Akα = 1

Nkα

Re(xkα )†i∂kxkα. (H19)

Inserting the forms for xkα from (H4) and (H10), one finds for
Z = 2

Akα = a
(
t2
2 − t2

1

)
Nkα

, (H20)

and for Z = 3

Akα = a

Nkα

{
2t2

1

(
t2
3 − t2

2

) − δv̄2
1t2

2 + δv̄2
2t2

3

+(δv̄1 − δv̄2)t1t2t3 cos(3ka)}. (H21)

For the non-Abelian case we also need the nondiagonal
elements of the Zak-Berry connection which can be calculated
from

α �= β : (Ak )αβ = (−1)(α+β )√
NkαNkβ

〈xkα|i∂kxkβ〉. (H22)

For the special case Z = 3 we obtain the expression

〈xk1|i∂kxk2〉 = i(δv̄11δv̄21 − t2
1 )(εk1 + 2εk2)

dεk2

dk

+ a(δv̄21t3eika + t1t2e−2ika)

× (δv̄22t3e−ika − 2t1t2e2ika)

+ a(δv̄11t2e−ika + t1t3e2ika)

× (−δv̄12t2eika + 2t1t3e−2ika), (H23)

where we used the notation δv̄ jα = v j − εkα .
For the derivative of the dispersion we use the results

obtained in Ref. [15], which give for Z = 2

dεkα

dk
= 4at1t2

δv̄1

Nkα

sin(2ka)

= −2at1t2 sin(2ka)

εkα

, (H24)

and for Z = 3

dεkα

dk
= 6at1t2t3

δv̄1δv̄2 − t2
1

Nkα

sin(3ka)

= − 6at1t2t3 sin(3ka)

t2
1 + t2

2 + t2
3 − δv̄1δv̄2 − δv̄1δv̄3 − δv̄2δv̄3

.

(H25)

APPENDIX I: SPLITTING OF NON-ABELIAN
WANNIER FUNCTIONS

In this Appendix we show that extending the momentum
integrations in the representations (6.49) and (6.50) of the
Wannier functions in NA-ML gauge for the two subintervals
gives only rise to delta function contributions in the total sum
(6.48) which can be disregarded. After inserting (6.51) we
replace the propagators beyond the subintervals via (6.56),
(6.57), and (6.54) as

(I) :U (ν)

(
k,− π

2Za

)
→

{
U (ν)

I for k > π
2Za ,

1 for k < − π
2Za ,

(I1)

(II) :U (ν)

(
k,− π

2Za

)
→

{
U (ν)

L for k > 3π
2Za ,

U (ν)
I for k < π

2Za

(I2)

and the Bloch states are replaced with the help of (A5) and
(2.8) by the k-independent values

(I) : ukα′ (ma) →
{

fα′ (m) for k > π
2Za ,

fα′ (m)∗ for k < − π
2Za ,

(I3)

(II) : ukα′ (ma) →
{

fα′ (m)∗ e−i 2π
Z m for k > 3π

2Za ,

fα′ (m) for k < π
2Za

(I4)

where we defined

fα′ (m) = 1√
Z

{
e−i π

Z α′m for α′ even,

ei π
Z (α′−1)m for α′ odd.

(I5)

Obviously, the two contributions k > π
2Za from the exten-

sion of subinterval (I) and k < π
2Za from the extension of

subinterval (II) lead to the same integrand, such that the
sum contains

∫
dk eikm̂(ν)

α a = 2πδ(m̂(ν)
α a). These are unphysi-

cal delta function contributions which we always disregard.
Similar delta function contributions are generated from the
high-momentum integrals in Dirac theory which cancel these
terms.

For the two remaining contributions we first shift k →
k + 2π

Za for the contribution k > 3π
2Za from the extension of

subinterval (II) to get the same starting point − 2π
Za for the k in-

tegration as the end point for the contribution k < − π
2Za from

the extension of subinterval (I). This shift gives an additional
ei 2π

Z m̂(ν)
α factor from the exponential eikm̂(ν)

α a in the integrand.
The integrands for the two contributions are then again the
same since

ei 2π
Z m̂(ν)

α e−i 2π
Z m = e−iγ̂ (ν)

α , (I6)(
U (ν)

L V (ν)
)
α′α = (V (ν) )α′α eiγ̂ (ν)

α , (I7)

such that only (V (ν) )α′α remains for the product of (I6) and
(I7). Here, we have used the definition m̂(ν)

α = m − Z
2π

γ̂ (ν)
α for

the derivation of (I6), and the definition (6.38) of the transfor-
mation V (ν) for the derivation of (I7). As a result, we get again
a delta function from the two remaining contributions which
we can disregard.

APPENDIX J: WILSON PROPAGATOR IN DIRAC THEORY

In this Appendix we calculate the Wilson propagator (6.60)
in Dirac theory and prove the central property (6.64). We first
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transform the propagator via the Abelian ML gauge to

U (ν)
q = �(ν)

q Ũ (ν)
q

(
�

(ν)
−∞

)†
, (J1)

where

Ũ (ν)
q = Pei

∫ q
−∞ dq′Ã(ν)

q′ , (J2)

Ã(ν)
q = (

�(ν)
q

)†
A(ν)

q �(ν)
q + i

(
�(ν)

q

)†
∂q�

(ν)
q , (J3)(

Ã(ν)
q

)
ττ ′ = i

〈
χ̃ (ν)

qτ

∣∣∂qχ̃
(ν)
qτ ′
〉
, (J4)

�(ν)
q =

(
eiφ(ν)

q+ 0
0 eiφ(ν)

q−

)
. (J5)

Using Ã(ν)
qτ = (Ã(ν)

q )ττ = 0 [which defines the Abelian ML
gauge via (3.34)], we need in addition the nondiagonal matrix
elements. They follow from the form (5.1) of |χ̃ (ν)

qτ 〉 and (J4)
in dimensionless units as

Ã(q̄) ≡ 1

2ξ (ν)
Ã(ν)

q = 1

2

1

1 + q̄2
σy, (J6)

where q̄ = 2ξ (ν)q. With

Ũ (q̄) ≡ Ũ (ν)
q = Pei

∫ q̄
−∞ dq̄′ Ã(q̄′ ), (J7)

we find the differential equation

d

dq̄
Ũ (q̄) = iÃ(q̄) Ũ (q̄), (J8)

which has the solution

Ũ (q̄) = ei 1
2 σy arctan q̄ eiσy

π
4 , (J9)

such that the boundary condition Ũ (−∞) = 1 is fulfilled. A
straightforward analysis leads to the explicit result

Ũ (q̄) = 1√
2ε̄q̄

( √
ε̄q̄ − q̄

√
ε̄q̄ + q̄

−√
ε̄q̄ + q̄

√
ε̄q̄ − q̄

)
, (J10)

with ε̄q̄ =
√

1 + q̄2.
To prove (6.64), we use (J1) and find

χ̂ (ν)(q̄) = χ̃ (ν)(q̄) Ũ (q̄)
(
�

(ν)
−∞

)†
, (J11)

where we defined the 2 × 2 matrices [χ̂ (ν)(q̄)]pτ ≡ χ̂ (ν)
qτ p and

[χ̃ (ν)(q̄)]pτ ≡ χ̃ (ν)
qτ p. Using (5.1), (J5), (5.8), and (5.8), we find

χ̃ (ν)(q̄) = 1√
2ε̄q̄

(√
ε̄q̄ + q̄ eiγ (ν) √

ε̄q̄ − q̄ eiγ (ν)

√
ε̄q̄ − q̄ −√

ε̄q̄ + q̄

)
, (J12)

�
(ν)
−∞ =

(
1 0
0 eiγ (ν)

)
. (J13)

Multiplying (J12) with the product of (J10) and (J13), we get

χ̂ (ν)(q̄) = σx, (J14)

which proves (6.64).

APPENDIX K: SPECTRUM OF WILSON LOOP OPERATOR

The Wilson loop operator defining the unitary transfor-
mation V (ν) can be calculated from (6.55) as the product
U (ν)

L = U (ν)
II U (ν)

I of the propagators for the two subintervals.
The propagators U (ν)

I and U (ν)
II follow from the limit q → ∞

of (6.61) and (6.62) as

ν even : U (ν)
I =

⎛
⎜⎜⎜⎜⎜⎜⎝

−e−iγ (ν)

σx

σx
. . .

σx

1

⎞
⎟⎟⎟⎟⎟⎟⎠

, U (ν)
II =

⎛
⎜⎜⎝

σx

σx
. . .

σx

⎞
⎟⎟⎠, (K1)

ν odd : U (ν)
I =

⎛
⎜⎜⎜⎜⎝

σx

σx
. . .

σx

1

⎞
⎟⎟⎟⎟⎠, U (ν)

II =

⎛
⎜⎜⎜⎜⎝

−e−iγ (ν)

σx

σx
. . .

σx

⎞
⎟⎟⎟⎟⎠, (K2)

where we used

lim
q→∞U (ν)

q− = −e−iγ (ν)
, (K3)

lim
q→∞U (ν)

q = σx, (K4)

which follows from (J1), (J5), (J10), and (J13), together
with (5.8) and (5.9). Thereby, only σx are 2 × 2 submatrices,
whereas −e−iγ (ν)

and 1 denote 1 × 1 numbers.
From (K1) and (K2) one can see directly that the Wilson

loop operator U (ν)
L = U (ν)

II U (ν)
I is a unitary matrix which con-

tains only one nonzero phase factor in each row and column.
Therefore, all eigenvectors consist only of phase factors with
a normalization factor 1/

√
ν. We conclude that the matrix

elements (V (ν) )να and (U (ν)
I V (ν) )να occurring in (6.67) and

(6.68) are given by 1/
√

ν times a phase factor.
Furthermore, by using the special structure of the Wilson

loop matrix U (ν)
L , one can easily find the eigenvalues λ. A

straightforward analysis gives

det(U (ν)
L − λ1) = (−λ)ν + (−1)νe−iγ (ν) = 0, (K5)

such that for both ν even or odd we get

λν = −e−iγ (ν)
. (K6)

This equation has ν solutions for λ = eiγ (ν)
α , with γ (ν)

α given by
(6.24).

033167-38



UNIVERSALITY OF ABELIAN AND NON-ABELIAN … PHYSICAL REVIEW RESEARCH 3, 033167 (2021)

[1] G. H. Wannier, The structure of electronic excitation levels in
insulating crystals, Phys. Rev. 52, 191 (1937).

[2] W. Kohn, Analytic properties of bloch waves and wannier func-
tions, Phys. Rev. 115, 809 (1959).

[3] N. Marzari, A. A. Mostofi, J. R. Yates, I. Souza, and D.
Vanderbilt, Maximally localized wannier functions: Theory and
applications, Rev. Mod. Phys. 84, 1419 (2012).

[4] B. Bradlyn, L. Elcoro, J. Cano, M. G. Vergniory, Z. Wang, C.
Felser, M. I. Aroyo, and B. A. Bernevig, Topological quantum
chemistry, Nature (London) 547, 298 (2017).

[5] H. C. Po, A. Vishwanath, and H. Watanabe, Symmetry-based
indicators of band topology in the 230 space groups, Nat.
Commun. 8, 50 (2017).

[6] H. C. Po, H. Watanabe, and A. Vishwanath, Fragile Topology
and Wannier Obstructions, Phys. Rev. Lett. 121, 126402 (2018).

[7] R. Resta, Macroscopic polarization in crystalline dielectrics: the
geometric phase approach, Rev. Mod. Phys. 66, 899 (1994).

[8] C. Sgiarovello, M. Peressi, and R. Resta, Electron localization
in the insulating state: Application to crystalline semiconduc-
tors, Phys. Rev. B 64, 115202 (2001).

[9] D. Vanderbilt, Berry Phases in Electronic Structure Theory:
Electric Polarization, Orbital Magnetization and Topological
Insulators (Cambridge University Press, Cambridge, 2018).

[10] N. Marzari and D. Vanderbilt, Maximally localized generalized
wannier functions for composite energy bands, Phys. Rev. B 56,
12847 (1997).

[11] I. Souza, T. Wilkens, and R. M. Martin, Polarization and local-
ization in insulators: Generating function approach, Phys. Rev.
B 62, 1666 (2000).

[12] J.-H. Park, G. Yang, J. Klinovaja, P. Stano, and D. Loss, Frac-
tional boundary charges in quantum dot arrays with density
modulation, Phys. Rev. B 94, 075416 (2016).

[13] M. Thakurathi, J. Klinovaja, and D. Loss, From fractional
boundary charges to quantized hall conductance, Phys. Rev. B
98, 245404 (2018).

[14] M. Pletyukhov, D. M. Kennes, J. Klinovaja, D. Loss, and H.
Schoeller, Topological invariants to characterize universality of
boundary charge in one-dimensional insulators beyond symme-
try constraints, Phys. Rev. B 101, 161106(R) (2020).

[15] M. Pletyukhov, D. M. Kennes, J. Klinovaja, D. Loss, and H.
Schoeller, Surface charge theorem and topological constraints
for edge states: Analytical study of one-dimensional nearest-
neighbor tight-binding models, Phys. Rev. B 101, 165304
(2020).

[16] Y.-T. Lin, D. M. Kennes, M. Pletyukhov, C. S. Weber, H.
Schoeller, and V. Meden, Interacting rice-mele model: Bulk and
boundaries, Phys. Rev. B 102, 085122 (2020).

[17] M. Pletyukhov, D. M. Kennes, K. Piasotski, J. Klinovaja, D.
Loss, and H. Schoeller, Rational boundary charge in one-
dimensional systems with interaction and disorder, Phys. Rev.
Res. 2, 033345 (2020).

[18] C. S. Weber, K. Piasotski, M. Pletyukhov, J. Klinovaja, D. Loss,
H. Schoeller, and D. M. Kennes, Universality of Boundary
Charge Fluctuations, Phys. Rev. Lett. 126, 016803 (2021).

[19] D. Vanderbilt and R. D. King-Smith, Electric polarization as a
bulk quantity and its relation to surface charge, Phys. Rev. B 48,
4442 (1993).

[20] P. G. Harper, Single band motion of conduction electrons in a
uniform magnetic field, Proc. Phys. Soc., London, Sect. A 68,
874 (1955).

[21] S. Aubry and G. André, Analyticity breaking and anderson
localization in incommensurate lattices, Ann. Isr. Phys. Soc. 3,
133 (1980).

[22] S. Ganeshan, K. Sun, and S. Das Sarma, Topological Zero-
Energy Modes in Gapless Commensurate Aubry-André-Harper
Models, Phys. Rev. Lett. 110, 180403 (2013).

[23] Y. Lahini, R. Pugatch, F. Pozzi, M. Sorel, R. Morandotti, N.
Davidson, and Y. Silberberg, Observation of a Localization
Transition in Quasiperiodic Photonic Lattices, Phys. Rev. Lett.
103, 013901 (2009).

[24] Y. E. Kraus, Y. Lahini, Z. Ringel, M. Verbin, and O. Zilberberg,
Topological States and Adiabatic Pumping in Quasicrystals,
Phys. Rev. Lett. 109, 106402 (2012).

[25] W. DeGottardi, D. Sen, and S. Vishveshwara, Majorana
Fermions in Superconducting 1d Systems having Periodic,
Quasiperiodic, and Disordered Potentials, Phys. Rev. Lett. 110,
146404 (2013).

[26] M. Schreiber, S. S. Hodgman, P. Bordia, H. P. Lüschen, M. H.
Fischer, R. Vosk, E. Altman, U. Schneider, and I. Bloch, Ob-
servation of many-body localization of interacting fermions in
a quasirandom optical lattice, Science 349, 842 (2015).

[27] S. Gangadharaiah, L. Trifunovic, and D. Loss, Localized End
States in Density Modulated Quantum Wires and Rings, Phys.
Rev. Lett. 108, 136803 (2012).

[28] M. Atala, M. Aidelsburger, J. T. Barreiro, D. Abanin, T.
Kitagawa, E. Demler, and I. Bloch, Direct measurement of
the zak phase in topological bloch bands, Nat. Phys. 9, 795
(2013).

[29] E. J. Meier, F. A. An, and B. Gadway, Observation of the topo-
logical soliton state in the Su-Schrieffer-Heeger model, Nat.
Commun. 7, 13986 (2016).

[30] M. J. Yoo, T. A. Fulton, H. F. Hess, R. L. Willett, L. N.
Dunkleberger, R. J. Chichester, L. N. Pfeiffer, and K. W. West,
Scanning single-electron transistor microscopy: Imaging indi-
vidual charges, Science 276, 579 (1997).

[31] S. H. Tessmer, P. I. Glicofridis, R. C. Ashoori, L. S. Levitov,
and M. R. Melloch, Subsurface charge accumulation imag-
ing of a quantum hall liquid, Nature (London) 392, 51
(1998).

[32] G. Finkelstein, P. I. Glicofridis, R. C. Ashoori, and M.
Shayegan, Topographic mapping of the quantum hall
liquid using a few-electron bubble, Science 289, 90
(2000).

[33] G. Ben-Shach, A. Haim, I. Appelbaum, Y. Oreg, A. Yacoby,
and B. I. Halperin, Detecting majorana modes in one-
dimensional wires by charge sensing, Phys. Rev. B 91, 045403
(2015).

[34] M. Xiao, G. Ma, Z. Yang, P. Sheng, Z. Q. Zhang, and C. T.
Chan, Geometric phase and band inversion in periodic acoustic
systems, Nat. Phys. 11, 240 (2015).

[35] Y. Efroni, S. Ilani, and E. Berg, Topological Transitions
and Fractional Charges Induced by Strain and a Magnetic
Field in Carbon Nanotubes, Phys. Rev. Lett. 119, 147704
(2017).

[36] S.-R. E. Yang, Soliton fractional charges in graphene
nanoribbon and polyacetylene: Similarities and differences,
Nanomaterials 9, 885 (2019).

[37] J. Klinovaja, P. Stano, and D. Loss, Transition from Fractional
to Majorana Fermions in Rashba Nanowires, Phys. Rev. Lett.
109, 236801 (2012).

033167-39

https://doi.org/10.1103/PhysRev.52.191
https://doi.org/10.1103/PhysRev.115.809
https://doi.org/10.1103/RevModPhys.84.1419
https://doi.org/10.1038/nature23268
https://doi.org/10.1038/s41467-017-00133-2
https://doi.org/10.1103/PhysRevLett.121.126402
https://doi.org/10.1103/RevModPhys.66.899
https://doi.org/10.1103/PhysRevB.64.115202
https://doi.org/10.1103/PhysRevB.56.12847
https://doi.org/10.1103/PhysRevB.62.1666
https://doi.org/10.1103/PhysRevB.94.075416
https://doi.org/10.1103/PhysRevB.98.245404
https://doi.org/10.1103/PhysRevB.101.161106
https://doi.org/10.1103/PhysRevB.101.165304
https://doi.org/10.1103/PhysRevB.102.085122
https://doi.org/10.1103/PhysRevResearch.2.033345
https://doi.org/10.1103/PhysRevLett.126.016803
https://doi.org/10.1103/PhysRevB.48.4442
https://doi.org/10.1088/0370-1298/68/10/304
https://doi.org/10.1103/PhysRevLett.110.180403
https://doi.org/10.1103/PhysRevLett.103.013901
https://doi.org/10.1103/PhysRevLett.109.106402
https://doi.org/10.1103/PhysRevLett.110.146404
https://doi.org/10.1126/science.aaa7432
https://doi.org/10.1103/PhysRevLett.108.136803
https://doi.org/10.1038/nphys2790
https://doi.org/10.1038/ncomms13986
https://doi.org/10.1126/science.276.5312.579
https://doi.org/10.1038/32112
https://doi.org/10.1126/science.289.5476.90
https://doi.org/10.1103/PhysRevB.91.045403
https://doi.org/10.1038/nphys3228
https://doi.org/10.1103/PhysRevLett.119.147704
https://doi.org/10.3390/nano9060885
https://doi.org/10.1103/PhysRevLett.109.236801


KIRYL PIASOTSKI et al. PHYSICAL REVIEW RESEARCH 3, 033167 (2021)

[38] D. Rainis, A. Saha, J. Klinovaja, L. Trifunovic, and D.
Loss, Transport Signatures of Fractional Fermions in Rashba
Nanowires, Phys. Rev. Lett. 112, 196803 (2014).

[39] M. J. Rice and E. J. Mele, Elementary Excitations of a Lin-
early Conjugated Diatomic Polymer, Phys. Rev. Lett. 49, 1455
(1982).

[40] R. Resta and S. Sorella, Electron Localization in the Insulating
State, Phys. Rev. Lett. 82, 370 (1999).

[41] L. He and D. Vanderbilt, Exponential Decay Properties of Wan-
nier Functions and Related Quantities, Phys. Rev. Lett. 86, 5341
(2001).

[42] A. J. Heeger, Nobel lecture: Semiconducting and metallic poly-
mers: The fourth generation of polymeric materials, Rev. Mod.
Phys. 73, 681 (2001).

[43] W. P. Su, J. R. Schrieffer, and A. J. Heeger, Solitons in Poly-
acetylene, Phys. Rev. Lett. 42, 1698 (1979).

033167-40

https://doi.org/10.1103/PhysRevLett.112.196803
https://doi.org/10.1103/PhysRevLett.49.1455
https://doi.org/10.1103/PhysRevLett.82.370
https://doi.org/10.1103/PhysRevLett.86.5341
https://doi.org/10.1103/RevModPhys.73.681
https://doi.org/10.1103/PhysRevLett.42.1698

