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Abstract

Mathematical models are essential to analyze and understand the dynamics of complex systems. Recently, data-
driven methodologies have gotten a lot of attention which is leveraged by advancements in sensor technology.
However, the quality of obtained data plays a vital role in learning a good and reliable model. Therefore, in this paper,
we propose an efficient heuristic methodology to collect data both in the frequency domain and the time domain,
aiming at having more information gained from limited experimental data than equidistant points. In the frequency
domain, the interpolation points are restricted to the imaginary axis as the transfer function can be estimated easily on
the imaginary axis. The efficiency of the proposed methodology is illustrated by means of several examples, and its
robustness in the presence of noisy data is shown.

Impact Statement

Mathematical modeling describing underlying dynamical behaviors plays essential roles in performing engin-
eering studies such as optimization and control. In Complex processes where constructing models from first
principles ismore challenging, data-driven dynamical models become a valuable tool. The success of data-driven
approaches highly relies on the quality of the data. Unlike typical machine learning applications, for example,
image classification, data in engineering applications are somewhat limited. Hence, a design of experiments to
collect data should be done with care. This paper presents a scheme to collect data with the aim of (heuristically)
maximizing the extraction of information with limited measurements. The scheme can be wrapped on top of any
existing data-driven modeling methods in a setting.

1. Introduction

In this paper, our focus is on inferring linear time-invariant systems withm inputs and p outputs of the form:

E _x tð Þ = Ax tð ÞþBu tð Þ,
y tð Þ = Cx tð ÞþDu tð Þ, (1)

from data where E,A∈ℝn�n, B∈ℝn�m, C∈ℝp�n, and D∈ℝp�m. Using the Laplace transform, the
transfer function H sð Þ of the system (1) can be obtained and is given as
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H sð Þ =C sE�Að Þ�1BþD, (2)

where s represents the Laplace domain variable. Although the results presented in this paper can be
applied to multi-input multi-output (MIMO) systems, for simplicity, we will focus only on single-input
single-output (SISO) systems. The problem of learning dynamical systems of the form (1) is widely
studied and well understood (see, e.g., Mayo and Antoulas, 2007; Drmač et al., 2015a, 2015b;
Peherstorfer and Willcox, 2016; Antoulas et al., 2017; Nakatsukasa et al., 2018; Brunton and Kutz,
2019; Yu et al., 2019). A key ingredient to data-drivenmethodologies is data. It is necessary to provide a
good data quality, ensuring high fidelity of the inferred model. Typically, there are two possible ways to
collect data, namely in frequency domain and time domain. In the frequency domain, transfer function
samples are given, whereas, in the time domain, the output y is measured for a given input u. Moreover,
these data may be subject to noise. Depending on an experimental setup, wemay collect data in either of
these domains.

Among several widely used approaches, Loewner-based approaches (Mayo and Antoulas, 2007;
Antoulas et al., 2017) to learn dynamical systems have gained increasing popularity. The fundamental
idea of the Loewner-based approach is to construct a model that interpolates the given data points in the
frequency domain. It has also been extended to time-domain data (Peherstorfer et al., 2017). Further-
more, Antoulas et al. (2017) have shown that if theminimum order of a system that realizes the system is
n, then using 2n data points, one can construct the realization using the Loewner approach. However, if
only data are given, we cannot know a priori the minimal order of a state-space realization that captures
the dynamics of the process. Therefore, typically, one aims at collecting N≫ 2n data points, which is
then followed by a compression step to determine the minimal order of the state-space model that
captures the dynamics of the process.We refer the reader toMayo and Antoulas (2007) for more details.
However, this approach can impose practical constraints if collecting data are expensive. In this case,
we aim to gather data points carefully and focus on collecting the data points to obtain as much
information (gathered on the imaginary axis) as possible about the underlying dynamics up to tolerance.
In a step toward collecting good data, Beattie and Gugercin (2012) presented an approach inspired by
iterative rational Krylov algorithm (IRKA) (Gugercin et al., 2008) that focused on using interpolation
points that facilitate obtaining a model, minimizing the H2 error between the learned model and the
unknown ground-truth model. However, again, the approach needs the order of the state-space
realization as input, which may not be known in advance. In addition, it is an iterative scheme; thus,
the number of transfer function evaluations still becomes significantly large. Furthermore, we mention
that there also exist other approaches that aim at determining or collecting measurements greedily but
require a ground-truth high-fidelity model (see, e.g., Paul-Dubois-Taine and Amsallem, 2015; Chel-
lappa et al., 2020; Chellappa et al., 2021; Beddig et al., 2022).

On the other hand, our goal is to construct a minimal realization of a process using as fewmeasurement
data points as possible up to a tolerance, where we neither know the order of a minimal realization in
advance nor have access to any high-fidelity model. Furthermore, one can theoretically consider taking
the transfer function measurements on the complex domain, and often, it is known that good, in fact
optimal, measurement points are complex as shown in Gugercin et al. (2008) and Beattie and Gugercin
(2012). However, from an experimental viewpoint and physical interpretation of a transfer function, we
assume that transfer functionmeasurements are taken anywhere on the imaginary jω-axis. Themotivation
of considering measurements on the jω-axis are:

(a) A transfer function at jω can be estimated by exciting the system using an input containing sine and
cosine functions of the frequency ω. It can be extended to multiple frequencies as well.

(b) From the control theory perspective, a transfer function can be better interpreted on the jω-axis, for
example, using the Bode plot. More details can be found in, for example, Ogata (2010).

In this paper, we focus on inferring minimal linear dynamical systems using minimum possible
measurement data taken on the imaginary axis up to tolerance, but without knowing the minimal order
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of the realization a priori and its realization in any form. For this, we discuss a heuristic approach, allowing
us to select adaptively frequency points positioned where the transfer function changes the most. We also
discuss the extension of the approach to time-domain data.

The paper is structured as follows. In Section 2, the Loewner framework to learn linear dynamical
systems is briefly presented. In Section 3, we present the heuristic approach to select frequency points
from the imaginary axis (and transfer function measurements) that contributes the most in reducing the
error of the obtained realization. Then, in Section 4, we discuss an extension of the approach when input–
output data are collected in the time domain. In Section 5, we illustrate the efficiency of the proposed
greedy methodology, and compare it with models that are obtained from IRKA and by taking measure-
ments on a uniform grid. Finally, we conclude the paper with a summary and future research in Section 6.

2. Data-Driven Modeling Based on the Loewner Framework

In this section, we briefly recap the Loewner approach (Mayo and Antoulas, 2007) to construct a
realization from given transfer function measurements. To that end, for simplicity, we first write down
the underlying realization problem for SISO systems—that is as follows.

Problem 2.1. Given a set of interpolation points Z≔ σ1,…,σ2Nf g and corresponding transfer
function measurements H σið Þ, the goal is to identify a minimal realization whose rational transfer

function is denoted by bH sð Þ, satisfying the following interpolation conditions:

H σið Þ = bH σið Þ, i∈ 1,…,2Nf g, (3)

and the transfer function is given as

bH sð Þ = bC sbE� bA� ��1bBþ bD, (4)

where bE, bA∈ℝr�r, bB∈ℝr, bC∈ℝr, and bD∈ℝ with r being the order of a minimal realization.
This realization problem can be solved using the Loewner approach for given bD. For this, we need to

split the measurement data into left and right measurements. Let us define the left and right interpolation
points as λ j and μ j, where j∈ 1,…,Nf g, corresponding transfer function measurements are denoted by
H λ j
� �

andH μ j

� �
, and Z = λ1,…,λNf gS μ1,…,μNf g. Having these data, in the following, we define the

Loewner and shifted Loewner matrices.

Definition 2.1 (Mayo and Antoulas, 2007). Given left data λ j,H λ j
� �� �

and right data μ j,H μ j

� �� �
,

the Loewner L and shifted Loewner Ls matrices are defined as

L =

H λ1ð Þ�H μ1ð Þ
λ1�μ1

⋯
H λnð Þ�H μ1ð Þ

λn�μ1
⋮ ⋱ ⋮

H λ1ð Þ�H μnð Þ
λ1�μn

⋯
H λnð Þ�H μnð Þ

λn�μn

266664
377775, Ls =

λ1H λ1ð Þ�μ1H μ1ð Þ
λ1�μ1

⋯
λnH λnð Þ�μ1H μ1ð Þ

λn�μ1
⋮ ⋱ ⋮

λ1H λ1ð Þ�μnH μnð Þ
λ1�μn

⋯
λnH λnð Þ�μnH μnð Þ

λn�μn

266664
377775:

It is proved in Mayo and Antoulas (2007) that based on the Loewner and shifted Loewner matrices, a
realization can be constructed that solves Problem 2.1. This result is presented in the following theorem.

Theorem 1 (Mayo and Antoulas, 2007). Given left data λ j,H λ j
� �� �

and right data μ j,H μ j

� �� �
,

consider the Loewner and shifted Loewner matrices as defined in Definition 2.1. Moreover, assume that
the feed-through term D is known. Then, an interpolating realization can be constructed as below:

bE = L, bA = Ls�1D1Τ , bB =V�1D, bC =W�D1Τ , bD =D, (5)
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where 1∈ℝN is the vector of ones, bE, bA∈ℝn�n, bB∈ℝn, bC∈ℝn, bD∈ℝ, V = H λ1ð Þ, …, H λnð Þ½ �Τ , and
W = H μ1ð Þ, …, H μnð Þ½ �. Furthermore, the realization (5) is minimal, assuming L is of full-rank.

Furthermore, in case the Loewner matrix L is singular, there exists a lower-order realization of orderbn< n, where bn = rank Lð Þ, satisfying the interpolation conditions. To remove the redundant information
and obtain the minimal realization, a compression step based on the singular-value decomposition (SVD)
of L,Ls½ � can be employed (see, e.g., Mayo and Antoulas, 2007; Antoulas et al., 2017). We consider here
only the minimal realization for systems with an underlying ODE. For high index descriptor systems, one
has to be more careful with the definition of minimality (see, e.g., Sokolov, 2006), which might be
interesting to investigate as well in the future in detail. For simplicity, we have presented the realization
theory using the Loewner approach for SISO systems; however, it can be extended to MIMO systems
using the idea of tangential interpolation. We refer to Mayo and Antoulas (2007) and Antoulas et al.
(2017) for more details. We also remark that the realization (5) can be complex if data are complex, but if
the data are closed under conjugation, then there exists an orthogonal transformation that allows
determining the real realization using that orthogonal transformation.

The success of the Loewner approach has been shown in various applications (see, e.g., Ionita and
Antoulas, 2014a, 2014b; Poussot-Vassal et al., 2021). Its success lies in the quality of data and
assumes that there are enough data for a wide range of frequencies. However, suppose that the data
collection process is expensive. In this case, it is essential to make a smart choice to measurements to
maximize information about the system with limited data. With this aim, in the following section, we
discuss an adaptive scheme to collect measurements to extract more information about the system, as
compared to the standard equidistant measurements on the imaginary axis, with a fixed number of
measurements.

3. A Greedy-Based Data Collection Scheme

Naturally, the quality of collected data is a key ingredient to learning a good and reliablemodel, describing
the underlying dynamics of a process. Obviously, one can collect as much data as possible if feasible. It
can then be followed by inferring a system realization by using, for example, the Loewner approach
(Mayo and Antoulas, 2007) as discussed in the previous section. However, a mass collection could be
expensive in many scenarios. Therefore, in this section, we discuss a greedy scheme that can guide us to
collect the data, so that we can expect to extract as much new information about the dynamical system
from every measurement taken on the imaginary axis as possible. In the following, we first note down a
corresponding problem.

Problem 3.1. Identify the underlying state-space dynamical system of a process using a minimal
number of transfer function evaluations restricted to the imaginary axis up to a user-defined tolerance.

To that end, we first assume that we have an initial rough construct of a realization that still can be far
from satisfactory. An initial rough model can be constructed using only a few measurement points. We
denote the transfer function of the initial realization by Hinit sð Þ. Furthermore, let us denote the
transfer function of the unknown ground truth realization by Htrue sð Þ. In this case, we ideally would
like to update the model using the point on the jω-axis, where the maximum error between the true and
initial realized systems occurs; hence, we select the interpolation point that solves the following
optimization problem:

σnew ≔ argmax
σ ∈ jω

∥Htrue σð Þ�Hinit σð Þ∥, (6)

where ω∈ℝ: However, to solve the optimization problem (6), we require the transfer function of the
ground-truth realization, which is not available. Therefore, we seek for an alternative approach, allowing
us to estimate good interpolation points in an iterative procedure. For this, let us assume that we have 2k
measurement points, to begin with, and denote these measurements by tuples σi,H σið Þð Þ, i∈ 1,…,2kf g,
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where σi and H σið Þ are the interpolation points and the transfer function measurements at these points.
Before we proceed further, we define the following notation:

• Σi ≔ σ1,…,σ2if g:
• The transfer function of the realization constructed using interpolation points Σm is denoted by
Hm sð Þ, and the order of the constructed realization is m.

Next, we construct realizations using interpolation points Σk�1 ⊂Σk and Σk, which are, respectively,
denoted by Hk�1 sð Þ and Hk sð Þ. As discussed earlier, we ideally would add a new measurement for the
nextHkþ1 sð Þ realization at the frequency that solves the problem (6). Sincewe do not knowHtrue, in the
following, we discuss a heuristic approach to relax the optimization problem. First note that

∥Htrue σð Þ�Hk σð Þ∥ = ∥Htrue σð Þ�Hk�1 σð Þ� Hk σð Þ�Hk�1 σð Þð Þ∥
≤∥Htrue σð Þ�Hk�1 σð Þ∥þ∥Hk σð Þ�Hk�1 σð Þ∥: (7)

With unknownHtrue σð Þ, we rather focus on defining our next measurements data based on the second
part of (7) with a constraint; that is, we should exclude the regime of already taken measurements points.
Hence, we solve an optimization problem to obtain a frequency point at which transfer function
measurement needs to be taken to obtain more information about the underlying dynamics:

max
σ ∈ jω

g σð Þ∥Hk σð Þ�Hk�1 σð Þ∥, (8)

where the function g σð Þ can be thought of as a mask that aims at excluding the regime of points at which
measurements have already been collected. If g σð Þ is known, then we can solve (8) to obtain our new
measurement points which possibly bring the most information about the system as they would occur at
the maximum change in the transfer function from the previous to the next step. It is worth noting that
∥Hk σð Þ�Hk�1 σð Þ∥ could be replaced by an indicator that is cheaper to evaluate than sampling the system
and that would reduce the cost of the optimization process (8).

Naturally, the choice of the function g �ð Þ in (8) plays an important role in determining next measure-
ment points. Therefore, in the following, we discuss a choice of the mask function g σð Þ. As discussed, a
choice of the mask function should be such that it excludes the regime of already considered data points.
Among many possible choices, here, we propose the following choice:

g σð Þ =
Y2k
i = 1

eg σ,σið Þ,

where eg σ,σið Þ is defined as

eg σ,σið Þ = 1� e �β log jσjþεð Þ� log jσijþεð Þð Þ2ð Þ, (9)

with σi, i∈ 1,…,2kf g, being already considered measurement points, and ε and β are positive constants
and hyperparameters. It can be noticed that g σð Þ is zero at all the considered points with small values in
their neighborhood in order to favor the exploration over the already chosen interpolation points. The
mask function can also be seen as a notch filter at multiple frequencies and β can be seen as the bandwidth
of the filter. To illustrate the mask function, we plot the function for β = 0:6, ε = 10�15, and the notch
frequencies σi = 10�1,101,103

� �
in Figure 1. It clearly shows that the mask takes smaller values near the

considered frequency points.
Next, we discuss how to further simplify the choice of the function g σð Þ. First, note that

Hk σið Þ =Hk�1 σið Þ, for i∈ 1,…,2k�2f g, assuming that the realization is determined by the Loewner
approach, and thus, the interpolation at the given measurement points is exact. As a result, we can also
consider the optimization problem to determine our next measurement point as follows:
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σ2kþ1 ≔ argmaxσ∈ jω

Y2k
i = 2k�1

eg σ,σið Þ∥Hk σð Þ�Hk�1 σð Þ∥: (10)

In this paper, we utilize the Loewner approach to construct the realization. Therefore, it is preferred
to have an even number of measurement points to avoid the construction of a rectangular and
imaginary realization. Hence, it is desired to include two new additional points at each step.
Consequently, in order to choose one additional point, we solve the following optimization problem
once σ2kþ1 is obtained:

σ2kþ2 ≔ argmax
σ ∈ jω

Y2kþ1

i = 2k�1

eg σ,σið Þ∥Hk σð Þ�Hk�1 σð Þ∥: (11)

As a result, we have two new frequency points σ2kþ1 and σ2kþ2 at which we take transfer function
measurements. Thus, we update our realization Hkþ1 by using measurements at σi, i∈ 1,…,2kþ2f g. In
the SISO case, the norm between the transfer functionmeasurements just becomes the absolute value. The
whole procedure is repeated until the error between two iterations is small enough, that is,

max
s∈ jω

∥Hk sð Þ�Hk�1 sð Þ∥≤tol: (12)

We sketch the whole procedure in Algorithm 1. When the condition (12) is met, the algorithm
terminates as we have obtained theminimal realization of the systemwith respect to the given tolerance.

Moreover, we point out that the algorithm is not sensitive to small changes in the input
hyperparameters. For example, a small change in β in the mask function will not significantly impact
the convergence of the algorithm as long as the mask function keeps the properties described above.
This is discussed more in the numerical section. The other hyperparameter tol needs to be set by
the user as a trade-off between the accuracy of the resulting model and the number of interpolation
points used.

Algorithm 1. A greedy selection of measurement points in the frequency domain.

Input: A parameter β, and initial measurement points Σk ≔ σ1,…,σ2kf g.
1 Determine realizations Hk�1 and Hk by using measurement points Σk�1 ⊂Σk and Σk, respectively,

and by employing the Loewner approach.
2 Compute Err≔ max

s∈ jω
∥Hk sð Þ�Hk�1 sð Þ∥.

Figure 1. A visual illustration of the filter when the measurements are already taken at the frequencies
σi= 10�1,101,103

� �
.

e16-6 Karim Cherifi et al.

https://doi.org/10.1017/dce.2022.16 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2022.16


3 while Err>tol do

Output: A learned model, whose transfer function is given by Hk.

4. Extension to Time-Domain Data

In the previous section, we have discussed a greedy approach for frequency-domain measurements. Here,
we suppose that we have access to the time-domain data instead of the frequency-domain data. In this
case, we need to design input to collect time-domain data, so that we canmaximize information extraction
about the process. In this case, we can also employ Algorithm 1 with a slight modification. First, note that
Peherstorfer et al. (2017) have proposed a methodology to realize a state-space model using time-domain
data, where frequency-domain measurements are estimated using time-domain data. This is followed by
obtaining a realization using the Loewner framework described in Section 2. However, the methodology
heavily depends on the choice of input, and the choice should be made in such a way that it allows us to
describe the dynamics of the system completely. Hence, in this section, we discuss a suitable choice of
inputs. Using an extension of Algorithm 1, one can adaptively choose frequency points composing an
input. In practice, time-domain measurements are typically collected at a regular interval; hence, the
measurements are discrete. Therefore, the proposed greedy procedure needs to be adapted in a discrete
setting. In what follows, we discuss the adaptation that needs to be made to allow us to design an input to
extract as much information as possible. Note that the interpolation points are no longer on the s‐plane but
are rather on the unit circle of the z‐plane. Thus, the frequency range on the jω-axis needs to be mapped on
the unit circle using an appropriate discretization method. The Cayley transform could be used to map
between the discrete-time and continuous-time systems. To obtain time-domain measurements, the
system is excited with an input spanning a set of interpolation points, and the system response is
measured. We design an input u kð Þ

p using a sum of sine and cosine functions, that is, the input in the
kth step of the algorithm at time Tsp, where Ts is a sampling time, and p is a nonnegative integer, can be
given in the form:

u kð Þ
p =

1
K

X2
l = 1

1þ jð Þ cos σ2kþlð Þþ j sin σ2kþlð Þð Þ, (13)

where j≔
ffiffiffiffiffiffiffi�1

p
, p∈ 0,…,K�1f g, and K is the number of time-domain measurements.

Following the same strategy as in Section 3, the goal is to estimate frequency-domain data, corres-
ponding transfer function estimates, and construct a realization using the interpolation points. However,
since only time-domain data are available, one has first to use these data to estimate the frequency
measurements.

The complete procedure is as follows. Given an initial realizationHinit sð Þ, the next two interpolation
points σ2kþ1 and σ2kþ2 are computed as in (10) and (11). Then, we construct the input u kð Þ

p (at step k of the
algorithm and time step p) as in (13) with the two interpolation points σ2kþ1 and σ2kþ2. We simulate the
system to obtain an output having a value of y kð Þ

p at the step k of the algorithm and at time step p.
Assembling this time-domain data, one can then compute estimates for the transfer function
Htrue σ2kþ1ð Þ andHtrue σ2kþ2ð Þ. These values are computed using the following least-squares problem
(Peherstorfer et al., 2017):
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argminbH∈ℂr

FbH�y
			 			2

2
, (14)

where F∈ℂ K�kminð Þ�2 and bH are described below:

F=
U1e jσ2kþ1kmin U2e jσ2kþ2kmin

⋮ ⋮
U1e jσ2kþ1 K�1ð Þ U2e jσ2kþ2 K�1ð Þ,

264
375, and bH =

eH σ2kþ1ð ÞeH σ2kþ2ð Þ

" #
, (15)

where eH σð Þ is an estimate of Htrue σð Þ, and the output vector is defined as y≔ y kð Þ
kmin

,…,y kð Þ
K�1

h iΤ
such

that y kð Þ
p is the measurement of the output at time step p and the step k of the algorithm. U1 andU2 are the

nonzero (discrete) Fourier transform components of the input u, given in (13), which will be, in fact, at
frequencies σ2kþ1 and σ2kþ2, respectively. Moreover, kmin is chosen such that the system reaches a steady
state (approximately) after kmin time steps. For a proof of the derivation of the least-squares problem (14),
we refer to the discussion in Peherstorfer et al. (2017).

The next steps are then similar to the steps of Algorithm 1. A realization is constructed using all the
estimated points at Σk

S
σ2kþ1,σ2kþ2f g. The new interpolation points are then computed as in (10) and

(11). As in the frequency case, we repeat the procedure until the preset tolerance is reached:

max
∥z∥ = 1

∥Hk zð Þ�Hk�1 zð Þ∥≤tol:

5. Numerical Experiments

In this section, we illustrate the proposedmethodology bymeans of three examples. The first two examples,
namely, the penzl (Penzl, 2006) and the beam (Chahlaoui and Van Dooren (2002)) examples, consider
frequency-domain measurements. In the last example, time-domain data are used to construct a realization
for an electrical circuit, consisting of resistors, inductors, and capacitors and denoted byRLC, (Gugercin and
Antoulas, 2003) with an adaptive choice of measurements. We compare our proposed approach, where we
carefully choose measurement points, with the Loewner approach, where logarithmically equidistant
measurement points are considered. In both cases, we choose the best splitting method of right and left
interpolation points as discussed in Karachalios et al. (2020). In the following, we also note some details.
Typically, we are interested in a frequency range ωmin,ωmax½ �, and we considerM points, on a logarithmic
scale, from that given range, denoted by Q≔ q1,…,qM½ �. Whenever a measurement point is taken, we
assume it is taken from the setQ. Moreover, the Loewner framework (Mayo and Antoulas, 2007) is utilized
to construct a realization using measurement points and transfer function evaluations. The initial realization
is constructed using six approximately logarithmically equidistant interpolation points taken from the setQ.
This is done by computing first six logarithmically equidistant interpolation points bq1,…,bq6½ � in the
frequency range ωmin,ωmax½ � and then find the interpolation points eq1,…,eq6½ � that are used in the algorithm
by solving the following optimization problem:

argmineqi ∈Q

∥eqi�bqi∥: (16)

In each step of the algorithm, the interpolation points are organized into an interlacing manner (Gosea,
2018). The filter parameters in (9) are set to β = 0:6 and ε = 10�15. The tolerance in Algorithm 1 is set to
tol = 10�8. All the numerical experiments are done on an AMD Ryzen 7 PRO 4750 U processor
CPU@1.7GHz, up to 8 MB cache, 16 GB RAM, Ubuntu 20.04 LTS, MATLAB® Version 9.8.0.1323502
(R2020a) 64-bit(glnxa64).

5.1. Penzl example

As a first example, we consider the penzl example (Penzl, 2006) of order N = 1,006, which is referred to
as the FOM example in the subroutine library in systems and control theory (SLICOT) model reduction
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benchmark (Chahlaoui and Van Dooren, 2002). We are interested in the frequency range 10�1,103

 �

.
Using Algorithm 1, we obtain a realization that on termination uses 24 interpolation points. For
comparison, we also construct a realization using 24 logarithmically equidistant interpolation points in
the given frequency range. We compare these two learned realizations in Figure 2, where we observe that
our greedy scheme to collect measurements clearly outperforms the schemewhenmeasurements are taken
equidistantly. Algorithm 1 focuses on the region where the transfer function is involved, and it
automatically trends to add more points around the peaks of the transfer function. On the other hand,
the realization, constructed using the logarithmically equidistant points, has a larger error as it fails to
capture these peaks accurately. Furthermore, in Figure 3, we compare the frequency-limited H2-norm
(Wilson, 1970) of the learned and ground-truth systems in terms of the number of interpolation points
used.We use theMORLAB software package for the computation of the frequency-limited norm (Benner
and Werner, 2021). The figure shows that the frequency-limited H2 error decays faster when the
measurements are collected adaptively (Algorithm 1).

Next, we compare ourmethodwith the IRKAmethod (Beattie andGugercin, 2012), as implemented in
M-M.E.S.S. (Benner et al., 2021). We highlight that IRKA aims at determining the optimal interpolation
points in the H2-norm using an iterative scheme, and these interpolation points can be anywhere in the
complex domain. This is in contradiction to our proposed method, where we only focus on the imaginary
axis due to practical reasoning. We obtain an optimal model of order 16 using IRKA and compare it with

Figure 2. Penzl example: The Bode plot of the ground-truth, adaptively generated system, and a
realization with equidistant points and the corresponding error between them.

Figure 3. Penzl example: A comparison between the frequency-limitedH2-norm error for the adaptively
chosen points and the equidistant points.
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the proposed method and the Loewner approach with equidistant points. The results are shown in
Figure 4. Although the IRKA method chooses optimal points, the proposed greedy method to construct
a realization compares well with IRKA. However, it is quite worthwhile to note that:

(a) IRKA requires the order of the realization as an input which is usually not known.
(b) IRKA chooses interpolation points over the whole complex plane but estimating transfer function

at these points in an experiment is not straightforward, and sometimes not even possible.
(c) Lastly, we highlight that IRKA is an iterative method; hence, it requires repeated evaluations of the

transfer function at each iteration. For this example, IRKA took 14 iterations, thus 16�14 = 224
transfer evaluations. On the other hand, the proposed methodology requires only 16 transfer
function evaluations, which are also only on the imaginary axis.

Finally, we study the robustness of Algorithm 1 with respect to the hyperparameter β. We report the
quality of the learned realization with respect to the parameter β in Figure 5. We note that Algorithm 1 is
quite robust to the parameter, and all learned realizations outperform the one obtained using the
logarithmically equidistant measurement points.

Figure 4.Penzl example: The Bode plots of the ground-truth, adaptively generated system, the realization
with equidistant points, and IRKA realization are shown, and the corresponding errors with the ground

truth are also presented.

Figure 5. Penzl example: A comparison between the resulting Bode plots for different values of β used to
defined the filter g �ð Þ in (9).
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Measurement noise: Many studies have been made about the robustness of the Loewner framework to
noise (see, e.g., Lefteriu et al., 2010; Kergus et al., 2018; Drmač and Peherstorfer, 2020). More generally,
some studies have worked on designing identification methods that can better deal with noise (see, e.g.,
Schwerdtner, 2021).We do a preliminary study and observe the performance of our approach under noisy
measurements. We conduct three experiments, where we corrupt the transfer function measurements with
Gaussian white noise of standard deviation σ = 10�4,10�5,10�6


 �
, respectively. We compare our

approach with a realization based on logarithmically equidistant interpolation points and measurements
corrupted with the same noise level as for the adaptive case. The H2-norms of learned and the ground-
truth models are compared in Table 1. The table shows that even though the H2 error for the adaptive
algorithm increases with the level of noise, it yields much better models as compared to the one obtained
using the logarithmically equidistant points. This shows that the adaptive method is superior even in the
presence of noise in the measurements. It is important to note that the Loewner framework was used to
illustrate the application of our method. In the noisy data case, there could be better suitable methods
where the proposed adaptive method can be used.

5.2. Beam example

In this example, we consider the beam model from the SLICOT model reduction library (Chahlaoui and
VanDooren, 2002). It comes from the discretization of a PDE (Antoulas et al., 2001). The input is the force
applied at one end, and the output is the displacement resulting from the applied force at other end. We
consider the frequency range of operation 10�1,5


 �
. Algorithm 1 is applied, and a realization is obtained

using 30 interpolation points as shown in Figure 6. As in the first example, we also construct a realization
using 30 logarithmically equidistant interpolation points distributed over the chosen range of frequencies.
Here again, we notice that most of the interpolation points using the adaptive method are chosen around
the areas where most changes are happening. In contrast, measurements taken at logarithmically
equidistant points yield a realization having a larger error. In Figure 7, we observe that adaptively chosen
interpolation points decrease the H2-norm error faster as compared to the equidistant ones.

RLC circuit

Finally, we consider an RLC circuit with 100 resistors, capacitors, and inductors (Gugercin and Antoulas,
2003; Benner et al., 2020). The frequencies are taken within the range of frequencies 10�2,103


 �
. In order

to obtain input/output time-domain measurements, a system simulation using the input (13) is performed
to obtain the output in each step. Applying the procedure described in Section 4 directly realizes a model
of order 12. As in the first example, we consider the realization of a model using 12 logarithmically
equidistant interpolation points and their complex conjugates on the unit circle in order to ensure that the
resulting system is real as discussed in Peherstorfer et al. (2017). A comparison of the Bode plots is shown
in Figure 8. Our algorithm recovers the model with a relatively low error, and the model captures the time-
domain response of the ground-truth model. It shows that our method provides a promising direction for
the long-standing subject of input choice for time-domain system identification. In addition, since our

Table 1. Penzl example: A comparison of the frequency-limited H2-norm of the error between the
ground-truth and realized systems under different levels of noise in the measurement data.

Standard deviation of noise (σ)

Method 0 10�6 10�5 10�4

Adaptive 3:287�10�9 1:544�10�7 1:788�10�5 5:886�10�4

Equidistant 7:737�10�6 2:400�10�3 1:400�10�2 3:259�10�1
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Figure 7. Beam Example: A comparison between the frequency-limitedH2 norm error for the adaptively
chosen points and the equidistant points.

Figure 8. RLC example: A comparison for the Bode plot of the ground-truth and the identified models.

Figure 6. Beam Example: The Bode plot of the ground-truth system, adaptively generated system, and a
realized system with equidistant points. The right figure shows the corresponding error between the

ground-truth and realized systems.
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method infers only two transfer function measurements in each step, the size of the matrix F is small. This
results in a more numerically stable optimization problem compared to the classical equidistant selection
of points casewhere you have to solve for all the interpolation at once, leading to thematrixF of large size.

6. Conclusion

In this paper, we have presented a purely data-driven realization method that greedily chooses measure-
ment points aiming at maximizing the extraction of the information about system dynamics by restricting
measurements points on the imaginary axis. We have discussed both cases where data are taken in
frequency and time domains.We have illustrated the efficiency of the proposedmethodology bymeans of
three benchmark examples. We have shown that our method performs better as compared to the approach
where themeasurement data are taken at logarithmically equidistant points in a given frequency range.We
have observed that the proposed method can learn a good model without prior knowledge about the
system dynamics by greedily choosing interpolation points, which is a key advantage.
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